数学_简单三对角矩阵矩阵行列式的基本探究

数学_简单三对角矩阵矩阵行列式的基本探究
数学_简单三对角矩阵矩阵行列式的基本探究

简单三对角矩阵矩阵行列式的基本探究

张云鹏 (2014070904021)

指导教师:李厚彪

【摘要】三对角矩阵的行列式的计算在行列式的计算中占据特殊地位,由于三对角矩阵具有明显的规律性但其行列式运算又有一定的难度经常成为出题的热点,本篇小论文给简单三角矩阵行列式运算做出基本解法,并通过三对角矩阵得到一组Cos (nx )与Sin(nx)的简明展开公式。 【关键词】三对角矩阵; 矩阵; 数列递推; 三角函数; 斐波那契数列

1. 引言

在进行行列式计算之前我们先探究一下斐波那契数列通项公式的计算方法。

例1、现已知斐波那契数列满足如下关系:()01111,1,,1n n n F F F F F n +-===+≥,试求其通项公式。

解:

易知对于1、2项为任意值但满足()

11,1n n n F F F n +-=+≥的数列的加法与数乘满足线性

空间八条条件。

则存在满足()

11,1n n n F F F n +-=+≥的两个数列

{}n a 、{}n b 。

他们的任意;(k 0)n

n a kb =≠不恒成立。

则任意{}n c 中的任意一项12n n n c k a k b =+使恒成立。

鉴于

()

11,1n n n F F F n +-=+≥的递推形式,我们不妨设数列

{}n a 、{}n b 为两组几何级数,其

公比分别为1q 、2q ;且()1n

n a q =、()2n

n b q =

根据

()

11,1n n n F F F n +-=+≥可列方程n n-1n-2q =q +q ,化简可知2

q -q-1=0。

又因为011,1F F ==,可求得1255k ,k 55

=

=-。 经计算可知15

q=2±,则n

n

n n 1+51-5a =b =22???? ? ? ? ?????,。

又因为011,1F F ==,可求得1255k ,k 55

=

=-。 则斐波那契数列的表示为11515225n n n F ??????+-??=- ? ? ? ?????????

我们简化上述求法为特征方程法。并可以广泛运用在三对角矩阵矩阵行列式的计算中。

2. 简单三对角矩阵行列式的特征方程

行列式的计算说到底是一种值的计算,对于简单三对角矩阵更可以理解为一种数列{}n a 的通项公式计算。那么我们计算简单的三对角矩阵的行列式时,可以先按特定的行列展开得到一种递推公式,然后根据递推公式进行计算,得出数列{}n a 的通项公式。其常用方法与斐波那契数列的求法相似。

例2、计算n 7500027500

02700A =

0007500027

解:设n n

a =A 。

从最后一行展开

n

a ,可知

()

()

n+n

n+n-1

n-2n n-10A a =17a 1200

05

-+-

继续展开可知

n n-1n-2a =7a 10a -。

此时我们可以根据导论中的解法设出满足

n n-1n-2

a =7a 10a -的两个等比数列

()

1b n

n q =、

()

2c n

n q =。

可列方程

2q -7q+10=0

,并可解的

12q =2;q =5。

又根据12a =7;a =39。可知n n

n 52a =33-(5)(2)。

附注:《线性代数与空间解析几何学习指导》的36页给出了本题另外一种解法。

但该种运算具有一定的局限性:其特征方程必有两个不等根(对实根不做要求)。

此要求一旦不满足,就无法构成线性空间进行运算。

例3、计算

n 2100012100

01200A =

0002100012

解:设n n

a =A 。

从最后一行展开

n

a ,可知

()

()

n+n

n+n-1

n-2n n-10A a =12a 100

01

-+-

继续展开可知n n-1n-2a =2a -a 。

可列方程

2q -2q+1=0

,并可解的

12q =q =1

此时无法解出

{}

n a 的通项公式。

可见此时特征方程的解法是失效的。 我们改写

n n-1n-2

a =2a -a 为

n n-1n-1n-2

a -a =a -a 。之后就可以轻松得到

n a =n+1。

综上所述:简单三角矩阵的行列式的解可利用特征方程得到,特征方程失效的场合可以根据递推关系轻松推得通项公式。

【小猜想:

n g(1)(1)000(1)

g(2)(2)000(2)g(3)00A =

000g(n-1)(n 1)0

(n 1)

g(n)

h f h f h f --

也可以通过特征方程解出。】

3. 三角函数的n 次展开。

关于三对角矩阵的行列式的证明题又颇为经典的一道。

例4、证明

cos 10001

2cos 100012cos 00cos nx==

0002cos 10

1

2cos n x x x A x

x

解:设n n

a =A 。

从最后一行展开

n

a ,可知

()

n+n-1

n-2n n-10

A a =2cosxa 100

01

+-

继续展开可知

n n-1n-2a =2cosxa -a 。

接下来的证明可由数学归纳法与三角恒等变形求得,此处略。

(详见《线性代数与空间解析几何学习指导》48页)

接下来我们把

cos 10001

2cos 100012cos 00cos nx==

0002cos 10

1

2cos n x x x A x

x

视作已知探究

cos(nx)的展开式。

由已得到的递推公式n n-1n-2a =2cosxa -a ,可列方程

2

q -2cosx q+1=0。 解得

()2

q=cosx 1-cos x i ±,即

q=cosx sin xi

±。

经计算

()()n

n

cosx sin xi cosx-sin xi cos nx=

2

++。

于是我们就得到了用复数表示的cos nx 的展开式。

既然cos nx 可展开,我们有足够的理由相信sin nx 也可以以类似方式展开。 利用三角恒等变形我们可以得到以下结果:

()()()()()()()()()()()sin nx=sin n-1x x =sin n-1x cos x cos n-1x sin x =sin n-1x cos x sin xcos n-2x x =sin n-1x cos x sin xcosxcos n-2x-sinxsinxsin n-2x

111

=sin n-1x cos x+sin 2xcos n-2x+cos 2xsin n-2x-22+????

