筏板基础设计分析&浅基础设计的一些概念和原则

筏板基础设计分析&浅基础设计的一些概念和原则
筏板基础设计分析&浅基础设计的一些概念和原则

筏板基础设计分析

1 筏板基础埋深及承载力的确定

天然筏板基础属于补偿性基础, 因此地基的确定有两种方法. 一是地基承载力设计值的直接确定法.

它是根据地基承载力标准值按照有关规范通过深度和宽度的修正得到承载力设计值, 并采用原位试验(如标惯试

验、压板试验等) 与室内土工试验相结合的综合判断法来确定岩土的特性. 二是按照补偿性基础分析地基承载力. 例如: 某栋地上28 层、地下2 层(底板埋深10m ) 的高层建筑, 由于将原地面下10m 厚的原土挖去建造地下室, 则卸土土压力达180kpa, 约相当于11 层楼的荷载重量;如果地下水位为地面下2m , 则水的浮托力为80kpa, 约相当于5 层楼的荷载重量, 因此实际需要的地基承载力为14 层楼的荷载. 即当地基承载力标准值f ≥ 250kpa 时就能满足设计要求, 如果筏基底板适当向外挑出, 则有更大的可靠度.

2天然筏板基础的变形计算

地基的验算应包括地基承载力和变形两个方面, 尤其对于高层或超高层建筑, 变形往往起着决定性的控制作用. 目前的理论水平可以说对地基变形的精确计算还比较困难, 计算结果误差较大, 往往使工程设计人员难以把握, 有时由于计算沉降量偏大, 导致原来可以采用天然地基的高层建筑, 不适当地采用了桩基础, 使基础设计过于保守, 造价提高, 造成浪费.采用各向同性均质线性变形体计算模型,用分层总和法计算出的自由沉降量往往同实测的地基变形量不同, 这是受多种因素的影响造成的.

(1) 这种理论的假定条件遵循虎克定律, 即应力—应变呈直线关系, 土体任何一点都不能产生塑性变

形, 与土体的实际应力—应变状态不相一致;

(2) 公式中S = 7S6 z iAi- z i- 1Ai- 1ES i[ 2 ]

采用的计算参数系室内有侧限固结试验测得的压缩模量ESi , 试验条件与基础底面压缩层不同深度处的实际侧限条件不同;

(3) 利用公式计算的建筑物沉降量只与基础尺寸有关, 而实测沉降量已受到上部结构与基础刚度的调

整.采用箱型基础或筏板基础的高层建筑物,由于其荷载大、基础宽, 因而压缩层深度大,与一般多层建筑物不同, 地基不是均一持力层. 因此在地基变形计算的公式中引入了一个沉降计算经验系数7S. 通过实际沉降观测与计算沉降量的比较, 适应高层建筑物箱型基础与筏板基础的沉降计算经验系数, 主要与压力和地层条件相关, 尤其与附加压力和主要压缩层中(0. 5 倍基础宽度的深度以内) 砂、卵石所占的百分比密切相关. 由于该系数7S 仅用于对附加压力产生的地基固结沉降变形部分进行调整, 所以《建筑地基基础设计规范》规定可根据地区沉降观测资料及经验确定.计算高层建筑的地基变形时, 由于基坑开挖较深, 卸土较厚往往引起地基的回弹变形而使地基微量隆起. 在实际施工中回弹再压缩模量较难测定和计算, 从经验上回弹量约为公式计算变形量10%~30% , 因此高层建筑的实际沉降观测结果将是上述计算值的1. 1~ 1. 3 倍左右. 应该指出高层建筑基础由于埋置太深,地基回弹再压缩变形往往在总沉降中占重要地位, 有些高层建筑若设置3~4 层(甚至更多层) 地下室时, 总荷载有可能等于或小于卸土荷载重量, 这样的高层建筑地基沉降变形将仅由地基回弹再压缩变形决定. 由此看来, 对于高层建筑在计算地基沉降变形中, 地基回弹再压缩变形不但不应忽略, 而应予以重视和考虑.

高层建筑箱型基础与筏板基础的计算与一般中小型建筑的基础有所不同, 如前所述, 高层建筑除具有基础面积大、埋置深, 尚有地基回弹等影响. 有时将基础做成补偿基础, 在这种情况下, 将附加压力视为很小或等于零, 这与实际不符. 由于基坑面积大, 基坑开挖造成坑底回弹,建筑物荷重增加到一定程度时, 基础仍然有沉降变形, 即回弹再压缩变形. 为了使沉降计算与实际变形接近, 采用总荷载作为地基沉降计算压力比用附加压力P 0 计算更趋合理, 且对大基础是适宜的. 这一方面近似考虑了深埋基础(或补偿基础) 计算中的复杂问题, 另一方面也解决了大面积开挖基坑坑底的回弹再压缩问题. 因此《高层建筑箱形与筏形基础技术规范》(JGJ 6—99) 除规定采用室内压缩模量ES 计算沉降量外, 又规定了按压缩模量E 0 (采用野外载荷试验资料算得压缩模量E 0, 基本上解决了试验土样扰动的问题, 土中应力状态在载荷板下与实际情况比较接近) 计算沉降量的方法. 设计人员可以根据工程的具体情况选择其中一种方法进行沉降计算.按平面布置规则, 立面沿高度大体一致的单幢建筑物, 当基底压缩土层范围内沿竖向和水平方向土层较均匀时, 基础的纵向挠曲曲线的形状呈盆状形, 即“∪”状. 在研究建筑物荷载的水平分布规律时: 对于筏板基础, 可将筏板划分为许多小单元, 如果不考虑各小单元之间的相互影响, 单位面积承受的荷载重量(基底应力曲线) 与基础的纵向挠曲曲线的形状相吻合, 即也呈“∪”状. 这说明建筑物四周各点沉降量受到其它各点荷载的影响较小, 中部各点沉降量受到其它各

点荷载的影响较大; 若将基础设计成整片筏板基础, 势必造成在相同的地基承载力下, 中部沉降量大, 而四周沉降量较小, 基底土变形不相协调.试验表明[ 4 ]: 刚性筏板在试验荷载下主要是整体沉降, 挠

曲变形极小, 最大也未超过3‰; 而有限刚度筏板基础则除了整体沉降外还产生挠曲变形, 筏板刚度不同, 挠曲程度也不同.在筏板厚度相同的情况下, 随着长×宽(以矩形为例) 的增加, 筏板的刚度随之降低.因此设计中可选取“板式筏基+ 独立柱基”相结合的基础形式, 即中部(电梯井等剪力墙集中处) 用筏基, 四周柱基础采用独立基础或联合基础. 使筏板的长×宽尺寸减小、刚度增大,这不仅降低沉降变形的挠曲程度, 提高筏板的抗冲切能力, 同时, 减低了板中钢筋应力, 减少筏基的配筋量. 为协调各部分的变形, 使其趋于一致, 还可通过变形验算调整独立柱基的面积.既满足结构使用要求, 又达到相当可观的经济效益.在基础选型设计中, 应结合工程的具体情况, 考虑多方面的因素影响, 充分利用天然地基的承载能力, 通过比较“整片筏基”与“板式筏基+ 独立柱基”的工程造价. 以上2 种不同基础形式, 后者较前者节省约30%~40% 的费用, 经济效益显著.当由于地层分布不均匀、上部结构荷载在筏板基础上分布不均匀而引起筏板基础各部分的差异沉降较大时, 可综合考虑采用以下处理措施:

(1) 将出露地质较差的土层挖出一部分, 换填低强度等级的素混凝土形成素混凝土厚垫块, 以改变和

调整地基的不均匀变形. 也可以采用“换填法”, 垫层采用碎石、卵石等材料, 经碾压或振密处理, 提高基础的承载能力;

(2) 调整上部结构荷载或柱网间距, 减小基底压力差;

(3) 调整筏板基础形状和面积, 适当设置悬臂板, 均衡和降低基底压力;

(4) 加强底板的刚度和强度, 在大跨度柱间设置加强板带或暗梁等.

3筏板基础的结构设计

筏板基础的主要结构形式有平板式筏基和肋梁式筏基, 包括等厚度或变厚度底板和纵横向肋梁. 一般

情况下宜将基础肋梁置于底板上面, 如果地基不均匀或有使用要求时, 可将肋梁置于板下, 框架柱位

于肋梁交点处. 在具体筏基设计时应着重考虑如下问题:

(1) 应尽量使上部结构的荷载合力重心与筏基形心相重合, 从而确定底板的形状和尺寸.当需要将底板设计成悬挑板时, 要综合考虑上述多方面因素以减小基础端部基底反力过大而对基础弯距的影响; (2) 底板厚度由抗冲切和抗剪强度验算确定. 柱网间距较大时可在柱间设置加强板带(暗梁加配箍筋)

来提高抗冲切强度以减少板厚, 也可采用后张预应力钢筋法来减少混凝土用量和造价. 决定板厚的关

键因素是冲切, 应对筏基进行详细的冲切验算;

(3) 无肋梁筏板基础的配筋可近似按无梁楼盖设柱上板带和跨中板带(倒楼盖法) 的计算方法进行, 精确计算可用有限元法;对肋梁式筏基, 当肋梁高度比板厚大得较多时, 可分别计算底板和肋梁的配筋,

即底板以肋梁为固定支座按双向板计算跨中和支座弯矩, 并适当调整板跨中和支座的配筋;

(4) 构造配筋要求: 筏板受力筋应满足规范中0. 15%的配筋率要求, 悬挑板角处应设置放射状附加钢筋等. 设计人员往往配置受力钢筋有余, 构造钢筋却配置不足.

