正弦定理经典题型总结

正弦定理经典题型总结
正弦定理经典题型总结

(完整版)正弦定理练习题经典

正弦定理练习题 1.在△ABC 中,A =45°,B =60°,a =2,则b 等于( ) A.6 B. 2 C. 3 D .2 6 2.在△ABC 中,已知a =8,B =60°,C =75°,则b 等于( ) A .4 2 B .4 3 C .4 6 D.323 3.在△ABC 中,a ,b ,c 分别是角A ,B ,C 所对的边,若A =105°,B =45°,b =2,则c =( ) A .1 B.12 C .2 D.14 4.在△ABC 中,角A 、B 、C 的对边分别为a 、b 、c ,A =60°,a =43,b =42,则角B 为( ) A .45°或135° B .135° C .45° D .以上答案都不对 5.△ABC 的内角A 、B 、C 的对边分别为a 、b 、c .若c =2,b =6,B =120°,则a 等于( ) A. 6 B .2 C. 3 D. 2 6.在△ABC 中,a ∶b ∶c =1∶5∶6,则sin A ∶sin B ∶sin C 等于( ) A .1∶5∶6 B .6∶5∶1 C .6∶1∶5 D .不确定 7.在△ABC 中,若cos A cos B =b a ,则△ABC 是( ) A .等腰三角形 B .等边三角形 C .直角三角形 D .等腰三角形或直角三角形 8.在△ABC 中,角A 、B 、C 所对的边分别为a 、b 、c ,若a =1,c =3,C =π3 ,则A =________. 9.在△ABC 中,已知a =433 ,b =4,A =30°,则sin B =________. 10.在△ABC 中,已知∠A =30°,∠B =120°,b =12,则a +c =________. 11.在△ABC 中,b =43,C =30°,c =2,则此三角形有________组解. 12 . 判断满足下列条件的三角形个数 (1)b=39,c=54,? =120C 有________组解 (2)a=20,b=11,?=30B 有________组解 (3)b=26,c=15,?=30C 有________组解 (4)a=2,b=6,?=30A 有________组解 正弦定理 1.在△ABC 中,∠A =45°,∠B =60°,a =2,则b 等于( ) A.6 B. 2 C. 3 D .2 6 解析:选A.应用正弦定理得:a sin A =b sin B ,求得b =a sin B sin A = 6. 2.在△ABC 中,已知a =8,B =60°,C =75°,则b 等于( ) A .4 2 B .4 3 C .4 6 D.323 解析:选C.A =45°,由正弦定理得b =a sin B sin A =4 6. 3.在△ABC 中,a ,b ,c 分别是角A ,B ,C 所对的边,若A =105°,B =45°,b =2,则c =( )

二项式定理知识点总结

二项式定理 一、二项式定理: ()n n n k k n k n n n n n n b C b a C b a C a C b a +++++=+-- 110(*∈N n )等号右边的多项式叫做 ()n b a +的二项展开式,其中各项的系数k n C )3,2,1,0(n k ???=叫做二项式系数。 对二项式定理的理解: (1)二项展开式有1+n 项 (2)字母a 按降幂排列,从第一项开始,次数由n 逐项减1到0;字母b 按升幂排列,从第一项开始,次数由0逐项加1到n (3)二项式定理表示一个恒等式,对于任意的实数b a ,,等式都成立,通过对b a ,取不同的特殊值,可为某些问题的解决带来方便。在定理中假设x b a ==,1,则 ()n n n k n k n n n n n x C x C x C x C x +++++=+- 101(*∈N n ) (4)要注意二项式定理的双向功能:一方面可将二项式()n b a +展开,得到一个多项式; 另一方面,也可将展开式合并成二项式()n b a + 二、二项展开式的通项:k k n k n k b a C T -+=1 二项展开式的通项k k n k n k b a C T -+=1)3,2,1,0(n k ???=是二项展开式的第1+k 项,它体现了 二项展开式的项数、系数、次数的变化规律,是二项式定理的核心,它在求展开式的某些特定项(如含指定幂的项、常数项、中间项、有理项、系数最大的项等)及其系数等方面有广泛应用 对通项k k n k n k b a C T -+=1)3,2,1,0(n k ???=的理解: (1)字母b 的次数和组合数的上标相同 (2)a 与b 的次数之和为n (3)在通项公式中共含有1,,,,+k T k n b a 这5个元素,知道4个元素便可求第5个元素 例1.n n n n n n C C C C 13 21393-++++ 等于 ( ) A .n 4 B 。n 43? C 。134-n D.3 1 4-n 例2.(1)求7 (12)x +的展开式的第四项的系数; (2)求9 1()x x -的展开式中3 x 的系数及二项式系数

