2020年中考数学动态问题-图形最值问题探究(含答案)

2020年中考数学动态问题-图形最值问题探究(含答案)
2020年中考数学动态问题-图形最值问题探究(含答案)

专题09 动点类题目图形最值问题探究

题型一:矩形中的相似求解

例1.(2019·绍兴)如图,矩形ABCD 中,AB =a ,BC =b ,点M 、N 分别在边AB 、CD 上,点E 、F 分别在边BC 、AD 上,MN 、EF 交于点P . 记k =MN :EF .

(1)若a :b 的值为1,当MN ⊥EF 时,求k 的值. (2)若a :b 的值为

2

1

,求k 的最大值和最小值. (3)若k 的值为3,当点N 是矩形的顶点,∠MPE =60°,MP =EF =3PE 时,求a :b 的值.

B

C

D A

E

M F

N

题型二:二次函数中几何图形最值求解

例2.(2019·衡阳)如图,二次函数y =x 2+bx +c 的图象与x 轴交于点A (﹣1,0)和点B (3,0),与y 轴交于点N ,以AB 为边在x 轴上方作正方形ABCD ,点P 是x 轴上一动点,连接CP ,过点P 作CP 的垂线与y 轴交于点E . (1)求该抛物线的函数关系表达式;

(2)当点P 在线段OB (点P 不与O 、B 重合)上运动至何处时,线段OE 的长有最大值?并求出这个最大值;

(3)在第四象限的抛物线上任取一点M ,连接MN 、MB .请问:△MBN 的面积是否存在最大值?若存在,求出此时点M 的坐标;若不存在,请说明理由.

例3.(2019·自贡)如图,已知直线AB 与抛物线2

:2C y ax x c =++相交于点A (-1,0)和点B (2,3)两点.

(1)求抛物线C 函数表达式;

(2)若点M 是位于直线AB 上方抛物线上的一动点,以MA 、MB 为相邻的两边作平行四边形MANB ,当平行四边形MANB 的面积最大时,求此时平行四边形MANB 的面积S 及点M 的坐标;

(3)在抛物线C 的对称轴上是否存在定点F ,使抛物线C 上任意一点P 到点F 的距离等于到直线4

17

=

y 的距离,若存在,求出定点F 的坐标;若不存在,请说明理由.

题型四:反比例函数中面积最值的求解

例4.(2018·扬州一模)如图1,反比例函数y = k

x (x >0)的图象经过点A (23,1),射

线AB 与反比例函数图象交于另一点B (1,a ),射线AC 与y 轴交于点C ,∠BAC =75°,AD ⊥y 轴,垂足为D . (1)求k 的值;

(2)求tan ∠DAC 的值及直线AC 的解析式;

(3)如图2,M 是线段AC 上方反比例函数图象上一动点,过M 作直线l ⊥x 轴,与AC 相交于点N ,连接CM ,求△CMN 面积的最大值.

例5.(2019·达州)如图1,已知抛物线y=-x2+bx+c过点A(1,0),B(-3,0).

(1)求抛物线的解析式及其顶点C的坐标;

(2)设点D是x轴上一点,当tan(∠CAO+∠CDO)=4时,求点D的坐标;

(3)如图2,抛物线与y轴交于点E,点P是该抛物线上位于第二象限的点,线段P A交BE于点M,交y轴于点N,△BMP和△EMN的面积分别为m、n,求m-n的最大值.

题型六:二次函数中最值及最短路径题型

例6.(2019·绵阳)在平面直角坐标系中,将二次函数y=ax2(a>0)的图象向右平移1个单位,再向下平移2个单位,得到如图所示的抛物线,该抛物线与x轴交于点A、B(点A 在点B的左侧),OA=1,经过点A的一次函数y=kx+b(k≠0)的图象与y轴正半轴交于点C,且与抛物线的另一个交点为D,△ABD的面积为5.

(1)求抛物线和一次函数的解析式;

(2)抛物线上的动点E在一次函数的图象下方,求△ACE面积的最大值,并求出此时点E 的坐标;

(3)若点P为x轴上任意一点,在(2)的结论下,求PE+3

5

P A的最小值.

例7.(2019·潍坊)如图,在平面直角坐标系xoy中,O为坐标原点,点A(4,0),点B (0,4),△ABO的中线AC与y轴交于点C,且⊙M经过O,A,C三点.

(1)求圆心M的坐标;

(2)若直线AD与⊙M相切于点A,交y轴于点D,求直线AD的函数表达式;

(3)在过点B且以圆心M为顶点的抛物线上有一动点P,过点P作PE∥y轴,交直线AD 于点E.若以PE为半径的⊙P与直线AD相交于另一点F.当EF=45时,求点P的坐标.

答案与解析

题型一:矩形中的相似求解

例1.(2019·绍兴)如图,矩形ABCD 中,AB =a ,BC =b ,点M 、N 分别在边AB 、CD 上,点E 、F 分别在边BC 、AD 上,MN 、EF 交于点P . 记k =MN :EF .

(1)若a :b 的值为1,当MN ⊥EF 时,求k 的值. (2)若a :b 的值为

2

1

,求k 的最大值和最小值. (3)若k 的值为3,当点N 是矩形的顶点,∠MPE =60°,MP =EF =3PE 时,求a :b 的值.

B

M F

N

【分析】(1)当a :b =1时,可得四边形ABCD 为正方形,由MN ⊥EF ,可证MN =EF ,即k =1;(2)先确定MN 和EF 的取值范围,当MN 取最大值,EF 取最小值时,k 的值最大,否则反之;(3)根据N 是矩形顶点,分两种情况讨论,即N 分别与D 点和C 点重合,依据不同图形求解.

【答案】见解析.

【解析】解:(1)当a :b =1时,即AB =BC , ∵四边形ABCD 是矩形, ∴四边形ABCD 是正方形,

过F 作FG ⊥BC 于G ,过M 作MH ⊥CD 于H ,如下图所示,

B

D N

H

∵MN ⊥EF , ∴∠NMH =∠EFG ,

∵∠MHN=∠FGE=90°,MH=FG,∴△MNH≌△FEG,

∴MN=EF,即k=1;

(2)由题意知:b=2a,

所以得:a≤EF

,2a≤MN

,

所以当MN取最大值,EF取最小值时,k

当MN取最小值,EF取最大值时,k

取最小值,为

5

(3)如下图所示,

B

E

M F

N

连接FN,ME,

设PE=x,则EF=MP=3x,PF=2x,MN=3EF=9x,PN=6x,

∴PF PN PE PM

又∵∠FPN=∠MPE,

∴△FPN∽△EPM,

∴∠PFN=∠PEM,

∴FN∥ME,

①当N点与D点重合时,由FN∥ME得,M点与B点重合,

B

E

(M)

(N)

过F作FH⊥BD于H,

∵∠MPE=60°,

∴∠PFH =30°,

∴PH =x ,FH

,BH =BP +PH =4x ,DH =5x ,

在Rt △DFH 中,tan ∠FDH

, 即a :b

=

5

; ②当N 点与C 点重合时,过

B

(N )

过点E 作EH ⊥MN 于H

,连接EM , 则PH =x ,EH ,CH =PC +PH =13x ,

在Rt △ECH 中,tan ∠ECH =13

, ∵ME ∥FC ,

∴∠MEB =

∠FCB =∠CFD , ∵∠B =∠D , ∴△MEB ∽△CFD ,

CD FC

MB ME

=

=2, 即a

:b =

2CD BM BC BC ==; 综上所述,a :b . 题型二:二次函数中几何图形最值求解

例2.(2019·衡阳)如图,二次函数y =x 2+bx +c 的图象与x 轴交于点A (﹣1,0)和点B (3,0),与y 轴交于点N ,以AB 为边在x 轴上方作正方形ABCD ,点P 是x 轴上一动点,连接CP ,过点P 作CP 的垂线与y 轴交于点E . (1)求该抛物线的函数关系表达式;

(2)当点P 在线段OB (点P 不与O 、B 重合)上运动至何处时,线段OE 的长有最大值?并求出这个最大值;

(3)在第四象限的抛物线上任取一点M ,连接MN 、MB .请问:△MBN 的面积是否存在最大值?若存在,求出此时点M 的坐标;若不存在,请说明理由.

【分析】(1)将点A 、B 的坐标代入二次函数解析式求解;(2)由△POE ∽△CBP 得出比例线段,可表示OE 的长,利用二次函数的性质可求出线段OE 的最大值;(3)过点M 作MH ∥y 轴交BN 于点H ,由S △MNB =S △BMH +S △MNH 即可求解. 【答案】见解析.