+++????

+()()()sin n-2x

211

=sin n-1x cos x+sin nx-sin n-2x

22

化简可得()()sin nx=2cosxsin n-1x sin n-2x -。

n a =sin nx ,可得n n-1n-2a =2cosxa -a 。

最终计算结果为()()n

n

i cosx sin xi i cosx-sin xi sin nx=2

+-。 综上所述,我们可以得到()()()()n n

n n i cosx sin xi i cosx-sin xi sin nx=2cosx sin xi +cosx-sin xi cos nx=2

?+-???+?

??。

该表达式利用复数表达实数,并通过i 的引入免去的cos nx 的奇偶讨论,并使得任意角的三角函数值理论上可计算。

4. 通过特征方程构造简单三对角矩阵行列式

谈完了简单三对角矩阵行列式的求解,我们接下来谈谈简单三角行列式的构造。 我们以构造简单三对角矩阵行列式sin nx=n A 为例。

n a =sin nx ,由(3)中论述可知n n-1n-2a =2cosxa -a 。

并将递推公式改写为

n-2

n-1n 12

00

A 00A 0a =

+000k 0

2cos x

k 0

其中

12k ,k 应满足12-k k =-1。

我们不妨令

12k =k =1。

n-1n 0

A a =

10

12cos x

。 又因为递推公式从第三项开始生效,可写出1

2sin x 0

a =sin x a =02cos x ,。

则可知

sin x 00000

2cos 100012cos 00sin nx==

0002cos 10

1

2cos n x x A x

x

由构成过程看,展开简单三对角矩阵行列式时最好从最后向上展开。

5. 参考文献

[1] 黄廷祝,成孝予. 线性代数与空间解析几何[M]. 第三版. 北京:高等教育出版社,2007.

[2] 黄廷祝,余时伟,线性代数与空间解析几何学习指导[M]. 北京:高等教育出版社,2005.

行列式跟矩阵的关系

行列式跟矩阵的关系 行列式是若干数字组成的一个类似于矩阵的方阵,与矩阵不同的是,矩阵的表示是用中括号,而行列式则用线段。 矩阵由数组成,或更一般的,由某元素组成。就是m×n 矩阵就是mn个数排成m个横行n个竖列的阵式。n×n矩阵的行列式是通过一个定义,得到跟这个矩阵对应的一个数,具体定义可以去看书。注意,矩阵是一个阵式,方阵的行列式是跟一个方阵对应一个数。行列式的值是按下述方式可能求得的所有不同的积的代数和,即是一个实数求每一个积时依次从每一行取一个元因子,而这每一个元因子又需取自不同的列,作为乘数,积的符号是正是负决定于要使各个乘数的列的指标顺序恢复到自然顺序所需的换位次数是偶数还是奇数。 也可以这样解释:行列式是矩阵的所有不同行且不同列的元素之积的代数和,和式中每一项的符号由积的各元素的行指标与列指标的逆序数之和决定:若逆序数之和为偶数,则该项为正;若逆序数之和为奇数,则该项为负。 行列式在数学中,是一个函数,其定义域为的矩阵,取值为一个标量,写作或。行列式可以看做是有向面积或体积的概念在一般的欧几里得空间中的推广。或者说,在维欧几里得空间中,行列式描述的是一个线性变换对“体积”所造成的影响。无论是在线性代数、多项式理论,还是在微积分学中(比如说换元积分法中),行列式作为基本的数学工具,都有着重要的应用。 行列式概念最早出现在解线性方程组的过程中。十七世纪晚期,关孝和与莱布尼茨的著作中已经使用行列式来确定线性方程组解的个数以及形式。十八世纪开始,行列式开始作为独立的数学概念被研究。十九世纪以后,行列式理论进一步得到发展和完善。矩阵概念的引入使得更多有关行列式的性质被发现,行列式在许多领域都逐渐显现出重要的意义和作用,出现了线性自同态和矢量组的行列式的定义。

矩阵行列式的概念与运算

知识点总结: 一、矩阵的概念与运算 1、 矩阵1112 132122 23a a a a a a ?? ??? 中的行向量是()111213a a a a =r ,()2122 23b a a a =r ; 2、 如:1112131112111221222321222122,,c c c a a b b A B C c c c a a b b ?? ???? === ? ? ??????? ,那么 11111212111221212222212233,333a b a b a a A B A a b a b a a ++???? +== ? ? ++????, 1111122111121222 111312232111222121122222 21132223a c a c a c a c a c a c AC a c a c a c a c a c a c +++?? = ?+++?? 矩阵加法满足交换律和结合律,即如果,,A B C 是同阶的矩阵,那么有: ,()()A B B A A B C A B C +=+++=++。 同理如果矩阵,A B 是两个同阶矩阵,那么将它们对应位置上的元素相减所得到的矩阵C 叫做矩阵A 与B 的差,记作C A B =-。 实数与矩阵的乘法满足分配律:即()a A B aA aB +=+。 矩阵对乘法满足:()A B C AB AC +=+,()B C A BA CA +=+,()()()a AB aA B A aB == ()()AB C A BC = 3、 矩阵乘法不满足交换率,如111 11 11 122222222.a b c d c d a b a b c d c d a b ????????≠ ??? ??????????? 矩阵乘法能进行的条件是左边的矩阵A 的列数与右边矩阵B 的行数相等,而且矩阵的乘法不满足交换率,不满足消去律。 二、行列式概念及运算 1.用记号 2 2 11b a b a 表示算式1221b a b a -,即 2 2 11b a b a =1221b a b a -,其中 2 2 11b a b a 叫做二阶行列 式;算式1221b a b a -叫做二阶行列式的展开式;其计算结果叫做行列式的值;2121,,,b b a a 都叫做行列式的元素.利用对角线 2 2 11b a b a 可把二阶行式写成它的展开式,这种方法叫做二阶行列式 展开的对角线法则;即在展开时用主对角线元素的乘积减去副对角线元素的乘积. 2.二元一次方程组的解 二元一次方程组???=+=+222 1 11c y b x a c y b x a (其中2121,,,b b a a 不全为零);记 2 211b a b a 叫做方程组的系数