4筏板基础抗浮锚杆的设置

不少设计人员担心地下水位对底板的浮托力而设置抗拔锚杆, 在这里作如下分析和讨论.

(1) 施工过程中浮托力的产生是由于基坑内积水(雨水和施工用水或地下水渗透) 所致;浮托力的大小

与地下室的体积和基坑内积水高度有关. 因此, 只要能在地下室施工过程中有序排水或限制水位, 在

基础底板底以下就不会产生浮托力.

(2) 地下室上浮是因为地下室结构及上部结构的荷载重量不足以克服地下水的浮力, 当筏板基础底板

上的结构重量大于实际上浮力后, 整个基础结构就能稳定. 因此在地下室和地面上相应有限几层的结

构完成后, 就可以克服地下水的上浮力, 不需要在整个施工过程中对水位保持警惕.

(3) 在计算地下水的浮托力时因注意: 筏基底板所承受的浮托压力只是底板与地基岩土的缝隙水压力、孔隙水压力, 板承受的浮托力与地基岩土的缝隙发育程度、孔隙率有关, 其实际压力强度小于静水压强. 其次, 底板的水承压面积并非全部. 由于底板与地基岩土已粘结成整体,因而能提供一定的粘结(抗拔) 力. 有关试验资料认为有效粘结面积占底板面积最小比率为K = 50% , 而粘结强度最低为250kpa (相当于毛石砌体与M 10 沙浆间的抗拉力). K 值是一重要因素, 应通过试验确定.浮托力的估算: 当K = 50%~100% 时,如地下水位为- 2. 0m 的10m 深地下2 层的基坑, 当底板厚度1 600mm , 顶板单位荷重为1 600kg, 则单位面积的浮托力T 和地下室结构重量W 分别为:

T = 80×(50%~100% )= 40. 0 kpa~80. 0kpa

W = 1. 6×25+ 16×2= 72. 0kpa

从以上分析和讨论可见, 即使按K = 1 计算使浮托力T 最大, T 与W 的差值也只有8. 0kpa, 待地面上再施工1~ 2 层后, 就能保持整体平衡, 因此只要在地下室施工过程中能保持基坑干燥, 基础和地下室结构及地上2 层结构施工完成后, 就可放弃对地下水位的监测, 从施工过程来看是无需设置抗浮锚杆的.对于一些地下室较大、较深而地面以上结构层数不多的建筑, 则应根据上述总体平衡的原则计算确定抗浮锚杆. 对于地下室面积较大而主体塔楼面积较小的建筑, 应验算裙房部位的浮托力能否与

结构自重相平衡, 否则也应设置抗浮锚杆.在底板配筋设计时应注意到由于水的浮托力使底板产生的弯矩, 当板下不设置抗浮锚杆时应全面考虑浮托力产生的弯矩, 当底板设置抗浮锚杆后则可适量减少底板的配筋量.

5裙房基础的设计

由于裙房的单柱荷载与高层主楼相比要小的多, 因此无需采用厚筏基础, 采用薄板配柱下独立扩展基础即可. 这里需要强调的是, 裙楼独立柱基的沉降与主楼筏板基础的沉降要相协调, 即控制沉降差在允许值范围内. 应根据公式计算主楼沉降量S , 再按各柱的荷载N 值和S值反算出各独立柱基础的面积A (尚应验选地基承载力).

6结束语

高层建筑基础选型是整个结构设计中的一个重要组成部分, 直接关系到工程造价、施工难度和工期, 因此应认真研究场地岩土性质和上部结构特点, 通过综合技术经济比较确定.高层建筑的基础选型应因地制宜, 除基础应满足现行规范允许的沉降量和沉降差的限值外, 整体结构应符合规范对强度、刚度和延性的要求, 选用桩基或筏基都不是绝对的, 而安全可靠、经济合理才是基础选型的标准.

关于浅基础设计的一些概念和原则

刚性基础的刚性角α是如何确定的?

答:力在一种特定的材料中是按一定的角度分布与传递,这个角叫力的分布角,也叫这种材料的刚性角α.当刚性基础底部宽度超过刚性角控制范围时,基础底部就容易因受剪而开裂. 因此,刚性材料基础设计时为避免受拉或受剪而破坏必须使基底宽度在刚性角控制范围内.

刚性角用b/h表示:

砖石基础b/h =1:1.25--1.5

混凝土基础b/h = 1:1

第5.1.1条基础的埋置深度,应按下列条件确定:

1.建筑物的用途,有无地下设施,基础和形式和构造;

2.作用在地基上的荷载大小和性质;

3.工程地质和水文地质条件;

4.相邻建筑物的基础埋深;

5.地基土冻胀和融陷的影响.

第5.1.2条在满足地基稳定和变形要求的前提下,基础宜浅埋,当上层地基的承载力大于下层土时,宜利用上层土作持力层.除岩石地基外,基础埋深不宜小于0.5m.

第5.1.3条高层建筑筏形和箱形基础的埋置深度应满足地基承载力,变形和稳定性要求.在抗震设防区,除岩石地基外,天然地基上的箱形和筏形基础其埋置深度不宜小于建筑物高度的1/15;桩箱或桩筏基础的埋置深度(不计桩度)不宜小于建筑物高度的1/18~1/20.位于岩石地基上的高层建筑,其基础埋深应满足抗滑要求.

第5.1.4条基础宜埋置在地下水位以上,当必须埋在地下水位以下时,应采取地基土在施工时不受扰动的措施.当基础埋置在易风化的岩层上,施工时应在基坑开挖后立即铺筑垫层.

第5.1.5条当在相邻建筑物时,新建建筑物的基础埋深不宜大于原有建筑基础.当埋深大于原有的建筑物时,两基础间应保持一定净距,其数值应根据原有的建筑荷载大小,基础形式和土质情况确定.当上述要求不能满足时,应采取分段施工,设临时加固支撑,打板桩,地下连续墙等施工措施,或加固原有的建筑物基础.

第5.1.6条确定基础埋深应考虑地基的冻胀性.地基的冻胀性类别应根据冻土层的平均冻胀率η的大小,按本规范附录G.0.1查取

联系梁一般用于采用柱下独立基础的框架结构中,可以减少基础间沉降差异,可以减少底层框架柱计算长度、柱间弯矩、层间位移,同时承载首层建筑墙体。联系梁梁高一般取柱距1/10。

基础梁一般用于框架结构、框架剪力墙结构,框架柱落于基础梁上或基础梁交叉点上,其主要作用是作为上部建筑的基础,将上部荷载传递到地基上,基础梁作为基础,起到承重和抗弯功能,一般基础梁的截面较大,截面高度一般建议取1/4~1/6跨距,这样基础梁的刚度很大,可以起到基础梁的效果,其配筋由计算确定

深基础与浅基础并不是按照基础埋置的深浅,而是按照基础结构的主要特征以及对施工技术的不同要求而作出的分类。

浅基础一般是指独立基础、条形基础、筏形基础、箱形基础、壳体基础、大块基础及不埋式基础等;而桩(墩)基础、沉井沉箱、锚拉基础、板桩墙及地下连续墙一类的支挡结构,则常被统称为深基础

基础大放脚多见于砌体墙下条形基础,为了满足地基承载力的要求,把基础底面做的比墙身宽,呈阶梯形逐级加宽,但同时也必须防止基础的冲切破坏,应满足高宽比的要求。因基础底面比墙身宽,而得名“基础大放脚”。简单的说就那么回事儿从基础底面到基础柱梁顶面的那一截就是,一般都是阶梯形在砖基础和钢筋砼基础中用得比较常见.

一,刚性基础指用砖、石、灰土、混凝土等抗压强度大而抗弯、抗剪强度小的材料做基础(受刚性角的限制)。用于地基承载力较好、压缩性较小的中小形民用建筑.

刚性角:基础放宽的引线与墙体垂直线之间的夹角。

柔性基础指用抗拉、抗压、抗弯、抗剪均较好的钢筋混凝土材料做基础(不受刚性角的限制)。用于地基承载力较差、上部荷载较大、设有地下室且基础埋深较大的建筑.

大放角:砖基础的逐步放阶形式称为大放角。作用:增加基础底面的宽度,使上部荷载能均匀的传到地基

上。

二、毛石基础是指用开采下来未经雕琢形成的毛石和砂浆砌筑的基础。优点:可以就地取材,但整体性欠佳,故有振动的房间采用少。

三、混凝土基础是指用混凝土做的基础。优点:强度高、整体性好、防水。混凝土基础标号为C10~C15。

四、毛石混凝土基础是指在浇注混凝土时加入20%~30%的毛石,这种基础叫毛石混凝土基础。优点:

当混凝土基础体积过大时使用此基础,因此其优点是节省混凝土

柱下条基计算方法和构造措施

柱下条基主要用于柱距较小的框架结构,或排架结构,可以单向设置也可以布置成十字型的。单向设置一般沿房屋的纵向柱列布置,这是因为房屋纵向柱列跨数多、跨距小的缘故,也是因为沉陷挠曲主要发生在纵向。

柱下条基的构造

1.基础梁肋高h一般取1/8-1/4的柱距,荷载较大的部位取上限左右,次要位置取下限左右。由于近柱旁剪力较大,可局部增加梁高!