高中物理动能与动能定理常见题型及答题技巧及练习题(含答案)

高中物理动能与动能定理常见题型及答题技巧及练习题(含答案) 一、高中物理精讲专题测试动能与动能定理 1.如图所示,固定的粗糙弧形轨道下端B 点水平,上端A 与B 点的高度差为h 1=0.3 m ,倾斜传送带与水平方向的夹角为θ=37°,传送带的上端C 点到B 点的高度差为 h 2=0.1125m(传送带传动轮的大小可忽略不计).一质量为m =1 kg 的滑块(可看作质点)从轨道的A 点由静止滑下,然后从B 点抛出,恰好以平行于传送带的速度从C 点落到传送带上,传送带逆时针传动,速度大小为v =0.5 m/s ,滑块与传送带间的动摩擦因数为μ=0.8,且传送带足够长,滑块运动过程中空气阻力忽略不计,g =10 m/s 2,试求: (1).滑块运动至C 点时的速度v C 大小; (2).滑块由A 到B 运动过程中克服摩擦力做的功W f ; (3).滑块在传送带上运动时与传送带摩擦产生的热量Q . 【答案】(1)2.5 m/s (2)1 J (3)32 J 【解析】本题考查运动的合成与分解、动能定理及传送带上物体的运动规律等知识。 (1) 在C 点,竖直分速度: 22 1.5/y v gh m s == 0sin37y c v v =,解得: 2.5/c v m s = (2)C 点的水平分速度与B 点的速度相等,则372/B x C v v v cos m s ?=== 从A 到B 点的过程中,据动能定理得: 2 112 f B mgh W mv -=,解得: 1f W J = (3) 滑块在传送带上运动时,根据牛顿第二定律得: 3737mgcos mgsin ma μ??-= 解得: 20.4/a m s = 达到共同速度所需时间5c v v t s a -== 二者间的相对位移52 c v v x t vt m +?= -= 由于3737mgsin mgcos μ?

二项式定理知识点及典型题型总结

、基本知识点 n On 1n 1. 1 rnrr nn, 1、二项式疋理:(a b) Ca 6a b C.a b C n b (n N ) 2、几个基本概念 (1)二项展开式:右边的多项式叫做(a b)n的二项展开式 (2)项数:二项展开式中共有n 1项 (3)二项式系数:C n (r 0,1,2, ,n)叫做二项展开式中第r 1项的二项式系数 (4)通项:展开式的第r 1项,即T r 1 C;a n r b r (r 0,1, ,n) 3、展开式的特点 (1) 系数都是组合数,依次为c,,c:,c n,…,c n (2) 指数的特点①a的指数由厂0(降幕)。 ②b的指数由0 * n (升幕)。 ③a和b的指数和为n。 (3) 展开式是一个恒等式,a, b可取任意的复数,n为任意的自然数。 4、二项式系数的性质: (1)对称性: 在二项展开式中,与首末两端等距离的任意两项的二项式系数相等?即C m c:m (2)增减性与最值 二项式系数先增后减且在中间取得最大值 n 当n是偶数时,中间一项取得最大值c n2 n 1 n 1 当n是奇数时,中间两项相等且同时取得最大值=CF 二项式定理 c0 c1 c2 (3)二项式系数的和:Cn Cn Cn Cn C:奇数项的二项式系数的和等于偶数项的二项式系数和2n 即C0+Cn+L W + L =2n-1

二项式定理的常见题型 一、求二项展开式 1?“ (a b)n”型的展开式 例1?求(3 . x1 )4的展开式;a J x 2. “(a b)n”型的展开式 —1 例2?求)4的展开式; J V 3?二项式展开式的“逆用” 例3?计算 1 3C:9C2 27 C3 .... ( 1)勺匕:; 二、通项公式的应用 1.确定二项式中的有关元素 例4.已知(£.. X)9的展开式中x3的系数为9,常数a的值为_______________ x \ 2 4 2.确定二项展开式的常数项 例5. (-x 31 )10展开式中的常数项是_________________ 3' X