【解析】解:(1)∵抛物线y =x 2+bx +c 经过A (﹣1,0),B (3,0),

10

930b c b c -+=??

++=?

, 解得:2

3

b c =-??

=-?,

抛物线函数关系表达式为y =x 2﹣2x ﹣3; (2)由题意知:AB =OA +OB =4,

在正方形ABCD 中,∠ABC =90°,PC ⊥BE , ∴∠OPE +∠CPB =90°, ∠CPB +∠PCB =90°, ∴∠OPE =∠PCB , 又∵∠EOP =∠PBC =90°, ∴△POE ∽△CBP , ∴

BC OP

BP OE

=

, 设OP =x ,则PB =3﹣x ,

43x

x OE

=

-, ∴OE =()2

21139

344216

x x x ??-+=--+ ???,

当32x =

时,即OP =32时线段OE 长有最大值,最大值为916

. (3)存在.

如图,过点M 作MH ∥y 轴交BN 于点H ,

∴N 点坐标为(0,﹣3), 设直线BN 的解析式为y =kx +b , ∴30

3

k b b +=??

=-?,

∴直线BN 的解析式为y =x ﹣3,

设M (m ,m 2﹣2m ﹣3),则H (m ,m ﹣3), ∴MH =m ﹣3﹣(m 2﹣2m ﹣3)=﹣m 2+3m ,

∴S △MNB =S △BMH +S △MNH =()2

21132732228

m m m ??-+=--+ ???,

∴a =

32时,△MBN 的面积有最大值,最大值是27

8,此时M 点的坐标为(31524

-,). 题型三:二次函数中面积最值的求解

例3.(2019·自贡)如图,已知直线AB 与抛物线2

:2C y ax x c =++相交于点A (-1,0)和点B (2,3)两点.

(1)求抛物线C 函数表达式;

(2)若点M 是位于直线AB 上方抛物线上的一动点,以MA 、MB 为相邻的两边作平行四边形MANB ,当平行四边形MANB 的面积最大时,求此时平行四边形MANB 的面积S 及点M

的坐标;

(3)在抛物线C 的对称轴上是否存在定点F ,使抛物线C 上任意一点P 到点F 的距离等于到直线4

17

=

y 的距离,若存在,求出定点F 的坐标;若不存在,请说明理由.

【答案】见解析.

【解析】解:(1)把A (-1,0),B (2,3)代入抛物线得:

20443a c a c -+=??

++=?

解得??

?=-=3

1

c a

∴抛物线的函数表达式为:y =-x 2+2x +3 (2)∵A (-1,0),B (2,3), ∴直线AB 的解析式为:y =x +1,

如下图所示,过M 作MN ∥y 轴交AB 于N ,

设M (m ,-m 2+2m +3),N (m ,m +1),(-1<m <2) ∴MN =-m 2+m +2,

∴S △ABM =S △AMN +S △BMN =1

()2

B A x x MN - ∴S △ABM =2213127(2)3()2228

m m m -++?=--+,

∴当21=

m 时,△ABM 的面积有最大值827,而S □MANB =2S △ABM =427,此时17(,)22

M

(3)存在,点15(1,

)4

F 理由如下:抛物线顶点为D ,则D (1,4),则顶点D 到直线417=y 的距离为4

1, 设(1,)F n 、2

(,23)P x x x -++,设P 到直线4

17

=y 的距离为PG . 则PG =

22175(23)244

x x x x --++=-+, ∵P 为抛物线上任意一点都有PG =PF , ∴当P 与顶点D 重合时,也有PG =PF .

此时PG =41,即顶点D 到直线4

17=y 的距离为14,

∴PF =DF =41

∴)4

15,1(F ,

∵PG =PF , ∴PG 2=PF 2, ∵2222222153(1)(

23)(1)(2)44

PF x x x x x x =-++--=-+-+ 2225

(2)4PG x x =-+

∴222222153(1)(23)(1)(2)44x x x x x x -++--=-+-+225

(2)4

x x =-+

整理化简可得0x =0, ∴当)4

15

,

1(F 时,无论x 取任何实数,均有PG =PF . 题型四:反比例函数中面积最值的求解

例4.(2018·扬州一模) 如图1,反比例函数y = k

x (x >0)的图象经过点A (23,1),

射线AB 与反比例函数图象交于另一点B (1,a ),射线AC 与y 轴交于点C ,∠BAC =75°,AD ⊥y 轴,垂足为D . (1)求k 的值;

(2)求tan ∠DAC 的值及直线AC 的解析式;

(3)如图2,M 是线段AC 上方反比例函数图象上一动点,过M 作直线l ⊥x 轴,与AC 相交于点N ,连接CM ,求△CMN 面积的最大值.

【答案】见解析.

【解析】解:(1)∵将A(23,1)代入反比例函数y=k

x

∴k=23;

(2)由(1)知,反比例函数解析式为y=23

∵点B(1,a)在反比例函数y=23

的图象上,

∴a=23,

∴点B(1,23)

过B作BE⊥AD于E,如下图所示,

则AE=BE=3﹣1.

∴∠ABE=∠BAE=45°

又∵∠BAC=75°,

∴∠DAC=30°

∴DC=tan30°·AD 3

232,

∴OC=1,即C(0,﹣1)

设直线AC的解析式为y=kx+b

231

1

k b

b

?+=

?

?

=-

??

解得

3

3

1

k

b

?

=

?

?

?=-

?

∴直线AC的解析式为y=

3

3

x﹣1

(3)设M(m,

23

m

),N(m,

3

3

m﹣1)

则MN=

23

m

-(

3

3

m﹣1)=

23

m

3

3

m+1,

∴S△CMN=1

2

23

m

3

3

m+1)m=﹣m2+m+

=﹣

3

(m﹣

3

)2+

93

当m=

3

时,△CMN的面积有最大值,最大值为

93

.

题型五:反比例函数中面积最值的求解

例5.(2019·达州)如图1,已知抛物线y=-x2+bx+c过点A(1,0),B(-3,0).

(1)求抛物线的解析式及其顶点C的坐标;

(2)设点D是x轴上一点,当tan(∠CAO+∠CDO)=4时,求点D的坐标;

(3)如图2,抛物线与y轴交于点E,点P是该抛物线上位于第二象限的点,线段P A交BE于点M,交y轴于点N,△BMP和△EMN的面积分别为m、n,求m-n的最大值.

【答案】见解析.

【解析】解:(1)把点(1,0),(﹣3,0)代入y=﹣x2+bx+c,

得,

01

093

b c

b c

=-++

?

?

=--+

?

解得b=﹣2,c=3,

∴y=﹣x2﹣2x+3=-(x+1)2+4,

∴此抛物线解析式为:y=﹣x2﹣2x+3,顶点C的坐标为(﹣1,4);

(2)由(1)知:抛物线对称轴为x =﹣1, 设抛物线对称轴与x 轴交于点H ,H (﹣1,0), 在Rt △CHO 中,CH =4,OH =1, ∴tan ∠COH =

CH

OH

=4, ∵∠COH =∠CAO +∠ACO , ∴当∠ACO =∠CDO 时,

tan (∠CAO +∠CDO )=tan ∠COH =4, 如下图所示,当点D 在对称轴左侧时,

∵∠ACO =∠CDO ,∠CAO =∠CAO , ∴△AOC ∽△ACD , ∴

AC AO

AD AC

=, ∵AC =25AO =1, ∴AD =20,OD =19, ∴D (﹣19,0);

当点D 在对称轴右侧时,点D 关于直线x =1的对称点D '的坐标为(17,0), ∴点D 的坐标为(﹣19,0)或(17,0);

(3)设P (a ,﹣a 2﹣2a +3),设直线P A 的解析式为:y =kx +b , 将P (a ,﹣a 2﹣2a +3),A (1,0)代入y =kx +b ,

223

ak b a a k b ?+=--+?

+=?, 解得,k =﹣a ﹣3,b =a +3, ∴y =(﹣a ﹣3)x +a +3, 当x =0时,y =a +3, ∴N (0,a +3),

如下图所示,

∵m=S△BPM=S△BP A﹣S四边形BMNO﹣S△AON,n=S△EMN=S△EBO﹣S四边形BMNO,∴m-n=S△BP A﹣S△EBO﹣S△AON

=1

2

×4×(﹣a2﹣2a+3)﹣

1

2

×3×3﹣

1

2

×1×(a+3)

=﹣2(a+9

8

)2+

81

32

∴当a=﹣9

8

时,m-n有最大值

81

32

.