矩阵代码大全(矩阵的逆、乘法、加法、行列式)(c++程序)

班级:数学112班学号:201112010222姓名:吕文辉报告日期:2012/12/17 实验代码: 1.输入10个数进行排序: #include using namespace std; int main() { int a[10],i,j,t; cout<<"input 10 numbers"<>a[i]; for(i=0;i<10;i++) for(j=i+1;j<10;j++) if(a[i]>a[j]) {t=a[j];a[j]=a[i];a[i]=t;} for(i=0;i<10;i++) cout< #include using namespace std; const int m=2,n=3; int main() { int a[m][n],i,j,k=0; cout<<"input a array"<>a[i][j]; for(i=0;i

} 3.矩阵转置的程序代码: #include using namespace std; int const m=2,n=3; int main() { int i,j,k=0,kk=0; int a[m][n],b[n][m]; for(i=0;i>a[i][j]; for(i=0;i #include using namespace std; int const m=3,n=3,q=3; int main() { double a[m][n],b[n][q],c[m][q]; int i,j,k,kk=0; cout<<"输入矩阵a"<

第五专题 矩阵的数值特征(行列式、范数、条件数、迹、秩、相对特征根)

第五专题 矩阵的数值特征 (行列式、迹、秩、相对特征根、范数、条件数) 一、行列式 已知A p ×q , B q ×p , 则|I p +AB|=|I q +BA| 证明一:参照课本194页,例4.3. 证明二:利用AB 和BA 有相同的非零特征值的性质; 从而I p +AB ,I q +BA 中不等于1的特征值的数目 相同,大小相同;其余特征值都等于1。 行列式是特征值的乘积,因此|I p +AB|和|I q +BA|等于特征值(不等于1)的乘积,所以二者相等。 二、矩阵的迹 矩阵的迹相对其它数值特征简单些,然而,它在许多领域,如数值计算,逼近论,以及统计估计等都有相当多的应用,许多量的计算都会归结为矩阵的迹的运算。下面讨论有关迹的一些性质和不等式。 定义:n n ii i i 1 i 1 tr(A)a ====λ∑∑,etrA=exp(trA)

性质: 1. tr(A B)tr(A)tr(B)λ+μ=λ+μ,线性性质; 2. T tr(A )tr(A)=; 3. tr(AB)tr(BA)=; 4. 1 tr(P AP)tr(A)-=; 5. H H tr(x Ax)tr(Axx ),x =为向量; 6. n n k k i i i 1 i 1 tr(A),tr(A )===λ=λ∑∑; 从Schur 定理(或Jordan 标准形)和(4)证明; 7. A 0≥,则tr(A)0≥,且等号成立的充要条件是A=0; 8. A B(A B 0)≥-≥即,则tr(A)tr(B)≥,且等号成立的充要条件是A=B (i i A B (A)(B)≥?λ≥λ); 9. 对于n 阶方阵A ,若存在正整数k,使得A k =0,则tr(A)=0(从Schur 定理或Jordan 标准形证明)。 若干基本不等式 对于两个m ×n 复矩阵A 和B ,tr(A H B)是m ×n 维酉空间上的内积,也就是将它们按列依次排成的两个mn 维列向量的内积,利用Cauchy-schwarz 不等式 [x,y]2≤[x,x]﹒[y,y]

上海版教材 矩阵与行列式习题(有问题详解)

矩阵、行列式和算法(20131224) 成绩 一、填空题 1.行列式 cos sin 3 6 sin cos 3 6 π π π π 的值是 . 2.行列式 a b c d (,,,{1,1,2}a b c d ∈-)的所有可能值中,最大的是 . 3.将方程组203253x y z x y =?? +=??+=? 写成系数矩阵形式为 . 4.若由命题A :“ 2 2031x x ”能推出命题B :“x a >”,则a 的取值围是 . 5.若方程组111 222a x b y c a x b y c +=??+=?的解为2,1==y x ,则方程组 ?? ?=++=++03520 352222 111c y a x b c y a x b 的解为x = ,y = . 6.方程21 24 1 013 9 x x ≤-的解集为 . 7.把 22111133 33 22 2 4 x y x y x y x y x y x y +- 表示成一个三阶行列式为 . 8.若ABC ?的三个顶点坐标为(1,2),(2,3),(4,5)A B C ----, 其面积为 .

9.在函数()211 1 2 x f x x x x x -=--中3x 的系数是 . 10.若执行如图1所示的框图,输入12341,2,4,8,x x x x ====则输出的数等于 . 11.矩阵的一种运算,???? ??++=???? ??????? ??dy cx by ax y x d c b a 该运算的几何意义为平面上的点),(y x 在矩阵??? ? ??d c b a 的作用下 变换成点(,)ax by cx dy ++,若曲线10x y +-=在矩阵??? ? ??11b a 的作用下变换成曲线10x y --=,则a b +的值为 . 12.在集合{}1,2,3,4,5中任取一个偶数a 和奇数b 构成以原点为起点的向量(),a b α=.从所有得到的以原点为起点的向量中任取两个向量为邻边作平行四边形,记所有作成的平行四边形的个数为n ,其中面积不超过...4的平行四边形的个数为m ,则m n = 二.选择题 13.系数行列式0D =是三元一次方程组无解的( ) A. 充分非必要条件 B. 必要非充分条件 C. 充分必要条件 D. 既非充分也非必 要条件 14.下列选项中错误的是( ). A. b d a c d b c a - = B. a b c d d b c a = C. d c d b c a 33++ d c b a = D. d c b a d b c a ----- =