2.翼板厚不宜小于200mm,小于250mm做成等厚,大于250mm做成斜坡,坡度小于等于1:3

3.端部向外伸1/3-1/4边跨跨距,目的:降低第一跨弯矩,减少配筋,同时也可以调整基础形心。

4.梁底面,顶面纵向受力钢筋最小配筋率为0.15%,且梁跨中截面受压区的配筋面积不宜大于受拉主筋的面积。受力主筋直径不宜小于10mm。梁底和梁顶的纵向受力钢筋应有2-4根通长配置,其面积不得少于纵向受力筋的1/3。这是为考虑基础整体弯曲造成的影响。

5.柱下条基可能承受扭矩,故箍筋做成封闭的。箍筋直径不小于8mm,梁宽b<350mm时用2支箍;

350mm800mm6支箍。梁跨中0.4倍的跨长范围箍筋间距可以适当放大;腰筋直径不小于10mm。

6.翼缘板受力钢筋直径不小于8mm,间距100-200mm,翼缘板下的地基土有可能与翼缘板脱离时,应在翼缘板上部设置受力钢筋。

7.基础梁肋宽应稍大于墙宽或柱宽。

8.混凝土不低于c20。

柱下条基内力计算方法

1.简化方法

采用基底反力呈直线分布的假设。用倒梁法或静定分析法。这种方法仅能满足静力平衡条件。适用条件:柱距相差不大、柱荷载比较均匀、基础对地基相对刚度较大、能忽略柱间不均匀沉降等的情况。

2.地基上梁的计算方法

能考虑地基和基础件的静力平衡条件和变形协调条件。需选择合适的地基模型,常用的有温克尔地基模型,弹性半空间地基模型,有限压缩层地基模型等。

3.考虑上部结构的共同作用法

较精确,不利于手算。

简化计算方法

要求基础刚度达到或接近刚性,判断公式:

倒梁法的步骤:

(要求梁截面高度大于1/6柱距,以满足反力直线分布的假定)

1.按地基承载力和构造要求确定基础底面积A

2.按反力直线分布假定计算基地净反力p

3.确定柱下条基的计算简图:将柱脚视作不动绞支座的倒连续梁,其上作用净线反力分布荷载pB和扣除柱轴力以外的其它荷载。

4.进行两续梁内力分析

5.按求得的内力进行截面设计

6.翼缘板的内力和截面设计同扩展基础。

注意

1.倒连续梁法得到的支座反力和柱的轴力一般不相同。为此提出了“基底反力局部调整法”,即将不平衡力(柱轴力与支座反力的差值)均匀的分布在支座附近的局部范围(一般1/3的柱距)再进行内力分析,将结果叠加到原来分析的结果上,如此逐次调整直到不平衡力基本消除。q=(F-R)/(l1+l2),正值向上,负值为拉力向下(指向地基土)。

2.倒梁法只是进行了基础局部弯曲的计算,而未考虑基础的整体弯曲。实际上基础往往发生正向挠曲,这样以来边柱和角柱的荷载会增加,内柱会卸荷,于是条基端部的基地反力要大于按直线分布假设时的基地反力。所以简单的做法是将两边边跨跨中和支座的钢筋按计算值增大15%-20%。

柱下条形基础通常在下列情况下采用:

1.多层与高层房屋无地下室或有地下室但无防水要求,当上部结构传下的荷载较大,地基的承载力较低,采用各种形式的单独基础不能满足设计要求时.

2.当采用单独基础所需底面积由于邻近建筑物或构筑物基础的限制而无法扩展时.

3.地基土质变化较大或局部有不均匀的软弱地基,需作地基处理时.

4.各柱荷载差异过大,采用单独基础会引起基础之间较大的相对沉降差异时.

5.需要增加基础的刚度以减少地基变形,防止过大的不均匀沉降量时.

其简化计算有静力平衡法和倒梁法两种,它们是一种不考虑地基与上部结构变形协调条件的实用简化法,也即当柱荷载比较均匀,柱距相差不大,基础与地基相对刚度较大,以致可忽略柱下不均匀沉降时,假定基底反力按线性分布,仅进行满足静力平衡条件下梁的计算.

柱下条形基础构造表

截面和分类

截面采用倒T形截面,由梁和翼板组成.

分类分单向条形基础(沿柱列单向平行配置)和交叉条形基础(沿纵横柱列分别平行配置)两种.

悬臂长度

条形基础的端部应向外伸出,其长度宜为第一跨长的1/4~1/3

梁高h及梁宽b

梁高h宜为柱距的1/8~1/4,当柱荷载大且柱距较大,可在柱两侧局部加腋.

梁宽b比该方向柱每侧宽出50mm以上,且b?bf /4,但不宜过大;当小于该方向柱宽,梁与柱交接应符合有关要求.

翼板厚度hf

1.不宜小于200mm.

2.当hf =200~250mm时,宜用等厚度翼板;当hf >250mm时,宜用1:3坡度的变厚度翼板,且其边缘高度不小于150mm.

翼板钢筋

1.横向受力钢筋直径不应小于10mm,间距不应大于200mm,宜优先选用II级钢.

2.纵向分布筋直径为8~10mm,间距不大于250mm.

基础梁钢筋

1.纵向受力钢筋为上下双筋,其直径不应小于10mm,配筋率不应小于0.2%,梁底和梁顶应各有2~4根通长配筋,且其面积不得小于纵向钢筋面积的1/3.

2.当梁高h>700mm时,两侧沿高度每隔300~400mm设一根直径不小于?14的纵向构造筋.

3.箍筋采用封闭式直径不应小于8mm,间距不大于15d及400mm(d为纵向受力钢筋直径),在距支座轴线0.25~0.3倍柱距范围内,宜加密配置.当梁宽b?350mm时为双肢箍筋,当350mm800mm时为六肢箍筋.

现浇柱插筋或预制柱插入深度

现浇柱在基础中的插筋和预制柱在杯口中的插入深度的构造要求均可按扩展式独立基础的要求.插筋与柱内钢筋宜采用焊接或机械连接接头.

连系梁

当单向条形基础底面积已足够,为减少基础间的沉降差,可在另一方向设连系梁.连系梁截面为矩形,可不着地,但要有一定的刚度和强度,否则作用不大.通常,连系梁配置是带经验性的,可参考扩展式独立基础拉梁的要求,但其截面高度比基础梁不宜相差太多.

注:1.翼板根部厚度及其横向受力钢筋,梁高及其纵向受力钢筋,还须满足计算要求.

筏板基础知识详细解析

筏板基础知识详细解析 (一)筏形基础平法施工图的表示方法 1.梁板式筏形基础平法施工图,是在基础平面布置图上采用平面注写的方式进行表达 2.当绘制基础平面布置图时,应将其所支承的混凝土结构、钢结构、砌体结构或混合结平面一起绘制。 3.通过选注基础梁底面与基础平板底面的标高高差来表达二者间的位置关系,可以明确与板顶一平)、“低板位”(梁底与板底一平)、“中板位”(板在梁的中部)三种不 4.梁板式筏形基础构件的类型和编号; a)梁板式筏形基础由基础主梁,基础次梁,基础平板等构成。 (二)梁板式筏形基础平板的平面注写 1.梁板式筏形基础平板的平面注写 a)梁板式筏形基础平板LPB的平面注写,分板底部与顶部贯通纵筋的集中标注与板底部标注两部分内容。当仅设置贯通纵筋而未设置附加非贯通纵筋时,则仅做集中标注。 b)梁板式筏形基础平板LPB贯通纵筋的集中标注,应在所表达的板区双向均为 第一跨(X与Y双向首跨)的板上引出(图面从左至右为X向,从下至上为Y向) 板区划分条件:

i当板厚不同时,相同板厚区域为一板区。 ii当因基础梁跨度、间距、板底标高等不同,设计者对基础平板的底部与顶部贯通纵筋配置相同的区域为一板区。各板区应分别进行集中标注。 集中标注内容规定如下: 注写基础平板的编号。 ?注写基础平板的截面尺寸。注写h=XXX表示板厚。 ?注写基础平板的底部与顶部贯通纵筋及其总长度。 先注写X向底部(B打头)贯通纵筋与顶部(T打头)贯通纵筋,及其纵筋长度范围;头)贯通纵筋与顶部(T打头)贯通纵筋,及其纵筋长度范围。(图面从左至右为X 贯通纵筋的总长度注写在括号中,注写方式为“跨数及有无外伸”,其表达形式为:一端有外伸,(xxB)两端有外伸。 注:基础平板的跨数以构成柱网的主轴线为准;两主轴线之间无论有几道辅助轴线,例:X:BB22@150;TB20@150;(5B) Y:BB20@200;TB18@200;(7A) 表示基础平板的X向底部配置B22间距150的贯通纵筋,顶部配置B20间距150的为5跨两端有外伸;Y向底部配置B20间距200的贯通纵筋,顶部配置B18间距20度为7跨一端有外伸; 当某向底部贯通纵筋或顶部贯通纵筋的配置,在跨内有两种不同间距时,先注写跨内两前面加注纵筋根数(以表示其分布的范围);再注写跨中部的第二种间距(不需要加分隔。 例:X:B12B22@200/150; Y:T10B20@200/150