题型六:二次函数中最值及最短路径题型

例6.(2019·绵阳)在平面直角坐标系中,将二次函数y=ax2(a>0)的图象向右平移1个单位,再向下平移2个单位,得到如图所示的抛物线,该抛物线与x轴交于点A、B(点A 在点B的左侧),OA=1,经过点A的一次函数y=kx+b(k≠0)的图象与y轴正半轴交于点C,且与抛物线的另一个交点为D,△ABD的面积为5.

(1)求抛物线和一次函数的解析式;

(2)抛物线上的动点E在一次函数的图象下方,求△ACE面积的最大值,并求出此时点E 的坐标;

(3)若点P为x轴上任意一点,在(2)的结论下,求PE+3

5

P A的最小值.

【答案】见解析.

【解析】解:(1)由平移知,平移后得到的抛物线解析式为y=a(x-1)2-2,∵OA=1,

∴点A 的坐标为(-1,0),代入抛物线的解析式得,4a -2=0, 得:a =1

2

∴抛物线的解析式为()2

1122y x =

--,即21322

y x x =--. 令y =0,解得x 1=-1,x 2=3, ∴B (3,0), ∴AB =OA +OB =4, ∵△ABD 的面积为5, ∴S △ABD =12

AB ·y D =5 ∴y D =5

2,

2513

222

x x =--,解得x 1=-2,x 2=4, ∴D (4,5

2

),

设直线AD 的解析式为y =kx +b ,

∴5420k b k b ?+=???-+=?,解得:12

12

k b ?

=????=??,

∴直线AD 的解析式为:y =12x +12

.

(2)过点E 作EM ∥y 轴交AD 于M ,如下图所示, 设E (a ,12

a 2-a -32

),M (a ,12

a +12

),

∴ME =-12a 2+32

a +2,

∴S △ACE =S △AME -S △CME =-14(a 2-3a -4)=-14(a -32)2+

2516

∴当a=3

2

时,△ACE的面积有最大值,最大值是

25

16

,此时E点坐标为(

3

2

15

8

-).

(3)作E关于x轴的对称点F,连接EF交x轴于点G,过点F作FH⊥AE于点H,交轴于点P,

∴AG=5

2

,EG=

15

8

4

3 AG

EG

=,

∵∠AGE=∠AHP=90°

∴sin∠EAG=

3

5 PH EG

AP AE

==,

∴PH=3

5 AP,

∵E、F关于x轴对称,∴PE=PF,

∴PE+3

5

AP=FP+HP=FH,此时FH最小,

∵EF=15

4

,∠AEG=∠HEF,

∴sin∠AEG=sin∠HEF=

4

5 AG FH

AE AE

==

∴FH=3.

即PE+3

5

PA的最小值是3.

例7.(2019·潍坊)如图,在平面直角坐标系xoy中,O为坐标原点,点A(4,0),点B (0,4),△ABO的中线AC与y轴交于点C,且⊙M经过O,A,C三点.

(1)求圆心M的坐标;

(2)若直线AD与⊙M相切于点A,交y轴于点D,求直线AD的函数表达式;

(3)在过点B且以圆心M为顶点的抛物线上有一动点P,过点P作PE∥y轴,交直线AD 于点E.若以PE为半径的⊙P与直线AD相交于另一点F.当EF=5求点P的坐标.

【答案】见解析.

【解答】解:(1)∵AC 为△ABO 的中线,点B (0,4), ∴点C (0,2), ∵点A (4,0), 点M 为线段AC 的中点, 即M (2,1);

(2)∵⊙P 与直线AD ,则∠CAD =90°, 设∠CAO =α,则∠CAO =∠ODA =∠PEH =α,

tan ∠CAO =

12

OC OA ==tan α,则sin α5cos α25

, AC 10CD =sin AC

α

=10,

则D (0,﹣8),

设直线AD 的解析式为:y =mx +n : 得:8

40

b k b =-??

+=?,解得:k =2,b =-8,

直线AD 的表达式为:y =2x ﹣8;

(3)抛物线的表达式为:y =a (x ﹣2)2+1, 将点B 坐标代入上式并解得:a =34

, 故抛物线的表达式为:y =34

x 2﹣3x +4, 过点P 作PH ⊥EF ,则EH =12EF =5

cos∠PEH=

25

cos

EH

PE

α

=

得:PE=5,

设点P(x,3

4

x2﹣3x+4),则点E(x,2x﹣8),

则PE=3

4

x2﹣3x+4﹣2x+8=5,

解得x=14

3

或2(舍),

则点P(14

3

19

3

).

2018中考数学复习 初中几何基本图形归纳(基本图形+常考图形)

初中几何常见基本图形子母型

A C

F E D B A F E D C B A D C A 几何基本图形 1、如图,正三角形ABC 中,AE=CD ,AD 、BE 交于F : ①△AEB ≌△ADC ②∠BFD=600 ③△AEF ∽△ABE 2、如图,正三角形ABC 中,F 是△ABC 中心,正三角形边长为a : ①AF :DF :AD=2:1:3 ②内切圆半径DF= a 63 ③外接圆半径AF=a 3 3 3、如图Rt △ABC 中,∠C=900,∠B=300,AC=a ,D 是AC 上的点: ①内切圆半径为 a 2 1 3- ②外接圆半径为a 4、如图Rt △ABC 中,∠C=900,AB=AC=a ,D 是AC 上的点: 为 a 2 5 ; ②当BD 是角平分线时,BD 长为a 224-。 ①当D 是AC 中点时,BD 长 5、如图,如图Rt △ABC 中,∠BAC=900,AB=AC=a ,E 、D 是BC 、AC 上的点,且∠AED=450: ①△ABE ∽ECD ②设BE=x ,则CD=a x ax 22-。 C B A 300

E D C B A 45 A B C 6、如图AB=AC ,∠A=360,则:BC= 2 1 5-AB 。 7、如图AB=AC ,D 是BC 上一点,AE=AD ,则: 2 1 ∠BAD=∠EDC 。 8、 如图,D 、E 是△ABC 边BC 上两点,AC=CD ,BE=BA ,则当:①∠BAC=1000时,∠DAE=400;②当∠BAC=x 0时,∠DAE=2 180x -0 。 9、如图,△BCA 中,D 是三角形内一点, ①当点D 是外心时,∠BDC= 21 ∠A ;②当点D 是内心时,∠BDC=2 180A ∠+ 10、如图,∠ACB=900,DE 是AB 中垂线,则①AE=BE ,若AC=3,BC=4,设AE=x ,有 ()22234x x =+-; ②△BED ∽△BAC 。 11、如图,E 是正方形ABCD 对角线BD 上一点,AE 交BC 延长线于点F ,H 是FG 中点: ①△ADE ≌△CDE ; ②△EGC ∽ECF ; ③EC ⊥CH ; ④EC 是以BG 为直径的圆的切线。 12、如图,ABCD 、CGFE 是正方形:①△DCG ≌CBCE ; ②BE ⊥DG 。 13、如图,正方形ABCD 对角线交于O ,E 是OB 上一点,EF ∥BC : ①△AOE ≌△BOF ; ②AE ⊥BF 。 14、如图,E 是正方形ABCD 对角线上一点,EF ⊥CD ,EG ⊥BC : ①AE=FG ;②AE ⊥FG 。 15、如图,将矩形ABCD 顶点B 沿某直线翻折可与D 点重合: ①EF 是BD 中垂线; ②BE=DE ,若AB=3,AD=5,设DE=x ,则()22 253x x =-+。 16、将矩形ABCD 顶点A 沿BD 翻折,A 落在E 处,如图: ①BD 是AE 中垂线,AB=BE ;②△BEF ≌△DCF ;③BF=DF 。 A B C E A B C E D A B C D A B C D E A B C D E F G H A B C D E F G A B C D E F O A B C D E F G A B C D E F O