线性代数行列式算与性质

线性代数行列式的计算与性质 行列式在数学中,是一个函数,其定义域为的矩阵,取值为一个标量,写作或。行列式可以看做是有向面积或体积的概 念在一般的欧几里得空间中的推广。或者说,在维欧几里得空间中,行列式描述的是一个线性变换对“体积”所造成的影响。无论是在线性代数、多项式理论,还是在微积分学中(比如说换元积分法中),行列式作为基本的数学工具,都有着重要的应用。 行列式概念最早出现在解线性方程组的过程中。十七世纪晚期,关孝和与莱布尼茨的著作中已经使用行列式来确定线性方程组解的个数以及形式。十八世纪开始,行列式开始作为独立的数学概念被研究。十九世纪以后,行列式理论进一步得到发展和完善。矩阵概念的引入使得更多有关行列式的性质被发现,行列式在许多领域都逐渐显现出重要的意义和作用,出现了线性自同态和矢量组的行列式的定义。 行列式的特性可以被概括为一个多次交替线性形式,这个本质使得行列式在欧几里德空间中可以成为描述“体积”的函数。 矩阵 A 的行列式有时也记作 |A|。绝对值和矩阵范数也使用这个记法,有可能和行列式的记法混淆。不过矩阵范数通常以双垂直线来表示(如: ),且可以使用下标。此外,矩阵的绝对值是没有定义的。因此,行 列式经常使用垂直线记法(例如:克莱姆法则和子式)。例如,一个矩阵: A= ? ? ? ? ? ? ? i h g f e d c b a , 行列式也写作,或明确的写作: A= i h g f e d c b a , 即把矩阵的方括号以细长的垂直线取代 行列式的概念最初是伴随着方程组的求解而发展起来的。行列式的提出可以追溯到十七世纪,最初的雏形由日本数学家关孝和与德国数学家戈特弗里德·莱布尼茨各自独立得出,时间大致相同。

9.4.2 三阶行列式(含答案)

【课堂例题】 例1.解关于,,x y z 的方程组:13x y mz x my z m x y z ++=?? ++=??-+=? 例2.已知行列式2 40 2 101 01 D -=--,写出第一列元素的代数余子式.

【知识再现】 1.设关于,,x y z 的三元线性方程组111122223 333a x b y c z d a x b y c z d a x b y c z d ++=?? ++=??++=?,其中a 1、a 2、a 3、b 1、b 2、b 3、c 1、 c 2、c 3不全为零. 若记1 11 2 223 3 3 a b c D a b c a b c =, x D = , y D = , z D = 当D ,方程组有唯一解:x = ,y = ,z = . 当0D =且,,x y z D D D 至少有一个不为零时,方程组 . 当0x y z D D D D ====时,方程组 . 【基础训练】 1.方程组273514223x y z x y x y -+=?? -=??-=? 的系数行列式为 ,系数行列式的值为 . 2.已知方程组10x my z x my z m mx y z ++=-?? -+=??++=? , (1)该方程组有唯一解,则实数m 的取值范围是 . (2)若0m =,则该方程组解的情况为 . 3.关于,,x y z 的方程组1111 22223 333(1)a x b y c z d a x b y c z d a x b y c z d ++=?? ++=??++=?中,若记111 2 2233 3 a b c D a b c a b c =,则“0D =” 是“方程组(1)有无穷多组解”的( ) A.充分非必要条件 B.必要非充分条件 C.充要条件 D.非充分非必要条件 4.任写两个关于,,x y z 的线性方程组,要求满足0x y z D D D D ====,但第一个方程组要求无解,第二个方程组要求有无穷多解. , .

矩阵与行列式的相似与不同

矩阵与行列式的相似与不同 学校:长江大学 院系:信息与数学学院 专业:信息与计算科学 姓名:郑洲 辅导老师:谢老师

【摘要】:本文中主要讨论了高等代数中矩阵和行列式的概念,并且从概念,性质以及运算几个方面阐述了行列式与矩阵的相似与不同。 【关键词】:矩阵.行列式.相似与区别 矩阵是指纵横排列的二维数据表格,最早来自于方程组的系数及常数所构成的方阵。数学上,一个m×n的矩阵是一个由m行n列元素排列成的矩形阵列.矩阵里的元素可以是数字、符号或数学式。其重要的作用是解线性方程组和表示线性变换。 行列式在数学中,是由解线性方程组产生的一种算式,是由若干数字组成的一个类似于矩阵的方阵。行列式是一个函数,值是一个标量。其值是按下述方式可能求得的所有不同的积的代数和,即是一个实数求每一个积时依次从每一行取一个元因子,而这每一个元因子又需取自不同的列,作为乘数,积的符号是正是负取决于要使各个乘数的列的指标顺序恢复到自然顺序所需的换位次数是偶数还是基数。 我们先看看矩阵和行列式有哪些相似。 1.形式上比较相似:矩阵和行列式看上去比较相似,主要表现在:它们中的元素都有顺序的排成行列表,表面上看起来很相似,导致很多初学者容易把行列式和矩阵弄混淆;其次,它们中的表示方法一致,比如说行列式和 矩阵中第i行第j列的元素都用a ij表示;并且,它们对行列的称呼一致,从 上到下依次称作第一行,第二行…第n行,记作r1,r2,…r n;从左到右依次称为第一列,第二列,…第n列,记作c1,c2…c n。 2.性质上有相同点:在一个不等于0的数乘行列式或矩阵的某一行或某一列时,等于该数乘以此行或此列的每一个元素;行列式和矩阵中把一个不为0的数乘行列式或矩阵的某一行或列后可以加到另一行或列对应的元素上,即某一行(列)的k倍可以加到另一行(列)上。 3.运算上具有相同点:(1)行列式和矩阵都满足叫法交换率和结合律。可以表示为 D1+D2=D2+D1(D1+D2)+D3=D1+(D2+D3) A+B = B+A (A+B)+C = A+(B+C) (2)行列式和矩阵满足乘法结合律,即 D1D2D3=(D1D2)D3 A(BC)=(AB)C (3)行列式适合乘法分配率,矩阵适合乘法左分配率和右分配率,也就是说 D1(D2+D3)=D1D2+D1D3(D2+D3)D1=D2D1+D3D1 A(B + C) = AB + AC (B + C)A=BA + CA 矩阵和行列式虽然说有很多相同点,但它们始终是两个不同的概念,那么矩阵和行列式有什么区别呢。 1.先从概念上可以看出:(1)n阶行列式D n是n2个数按一定顺序排列成的n行n列的方阵,其实际上是一个数,行列式在数表两端加||;而矩阵是m ×n个数按一定方式排列的m行n列数表,归根结底是一个数表,矩阵在数表两端加()或[]。行列式是方形数表中定义,对不上方形的数表,不能讨论任何行列式的问题,而矩阵无此限制(2)行列式和矩阵行列之间存在差