筏板基础的简化计算方法

伐板基础的简化计算方法 1.悬臂法 方法概述——就是传统的墙下钢混条基计算法。 计算特点——假定基底土反力为均匀分布,为了减小基底压力使之满足软弱地基承载力的要求而将基底加宽到互相连通的程度,但不作为连续的整板去分析。 方法缺点——基础宽度加大后,基底土的反力分布实际上是不均匀的。计算时,基底已经连成了一体却不考虑其连续性,因此很不合理,计算的结果是不经济的。 2.倒楼盖法 方法概述——假定筏板为一块倒置于地基上的连续板,由纵横墙支承。 计算特点——假定基底土反力为均匀分布,按普通的楼盖计算。 方法缺点——考虑了筏板的整体性,计算结果较悬臂法经济。但此法仍然没有考虑到基底土的反力分布实际上是不均匀的,所以各墙支座处所算得的负弯矩偏小,甚至出现小于实际弯矩而偏于不安全。 3.柔性基础简化计算法 方法概述——将在柱荷载作用下的十字交叉条形基础简化为各条单向连续条形基础的计算方法。 计算特点——将柱荷载的总值先按两个方向交叉连续的条形基础(板)的刚度比值进行分配以作为各向的柱荷载,然后分别按单向连续条形基础(板)计算。 方法缺点——此方法的一般假定为基底反力是按线性分布的,柱下最大,跨中最小,计算结果较倒楼盖法还要经济。但该方法只适用于柱下十字交叉条形基础和柱下筏板基础的简化计算,不适用于横墙承重的筏板基础。 4.弹簧地基梁法 方法概述——假定筏板沿横向被截分为单位宽的条板,置于文克尔假设的弹簧低级上,并假定板底面任一点的单位压力p与地基沉降S成正比,即p=kS。 计算特点——条板按受有一组横墙集中荷载作用的无限长梁计算。由于地基沉降S与基础挠度y接触协调相等,有p(x)=kS=ky. 方法缺点——同文克尔弹簧地基法假设。 5.弹性理论截条法 方法概述——将筏板横向截分为单位宽的条板并置于均质半空间弹性地基上。 计算特点——由于积分上的困难,基底地基反力与沉降之间的关系很难用解析函数表达。目前是利用郭尔布诺夫-波萨多夫的《弹性地基上结构物的计算》中的计算表格来简化计算。 方法缺点——虽然克服了文克尔弹簧地基法假设的基本缺点,具有能够扩散应力和变形的优点,但是,它的扩散能力往往超过实际情况。由于计算所得的沉降量和地表沉降范围较实测值为大,而实际地基压缩层厚度是有限的,压缩层范围内土质往往是非均质的,即使是同一种土层组成,变形参数也有随深度而增长的情况。按半空间弹性理论所得的地基反力分布一般呈马鞍形和集中在梁端和板的边缘处,这是半空间弹性理论所算得的梁板弯矩大的主要原因。 6.弹性地基板法

pkpm结构筏板基础的操作步骤

1.打开PKPK—JCCAD —基础人机交互输入进入,选择重新输入基础数据点击确定 2.点击参数输入—基本参数----参照规范把各个参数填好—确定 3.网格节点—网格延伸—根据地基承载力确定筏板外挑多少确定轴线延伸距离 4.网格延伸后—荷载输入—读取荷载—左边框中选择荷载来源—SA Twe荷载 5.进入筏板—单击围区生成—新建—输入筏板厚度和板底标高(标高要根据±0按实际填 写这样筏板上的覆土重量才能计算准确—单击确定—选择你所新建的筏板—单击布置—挑出宽度暂且不变(200)以后看地基反力,如果反力比地基承载力大的话,把挑出宽度改大,反之改小—把下面的布置子筏板勾掉,这个子筏板只有在有筏板面标高不一致的情况下才能用到,比如讲电梯基坑—然后把筏板布置好 6.筏板—筏板荷载—单击你所布置的筏板,把单位面积覆土中,筏板以上荷载写上(单位面 积覆土中就是土的厚度X20(土的容重),土的厚度要计算好,是室内地面到筏板顶得距离,不是筏板的底标高(差个筏板厚度),荷载恒载标准值就是室内地面的建筑做法你填写1.5足够了,活载按照室内的功能按荷载规范取值,住宅取2.0,商铺取3.5以此内推。 7.如果是柱下筏板的话就要用柱下筏板来验算筏板厚度能不能满足冲切要求,如果是剪力 墙的话就要用内筒冲切来验算了,冲切不满足的话要加大筏板厚度,或者是柱的话就做上柱墩或板下柱墩都可以。一般加大筏板厚度。 8.主菜单—重心校核—选荷载组—这里要选择两次—一次选择标准组合查看荷载的反力 和地基承载力那个大,反力比地基承载力小就满足要求了。在一次就是用荷载的永久组合—这次看荷载重心和筏板的形心是否偏小距离不大于1.0,小于就满足要求,大于就要调整,直到满足为止。图形上有二者的偏心图形,你看看就明白了,还有偏心的确定坐标,就是重心坐标和筏板的形心都有坐标,你一减就知道了他们之间确切偏心距离了。 9.点击退出—桩筏、筏板有限元计算—单击进入—第一次网格划分—模型参数—把筏板的 混凝土强度等级和筏板主筋和箍筋级别填对,别的把地基承载力确认一下,这里如果不要考虑上部结构刚度的话就不用修改别的参数了。—单击确定 10.单元形成 11.荷载选择—Satwe荷载 12.沉降试算—土反力基床反力系数可以填写20000,如果你查PKpm说明书中根据土质来 查反力的话就更好了—在把基床反力是否赋值给板前面的钩勾上。 13.计算—节点优化排序 14.结果显示

筏板基础设计分析&浅基础设计的一些概念和原则

筏板基础设计分析 1 筏板基础埋深及承载力的确定 天然筏板基础属于补偿性基础, 因此地基的确定有两种方法. 一是地基承载力设计值的直接确定法. 它是根据地基承载力标准值按照有关规范通过深度和宽度的修正得到承载力设计值, 并采用原位试验(如标惯试 验、压板试验等) 与室内土工试验相结合的综合判断法来确定岩土的特性. 二是按照补偿性基础分析地基承载力. 例如: 某栋地上28 层、地下2 层(底板埋深10m ) 的高层建筑, 由于将原地面下10m 厚的原土挖去建造地下室, 则卸土土压力达180kpa, 约相当于11 层楼的荷载重量;如果地下水位为地面下2m , 则水的浮托力为80kpa, 约相当于5 层楼的荷载重量, 因此实际需要的地基承载力为14 层楼的荷载. 即当地基承载力标准值f ≥ 250kpa 时就能满足设计要求, 如果筏基底板适当向外挑出, 则有更大的可靠度. 2天然筏板基础的变形计算 地基的验算应包括地基承载力和变形两个方面, 尤其对于高层或超高层建筑, 变形往往起着决定性的控制作用. 目前的理论水平可以说对地基变形的精确计算还比较困难, 计算结果误差较大, 往往使工程设计人员难以把握, 有时由于计算沉降量偏大, 导致原来可以采用天然地基的高层建筑, 不适当地采用了桩基础, 使基础设计过于保守, 造价提高, 造成浪费.采用各向同性均质线性变形体计算模型,用分层总和法计算出的自由沉降量往往同实测的地基变形量不同, 这是受多种因素的影响造成的. (1) 这种理论的假定条件遵循虎克定律, 即应力—应变呈直线关系, 土体任何一点都不能产生塑性变 形, 与土体的实际应力—应变状态不相一致; (2) 公式中S = 7S6 z iAi- z i- 1Ai- 1ES i[ 2 ] 采用的计算参数系室内有侧限固结试验测得的压缩模量ESi , 试验条件与基础底面压缩层不同深度处的实际侧限条件不同; (3) 利用公式计算的建筑物沉降量只与基础尺寸有关, 而实测沉降量已受到上部结构与基础刚度的调 整.采用箱型基础或筏板基础的高层建筑物,由于其荷载大、基础宽, 因而压缩层深度大,与一般多层建筑物不同, 地基不是均一持力层. 因此在地基变形计算的公式中引入了一个沉降计算经验系数7S. 通过实际沉降观测与计算沉降量的比较, 适应高层建筑物箱型基础与筏板基础的沉降计算经验系数, 主要与压力和地层条件相关, 尤其与附加压力和主要压缩层中(0. 5 倍基础宽度的深度以内) 砂、卵石所占的百分比密切相关. 由于该系数7S 仅用于对附加压力产生的地基固结沉降变形部分进行调整, 所以《建筑地基基础设计规范》规定可根据地区沉降观测资料及经验确定.计算高层建筑的地基变形时, 由于基坑开挖较深, 卸土较厚往往引起地基的回弹变形而使地基微量隆起. 在实际施工中回弹再压缩模量较难测定和计算, 从经验上回弹量约为公式计算变形量10%~30% , 因此高层建筑的实际沉降观测结果将是上述计算值的1. 1~ 1. 3 倍左右. 应该指出高层建筑基础由于埋置太深,地基回弹再压缩变形往往在总沉降中占重要地位, 有些高层建筑若设置3~4 层(甚至更多层) 地下室时, 总荷载有可能等于或小于卸土荷载重量, 这样的高层建筑地基沉降变形将仅由地基回弹再压缩变形决定. 由此看来, 对于高层建筑在计算地基沉降变形中, 地基回弹再压缩变形不但不应忽略, 而应予以重视和考虑.