解三角形高考典型例题汇编

《解三角形》 一、 正弦定理:sin sin sin a b c A B C ===2R 推论:(1) ::sin :sin :sin a b c A B C = (2) a=2RsinA b=2RsinB c=2RsinC (3) sin =,sin =,sin = 222a b c A B C R R R 1. 在△中,若,则= 2. 在△中,a =b=6, A=300 ,则B= 3. 【2013山东文】在中,若满足,,,则 4.【2010山东高考填空15题】在△ABC 中a ,b=2,sinB+cosB ,则A=? 5.【2017全国文11】△ABC 中,sin sin (sin cos )0B A C C +-=,a =2,c ,则C =? 6. 在△ABC 中, C =90o , 角A ,B ,C 的对边分别是a ,b ,c.则 a b c +的取值范围是? 二、余弦定理:222222 2222cos 2cos 2cos a b c bc A b a c ac B c b a ba C ?=+-?=+-??=+-? 推论 222 222222 cos 2cos 2cos 2b c a A bc a c b B ac b a c C ab ?+-=?? +-?=???+-= ?? 1. 在△ABC 中,如果sin :sin :sin 2:3:4A B C =,求cos C 的值 2. 在△ABC 中,若则A= 3. 【2012上海高考】在中,若,则的形状是( ) A .锐角三角形 B .直角三角形 C .钝角三角形 D .不能确定 4.【2016山东文科】ABC △中角A ,B ,C 的对边分别是a ,b ,c ,,b c = 22 2(1sin )a b A =-, 则A =? (A )3π4 (B )π3 (C )π4 (D )π6

动能定理典型例题附答案

1、如图所示,质量m=0.5kg的小球从距地面高H=5m处自由下落,到达地面恰能沿凹陷于地面的半圆形槽壁运动,半圆槽半径R=0.4m.小球到达槽最低点时的速率为10m/s,并继续滑槽壁运动直至槽左端边缘飞出,竖直上升,落下后恰好又沿槽壁运动直至从槽右端边缘飞出,竖直上升、落下,如此反复几次.设摩擦力大小恒定不变:(1)求小球第一次离槽上升的高度h.(2)小球最多能飞出槽外几次 (g取10m/s2) 2、如图所示,斜面倾角为θ,滑块质量为m,滑块与斜 面的动摩擦因数为μ,从距挡板为s0的位置以v0的速度 沿斜面向上滑行.设重力沿斜面的分力大于滑动摩擦 力,且每次与P碰撞前后的速度大小保持不变,斜面足 够长.求滑块从开始运动到最后停止滑行的总路程s. 3、有一个竖直放置的圆形轨道,半径为R,由左右两部分组成。如图所示,右半部分AEB是光滑的,左半部分BFA 是粗糙的.现在最低点A给一个质量为m的小球一个水平向右的初速度,使小球沿轨道恰好运动到最高点B,小球在B 点又能沿BFA轨道回到点A,到达A点时对轨道的压力为4mg 1、求小球在A点的速度v0 2、求小球由BFA回到A点克服阻力做的功 4、如图所示,质量为m的小球用长为L的轻质细线悬于O点,与O 点处于同一水平线上的P点处有一根光滑的细钉,已知OP = L/2,在A点给小球一个水平向左的初速度v ,发现小球恰能到达跟P点在同一竖直线上的最高点B.则:(1)小球到达B点时的速率(2)若不计空气阻力,则初速度v0为多少 (3)若初速度v0=3gL,则在小球从A到B的过程中克服空气阻力做了多少功v0 E F R