沪教版(上海) 高二第一学期 新高考辅导与训练 第9章 矩阵和行列式初步 本章复习题(wd无答案)

沪教版(上海) 高二第一学期新高考辅导与训练第9章矩阵和行 列式初步本章复习题 一、填空题 (★) 1. 二元一次方程组的增广矩阵是___________. (★) 2. 方程的实数解是________. (★★) 3. 若的三个顶点坐标为,其面积为________. (★★) 4. 设,计算:________. (★★) 5. 若关于的二元一次方程组有无穷多组解,则 ______ . (★★) 6. 将表示成一个三阶行列式为________. (★★) 7. 函数的最大值是_________. (★★) 8. 计算:__________. 二、双空题 (★★) 9. 若,,,,则______,______. (★★)10. 已知矩阵,矩阵,向量经过矩阵A变换为向量_______,变换后的向量与原向量关于直线__________对称. 三、单选题 (★★★) 11. 三阶行列式的两行成比例的是这个行列式的值为零的() A.充分条件B.充要条件C.必要条件D.非充分非必要条件(★★) 12. 若,则 x的值是(). A.1B.C.D.

(★) 13. 已知,则(). A.B.C.D. (★) 14. 已知是阶矩阵,,则下列结论中错误的是(). A.B. C.D. 四、解答题 (★★) 15. 已知矩阵,,,计算: (1); (2); (3). (★★★) 16. 关于的二元一次方程组有唯一一组正解,求实数 a的取值范围.(★★) 17. 用矩阵变换的方法解方程组:. (★★) 18. 已知矩阵,定义其转置矩阵.若 ,写出 A的转置矩阵,并求行列式与.说明两者有什么关系. (★★★) 19. 已知.求证:三点共线的充要条件是 .

矩阵与行列式知识梳理

矩阵与行列式知识梳理 一、矩阵的概念 1 将mn 个实数),,2,1;,,2,1(n j m i a ij ==排成m 行n 列的矩形数表(通常用圆括号把数表括起来): ?? ? ? ? ? ? ??=mn m m n n a a a a a a a a a A 2 1 22221 11211称为一个m 行n 列的矩阵,简称n m ?矩阵,用______表示. 简记为_____.数ij a 称为矩阵的元素. 几种特殊类型的矩阵:行矩阵、列矩阵、方阵、单位矩阵、零矩阵. 2 对于关于y x ,的线性方程组?? ?=+=+222111c y b x a c y b x a ,则矩阵??? ? ??2211 b a b a 称为该线性方程组的系数矩阵. 矩阵??? ? ??22 2 111 c b a c b a 称为该线性方程组的增广矩阵. 3 矩阵的三种变换: (1) (2) (3) 4 矩阵变换的目的是将线性方程组的系数矩阵变成单位矩阵,其增广矩阵的最后一列就是方程组的解. 二、二阶行列式 1 定义:我们用记号 2 2 11b a b a 表示算式1221b a b a -,即 12212 2 11b a b a b a b a -=,记号 2 2 11b a b a 叫做行列式,因为它只有两行两列,所以把它叫做二阶行列式. 1221b a b a -叫做行列式 2 2 11b a b a 的展开式,其计算结果叫做 2 2 11b a b a 的值.1a 、2a 、1b 、2b 都叫做行列式 2 2 11b a b a 的元素. 2 对角线法则:二阶行列式的展开式是主对角线上的两个数的乘积减去副对角线上的两个数的乘积. 3作为判别式的二阶行列式:关于x 、y 的二元一次方程组???=+=+222 1 11c y b x a c y b x a ①其中1a 、2a 、 1b 、2b 不全为零,行列式2 2 11b a b a D = 叫做方程组①的系数行列式. 设2 2 11b c b c D x = ,