筏板基础计算

筏板基础设计分析2009 1 筏板基础埋深及承载力的确定 天然筏板基础属于补偿性基础, 因此地基的确定有两种方法. 一是地基承载力设计值的直接确定法. 它是根据地基承载力标准值按照有关规范通过深度和宽度的修正得到承载力设计值, 并采用原位试验(如标惯试验、压板试验等) 与室内土工试验相结合的综合判断法来确定岩土的特性. 二是按照补偿性基础分析地基承载力. 例如: 某栋地上28 层、地下2 层(底板埋深10m ) 的高层建筑, 由于将原地面下10m 厚的原土挖去建造地下室, 则卸土土压力达180kpa, 约相当于11 层楼的荷载重量;如果地下水位为地面下2m , 则水的浮托力为80kpa, 约相当于5 层楼的荷载重量, 因此实际需要的地基承载力为14 层楼的荷载. 即当地基承载力标准值f ≥ 250kpa 时就能满足设计要求, 如果筏基底板适当向外挑出, 则有更大的可靠度. 2 天然筏板基础的变形计算 地基的验算应包括地基承载力和变形两个方面, 尤其对于高层或超高层建筑, 变形往往起着决定性的控制作用. 目前的理论水平可以说对地基变形的精确计算还比较困难, 计算结果误差较大, 往往使工程设计人员难以把握, 有时由于计算沉降量偏大, 导致原来可以采用天然地基的高层建筑, 不适当地采用了桩基础, 使基础设计过于保守, 造价提高, 造成浪费.采用各向同性均质线性变形体计算模型,用分层总和法计算出的自由沉降量往往同实测的地基变形量不同, 这是受多种因素的影响造成的. (1) 这种理论的假定条件遵循虎克定律, 即应力—应变呈直线关系, 土体任何一点都不能产生塑性变形, 与土体的实际应力—应变状态不相一致; (2) 公式中S = 7S6 z iAi- z i- 1Ai- 1ES i[ 2 ] 采用的计算参数系室内有侧限固结试验测得的压缩模量ESi , 试验条件与基础底面压缩层不同深度处的实际侧限条件不同; (3) 利用公式计算的建筑物沉降量只与基础尺寸有关, 而实测沉降量已受到上部结构与基础刚度的调整. 采用箱型基础或筏板基础的高层建筑物,由于其荷载大、基础宽, 因而压缩层深度大,与一般多层建筑物不同, 地基不是均一持力层. 因此在地基变形计算的公式中引入了一个沉降计算经验系数7S. 通过实际沉降观测与计算沉降量的比较, 适应高层建筑物箱型基础与筏板基础的沉降计算经验系数, 主要与压力和地层条件相关, 尤其与附加压力和主要压缩层中(0. 5 倍基础宽度的深度以内) 砂、卵石所占的百分比密切相关. 由于该系数7S 仅用于对附加压力产生的地基固结沉降变形部分进行调整, 所以《建筑地基基础设计规范》规定可根据地区沉降观测资料及经验确定.计算高层建筑的地基变形时, 由于基坑开挖较深, 卸土较厚往往引起地基的回弹变形而使地基微量隆起. 在实际施工中回弹再压缩模量较难测定和计算, 从经验上回弹量约为公式计算变形量10%~ 30% , 因此高层建筑的实际沉降观测结果将是上述计算值的1. 1~ 1. 3 倍左右. 应该指出高层建筑基础由于埋置太深,地基回弹

筏板基础计算

筏板基础分为平板式筏基和梁板式筏基,平板式筏基支持局部加厚筏板类型;梁板式筏基支持肋梁上平及下平两种形式,下面就筏基的分析计算做详细阐述。 (1 )地基承载力验算 地基承载力验算方法同独立柱基,参见第17.1.1节内容。对于非矩形筏板, 抵抗矩W采用积分的方法计算。 (2 )基础抗冲切验算 按GB50007-2002第8.4.5条至第8.4.8条相关条款的规定进行验算。 ①梁板式筏基底板的抗冲切验算 底板受冲切承载力按下式计算 *50.70/认 式中: F i ——作用在图17.1.5-1中阴影部分面积上的地基土平均净反力设计值; B hp——受冲切承载力截面高度影响系数; U m ――距基础梁边h°/2处冲切临界截面的周长; f t ――混凝土轴心抗拉强度设计值。 图17.1.5-1 底板冲切计算示意 ②平板式筏基柱(墙)对筏板的冲切验算

计算时考虑作用在冲切临界截面重心上的不平衡弯矩所产生的附加剪力, 距柱边h o/2处冲切临界截面的最大剪应力T max应按下列公式计算。 石=E / %瓜 - a / l s r max^0.7(0.4 + 1.2/A)ApZ 1 式中: F i——相应于荷载效应基本组合时的集中力设计值,对内柱取轴力设计值减去筏板冲切破坏锥体内的地基反力设计值;对边柱和角柱,取轴力设计值减去筏板冲切临界截面范围内的地基反力设计值;地基反力值应扣除底板自重; U m ――距柱边h o/2处冲切临界截面的周长;M unb ――作用在冲切临界截面重心上的不平衡弯矩设计值; C A B――沿弯矩作用方向,冲切临界截面重心至冲切临界截面最大剪应力点的距离; I s ――冲切临界截面对其重心的极惯性矩; B s——柱截面长边与短边的比值,当B s<2时,B s取2;当B s>4时,B s取4 ; c i——与弯矩作用方向一致的冲切临界截面的边长; C2——垂直于C i的冲切临界截面的边长;a s ――不平衡弯矩通过冲切临界截面上的偏心剪力传递的分配系数; ③平板式筏基短肢剪力墙对筏板的冲切验算 短肢剪力墙对筏板的冲切计算按等效外接矩形柱来计算,计算方法完全同柱对筏板的冲切,等效外接矩形柱参见图17.1.5-2。

PKPM软件JCCAD筏板基础设计步骤举例8-11

PKPM软件JCCAD筏板基础设计步骤举例 一、地质资料输入 1、PKPM软件的JCCAD部分进行基础设计时,不一定要输入地质资料。 对于无桩的基础,如果不进行沉降计算,则可以不输入地质资料;如果要进行沉降计算,则需要输入地质资料。输入土的力学指标包括:压缩模量、重度。 对于有桩基础,如果不进行单桩刚度及沉降计算的话,可以不输入地质资料;否则就要输入。输入土的力学指标包括:压缩模量、重度、状态参数、内摩擦角和粘聚力。 2、在PKPM软件主界面“结构”页中选择“JCCAD”软件的第一项“地质资料输入”,程序进入地质资料输入环境,如下图所示: 3、土层布置

给地质资料命名之后,开始进行土层布置,点击右侧菜单“土层布置”,如下图所示: 弹出土层参数对话框,显示用于生成各勘测孔柱状图的地基土分层数据,如下图所示:4、输入孔点

单击“孔点输入”→“输入孔位”,以相对坐标和米为单位,逐一输入所有勘测孔点的相对 位置。孔点输入结束后,程序自动用互不重叠的三角形网格将各个孔点连接起来,并用插值法将孔点之间和孔点外部的场地土情况计算出来。如下图所示: 程序要求孔点形成的三角形网格互不交叉,互不重叠。如孔点位置十分复杂,程序自动形成的网格不能满足上述要求,可以通过“网格修改”命令由人工修改完成。 点击“修改参数”,点取已输入的孔点,弹出孔点土层参数对话框,如下图所示。对话框中显示的是标准孔点的土参数,应按各勘测孔的情况修改表中的数据,如土层低标高、土层参数、空口标高、探孔水头标高等。空口位置一般不采用绝对坐标,不必修改孔口坐标。如某一列各勘测孔的土参数相同,可以选择“用于所有点”,以减少修改土层参数的工作量。

pkpm筏板基础设计指导

基础参数设置 在PKPM主界面选择“JCCAD”的第二项“基础人机互输入”,程序进入基础交互输入环境。屏幕显示上部结构与基础相连的各层轴网及其柱墙支撑布置,并弹出右图所示的“存在基础模型数据文件”的对话框。选择“读取旧数据文件”项,则程序将原有的基础数据和上部结构数据都读出。如下图所示: 本菜单运行的前提条件:1.上部结构的计算可以提供荷载和凝聚到基础顶面的刚度; 2.有完整准确地地质报告输入,并成功读入到合适位置; 3.如果要读取上部结构分析传来的荷载还应该运行相应的程序的内力计算部分; 4.如果要自动生成基础插筋数据还应运行画柱施工图程序。 “地质资料”→“打开资料”→“平移对位”,如下图所示: “参数输入”→“基本参数”,第一页:地基承载力计算参数,本页对话框的参数是用于确定地基承载力的。第二页:基础设计参数,