5、如图所示,倾角θ=37°的斜面底端B 平滑连接着半径r =0.40m 的竖直光滑圆轨道。质量m =0.50kg 的小物块,从距地面h =2.7m 处沿斜面由静止开始下滑,小物块与斜面间的动摩擦因数μ=,求:(sin37°=,cos37°=,g =10m/s 2 ) (1)物块滑到斜面底端B 时的速度大小。 (2)物块运动到圆轨道的最高点A 时,对圆轨道的压力大小。 6、质量为m 的小球被系在轻绳一端,在竖直平面内做半径为R 的圆周运动,运动过程中小球受到空气阻力的作用.设某一时刻小球通过轨道的最低点,此时绳子的张力为7mg,此后小球继续做圆周运动,经过半个圆周恰能通过最高点,则在此过程中小球克服空气阻力所做的功为( ) 7\如图所示,AB 与CD 为两个对称斜面,其上部都足够长,下部 分分别与一个光滑的圆弧面的两端相切,圆弧圆心角为1200, 半径R=2.0m,一个物体在离弧底E 高度为h=3.0m 处,以初速 度V 0=4m/s 沿斜面运动,若物体与两斜面的动摩擦因数均为μ =,则物体在两斜面上(不包括圆弧部分)一共能走多少路程(g=10m/s 2 ). 8、如图所示,在光滑四分之一圆弧轨道的顶端a 点,质量为m 的物块(可视为质点)由静止开始下滑,经圆弧最低点b 滑上粗糙水平面,圆弧轨道在b 点与水平轨道平滑相接,物块最终滑至c 点停止.若圆弧轨道半径为R ,物块与水平面间的动摩擦因数为μ, 则:1、物块滑到b 点时的速度为 2、物块滑到b 点时对b 点的压力是 3、c 点与b 点的距离为 θ A B O h A B C D O R E h

《正弦定理和余弦定理》典型例题.

《正弦定理和余弦定理》典型例题透析 类型一:正弦定理的应用: 例1.已知在ABC ?中,10c =,45A = ,30C = ,解三角形. 思路点拨:先将已知条件表示在示意图形上(如图),可以确定先用正弦定理求出边a ,然后用三角形内角和求出角B ,最后用正弦定理求出边b . 解析:sin sin a c A C = , ∴sin 10sin 45sin sin 30c A a C ?=== ∴ 180()105B A C =-+= , 又sin sin b c B C =, ∴sin 10sin10520sin 7520sin sin 304 c B b C ?====?= 总结升华: 1. 正弦定理可以用于解决已知两角和一边求另两边和一角的问题; 2. 数形结合将已知条件表示在示意图形上,可以清楚地看出已知与求之间的关系,从而恰当地选择解答方式. 举一反三: 【变式1】在?ABC 中,已知032.0=A ,081.8=B ,42.9a cm =,解三角形。 【答案】根据三角形内角和定理,0180()=-+C A B 000180(32.081.8)=-+066.2=; 根据正弦定理,0 sin 42.9sin81.880.1()sin sin32.0==≈a B b cm A ; 根据正弦定理,0 sin 42.9sin66.274.1().sin sin32.0==≈a C c cm A 【变式2】在?ABC 中,已知075B =,0 60C =,5c =,求a 、A . 【答案】00000180()180(7560)45A B C =-+=-+=, 根据正弦定理5sin 45sin 60o o a =,∴a =【变式3】在?ABC 中,已知sin :sin :sin 1:2:3A B C =,求::a b c 【答案】根据正弦定理sin sin sin a b c A B C ==,得::sin :sin :sin 1:2:3a b c A B C ==. 例2.在60,1ABC b B c ?=== 中,,求:a 和A ,C . 思路点拨: 先将已知条件表示在示意图形上(如图),可以确定先用正弦定理求出角C ,然后用三角形内角和求出角A ,最后用正弦定理求出边a .