中考数学图形及其变换复习教案

中考数学图形及其变换 复习教案 -CAL-FENGHAI-(2020YEAR-YICAI)_JINGBIAN

第四篇图形及其变换 专题十五视图与投影 一、考点扫描 1、会画基本几何体(直棱柱、圆柱、圆锥、球)的三 视图(主视图、左视图、俯视图),会判断简单物体的三视图.能根据三视图描述基本几何体或实物原型 2、了解直棱柱、圆锥的侧面展开图,能根据展开图判断和制作立体模型。 3、了解基本几何体与其三视图、展开图(球除外)之间的关系;通过典型实例,知道这种关系在现实生活中的应用(如物体的包装)。 4、观察与现实生活有关的图片(如照片、简单的模型图、平面图、地图等),了解并欣赏一些有趣的图形(如雪花曲线、莫比乌斯带)。 5、通过背景丰富的实例,知道物体的阴影是怎样形成的,并能根据光线的方向辨认实物的阴影(如在阳光或灯火下,观察手的阴影或人的身影)。 6、了解视点、视角及盲区的涵义,并能在简单的平面图和立体图中表示。 7、通过实例了解中心投影和平行投影。 二、考点训练 1、在同一时刻,身高1.6m的小强的影长是1.2m,旗杆的影长是15m,则旗杆高为 2、一天上午小红先参加了校运动会女子100m比赛,过一段时间又参加了女子400m比赛,如图是摄影师在同一位置拍摄的两张照片,那么下列说法正确的是() 3、小明从正面观察图1所示的两个物体,看到的是下图中的() 4、将如图所示放置的一个直角△ABC( ∠C=90°),绕 斜边AB旋转一周所得到的几何体的主视图是图中 四个图形中的_________(只填序号). 5、如图4,将图中的阴影部分剪下来,围成一个几何 体的侧面,使AB、DC重合,则所围成的几何体图 形是图中的() 6、如图,是由一些相同的小立方块搭成 的立体图形的三种视图,则搭成这个立体图形的小立方块的个数是() A.5 B.6 C.7 D.8 7、如图6,阳光通过窗口照到仓库内,在地上留下 2.7m宽的亮区,如图6,已知亮区一边到窗下的 墙角的距离为CD=8.7m,窗口高AB=1.8m,那 么窗口底边高地面的高BC=_________ 2

中考数学中的最值问题解法

中考数学中的最值问题解法

角函数定义,特殊角的三角函数值。 【分析】如图,在BA上截取BE=BN,连接EM。 ∵∠ABC的平分线交AC于点D,∴∠EBM=∠NBM。 在△AME与△AMN中,∵BE=BN ,∠EBM=∠NBM,BM=BM, ∴△BME≌△BMN(SAS)。∴ME=MN。∴CM+MN=CM+ME≥CE。 又∵CM+MN有最小值,∴当CE是点C到直线AB的距离时,CE取最小值。 ∵BC=42,∠ABC=45°,∴CE的最小值为 0=4。 例3.(2011四川凉山5分)如图,圆柱底面半径为2cm,高为9cm ,点A、B分别是圆柱两底面圆周上的点,且A、B在同一母线上,用一棉线从A顺着圆柱侧面绕3圈到B,求棉线最短为▲ cm。

【答案】15π。 【考点】圆柱的展开,勾股定理,平行 四边形的性质。 【分析】如图,圆柱展开后可见,棉线 最短是三条斜线,第一条斜线与底面圆周长、13 高组成直角三角形。由周长公式,底面圆周长为4cm π,13 高为3cm π,根据勾股定理,得斜线长为5cm π,根据平行四边形的性质,棉线最短为15cm π。 例4. (2012四川眉山3分)在△ABC 中,AB =5,AC =3,AD 是BC 边上的中线,则AD 的取值范围是 ▲ . 【答案】1<AD <4。 【考点】全等三角形的判定和性质,三角 形三边关系。 【分析】延长AD 至E ,使DE=AD ,连接CE .根 据SAS 证明△ABD≌△ECD,得CE=AB ,再根 据三角形的三边关系即可求解: 延长AD 至E ,使DE=AD ,连接CE 。 ∵BD=CD ,∠ADB=∠EDC ,AD=DE , ∴△ABD≌△ECD(SAS )。 ∴CE=AB。 在△ACE 中,CE -AC <AE <CE +AC ,即2<2AD

初中数学几何基本图形

432 1F E D C B A 432 1F E D C B A F E D C B A H G F E D C B A c b a C B A D C B A F E D C B A C B A 初中数学几何基本图形 1. 平行线的性质: ∵A B ∥CD (已知) ∴∠1=∠2(两直线平行,同位角相等。) ∴∠1=∠3(两直线平行,内错角相等。) ∴∠1+∠4=180° (两直线平行,同旁内角互补。) 2. 平行线的判定: (1)∵∠1=∠2(已知) ∴A B ∥CD (同位角相等,两直线平行。) (2)∵∠1=∠3(已知) ∴A B ∥CD (内错角相等,两直线平行。) (3)∵∠1+∠4=180o (已知) ∴A B ∥CD (同旁内角互补,两直线平行。) 3. 平行线的传递性: ∵A B ∥CD ,A B ∥EF (已知) ∴C D ∥EF (如果两条直线都与第三条直线平行, 那么这两条直线也互相平行。) 4. 两条平行线间距离: ∵A B ∥CD ,EF ⊥CD ,GH ⊥CD (已知) ∴EF=GH (平行线间距离处处相等。) 5. 三角形的性质: (1)∠A+∠B+∠C=180o (三角形内角之和为180o 。) (2)a+b >c ,∣a-b ∣<c (三角形任意两边之和大于第三边, 三角形任意两边之差小于第三边。) (3)∠ACD=∠A+∠B (三角形一个 外角等于与它不相邻的两个外角之和。) 6.三角形中重要线段: (1)∵AD 是△ABC 边BC 上的高(已知) ∴AD ⊥BC 即∠ADC=900(三角形高的意义) (2)∵BF 是△ABC 边AC 上的中线(已知) ∴AF=FC=12 AC (AC=2AF=2FC )(三角形中线的意义) (3)∵CE 是△ABC 的∠ACB 的角平分线(已知) ∴∠ACE=∠BCE= 1 2 ∠ACB (∠ACB=2∠ACE=2∠BCE )(三角形角平分线的意义) 6. 等腰三角形的性质和判定: (1)∵AB=AC (已知)∴∠B=∠C (等边对等角) (2)∵∠B=∠C (已知)∴AB=AC (等角对等边)

中考数学专题训练 图形变换(含解析)

专题训练 (图形变换) (120分钟120分) 一、选择题(本大题共20小题,在每小题给出的四个选项中,只有一个是正确的,请把正确的选项选出来,每小题选对得3分,选错、不选或选出的答案超过一个,均记零分) 1.((2019·无锡中考)下列图形中,是中心对称图形的是( ) 【解析】选C.A.不是中心对称图形,故不符合题意; B.不是中心对称图形,故不符合题意; C.是中心对称图形,故符合题意; D.不是中心对称图形,故不符合题意. 2.(2019·济南历城模拟)如图所示的几何体是由一个圆柱体和一个长方体组成的,则这个几何体的俯视图是( ) 【解析】选C.从上面看外边是一个矩形,里面是一个圆. 3.在平面直角坐标系中,把△ABC经过平移得到△A′B′C′,若A(1,m),B(4,2),点A的对应点A′(3,m+2),则点B的对应点B′的坐标为( ) A.(6,5) B.(6,4) C.(5,m) D.(6,m) 【解析】选B.∵把△ABC经过平移得到△A′B′C′, 点A(1,m)的对应点为A′(3,m+2), ∴平移规律是:先向右平移2个单位,再向上平移2个单位,∵点B的坐标为(4,2), ∴点B的对应点B′的坐标为(6,4).