本页对话框用于基础设计的公共参数。如下图所示: 个别参数,此菜单功能用于对“基本参数”统一设置的基础参数个别修改,这样不同的区域

可以用不同的参数进行基础设计。如下图所示: 参数输出 点击菜单,弹出如下图所示的“基础基本参数.txt”文件,用户可查看相关参数,并可将此文本文件打印输出。文件所列的参数为总体参数,当个别节点的参数与总体参数不一致时应以相应计算结果文件中所列参数为准。 网格节点

本菜单功能用于增加、编辑PMCAD传下的平面网格、轴线和节点,以满足基础布置的需要。如设置弹性地基梁的挑梁设置筏板加厚区域等。需注意该菜单调用应在“荷载输入”和“基础布置”之前,否则荷载或基础构件可能会错位。 荷载输入 1、荷载参数 本菜单用于输入荷载分项系数、组合系数等参数。点击后,弹出下图所示的“输入荷载组合参数”对话框,内含其隐含值。 这些参数的隐含值按规范的相应内容确定。白色输入框的值是用户必须根据工程的用途进行修改的参数,灰色的数值是规范指定值。 其中:当“分配无柱间节点荷载”选择项打“√”后,程序可将墙间无柱间节点或无基础柱上的荷载分配到节点周围的墙上,从而使墙下基础不会产生丢荷载情况。分配荷载的原则为按周围墙的长度加权分配,长墙分配的荷载多,短墙分配的荷载少。 “附加荷载”→“读取荷载” 本菜单用于选择上部荷载的荷载来源种类,程序可读取PM导荷和砖混荷载,TA T,PK,SATWE,PMSAP等多种来源上部结构分析程序传来的与基础相连的柱、墙、支撑内力、作为基础设计的外荷载,界面如下图。 若要选用某上部结构设计程序生成的荷载工况,则点击左面相应项。选取之后,右面的列表框中相应荷载项前显示√,表示荷载选中。程序读取相应程序生成的荷载工况的标准内

【施工】筏板、集水坑基础知识解析

筏板、集水坑基础知识解析(图文) 业务背景: ?①条形基础:上部采用墙承重(较多的用在砖墙) ?②独立基础:上部采用框架结构(柱子) ?③带型(井格式)基础:框架结构+地基条件差(其实就是用条形基础承重柱,在预算中带型基础特指有支模板的混凝土条形基础) ?④筏板基础:高层建筑或上部荷载较大+所在地基承载力较弱。筏板基础有梁式筏板和板式筏板。其中板式筏板基础就像盘子反扣在地表上承受筑?⑤桩基础:上部荷载较大,需将其传至深层较坚硬的地基。当由若干桩支撑一个平台,而用平台托住整个建筑时,这个平台就是桩承台。 ?⑥箱型基础:高层建筑或上部荷载较大+软弱地基。箱型基础是由底板+顶板+若干纵横墙柱组成,中空部分较大时可以作为地下室 知识点 1.筏板基础的种类 1.平板式筏板基础(无基础梁) 2.梁板式筏板基础(有基础梁)分为 : 外伸、不外伸

2.1 梁板式筏板基础(外伸)

(封边构造) 2.2 梁板式筏板基础(无外伸)

知识点2.筏板与基础梁的关系?“高板位” ?“中板位

?“低板位” 知识点3.筏板的钢筋种类 ?①筏板主筋 ?②(分布筋) ?③筏板负筋 ?④马镫筋和拉筋 ?⑤筏板基础的四角设置的放射筋。

详细讲解: ②(分布筋) ?板里面连接负筋的钢筋叫做分布筋 ?分布钢筋的另一个概念就是与受力钢筋垂直均匀布置的构造钢筋(起固定受力筋的作用)。 ?一般筏板底、面筋都为双层双向的,因此不需要设置板分布筋(note:我们软件没有“分布筋”,因为其实他就是主筋,与受力筋概念对应) ③筏板负筋 ?需注意: ①筏板负筋与楼板负筋不同:筏板负筋,在板底布置,属于板局部加强 ②筏板负筋是直接与筏板底筋绑在一起,一般筏板负筋与筏板贯通筋隔一布一 ④马镫筋和拉筋

PKPM软件JCCAD筏板基础设计步骤举例

PKPM软件JCCAD筏板基础设计步骤举例PKPM软件JCCAD筏板基础设计步骤举例 一、地质资料输入 1、PKPM软件的JCCAD部分进行基础设计时,不一定要输入地质资料。 对于无桩的基础,如果不进行沉降计算,则可以不输入地质资料;如果要进行沉降计算,则需要输入地质资料。输入土的力学指标包括:压缩模量、重度。 对于有桩基础,如果不进行单桩刚度及沉降计算的话,可以不输入地质资料;否则就要输入。输入土的力学指标包括:压缩模量、重度、状态参数、内摩擦角和粘聚力。 2、在PKPM软件主界面“结构”页中选择“JCCAD”软件的第一项“地质资料输入”,程序进入地质资料输入环境,如下图所示: 3、土层布置

给地质资料命名之后,开始进行土层布置,点击右侧菜单“土层布置”,如下图所示: 弹出土层参数对话框,显示用于生成各勘测孔柱状图的地基土分层数据,如下图所示:4、输入孔点

单击“孔点输入”→“输入孔位”,以相对坐标和米为单位,逐一输入所有勘测孔点的相对 位置。孔点输入结束后,程序自动用互不重叠的三角形网格将各个孔点连接起来,并用插值法将孔点之间和孔点外部的场地土情况计算出来。如下图所示: 程序要求孔点形成的三角形网格互不交叉,互不重叠。如孔点位置十分复杂,程序自动形成的网格不能满足上述要求,可以通过“网格修改”命令由人工修改完成。 点击“修改参数”,点取已输入的孔点,弹出孔点土层参数对话框,如下图所示。对话框中显示的是标准孔点的土参数,应按各勘测孔的情况修改表中的数据,如土层低标高、土层参数、空口标高、探孔水头标高等。空口位置一般不采用绝对坐标,不必修改孔口坐标。如某一列各勘测孔的土参数相同,可以选择“用于所有点”,以减少修改土层参数的工作量。

pkpm建立筏板基础模型的步骤

p k p m建立筏板基础模 型的步骤 集团标准化工作小组 #Q8QGGQT-GX8G08Q8-GNQGJ8-MHHGN#

1.打开PKPK—JCCAD—基础人机交互输入进入,选择重新输入基础数据点 击确定 2.点击参数输入—基本参数----参照规范把各个参数填好—确定 3.网格节点—网格延伸—根据地基承载力确定筏板外挑多少确定轴线延伸 距离 4.网格延伸后—荷载输入—读取荷载—左边框中选择荷载来源—SATwe荷 载 5.进入筏板—单击围区生成—新建—输入筏板厚度和板底标高(标高要根 据±0按实际填写这样筏板上的覆土重量才能计算准确—单击确定—选择你所新建的筏板—单击布置—挑出宽度暂且不变(200)以后看地基反力,如果反力比地基承载力大的话,把挑出宽度改大,反之改小—把下面的布置子筏板勾掉,这个子筏板只有在有筏板面标高不一致的情况下才能用到,比如讲电梯基坑—然后把筏板布置好 6.筏板—筏板荷载—单击你所布置的筏板,把单位面积覆土中,筏板以上荷 载写上(单位面积覆土中就是土的厚度X20(土的容重),土的厚度要计算好,是室内地面到筏板顶得距离,不是筏板的底标高(差个筏板厚度),荷载恒载标准值就是室内地面的建筑做法你填写足够了,活载按照室内的功能按荷载规范取值,住宅取,商铺取以此内推。 7.如果是柱下筏板的话就要用柱下筏板来验算筏板厚度能不能满足冲切要 求,如果是剪力墙的话就要用内筒冲切来验算了,冲切不满足的话要加大筏板厚度,或者是柱的话就做上柱墩或板下柱墩都可以。一般加大筏板厚度。

8.主菜单—重心校核—选荷载组—这里要选择两次—一次选择标准组合查 看荷载的反力和地基承载力那个大,反力比地基承载力小就满足要求了。在一次就是用荷载的永久组合—这次看荷载重心和筏板的形心是否偏小距离不大于,小于就满足要求,大于就要调整,直到满足为止。图形上有二者的偏心图形,你看看就明白了,还有偏心的确定坐标,就是重心坐标和筏板的形心都有坐标,你一减就知道了他们之间确切偏心距离了。 9.点击退出—桩筏、筏板有限元计算—单击进入—第一次网格划分—模型 参数—把筏板的混凝土强度等级和筏板主筋和箍筋级别填对,别的把地基承载力确认一下,这里如果不要考虑上部结构刚度的话就不用修改别的参数了。—单击确定 10.单元形成 11.荷载选择—Satwe荷载 12.沉降试算—土反力基床反力系数可以填写20000,如果你查PKpm说 明书中根据土质来查反力的话就更好了—在把基床反力是否赋值给板前面的钩勾上。 13.计算—节点优化排序 14.结果显示