二项式定理知识点及题型归纳总结

二项式定理知识点及题型归纳总结 知识点精讲 一、二项式定理 ()n n n r r n r n n n n n n b a C b a C b a C b a C b a 01100+?++?++=+--( )* N n ∈. 展开式具有以下特点: (1)项数:共1+n 项. (2)二项式系数:依次为组合数n n n n n C C C C ,?,,,2 1 . (3)每一项的次数是一样的,都为n 次,展开式依a 的降幂、b 的升幂排列展开.特别地, ()n n n n n n x C x C x C x +?+++=+22111. 二、二项式展开式的通项(第1+r 项) 二项式展开的通项为r r n r n r b a C T -+=1().,,3,2,1,0n r ?=.其中r n C 的二项式系数.令变量(常用x )取1, 可得1+r T 的系数. 注 通项公式主要用于求二项式展开式的指数、满足条件的项数或系数、展开式的某一项或系数.在应用通项公式时要注意以下几点: ①分清r r n r n b a C -是第1+r 项,而不是第r 项; ②在通项公式r r n r n r b a C T -+=1中,含n r b a C T r n r ,,,,,1+这6个参数,只有n r b a ,,,是独立的,在未知n r ,的 情况下利用通项公式解题,一般都需要先将通项公式转化为方程组求n 和r . 三、二项式展开式中的系数 (1)二项式系数与项的系数 二项式系数仅指n n n n n C C C C ,?,,,2 1 而言,不包括字母b a ,所表示的式子中的系数.例如: ()n x +2的展开式中,含有r x 的项应该是n r n r n r x C T -+=21,其中r n C 叫做该项的二项式系数,而r x 的系数应该是 r n r n C -2(即含r x 项的系数). (2)二项式系数的性质 ①在二项式展开式中,与首末两端“等距离”的两项的二项式系数相等,即 22110,,--===n n n n n n n n n C C C C C C ,…,r n n r n C C -=. ②二项展开式中间项的二项式系数最大. 如果二项式的幂指数n 是偶数,中间项是第12+n 项,其二项式系数n n C 2 最大;如果二项式的幂指数n 是奇数,中间项有两项,即为第21+n 项和第 12 1 ++n 项,它们的二项式系数21-n n C 和21 +n n C 相等并且最大. (3)二项式系数和与系数和 ①二项式系数和 011+12n n n n n n C C C ++?+==() .

高一物理动能定理经典题型总结材料(全)

高一物理动能定理经典题型总结材料(全) -CAL-FENGHAI-(2020YEAR-YICAI)_JINGBIAN

1、动能定理应用的基本步骤 应用动能定理涉及一个过程,两个状态.所谓一个过程是指做功过程,应明确该过程各外力所做的总功;两个状态是指初末两个状态的动能. 动能定理应用的基本步骤是: ①选取研究对象,明确并分析运动过程. ②分析受力及各力做功的情况,受哪些力每个力是否做功在哪段位移过程中做功正功负功做多少功求出代数和. ③明确过程始末状态的动能E k1及E K2 ④列方程 W=E K2一E k1,必要时注意分析题目的潜在条件,补充方程进行求解. 2、应用动能定理的优越性 (1)由于动能定理反映的是物体两个状态的动能变化与其合力所做功的量值关系,所以对由初始状态到终止状态这一过程中物体运动性质、运动轨迹、做功的力是恒力还是变力等诸多问题不必加以追究,就是说应用动能定理不受这些问题的限制. (2)一般来说,用牛顿第二定律和运动学知识求解的问题,用动能定理也可以求解,而且往往用动能定理求解简捷.可是,有些用动能定理能够求解的问题,应用牛顿第二定律和运动学知识却无法求解.可以说,熟练地应用动能定理求解问题,是一种高层次的思维和方法,应该增强用动能定理解题的主动意识. (3)用动能定理可求变力所做的功.在某些问题中,由于力F 的大小、方向的变化,不能直接用W=Fscos α求出变力做功的值,但可由动能定理求解. 一、整过程运用动能定理 (一)水平面问题 1、一物体质量为2kg ,以4m/s 的速度在光滑水平面上向左滑行。从某时刻起作用一向右的水平力,经过一段时间后,滑块的速度方向变为水平向右,大小为4m/s ,在这段时间内,水平力做功为( ) A. 0 B. 8J C. 16J D. 32J 2、 一个物体静止在不光滑的水平面上,已知m=1kg ,u=0.1,现用水平外力F=2N ,拉其运动5m 后立即撤去水平外力F ,求其还能滑 m (g 取2 /10s m ) 3、总质量为M 的列车,沿水平直线轨道匀速前进,其末节车厢质量为m ,中途脱节,司机发觉时,机车已行驶L 的距离,于是立即 V 0