可逆矩阵 矩阵乘积的行列式

§5.2 可逆矩阵 矩阵乘积的行列式 5.2.1 教学目的 5.2.1.1 掌握矩阵可逆,逆矩阵的定义和简单性质. 5.2.1.2 掌握矩阵可逆的充要条件及求逆矩阵的两种方法. 5.2.1.3 掌握矩阵乘积的行列式和秩的性质. 5.2.2 教学重点 矩阵可逆的定义,充要条件及求逆矩阵的方法. 5.2.3 教学难点 用初等变换法求逆矩阵的理论. 5.2.4 教学过程 一、矩阵可逆,逆矩阵的定义和简单性质. (一)矩阵可逆,逆矩阵的定义 Def 1 令A 是数域F 上一个n 矩阵,若存在F 上n 阶矩阵B ,使得 AB=BA=I 那么A 叫可逆矩阵(或非奇异矩阵),而B 叫作A 的逆矩阵. (二)逆矩阵的简单性质 1、若是矩阵A 可逆,则A 的逆矩阵唯一. 把A 的唯一的逆矩阵记作. 2、可逆矩阵A 的逆矩阵也可逆,并且 . 1、1、1、两个可逆矩阵A 和B 的乘积也可逆,并且 . 一般,m 个可逆矩阵A 1,A 2,…,A m 的乘积A 1A 2…A m 也可逆. 并且 (A 1A 2,…,A m )-1 = 4、可逆矩阵A 的转置 也可逆,并且 二、矩阵可逆的充要条件 (一)判断矩阵可逆的思路. 判断一般的n 阶矩阵A 是否可逆很复杂,但判断形如 ,矩阵的可逆 1 -A 1-A A A =--1 1 )(1 1 1 ) (---=A B AB 1 1 121---A A A m A ' )() (1 1 ' ='--A A ??? ? ? ?000r I

性十分简单,即当r=n 时,可逆;当r

高中数学(矩阵行列式)综合练习含解析

高中数学(矩阵行列式)综合练习含解析 1.定义运算?? ????++=?????????????df ce bf ae f e d c b a ,如??? ???=?????????????1514543021.已知πβα=+, 2 π βα=-,则=? ? ? ???????? ??ββααααsin cos sin cos cos sin ( ). A. 00?? ???? B. 01?????? C. 10?????? D. 11?????? 2.定义运算 a b ad bc c d =-,则符合条件 120 121z i i i +=--的复数z 对应的点在 ( ) A.第四象限 B.第三象限 C.第二象限 D.第一象限 3.矩阵E =??? ? ??1001的特征值为( ) A. 1 B. 2 C. 3 D. 任意实数 4. 若行列式21 24 1 013 9x x =-,则=x . 5.若2021310x y -??????= ??? ?-?????? ,则x y += . 6.已知一个关于y x ,的二元一次方程组的增广矩阵为112012-?? ??? ,则 x y -=_______. 7.矩阵1141?? ???? 的特征值为 . 8.已知变换100M b ?? =? ??? ,点(2,1)A -在变换M 下变换为点(,1)A a ',则a b += 9.配制某种注射用药剂,每瓶需要加入葡萄糖的量在10ml 到110ml 之间,用0.618 法寻找最佳加入量时,若第一试点是差点,第二试点是好点,则第三次试验时葡萄糖的加入量可以是 ; 10.已知 , ,则y= . 11.若2211 x x x y y y =--,则______x y +=

沪教版(上海)高二上学期数学第 九 章 矩阵和行列式初步

第 九 章 矩阵和行列式初步 格致中学 王国伟 第一课时 9.1 矩阵的概念(1) [教学目标] 1、了解矩阵的产生背景,并会用矩阵形式表示一些实际问题; 2、了解矩阵、行向量、列向量、方矩阵、零矩阵、单位矩阵等概念; 3、理解同阶矩阵、相等的矩阵等概念; 4、理解线性方程组与系数矩阵及其增广矩阵之间的转化。 [教学重点] 1、与矩阵有关的概念; 2、线性方程组的系数矩阵及增广矩阵的概念。 [教学难点] 学习矩阵的目的。 [教学过程] 一、情境设置、引入: 引例1:已知向量()1,3OP =,如果把的坐标排成一列,可简记为13?? ??? ; 引例2:2008 我们可将上表奖牌数简记为:512128363836232128?? ? ? ??? ; 引例3:将方程组231 324244x y mz x y z x y nz ++=?? -+=??+-=? 中未知数z y x ,,的系数按原来的次序排列,可简记为 2332441m n ?? ?- ? ? -?? ;若将常数项增加进去,则可简记为:2313242414m n ?? ? - ? ?-??。 二、概念讲解:

1、上述形如13?? ???、512128363836232128?? ? ? ???、2332441m n ?? ?- ? ?-??、2313242414m n ?? ? - ? ? -? ?这样的矩形数表 叫做矩阵。 2、在矩阵中,水平方向排列的数组成的向量()12,,n a a a ???称为行向量;垂直方向排列的数 组成的向量12 n b b b ?? ? ? ???? ??? 称为列向量;由m 个行向量与n 个列向量组成的矩阵称为m n ?阶矩阵, m n ?阶矩阵可记做m n A ?,如矩阵13?? ???为21?阶矩阵,可记做21A ?;矩阵512128363836232128?? ? ? ? ?? 为33?阶矩阵,可记做33A ?。有时矩阵也可用A 、B 等字母表示。 3、矩阵中的每一个数叫做矩阵的元素,在一个m n ?阶矩阵m n A ?中的第i (i m ≤)行第 j (j n ≤)列数可用字母ij a 表示,如矩阵512128363836232128?? ? ? ??? 第3行第2个数为3221a =。 4、当一个矩阵中所有元素均为0时,我们称这个矩阵为零矩阵。如000000?? ??? 为一个23 ?阶零矩阵。 5、当一个矩阵的行数与列数相等时,这个矩阵称为方矩阵,简称方阵,一个方阵有n 行(列), 可称此方阵为n 阶方阵,如矩阵512128363836232128?? ? ? ???、2332441m n ?? ? - ? ?-?? 均为三阶方阵。在一个 n 阶方阵中,从左上角到右下角所有元素组成对角线,如果其对角线的元素均为1,其余 元素均为零的方阵,叫做单位矩阵。如矩阵1001?? ???为2阶单位矩阵,矩阵100010001?? ? ? ? ?? 为 3阶单位矩阵。 6、如果矩阵A 与矩阵B 的行数和列数分别相等,那么A 与B 叫做同阶矩阵;如果矩阵A 与矩阵B 是同阶矩阵,当且仅当它们对应位置的元素都相等时,那么矩阵A 与矩阵B 叫做相等的矩阵,记为A B =。