4.如图,在平面直角坐标系中,△ABC与△DEF关于直线m:x=1对称,点M,N分别是这两个三角形中的对应点,如果点M的横坐标是a,那么点N的横坐标是 A.-a B.-a+1 C.a+2 D.-a+2 【解析】选D.设N点的横坐标为b, 由△ABC与△DEF关于直线m:x=1对称,点M,N分别是这两个三角形中的对应点,得 =1,解得b=2-a. 5.(2019·绍兴中考)一块竹条编织物,先将其按如图所示绕直线MN翻转180°,再将它按逆时针方向旋转90°,所得的竹条编织物是( ) 【解析】选B.绕MN翻折180°后,可得图(1),再逆时针旋转90°,可得图(2). 6.如图,已知l1∥l2∥l3,DE=4,DF=6,那么下列结论正确的是( ) A.BC∶EF=1∶1 B.BC∶AB=1∶2 C.AD∶CF=2∶3 D.BE∶CF=2∶3 【解析】选B.∵l1∥l2∥l3, ∴===,∴=, ∴BC∶AB=1∶2. 7.如果一个直角三角形的两条边长分别是6和8,另一个与它相似的直角三角形边长分别是3,4及x,那么x的值( ) A.只有1个 B.可以有2个 C.可以有3个 D.有无数个

2019年中考数学最值问题专题卷(含答案)

2019年中考数学最值问题专题卷(含答案) 一、单选题 1.如图,在Rt△ABC中,∠ACB=90°,将△ABC绕顶点C逆时针旋转得到△A'B'C,M是BC的中点,P是A'B' 的中点,连接PM.若BC=2,∠BAC=30°,则线段PM的最大值是() A. 4 B. 3 C. 2 D. 1 2.如图,点A(a,3),B(b,1)都在双曲线y= 上,点C,D,分别是x轴,y轴上的动点,则四边形ABCD周长的最小值为() A. B. C. D. 3.如图,正方形ABCD的面积为12,△ABE是等边三角形,点E在正方形ABCD内,在对角线AC上有一点P,使PD+PE最小,则这个最小值为() A. B. 2 C. 2 D. 二、填空题 4.如图,四边形ABCD中,∠A=90°,AB=3,AD=3,点M,N分别为线段BC,AB上的动点(含端点,但点M不与点B重合),点E,F分别为DM,MN的中点,则EF长度的最大值为________ . 5.如图所示,正方形ABCD的边长为6,△ABE是等边三角形,点E在正方形ABCD内,在对角线AC上有一点P,使PD+PE的和最小,则这个最小值为________. 6.如图,正方形ABCD的边长为1,中心为点O,有一边长大小不定的正六边形EFGHIJ绕点O可任意旋转,在旋转过程中,这个正六边形始终在正方形ABCD内(包括正方形的边),当这个正六边形的边长最大时,AE的最小值为________.

7.如图,AB是⊙O的弦,AB=6,点C是⊙O上的一个动点,且∠ACB=45°.若点M,N分别是AB,BC的中点,则MN长的最大值是________ 三、综合题 8.如图,将边长为6的正三角形纸片ABC按如下顺序进行两次折叠,展平后,得折痕AD,BE(如图①),点O为其交点. (1)探求AO到OD的数量关系,并说明理由; (2)如图②,若P,N分别为BE,BC上的动点. (Ⅰ)当PN+PD的长度取得最小值时,求BP的长度; (Ⅱ)如图③,若点Q在线段BO上,BQ=1,则QN+NP+PD的最小值= .

初中数学中考总复习:图形的变换--知识讲解(提高)

中考总复习:图形的变换--知识讲解(提高) 【考纲要求】 1.通过具体实例认识轴对称、平移、旋转,探索它们的基本性质; 2.能够按要求作出简单平面图形经过轴对称、平移、旋转后的图形,能作出简单平面图形经过一次或两次轴对称后的图形; 3.探索基本图形(等腰三角形、矩形、菱形、等腰梯形、正多边形、圆)的轴对称性质及其相关性质. 4.探索图形之间的变换关系(轴对称、平移、旋转及其组合); 5.利用轴对称、平移、旋转及其组合进行图案设计;认识和欣赏轴对称、平移、旋转在现实生活中的应用. 【知识网络】 【考点梳理】 考点一、平移变换 1.平移的概念:在平面内,将一个图形沿某个方向移动一定的距离,这样的图形运动称为 平移,平移不改变图形的形状和大小. 【要点诠释】 (1)平移是运动的一种形式,是图形变换的一种,本讲的平移是指平面图形在同一平面内 的变换; (2)图形的平移有两个要素:一是图形平移的方向,二是图形平移的距离,这两个要素是 图形平移的依据; (3)图形的平移是指图形整体的平移,经过平移后的图形,与原图形相比,只改变了位置, 而不改变图形的大小,这个特征是得出图形平移的基本性质的依据. 2.平移的基本性质:由平移的概念知,经过平移,图形上的每一个点都沿同一个方向移动 相同的距离,平移不改变图形的形状和大小,因此平移具有下列性质:经过平移,对应点所 连的线段平行且相等,对应角相等. 【要点诠释】 (1)要注意正确找出“对应线段,对应角”,从而正确表达基本性质的特征; (2)“对应点所连的线段平行且相等”,这个基本性质既可作为平移图形之间的性质, 又可作为平移作图的依据. 考点二、轴对称变换 1.轴对称与轴对称图形 轴对称:把一个图形沿着某一条直线折叠,如果能够与另一个图形重合,那么就说这两个图形关于这条直线对称,也叫做这两个图形成轴对称,这条直线叫做对称轴,折叠后重合的对应点,叫做对称点. 轴对称图形:把一个图形沿着某一条直线折叠,直线两旁的部分能够互相重合,这个图形叫做轴对称

2017年中考数学专题复习 图形变换问题

图形变换问题 【专题点拨】 数学里的变换,指一个图形(或表达式)到另一个图形(或表达式)的演变。图象变换是函数的一种作图方法。已知一个函数的图象,通过某种或多种连续方式变换,得到另一个与之相关的函数的图象,这样的作图方法叫做图象变换。 【解题策略】 从具体图形入手→解析变换形式→把握变换性质→运用性质解题→得到结论 【典例解析】 类型一:平移问题研究 例题1:(2016·山东省菏泽市·3分)如图,A,B的坐标为(2,0),(0,1),若将线段AB平移至A1B1,则a+b的值为() A.2 B.3 C.4 D.5 【考点】坐标与图形变化-平移. 【解析】直接利用平移中点的变化规律求解即可. 【解答】解:由B点平移前后的纵坐标分别为1、2,可得B点向上平移了1个单位,由A点平移前后的横坐标分别是为2、3,可得A点向右平移了1个单位, 由此得线段AB的平移的过程是:向上平移1个单位,再向右平移1个单位, 所以点A、B均按此规律平移, 由此可得a=0+1=1,b=0+1=1, 故a+b=2. 故选:A.

【点评】本题考查了坐标系中点、线段的平移规律,在平面直角坐标系中,图形的平移与图形上某点的平移相同.平移中点的变化规律是:横坐标右移加,左移减;纵坐标上移加,下移减. 变式训练1: (2016·山东省济宁市·3分)如图,将△ABE向右平移2cm得到△DCF,如果△ABE的周长是16cm,那么四边形ABFD的周长是() A.16cm B.18cm C.20cm D.21cm 类型二:轴对称问题研究 例题2:(2016·山东潍坊·3分)已知∠AOB=60°,点P是∠AOB的平分线OC上的动 点,点M在边OA上,且OM=4,则点P到点M与到边OA的距离之和的最小值是2.【考点】轴对称-最短路线问题. 【解析】过M作MN′⊥OB于N′,交OC于P,即MN′的长度等于点P到点M与到边OA 的距离之和的最小值,解直角三角形即可得到结论. 【解答】解:过M作MN′⊥OB于N′,交OC于P, 则MN′的长度等于PM+PN的最小值, 即MN′的长度等于点P到点M与到边OA的距离之和的最小值, ∵∠ON′M=90°,OM=4, ∴MN′=OM?sin60°=2, ∴点P到点M与到边OA的距离之和的最小值为2.

中考数学压轴题分类汇编:图形变换

中考数学分类汇:几何综合——图形变换 某课外学习小组在一次学习研讨中,得到了如下两个命题: ①如图1,在正三角形△ABC 中,M 、N 分别是AC 、AB 上的点,BM 与CN 相交于点O ,若∠BON =60o,则BM =CN ; ②如图2,在正方形ABCD 中,M 、N 分别是CD 、AD 上的点,BM 与CN 相交于点O ,若∠BON =90o,则BM =CN ; 然后运用类比的思想提出了如下命题: ③如图3,在正五边形ABCDE 中,M 、N 分别是CD 、DE 上的点,BM 与CN 相交于点O ,若∠BON =108o,则BM =CN 。 任务要求: (1)请你从①、②、③三个命题中选择一个进行证明;(说明:选①做对得4分,选②做对得3分,选③做对得5分) (2)请你继续完成下列探索: ①请在图3中画出一条与CN 相等的线段DH ,使点H 在正五边形的边上,且与CN 相交所成的一个角是108o,这样的线段有几条?(不必写出画法,不要求证明) ②如图4,在正五边形ABCDE 中,M 、N 分别是DE 、EA 上的点,BM 与CN 相交于点O ,若∠BON =108o,请问结论BM =CN 是否还成立?若成立,请给予证明;若不成立,请说明理由。 [解] (1)以下答案供参考: (1) 如选命题① 证明:在图1中,∵∠BON=60°∴∠1+∠2=60° ∵∠3+∠2=60°,∴∠1=∠3 又∵BC=CA ,∠BCM=∠CAN=60°∴ΔBCM ≌ΔCAN ∴BM=CN (2)如选命题② 证明:在图2中,∵∵∠BON=90°∴∠1+∠2=90° ∵∠3+∠2=90°,∴∠1=∠3 又∵BC=CD ,∠BCM=∠CDN=90°∴ΔBCM ≌ΔCDN ∴BM=CN (3)如选命题③ 证明;在图3中,∵∠BON=108°∴∠1+∠2=108° ∵∠2+∠3=108°∴∠1=∠3 又∵BC=CD ,∠BCM=∠CDN=108° ∴ΔBCM ≌ΔCDN O C M N A 图1 A C M N O D 图2 图4 N M O E D C B A