筏板基础计算

pkpm平板筏基建模方法 目前工程中,“柱下或者剪力墙下平板式筏板”在pkpm里计算,简单概括有三个方法:“倒楼盖”“弹性地基梁法”“桩筏筏板有限元计算”。 具体到用“弹性地基梁法”(即jccad中第三个菜单)计算“柱下或者剪力墙下平板式筏板”的操作步骤是什么,这个流程是什么下面具体罗列: 1、首先要按地勘报告输入地质数据,用于沉降计算。非常重要。 2、在菜单2中输入筏基模型,注意筏板一般要挑出,因此首先用网格延伸命令将网格向外延伸一个悬挑长度,然后定义并布置筏板,给出厚度和埋深,并做柱和墙的冲切验算,看看板厚是否满足要求,如不满足,可以加柱帽(注:加柱帽的功能在“上部构件”的菜单中)。 3、输入筏板荷载,如果是平板式基础,可以直接布置板带,程序自动确定板带翼缘宽度形成地基梁模型。也可以不布置板带,直接定义地基梁形成梁元模型。 4、进入菜单3,按梁有限元法计算筏板。首先需要计算沉降,这里有个非常重要的概念,就是地基模型的选用。程序用模型参数kij(默认为0.2)来模拟不同的地基模型,kij=0的时候,为经典文克尔地基模型,kij=1的时候,为弹性半空间模型,不明白看教材。一般软土取低值0~0.2,硬土取高值0.2~0.4。其它参数不难理解,不赘述。梁元法程序提供两种沉降计算模式,刚性沉降和柔性沉降。柔性沉降假定筏板为完全柔性,而刚性沉降则假定为完全刚性。计算完成后,程序用求出的各区格反力除以其沉降值得到各区格的地基刚度值,然后转换为地梁计算用的地梁下的基床反力系数,这样便确定了基地的反力分布,用于下一步的内力计算。沉降计算是筏板计算的核心步骤。

4、基床系数k的合理性判断。沉降计算完毕后,计算数据中会给出各区格的地基刚度,即基床系数。这个系数一般要比建议值小很多。基床系数的合理性,关键看沉降计算结果。可用规范分层总和法手算地基中心点处的沉降值作比较。如出入大,应调整基床系数使其接近手算值。因此,用软件算连续基础,实际上就是对基床系数的校核。菜单5的有限元法中提供的“沉降试算”功能,就是这个思想(其实这个功能就是给懒人和初学者开发的)。 5、对于基床系数的调整,程序提供了一种方便的功能--可以按照广义文克尔地基模型进行地基梁计算,即变基床系数调整法。可以把你输入的基础系数,按照已经计算完毕的各区格的刚度变化率进行调整,作为新的基础系数用于下一步的地基梁内力计算。 6、基础计算模型一般用普通弹性地基梁就可以了,倒楼盖模型缺点较多,一般不推荐。考虑上部结构刚度可根据具体情况选择完全刚性,或等代刚度法。 筏板基础设计分析2009 1 筏板基础埋深及承载力的确定 天然筏板基础属于补偿性基础, 因此地基的确定有两种方法. 一是地基承载力设计值的直接确定法. 它是根据地基承载力标准值按照有关规范通过深度和宽度的修正得到承载力设计值, 并采用原位试验(如标惯试验、压板试验等) 与室内土工试验相结合的综合判断法来确定岩土的特性. 二是按照补偿性基础分析地基承载力. 例如: 某栋地上28 层、地下2 层(底板埋深10m ) 的高层建筑, 由于将原地面下10m 厚的原土挖去建造地下室, 则卸土土压力达180kpa, 约相当于11 层楼的荷载重量;如果地下水位为地面下2m , 则水的浮托力为80kpa, 约相当于5 层楼的荷载重量, 因此实际需要的地基承载力为14 层楼的荷载. 即当地基承载力标准值f ≥ 250kpa 时就能满足设计要求, 如果筏基底板适当向外挑出, 则有更大的可靠度. 2 天然筏板基础的变形计算 地基的验算应包括地基承载力和变形两个方面, 尤其对于高层或超高层建筑, 变形往往起着决定性的控制作用. 目前的理论水平可以说对地基变形的精确计算还比较困难, 计算结果误差较大, 往往使工程设计人员难以把握, 有时由于计算沉降量偏大, 导致原来可以采用天然地基的高层建筑, 不适当地采用了桩基础, 使基础设计过于保守, 造价提高, 造成浪费.采用各向同性均质线性变形体计算模型,用分层总和法计算出的自由沉降量往往同实测的地基变形量不同, 这是受多种因素的影响造成的. (1) 这种理论的假定条件遵循虎克定律, 即应力—应变呈直线关系, 土体任何一点都不能产生塑性变形, 与土体的实际应力—应变状态不相一致;

筏板基础计算

筏板基础计算 pkpm平板筏基建模方法 目前工程中,“柱下或者剪力墙下平板式筏板”在pkpm里计算,简单概括有三个方法:“倒楼盖”“弹性地基梁法”“桩筏筏板有限元计算”。 具体到用“弹性地基梁法”(即jccad中第三个菜单)计算“柱下或者剪力墙下平板式筏板”的操作步骤是什么,这个流程是什么下面具体罗列: 1、首先要按地勘报告输入地质数据,用于沉降计算。非常重要。 2、在菜单2中输入筏基模型,注意筏板一般要挑出,因此首先用网格延伸命令将网格向外延伸一个悬挑长度,然后定义并布置筏板,给出厚度和埋深,并做柱和墙的冲切验算,看看板厚是否满足要求,如不满足,可以加柱帽(注:加柱帽的功能在“上部构件”的菜单中)。 3、输入筏板荷载,如果是平板式基础,可以直接布置板带,程序自动确定板带翼缘宽度形成地基梁模型。也可以不布置板带,直接定义地基梁形成梁元模型。 4、进入菜单3,按梁有限元法计算筏板。首先需要计算沉降,这里有个非常重要的概念,就是地基模型的选用。程序用模型参数kij(默认为0.2)来模拟不同的地基模型,kij=0的时候,为经典文克尔地基模型,kij=1的时候,为弹性半空间模型,不明白看教材。一般软土取低值0~0.2,硬土取高值0.2~0.4。其它参数不难理解,不赘述。梁元法程序提供两种沉降计算模式,刚性沉降和柔性沉降。柔性沉降假定筏板为完全柔性,而刚性沉降则假定为完全刚性。计算完成后,程序用求出的各区格反力除以其沉降值得到各区格的地基刚度值,然后转换为地梁计算用的地梁下的基床反力系数,这样便确定了基地的反力分布,用于下一步的内力计算。沉降计算是筏板计算的核心步骤。

4、基床系数k的合理性判断。沉降计算完毕后,计算数据中会给出各区格的 地基刚度,即基床系数。这个系数一般要比建议值小很多。基床系数的合理性,关键看沉降计算结果。可用规范分层总和法手算地基中心点处的沉降值作比较。如出入大,应调整基床系数使其接近手算值。因此,用软件算连续基础,实际上就是对基床系数的校核。菜单5的有限元法中提供的“沉降试算”功能,就是这个思想(其实这个功能就是给懒人和初学者开发的)。 5、对于基床系数的调整,程序提供了一种方便的功能--可以按照广义文克尔地基模型进行地基梁计算,即变基床系数调整法。可以把你输入的基础系数,按照已经计算完毕的各区格的刚度变化率进行调整,作为新的基础系数用于下一步的地基梁内力计算。 6、基础计算模型一般用普通弹性地基梁就可以了,倒楼盖模型缺点较多,一般不推荐。考虑上部结构刚度可根据具体情况选择完全刚性,或等代刚度法。 筏板基础设计分析2009 1 筏板基础埋深及承载力的确定 天然筏板基础属于补偿性基础, 因此地基的确定有两种方法. 一是地基承载力 设计值的直接确定法. 它是根据地基承载力标准值按照有关规范通过深度和宽度的修正得到承载力设计值, 并采用原位试验(如标惯试验、压板试验等) 与室内土工试验相结合的综合判断法来确定岩土的特性. 二是按照补偿性基础 分析地基承载力. 例如: 某栋地上28 层、地下2 层(底板埋深10m ) 的高层建筑, 由于将原地面下10m 厚的原土挖去建造地下室, 则卸土土压力达180kpa, 约相当 于11 层楼的荷载重量;如果地下水位为地面下2m , 则水的浮托力为80kpa, 约相 当于5 层楼的荷载重量, 因此实际需要的地基承载力为14 层楼的荷载. 即当地基承载力标准值f ? 250kpa 时就能满足设计要求, 如果筏基底板适当向外挑出, 则 有更大的可靠度. 2 天然筏板基础的变形计算