行列式与矩阵幂迹代数关系

行列式与矩阵幂迹的代数关系 计算]det[xB A +的公式 (1)递归推导法: ∑=+=i i i x C xB A w ]det[]det[ ... ]det[)(]det[)(]det[]det[)()ln (]det[21)(ln )(ln w v v w w v w ww w w w w tr tr tr tr e tr e x x x tr x tr x x +?=?=?=?=?=?- 001)](det[]det[)(!==+?=?=x i x x n x i tr i C v w w ... 2)()()()()()(3 1 1 1 1 1 1 111122111v ww ww ww w w ww ww w w ww w w w w v v w w ww w w v -=???-??-?=???+???=?-=?-?=??=?-------------x x x x x x x x x x x x x x x x x x )()1)..(1 )(()(n m m n x tr n m m m tr ++-----=?v v () m x m n m m n m n x x i x i i i i tr tr tr n m m m tr m tr tr i C x C x )()()()1)..(1)(()()(1)(! det ]det[100 B A v v v v v A B A -=+==+-----=-=?+?= =+∑ (2)直接展开法

∑ ∏∑∑ ∏∑∑∏∑∑∏∑∏∑∑∏∑∑∑∑∑=-+∞ ==+∞ ==∞===∞==∞=+=∞ =+--∑ -=+∑ -=∑=∑==∑=≡-=-=+=++≡+=+=+n jm m m i m i m i n n n jm m m i m i m i n n n jm m i m i n n m i m i jm m i im m i m m m m i im m i m i i i m m i i i i m i i i i j j i i i i i j j i i i i i j j i i i i i i j j i i i i i i i i i i m tr x x i m tr x m P x m P x m x P m x P P x m i tr x m i tr x x tr x x x x x }, {)1(0 }, {)1(0 },{0}{}{0},{1 01101 1!)))((()1(]det[]det[!))(()1(!!!!) (!1))()1((!1) ) ()1(exp())ln(exp(]det[]det[det ]det[det ]det[det ]det[B A A B A D D D D δD δD δA B A δA B A δA B A 111 按照分配

第五专题 矩阵的数值特征(行列式、范数、条件数、迹、秩、相对特征根)

第五专题 矩阵的数值特征 (行列式、迹、秩、相对特征根、范数、条件数) 一、行列式 已知A p ×q , B q ×p , 则|I p +AB|=|I q +BA| 证明一:参照课本194页,例4.3. 证明二:利用AB 和BA 有相同的非零特征值的性质; 从而I p +AB ,I q +BA 中不等于1的特征值的数目 相同,大小相同;其余特征值都等于1。 行列式是特征值的乘积,因此|I p +AB|和|I q +BA|等于特征值(不等于1)的乘积,所以二者相等。 二、矩阵的迹 矩阵的迹相对其它数值特征简单些,然而,它在许多领域,如数值计算,逼近论,以及统计估计等都有相当多的应用,许多量的计算都会归结为矩阵的迹的运算。下面讨论有关迹的一些性质和不等式。 定义:n n ii i i 1i 1tr(A)a ====λ∑∑,etrA=exp(trA) 性质: 1. tr(A B)tr(A)tr(B)λ+μ=λ+μ,线性性质; 2. T tr(A )tr(A)=; 3. tr(AB)tr(BA)=; 4. 1tr(P AP)tr(A)-=;

5. H H tr(x Ax)tr(Axx ),x =为向量; 6. n n k k i i i 1i 1tr(A),tr(A )===λ=λ∑∑; 从Schur 定理(或Jordan 标准形)和(4)证明; 7. A 0≥,则tr(A)0≥,且等号成立的充要条件是A=0; 8. A B(A B 0)≥-≥即,则tr(A)tr(B)≥,且等号成立的充要条件是A=B (i i A B (A)(B)≥?λ≥λ); 9. 对于n 阶方阵A ,若存在正整数k,使得A k =0,则tr(A)=0(从Schur 定理或Jordan 标准形证明)。 若干基本不等式 对于两个m ×n 复矩阵A 和B ,tr(A H B)是m ×n 维酉空间上的内积,也就是将它们按列依次排成的两个mn 维列向量的内积,利用Cauchy-schwarz 不等式 [x,y]2≤[x,x]﹒[y,y] 得 定理:对任意两个m ×n 复矩阵A 和B |tr(A H B)|2≤tr(A H A)﹒tr(B H B) 这里等号成立的充要条件是A=cB,c 为一常数。特别当A 和B 为实对称阵或Hermit 矩阵时 0≤|t r(AB)|≤ 定理:设A 和B 为两个n 阶Hermite 阵,且A≥0,

高二数学基本概念——第9章 矩阵和行列式初步

第9章 矩阵和行列式初步 一、 矩阵 9.1 矩阵的概念 矩阵及其相关的概念 1、矩形数表叫做矩阵 矩阵中的每个数叫做矩阵的元素 由个数排成的行列的数表 n m ?m n ()n j m i a ij ,,2,1;,,2,1 ==mn m m n n a a a a a a a a a 21 2222111211称为矩阵. n m ?记作?? ?? ? ? ? ??=mn m m n n a a a a a a a a a A 2122221 11211n m ij a ?=)( 2、矩阵叫做方程组的系数矩阵。? ?? ? ??-1321它是2行2列的矩阵,记为 2 2?A ,矩阵 可简记为A n m A ?注意: 矩阵的符号,是“()”,不能是“| |”. 列元素。 行第称为矩阵的第其中j i a ij 一般的记为大写字母A 、B 、C 、…等。 。 等,或者必要时可记为n m ij n m n m a B A ???)(,