中考数学专题函数图像

专题二:函数图像 1、(2013年潍坊市)用固定的速度向如图所示形状的杯子里注水,则能表示杯子里水面的高度和注水时间的关系的大致图象是(). 2、(2013成都市)在平面直角坐标系中,下列函数的图像经过原点的是() =-x+3 B. =2x D. 3、(2013?天津)如图,是一对变量满足的函数关系的图象,有下列3个不同的问题情境: ①小明骑车以400米/分的速度匀速骑了5分,在原地休息了4分,然后以500米/分的速度匀速骑回出发地,设时间为x分,离出发地的距离为y千米; ②有一个容积为6升的开口空桶,小亮以1.2升/分的速度匀速向这个空桶注水,注5分后停止,等4分后,再以2升/分的速度匀速倒空桶中的水,设时间为x分,桶内的水量为y升; ③矩形ABCD中,AB=4,BC=3,动点P从点A出发,依次沿对角线AC、边CD、边DA运动至点A 停止,设点P的运动路程为x,当点P与点A不重合时,y=S;当点P与点A重合时,△ABP y=0.其中,符合图中所示函数关系的问题情境的个数为() A. 0 B. 1 C. 2 D. 3 4、(2013年临沂)如图,正方形ABCD中,AB=8cm,对角线AC,BD相交于点O,点E,F分别从B,C 两点同时出发,以1cm/s的速度沿BC,CD运动,到点C,D时停止运动,设运动时间为t(s),△OE 的面积为s(),则s()与t(s)的函数关系可用图像表示为() S(S(1616

88t(s84Ot(s O84B)((A) S(S(161688 t(s t(s O4884O)C(. 5、(2013四川南充,9,3分)如图1,点E为矩形ABCD边AD上一点,点P,点Q同时从点B 出发,点P沿BE→ED→DC 运动到点C停止,点Q沿BC运动到点C停止,它们运动的速度都是1cm/s,设P,Q出发t秒时,△BPQ的面积为ycm,已知y与t的函数关系的图形如图2(曲线OM为抛物线的一部分),则下列结论::①AD=BE=5cm;②当0<t≤5时;;③直线NH的解析式为y=-t+27;④若△ABE与△QBP相似,则t=秒。其中正确的结论个数为() D. 1 A. 4 B. 3 C. 2 C 6、(2013年黄石)如右图,已知某容器是由上下两个相同的圆锥和中间一个与圆锥同底等高的圆柱组合而成,若往此容器中注水,设注入水的体积为,高度为,则关于的函数图像大致是() 7、(2013?自贡)如图,已知A、B是反比例函数上的两点,BC∥x轴,交y轴于C,动点P从坐标原点O出发,沿O→A→B→C匀速运动,终点为C,过运动路线上任意一点P作PM⊥x轴于M,PN⊥y轴于N,设四边形OMPN的面积为S,P点运动的时间为t,则S关于t的函数图象大致是()

2017-中考数学-压轴专题-最值问题系列(一)

专题最值问题—— 1(几何模型) 一、归于几何模型,这类模型又分为以下情况: 1. 归于“两点之间的连线中,线段最短”。 凡属于求“变动的两线段之和的最小值”时,大都应用这一模型。 2.归于“三角形两边之差小于第三边”。 凡属于求“变动的两线段之差的最大值”时,大都应用这一模型。 3.利用轴对称知识(结合平移)。 4. 应用“点到直线的距离,垂线段最短。”性质。 5. 定圆中的所有弦中,直径最长;以及直线与圆相切的临界位置等等。 二、基础知识模型 (一)“将军饮马”问题 1.如图1,将军骑马从A出发,先到河边a喝水,再回驻地B,问将军怎样走路程最短? 2.如图,一位将军骑马从驻地M出发,先牵马去草地OA吃草,再牵马去河边OB喝水,最后回到驻地M,问:这位将军怎样走路程最短? 图1 图2 3. 如图,A为马厩,B为帐篷,将军某一天要从马厩牵马,先到草地一处牧马,再到河边饮马,然后回到帐篷,请你帮助确定这一天的最短路线。

(二)“造桥选址”问题(选自人教版七年级下册) 1. 如图1,A和B两地在一条河的两岸,现要在河上造一座桥MN,桥造在何处才能使从A到B的路径AMNB最短?(假设河两岸1l、l2平行,桥MN 与河岸垂直) 练习: 1. 如图,在边长为2㎝的正方形ABCD中,点Q为BC边的中点,点P为对角线AC上一动点, 连接PB、PQ,则△PBQ周长的最小值为____________㎝(结果不取近似值). 1题图2题图 2.已知点A是半圆上的一个三等分点,点B是弧AN的中点,点P是半径ON上的动点, 若⊙O的半径长为1,则AP+BP的最小值为__________. 3.如图3,已知点A的坐标为(-4,8),点B的坐标为(2,2),请在x轴上找到一点P,使PA+PB最小,并求出此时P点的坐标和PA+PB的最小值。

中考数学图形的变换试题

第五单元图形的认识 第29课图形的轴对称 1.①直角三角形②线段③平行四边形④梯形⑤角⑥等腰三角形 上述图形中,不是轴对称图形的有() A.②⑤B.③⑤C.③④D.①③④ 2.将A、B、C、D、E、F、G、H、I、J这十个字母竖立在镜子前,在镜子中看到的像能与原字母相同的有()个. A.3 B.4 C.5 D.6 3.如图,下列图案是几家银行的标志,其中是轴对称图形的有()个 A.1个B.2个C.3个D.4个 4.下图中,不是轴对称图形的是(). A.B.C.D. 5.小强站在镜前,从镜子中看到镜子对面墙上挂着的电子表,其读数如下图示,则电子表的实际时刻是() A.10:51 B.10:21 C.15:01 D.12:01 6.已知:下面是我们熟悉的四个交通标志图形,请从几何图形的性质考虑,与其他三个 ..不同的是() A.①B.②C.③D.④ 7.如图,△ABC与△A1B1C1关于直线对称,将向右平移得到△A2B2C2.由此得出下列判断:(1)AB//A2B2;(2)∠A=∠A2;(3)AB= A2B2.其中正确的是() A.(1)(2)B.(2)(3)C.(1)(3)D.(1)(2)(3) 8.已知点P1(a,3)和P2(4,b)关于轴对称,则(a+b)2006的值为()A.1 B.-1 C.72006D.-72006 第7题图第9题图

8.如图,把△ABC 纸片沿DE 折叠,当点A 落在四边形BCDE 内部时,则∠A 与∠+∠12 之 间有一种数量关系始终保持不变,请试着找一找这个规律,你发现的规律是( ) A. ∠=∠+∠A 12 B. 212∠=∠+∠A C. 3212∠=∠+∠A D. )21(23∠+∠=∠A 10.如图,有一矩形纸片ABCD,AB=10,AD=6,将纸片折叠,使AD 边落在AB 边上,折痕为AE , 再将△AED 以DE 为折痕向右折叠,AE 与BC 交于点F ,则△CEF 的面积为( ) A .4 B .6 C .8 D .10 第10题图 11.如图,给出了一个轴对称图形的一半,其中直线l 为这个图形的对称轴,请你画出这 个图形的另一半(不用写作法,但要保留作图痕迹). 解: 第11题图 12.某居民小区搞绿化,要在一块长方形空地上建花坛,要求设计的图案由圆和正方形 组成(圆与正方形的个数不限),并且使整个长方形场地成轴对称图形,你有好的设计方案吗?请在如图的长方形中画出你的设计方案. 第12题图