JCCAD筏板基础设计

JCCAD筏板基础设计 应用前提条件: 1.上部结构的计算可以提供荷载和凝聚到基础顶面的刚度; 2.有完整准确地地质报告输入,并成功读入到合适位置。 基本参数 基础埋置深度:一般应自室外地面标高算起。对于地下室,采用筏板基础也应自室外地面标高算起,其他情况如独基、条基、梁式基础从室内地面标高算起。 自动计算覆土重:该项用于独基、条基部分。点取该项后程序自动按20kN/m2的混合容重计算基础的覆土重。如不选该项,则对话框中出现单位面积覆土重参数需要用户填写。一般来说如条基、独基、有地下室时应采用人工填写单位面积覆土重,且覆土高度应计算到地下室室内地坪处,以保证地基承载力计算正确。 一层上部结构荷载作用点标高:即承台或基础顶标高,先进行估算,计算完成后进行修改。该参数主要是用于求出基底剪力对基础底面产生的附加弯矩作用。在填写该参数时,应输入PMCAD中确定的柱底标高,即柱根部的位置。注意:该参数只对柱下独基和桩承台基础有影响,对其他基础没有影响。 地梁筏板 该菜单定义了按弹性地基梁元法计算需要的有关参数 总信息: 结构种类:基础

基床反力系数:按默认 按广义文克尔假定计算:若此项选择后,计算模型改为广义文克尔假定,即各点的基床反力系数将在输入的反力系数附近上下变化,边角部大,中部小一些,变化幅度与各点反力与沉降的比值有关,采用广义文克尔假定的条件是要有地质资料数据,且必须进行刚性底板假定的沉降计算,否则按一般文克尔假定计算。在此处要与基础梁板弹性地基梁法计算中的沉降计算参数输入中参数相对应。 弹性基础考虑抗扭: 人防等级:不计算 双筋配筋计算压区配筋百分率:0.2% 地下水距天然地坪深度:按实际 梁的参数: 梁钢筋归并系数:0.3 梁支座钢筋放大系数:1.0 梁跨中钢筋放大系数:1.0 梁箍筋放大系数:1.0 梁主筋级别:二级或三级 梁箍筋级别:一级或二级 梁立面图比例、梁剖面图比例:按默认 梁箍筋间距:200 翼缘(纵向)分布钢筋直径、间距:8mm、200mm 梁式基础的覆土标高:当不是带地下室的梁式基础时,此值为0;否则

筏板基础模板计算书

Appendix 1附件1 Calculation of the Formworks模板计算书 1、Side Formwork Construction侧模施工 1.1、设计说明 Design description: using site processed wood formwork, face plate is plywood of 15mm, secondary keel is timber of 50mm×100mm (the material is northeast larch) with 250mm space in between. Main keel is the timber of 80mm×200mm as modeling with the min. height no less than 150mm. 2 main keel set up with spacing of 700mm, 250mm as bottom and 255mm as upper side of slab. 侧模采用现场加工木模板,面板为15厚胶合板;次龙骨为50mm×100mm木方(材质为东北落叶松),间距250mm;主龙骨使用80mm×200mm木方做造型木(材质为东北落叶松),造型木中心最小高度不小于150mm。主龙骨设置两道,间距700mm,距底部250mm和上侧255mm. 1.2、Computational Checking of Secondary Keel次龙骨验算 1)Load and Combination of Load荷载及荷载组合 a.side pressure on the form for concrete混凝土对模板的侧压力 t0=200/(25+15)=5h (即混凝土的温度按25℃计算) F1=0.22γc t0β1β2V1/2=0.22×25×5×1.2×1.15×21/2 =53.67KN/m2 F2=γc H=25×1.2=30KN/m2(取此值做强度验算) (take this value for computational checking of strength ) b.load of concrete pouring混凝土倾倒荷载:4KN/m2 c.load of concrete vibrating混凝土振捣荷载:4KN/m2 combination of load荷载组合:1.2×30+1.4×(4+4)=47.2KN/m2 line load化为线荷载:q=47.2×0.25=11.8KN/m 2)Computational Checking of Flexural Strength抗弯强度验算 M max =11.8×0.7^2×(1-4×0.252/0.72)/8=0.52KN·m (建筑施工手册表Construction Manual 2-10) W n =1/6bh2 =1/6×50×1002 =250000/3 σm = M/W n =0.52×106 /(250000/3)=6.24N/mm2≤ f m =17 N/mm2

筏板基础知识详细解析

筏板基础知识详细解析 1.梁板式筏形基础平法施工图,是在基础平面布置图上采用平面注写的方式进行表达。 2.当绘制基础平面布置图时,应将其所支承的混凝土结构、钢结构、砌体结构或混合结构的柱、墙平面与基础平面一起绘制。 3.通过选注基础梁底面与基础平板底面的标高高差来表达二者间的位置关系,可以明确其:高板位(梁顶与板顶一平)、低板位(梁底与板底一平)、中板位(板在梁的中部)三种不同位置组合的筏形基础。 4.梁板式筏形基础构件的类型和编号; a)梁板式筏形基础由基础主梁,基础次梁,基础平板等构成。 (二)梁板式筏形基础平板的平面注写 1.梁板式筏形基础平板的平面注写 a)梁板式筏形基础平板LPB的平面注写,分板底部与顶部贯通纵筋的集中标注与板底部附加非贯通纵筋的原位标注两部分内容。当仅设置贯通纵筋而未设置附加非贯通纵筋时,则仅做集中标注。 b)梁板式筏形基础平板LPB贯通纵筋的集中标注,应在所表达的板区双向均为 第一跨(X与Y双向首跨)的板上引出(图面从左至右为X向,从下至上为Y向) 板区划分条件: i当板厚不同时,相同板厚区域为一板区。

ii当因基础梁跨度、间距、板底标高等不同,设计者对基础平板的底部与顶部贯通纵筋分区域采用不同配置时,配置相同的区域为一板区。各板区应分别进行集中标注。 集中标注内容规定如下: 注写基础平板的编号。 注写基础平板的截面尺寸。注写h=XXX表示板厚。 注写基础平板的底部与顶部贯通纵筋及其总长度。 先注写X向底部(B打头)贯通纵筋与顶部(T打头)贯通纵筋,及其纵筋长度范围;在注写Y向底部(B打头)贯通纵筋与顶部(T打头)贯通纵筋,及其纵筋长度范围。(图面从左至右为X向,从下至上为Y 向) 贯通纵筋的总长度注写在括号中,注写方式为跨数及有无外伸,其表达形式为:(xx)无外伸、(xxA)一端有外伸,(xxB)两端有外伸。注:基础平板的跨数以构成柱网的主轴线为准;两主轴线之间无论有几道辅助轴线,均可按一跨考虑。 例:X:BB22@150;TB20@150;(5B) Y:BB20@200;TB18@200;(7A) 表示基础平板的X向底部配置B22间距150的贯通纵筋,顶部配置B20间距150的贯通纵筋,纵向总长度为5跨两端有外伸;Y向底部配置B20间距200的贯通纵筋,顶部配置B18间距200的贯通纵筋,纵向总长度为7跨一端有外伸;

筏板基础计算书

高层建筑地基基础 课程设计 学年学期: 2014~2015学年第2学期 院别:土木工程学院 专业:勘查技术与工程 专业方向:岩土工程 班级:勘查1201 学生: 学号: 指导教师:陈国周

《高层建筑地基基础课程设计》成绩评定表班级姓名学号

目录 一、工程概况几工程地质条件 (5) 柱位图 (5) 土层信息 (5) 上部荷载 (5) 二、基础选型 (6) 三、设计尺寸与地基承载力验算 (6) 基础底面积尺寸的确定 (6) 地基承载力验算 (7) 四、沉降验算 (8) 五、筏板基础厚度的确定 (9) 抗冲切承载力验算 (9) 抗剪承载力验算 (10) 局部受压承载力计算 (11) 六、筏板、基础梁内力计算 (13) 基础底板内力计算 (13) 基础梁内力计算 (15) 边缘横梁(JL1)计算 (15) 中间横梁(JL2)计算 (16) 边梁纵梁(JL3)计算 (17) 中间纵梁(JL4)计算 (20) 七、梁板配筋计算 (22)

底板配筋 (22) 板顶部配筋(取跨中最大弯矩) (22) 板底部(取支座最大弯矩) (23) 基础梁配筋 (25) 八、粱截面配筋图 (32) 九、心得体会 (36) 十、参考文献 (36)

一、工程概况几工程地质条件 某办公楼建在地震设防六度地区,上部为框架结构8层,每层高。地下一层,不设内隔墙,地下室地板至一楼室内地面竖向距离。地下室外墙厚300mm。柱截面 400×400,柱网及轴线如图所示。室内外高差。不考虑冻土。上部结构及基础混凝土均采用 C40。 柱位图 土层信息 上部荷载

二、基础选型 根据提供的土层信息,可知建筑物所在位置的地基土多为粘土和粉质粘土,且地下水位较高,属于软土地基,且考虑到建筑的柱间距较大并设置了地下室等因素,综合考虑决定采用梁式筏板基础,梁式筏板基础其优点在于较平板式具有低耗材、刚度大,在本次设计中决定采用双向肋梁板式筏形基础。 三、设计尺寸与地基承载力验算 基础底面积尺寸的确定 根据《建筑地基基础设计规范GB5007-2011》筏形基础底板各边自外围轴线挑出,则筏形基础的底板尺寸为× A=×=2 N P k 29667.1∑=永久 准永久荷载总组合: 2.偏心校验(荷载效应为准永久值): m 044.029667 2 .7)110016601787188716671220110016671753188716331100(m 0403.029667 15.317872100175318872093188745.9)166019801667166719401633(7.15110015601100120015331100-=?------+++++= =?---+++?---+++?---++= y x e e )()(

相关文档
最新文档