说明: 通过对线性方程组的增广矩阵的变换可以得到线性方程组的解,这里所用的矩阵变换有 下列三种: (1)互换矩阵的两行 (2)把某一行同乘以(除以)一个非零常数 (3)某行乘以一个数加到另一行 通过上述三种矩阵变换,使线性方程组系数矩阵变成单位矩阵时,其增广矩阵的最后一个列向量给出了方程组的解。

9.2 矩阵的运算 矩阵 列的矩形表,称为一个行排列成一个个数由n m n m n j m i a n m ij ?==?) ,,2,1;,2,1( 11 12121 2221 2 .....................n n m m mn a a a a a a a a a ?? ? ? ? ? ??? 记为列元素。 行第称为矩阵的第其中j i a ij 一般的记为大写字母A 、B 、C 、…等。 ,()m n m n ij A B a ??必要时可记为等,或者A=。 0m n O O ?所有元素均为的矩阵,称为零矩阵,记作或定义1一、复习 定义2若两个矩阵A ,B 有相同的行数与相同的列数,并且对 应的位置上的元素相等,则称矩阵A 与矩阵B 相等。记为:A=B n m ij n m ij b B a A ??==)(,)(即如果,(1,2,...,;1,2,...,) ij ij a b i m j n ===且则A=B 。 ...)3,2,1,...;3,2,1(===j i b a ij ij 二、矩阵的运算 (一)矩阵的加(减)法和数与矩阵的乘法 3(),()ij ij m n A a B b m n A B ==定义两个行列矩阵对应位置元素相加(或相减)得到的行列矩阵,称为矩阵与矩阵的和(差)。A-B A B +记为或()。 A B ±即 ()()ij m n ij m n a b ??=±()ij ij m n a b ?=± 定义4以实数乘矩阵A 中的每一个元素所得到的矩阵,称为实数与矩阵A 的乘积矩阵.记做A A α即 ()ij m n a α?=()ij m n a α?=的负矩阵的元素变号,称为的乘积使与A A A 1-A -记作n m ij a A ?-=-)(即 α)(ij a =αα1A 1A A 2A B A B αααααα=+=+注意:()矩阵与实数相乘满足如下交换率和分配律:()()()

关于矩阵的Kronecker积的一些性质

关于矩阵的Kronecker积的一些性质 作者:王秀清, 陈兆英, 于朝霞 作者单位:济南大学理学院,250022,济南 刊名: 山东师范大学学报(自然科学版) 英文刊名:JOURNAL OF SHANDONG NORMAL UNIVERSITY(NATURAL SCIENCE) 年,卷(期):2010,25(4) 参考文献(10条) 1.徐仲;张凯院;陆全矩阵论简明教程 2007 2.陈邦考矩阵Kronecker积的推广[期刊论文]-大学数学 2004(04) 3.杜鹃;范啸涛;杨健康自伴矩阵与Hermite二次型[期刊论文]-成都理工大学学报(自然科学版) 2007(04) 4.Li J S·Kronecker products of positive semidefinite Matrices 1997(03) 5.陈公宁矩阵理论与应用(第二版) 2007 6.Britz T;Olesky D D;Van Den Driessche P The Moore-Penrose inverse of matrices with an acyclic bipartite graph[外文期刊] 2004(0) 7.Berr Israel A;Greville T N E Generalized Inverse:Theory and Applications 2003 8.George V A quantitative version of the Bservation that the Hadam and product is a principal submatrix of the kronecker product 2000 9.James V B Schur majorization inequalities for symmetrized sums with applications to tensor products[外文期刊] 2003(0) 10.樊树平;段五朵亚正定矩阵的Kronecker积[期刊论文]-大学数学 2006(02) 本文读者也读过(10条) 1.王伟贤.王志伟.WANG Wei-xian.WANG Zhi-wei一类逆M矩阵的判定[期刊论文]-曲阜师范大学学报(自然科学版) 2009,35(2) 2.王宏羽.张湘茹.孙燕.李龙芸.李丽庆.宋恕平.周立中.刘基巍盐酸托烷司琼防治NP方案治疗非小细胞肺癌引起恶心呕吐的临床试验研究[期刊论文]-中国肿瘤临床与康复2004,11(4) 3.周金森.ZHOU Jin-sen关于代数张量积的性质研究[期刊论文]-龙岩学院学报2007,25(6) 4.王礼萍.Wang Liping核运算的矩阵构造[期刊论文]-哈尔滨师范大学自然科学学报2000,16(5) 5.杨载朴复亚正定矩阵的一些性质[期刊论文]-数学研究与评论2000,20(1) 6.黄允发.HUANG Yun-fa二阶K-可换矩阵Kronecker积的性质[期刊论文]-高师理科学刊2010,30(2) 7.胥德平.何淦瞳.XU De-ping.HE Gan-tong矩阵块Kronecker积的性质及一些不等式[期刊论文]-贵州大学学报(自然科学版)2004,21(4) 8.杨胜良.YANG Sheng-liang两类下三角形Pascal矩阵的相似性[期刊论文]-数学杂志2011,31(1) 9.贺爱玲.马玉明.刘慧.陈业红.HE Ai-ling.MA Yu-ming.LUI Hui.CHEN Ye-hong关于矩阵相似的一个注记[期刊论文]-山东轻工业学院学报(自然科学版)2005,19(3) 10.周相泉.刘利英.ZHOU Xiang-quan.LIU Li-ying模糊数矩阵及其运算[期刊论文]-山东理工大学学报(自然科学版)2005,19(3) 本文链接:https://www.360docs.net/doc/0e8803001.html,/Periodical_sdsdxb-zrkx201004043.aspx

相关文档
最新文档