数学中考图形的变换专题复习题及答案

热点11 图形的变换 (时间:100分钟总分:100分) 一、选择题(本大题共10小题,每小题3分,共30分,在每小题给出的四个选项中,只有一个是符合题目要求的) 1.在图形的平移中,下列说法中错误的是() A.图形上任意点移动的方向相同; B.图形上任意点移动的距离相同 C.图形上可能存在不动点; D.图形上任意对应点的连线长相等 2.如图所示图形中,是由一个矩形沿顺时针方向旋转90?°后所形成的图形的是()A.(1)(4) B.(2)(3) C.(1)(2) D.(2)(4) 3.在旋转过程中,确定一个三角形旋转的位置所需的条件是() ①三角形原来的位置;②旋转中心;③三角形的形状;④旋转角. A.①②④ B.①②③ C.②③④ D.①③④ 4.如图,O是正六边形ABCDEF的中心,下列图形中可由△OBC平移得到的是(? )A.△COD B.△OAB C.△OAF D.△OEF 5.下列说法正确的是() A.分别在△ABC的边AB、AC的反向延长线上取点D、E,使DE∥BC,?则△ADE?是△ABC 放大后的图形; B.两个位似图形的面积比等于位似比; C.位似多边形中对应对角线之比等于位似比; D.位似图形的周长之比等于位似比的平方 6.下面选项中既是中心对称图形又是轴对称图形的是() A.等边三角形 B.等腰梯形 C.五角星 D.菱形 7.下列图形中对称轴的条数多于两条的是() A.等腰三角形 B.矩形 C.菱形 D.等边三角形 8.在如图所示的四个图案中既包含图形的旋转,?又有图形的轴对称设计的是() 9.钟表上2时15分,时针与分针的夹角是() A.30° B.45° C.22.5° D.15° 10.如图1,已知正方形ABCD的边长是2,如果将线段BD绕点B旋转后,点D?落在CB的延长线上的D′处,那么tan∠BAD′等于() A.1 B2 C. 2 2 D.2

初中数学最值问题典型例题(含答案分析)

中考数学最值问题总结 考查知识点:1、“两点之间线段最短”,“垂线段最短”,“点关于线对称”,“线段的平移”。 (2、代数计算最值问题3、二次函数中最值问题) 问题原型:饮马问题造桥选址问题(完全平方公式配方求多项式取值二次函数顶点)出题背景变式:角、三角形、菱形、矩形、正方形、梯形、圆、坐标轴、抛物线等。 解题总思路:找点关于线的对称点实现“折”转“直” 几何基本模型: 条件:如下左图,A、B是直线l同旁的两个定点. 问题:在直线l上确定一点P,使PA PB +的值最小. 方法:作点A关于直线l的对称点A',连结A B'交l于 点P,则PA PB A B' +=的值最小 例1、如图,四边形ABCD是正方形,△ABE是等边三 角形,M为对角线BD(不含B点)上任意一点,将BM绕点B逆时针旋转60°得到BN,连接EN、AM、CM. (1)求证:△AMB≌△ENB; (2)①当M点在何处时,AM+CM的值最小; ②当M点在何处时,AM+BM+CM的值最小,并说明理由; (3)当AM+BM+CM的最小值为 时,求正方形的边长。 A B A' ′ P l

例2、如图13,抛物线y=ax2+bx+c(a≠0)的顶点为(1,4),交x轴于A、B,交y轴于D,其中B点的坐标为(3,0) (1)求抛物线的解析式 (2)如图14,过点A的直线与抛物线交于点E,交y轴于点F,其中E点的横坐标为2,若直线PQ为抛物线的对称轴,点G为PQ上一动点,则x轴上是否存在一点H,使D、G、F、H四点围成的四边形周长最小.若存在,求出这个最小值及G、H的坐标;若不存在,请说明理由. (3)如图15,抛物线上是否存在一点T,过点T作x的垂线,垂足为M,过点M作直线M N∥BD,交线段AD于点N,连接MD,使△DNM∽△BMD,若存在,求出点T的坐标;若不存在,说明理由.

2012中考数学试题分类汇编 图形的变换

2012中考数学试题及答案分类汇编: 图形的变换 一、选择题 1. (北京4分)下列图形中,即是中心对称又是轴对称图形的是 A、等边三角形 B、平行四边形 C、梯形 D、矩形 【答案】D。 【考点】中心对称和轴对称图形。 【分析】根据轴对称图形与中心对称图形的概念,轴对称图形两部分沿对称轴折叠后可重合;中心对称图形是图形沿对称中心旋转180度后与原图重合。从而有A、是轴对称图形,不是中心对称图形.故本选项错误;B、是不是轴对称图形,是中心对称图形.故本选项错误;C、是轴对称图形,不是中心对称图形.故本选项错误;D、既是轴对称图形,又是中心对称图形.故本选项正确。故选D。 2.(天津3分)下列汽车标志中,可以看作是中心对称图形的是 【答案】A。 【考点】中心对称图形。 【分析】根据在平面内,一个图形绕某个点旋转180°,如果旋转前后的图形互相重合,那么这个图形叫做中心对称图形的定义,直接得出结果。 3.(天津3分)下图是一支架(一种小零件),支架的两个台阶的高度和宽度都是同一长度.则它的三视图是

【答案】A。 【考点】几何体的三视图。 【分析】找到从正面看所得到的图形即可,注意所有的看到的棱都应表现在主视图中:细心观察原立体图形的位置,从正面看,是一个矩形,矩形左上角缺一个角;从左面看,是一个正方形;从上面看,也是一个正方形。故选A。 4.(河北省2分)将图1围成图2的正方体,则图1中的红心“”标志所在的正方形是正方体中的 A、面CDHE B、面BCEF C、面ABFG D、面ADHG 【答案】A。 【考点】展开图折叠成几何体。 【分析】由图1中的红心“”标志,可知它与等边三角形相邻,折叠成正方体是正方体中的面CDHE。故选A。 5.(山西省2分)将一个矩形纸片依次按图(1)、图(2)的方式对折,然后沿图(3)中的虚线裁剪,最后将图(4)的纸再展开铺平,所得到的图案是

中考数学第五章《基本图形(一)》综合测试卷完整通用版

第五章《基本图形(一)》综合测试卷 [分值:120分] 一、选择题(每小题3分,共30分) 1.如图,直线a,b被直线c所截,则∠1与∠2的位置关系是(B) A.同位角B.内错角 C.同旁内角D.对顶角 【解析】∠1与∠2成“Z”字形,是内错角. (第1题)(第2题) 2.已知M,N,P,Q四点的位置如图所示,则下列结论中,正确的是(C) A.∠NOQ=42°B.∠NOP=130° C.∠NOP比∠MOQ大D.∠MOQ与∠MOP互补 【解析】由图可知,∠NOQ=138°,∠NOP=50°,∠MOQ=42°,∠MOP=130°,故选C. (第3题) 3.如图,AB∥CD,DA⊥AC,垂足为A.若∠ADC=35°,则∠1的度数为(B) A.65°B.55° C.45°D.35° 【解析】∵DA⊥AC,∴∠CAD=90°. ∵∠ADC=35°,∴∠ACD=55°. ∵AB∥CD,∴∠1=∠ACD=55°. 4.将一副直角三角尺如图所示放置,若∠AOD=20°,则∠BOC的大小为(B) A. 140° B. 160° C. 170° D. 150° 【解析】∵∠AOB=∠COD=90°,∠AOD=20°, ∴∠BOC=∠AOB+∠COD-∠AOD=160°. (第4题)(第5题) 5.如图,在Rt△ABC中,∠A=30°,BC=1,D,E分别是直角边BC,AC的中点,则DE的长为(A) A.1B.2 C.3D.1+ 3 【解析】在Rt△ABC中,∵∠C=90°,∠A=30°, ∴AB=2BC=2.

∵D,E分别是BC,AC的中点, ∴DE=1 2AB=1. 6.如图,已知AE=CF,∠AFD=∠CEB,则添加下列一个条件后,仍无法判定△ADF≌△CBE的是(B) A. ∠A=∠C B. AD=CB C. BE=DF D. AD∥BC 【解析】∵AE=CF,∴AE+EF=CF+EF,即AF=CE. A. 可根据“ASA”推出△ADF≌△CBE. B. 不能根据“SSA”推出△ADF≌△CBE. C. 可根据“SAS”推出△ADF≌△CBE. D. ∵AD∥BC,∴∠A=∠C.可根据“ASA”推出△ADF≌△CB E. (第6题)(第7题) 7.如图,在△ABC中,AB=AC,D为BC上一点,CD=AD,AB=BD,则∠B的度数为(B) A. 30° B. 36° C. 40° D. 45° 【解析】设∠B=x.∵AB=AC,∴∠C=∠B=x. ∵CD=AD,∴∠CAD=∠C=x. ∵AB=BD,∴∠BAD=∠BDA=∠CAD+∠C=2x. ∵∠BAD+∠B+∠BDA=180°,∴2x+x+2x=180°, 解得x=36°,即∠B=36°. (第8题) 8.如图,已知边长为2的正三角形ABC的顶点A的坐标为(0,6),BC的中点D在y 轴上,且在点A的下方,E是边长为2,中心在原点的正六边形的一个顶点,把这个正六边形绕中心旋转一周,在此过程中DE的最小值为(B) A. 3 B. 4- 3 C. 4 D. 6-2 3 【解析】当点E转到y轴的正半轴上时,DE最小. ∵OE=2,∴AE=6-2=4,∴DE=AE-AD=4- 3. 9.如图①,分别以直角三角形的三边为边向外作等边三角形,面积分别为S1,S2,S3;如图②,分别以直角三角形的三个顶点为圆心,三边长为半径向外作圆心角相等的扇形,面积分别为S4,S5,S6.其中S1=16,S2=45,S5=11,S6=14,则S3+S4=(A)

中考数学复习专题十:图形与变换

中考数学二轮复习专题训练:图形与变换 1.请仔细观察下列轴对称图形的构成,然后在横线上画出恰当的图形. 2.如图,正方形ABCD 的边长为8,M 在DC 上,且DM =2,N 是对角线上的一动点,则DN+MN 的最小值为_ __________ (第2题图) (第3题图) (第4题图) 3.如图,已知梯形ABCD 中,AD ∥BC ,∠B = 90°,AD = 3,BC = 5,AB = 1,把线段CD 绕点D 逆时针旋转90 °到DE 位置,连结AE ,则AE 的长为 . 4.如图,把△ABC 绕点C 顺时针旋转35°,得到△A ′B ′C ,A ′B ′交AC 于点D ,若∠A ′DC=900,则∠A 度数为( ) A.45° B.55° C.65° D.75° 5.上右图是万花筒的一个图案,图中所有小三角形均是全等三角形,其中把菱形ABCD 以A 为中心旋转多少度后可得图中另一阴影的菱形( ) A.顺时针旋转60° B. 顺时针旋转120° C.逆时针旋转60° D. 逆时针旋转120° 6.已知:如图,(42)E -, ,(11)F --,,以O 为位似中心, 按比例尺1:2,把EFO △缩小,则点E 的对应点E '的坐标 为( ) A B C D E x y E F O _ N _ M _ D _ C _ B _ A

A .(21)-,或(21)-, B .(84)-,或(84)-, C .(21)-, D .(84)-, 7.如图,方格纸中的每个小方格都是边长为1个单位的正方形,在建立平面直角坐标系后,△ABC 的顶点均在格点上,点B 的坐标为(1,0) ①画出△ABC 关于x 轴对称的△A 1B 1C 1, ②画出将△ABC 绕原点O 按逆时针旋转90°所得的△A 2B 2C 2, ③△A 1B 1C 1与△A 2B 2C 2成轴对称图形吗?若成轴对称图形,画出所有的对称轴; ④△A 1B 1C 1与△A 2B 2C 2成中心对称图形吗?若成中心对称图形,写出所有的对称中心的坐标. 8.在平面内,先将一个多边形以点O 为位似中心放大或缩小,使所得多边形与原多边形对应线段的比为k ,并且原多边形上的任一点P ,它的对应点P '在线段OP 或其延长线上;接着将所得多边形以点O 为旋转中心,逆时针旋转一个角度θ,这种经过和旋转的图形变换叫做旋转相似变换,记为()O k θ,,其中点O 叫做旋转相似中心,k 叫做相似比,θ叫做旋转角. (1)填空: ①如图1,将ABC △以点A 为旋转相似中心,放大为原来的2倍,再逆时针旋转60o ,得到ADE △,这个旋转相似变换记为A ( , ); ②如图2,ABC △是边长为1cm 的等边三角形, 将它作旋转相似变换)A o ,得到ADE △,则线段BD 的长为 cm ; (2)如图3,分别以锐角三角形ABC 的三边AB ,BC ,CA 为边向外作正方形ADEB , D

中考数学专题:函数图像

O 4 8 8 16 t(s) S ( (A ) O 4 8 8 16 t(s) S ((B ) O 4 8 8 16 t(s) S ( (C ) O 4 8 8 16 t(s) S ((D ) 专题二:函数图像 1、(2013年潍坊市)用固定的速度向如图所示形状的杯子里注水,则能表示杯子里水面的高度和注水时间的关系的大致图象是( ). 2、(2013成都市)在平面直角坐标系中,下列函数的图像经过原点的是( ) A.y=-x+3 B.5y x = C.y=2x D.2 y 27x x =-+- 3、(2013?天津)如图,是一对变量满足的函数关系的图象,有下列3个不同的问题情境: ①小明骑车以400米/分的速度匀速骑了5分,在原地休息了4分,然后以500米/分的速度匀速骑回出发地,设时间为x 分,离出发地的距离为y 千米; ②有一个容积为6升的开口空桶,小亮以1.2升/分的速度匀速向这个空桶注水,注5分后停止,等4分后,再以2升/分的速度匀速倒空桶中的水,设时间为x 分,桶内的水量为y 升; ③矩形ABCD 中,AB=4,BC=3,动点P 从点A 出发,依次沿对角线AC 、 边CD 、边DA 运动至点A 停止,设点P 的运动路程为x ,当点P 与点A 不重合时,y=S △ABP ;当点P 与点A 重合时,y=0. 其中,符合图中所示函数关系的问题情境的个数为( ) A . 0 B . 1 C . 2 D . 3 4、(2013年临沂)如图,正方形ABCD 中,AB=8cm,对角线AC,BD 相交于 点O,点E,F 分别从B,C 两点同时出发,以1cm/s 的速度沿BC,CD 运动, 到点C,D 时停止运动,设运动时间为t(s),△OE 的面积为s(2 cm ),则 s(2cm )与t(s)的函数关系可用图像表示为( ) 5、(2013四川南充,9,3分) 如图1,点E 为矩形ABCD 边AD 上一点,点P ,点Q 同时从

中考数学中的最值问题解法(学生版)

中考数学几何最值问题解法 在平面几何的动态问题中,当某几何元素在给定条件变动时,求某几何量(如线段的长度、图 形的周 长或面积、角的度数以及它们的和与差)的最大值或最小值问题,称为最值问题。 解决平面几何最值问题的常用的方法有: (1)应用两点间线段最短的公理 求最值;( 2)应用垂线段最短的性质求最值; ( 3)应用轴对称的性质求最 值; 5)应用其它知识求最值。下面通过近年全国各地中考的实例探讨其解法。 应用两点间线段最短的公理(含应用三角形的三边关系)求最值 例 4. 在△ABC 中,AB =5,AC =3,AD 是 BC 边上的中线,则 AD 的取值范围是 练习题: 1. 如图,长方体的底面边长分别为 2cm 和 4cm ,高为 5cm . 若一只蚂蚁从 P 点开始经 过 4 个侧面爬行一圈到达 Q 点,则蚂蚁爬行的最短路径长为【 】 2. 如图,圆柱的底面周长为 6cm , AC 是底面圆的直径,高 BC=6cm ,点 P 是母线 BC 上一 2 点,且 PC= BC .一只蚂蚁从 A 点出发沿着圆柱体的表面爬行到点 P 的最短距离是 【 】 3 含应用三角形的三边关系) 4)应用二次函数求最值; 典型例题: 例 1. 如图,∠ MON=9°0 ,矩形 ABCD 的顶点 A 、 B 分别在边 OM , 运动时, A 随之在边 OM 上运动, 矩形 ABCD 的形状保持不变,其中 程中,点 D 到点 O 的最大距离为 B . 5 C . 145 5 5 D . 例 2. 在锐角三角形 ABC 中, BC=4 2 ,∠ ABC=45°, BD 平分∠ ABC , M 、 N 分别是 BC 上的动点,则 CM+MN 的最小值是 例 3. 如图, 圆柱底面半径为 2cm ,高为 9 cm ,点 上的点,且 A 、B 在同一母线上,用一棉线从 A 顺着圆柱侧面绕 3 圈到 B ,求棉线 最短为 cm 。 A.13cm B.12cm C.10cm D.8cm ON 上,当 B 在边 ON 上 AB=2,BC=1,运动 过 A 、 B 分别是圆柱两底面圆 周

相关文档
最新文档