正弦定理、余弦定理综合应用典型例题

正弦定理、余弦定理综合应用 例1.设锐角三角形ABC 的内角A B C ,,的对边分别为a b c ,,,2sin a b A =. (Ⅰ)求B 的大小;(Ⅱ)求cos sin A C +的取值范围. 解:(Ⅰ)由2sin a b A =,根据正弦定理得sin 2sin sin A B A =,所以1 sin 2 B = , 由ABC △为锐角三角形得π6B = . (Ⅱ)cos sin cos sin A C A A π?? +=+π-- ?6?? cos sin 6A A π??=++ ???1cos cos 2A A A =++ 3A π? ?=+ ???. 由ABC △为锐角三角形知,22A B ππ->-,2263B ππππ-=-=. 2336 A πππ <+<, 所以1sin 23A π??+< ???. 3A π??<+< ?? ? 所以,cos sin A C +的取值范围为322?? ? ?? ?,. 例2.已知ABC △1,且sin sin A B C +=. (I )求边AB 的长; (II )若ABC △的面积为1 sin 6 C ,求角C 的度数. 解:(I )由题意及正弦定理,得1AB BC AC ++=, BC AC +=, 两式相减,得1AB =. (II )由ABC △的面积11sin sin 26BC AC C C =g g ,得1 3 BC AC =g , 由余弦定理,得222cos 2AC BC AB C AC BC +-=g 22()21 22 AC BC AC BC AB AC BC +--= =g g , 所以60C =o . 例3.已知a ,b ,c 为△ABC 的三个内角A ,B ,C 的对边,向量m =(1,3-),n =(cos A ,sin A ).若m ⊥n , 且a cos B +b cos A =c sin C ,则角B = 6 π . 例4.设ABC ?的内角A ,B ,C 的对边分别为a ,b ,c ,且A =60o ,c =3b.求a c 的值; 解:由余弦定理得2222cos a b c b A =+-=2221117 ()2,3329 c c c c c +-=g g g 故3a c = 例5.在△ABC 中,三个角,,A B C 的对边边长分别为3,4,6a b c ===, 则cos cos cos bc A ca B ab C ++的值为 . 61 2 例6.在△ABC 中,角A 、B 、C 所对的边分别为a 、b 、c ,若() C a A c b cos cos 3=-, 则=A cos _________________. 3 例7.(2009年广东卷文)已知ABC ?中,C B A ∠∠∠,,的对边分别为,,a b c 若a c ==且 75A ∠=o ,则b = 【解析】0000000 sin sin 75sin(3045)sin 30cos 45sin 45cos30A ==+=+=

正弦定理典型例题与知识点

正弦定理 教学重点:正弦定理 教学难点:正弦定理的正确理解和熟练运用,边角转化。多解问题 1.正弦定理:在任一个三角形中,各边和它所对角的正弦比相等, 即 A a s i n = B b sin =C c sin 2. 三角形面积公式 在任意斜△ABC 当中S △ABC =A bc B ac C ab sin 2 1sin 2 1sin 2 1== 3.正弦定理的推论: A a sin = B b sin =C c sin =2R (R 为△ABC 外接圆半径) 4.正弦定理解三角形 1)已知两角和任意一边,求其它两边和一角; 2)已知两边和其中一边对角,求另一边的对角,进而可求其它的边和角。 3)已知a, b 和A, 用正弦定理求B 时的各种情况:(多解情况) ○ 1若A 为锐角时: ??? ?? ? ?≥<<=<)( b a ) ,( b a bsinA )( bsinA a sin 锐角一解一钝一锐二解直角一解无解A b a 已知边a,b 和∠A 有两个解 仅有一个解无解 CH=bsinA≤) ( b a 锐角一解无解 b a 1、已知中,,,则角等于 ( D) A . B . C . D .

2、ΔABC的内角A、B、C所对的边分别为a、b、c,若sin A=,b=sin B,则a等于 ( D ) A.3B.C. D.

1. 在ABC ?中,若sin 2sin 2A B =,则ABC ?一定是( ) 3.在Rt △ABC 中,C= 2 π ,则B A sin sin 的最大值是_______________. [解析] ∵在Rt △ABC 中,C= 2 π ,∴sin sin sin sin( )2 A B A A π =-sin cos A A = 1sin 22A = ,∵0,2A π<<∴02,A π<<∴4A π=时,B A sin sin 取得最大值12 。 4. 若ABC ?中,10 10 3B cos ,21A tan == ,则角C 的大小是__________ 解析 11 tan ,cos ,sin tan 23A B O B B B π==<<∴=∴= tan tan 3tan tan()tan()1,tan tan 14 A B C A B A B O C C A B π ππ+∴=--=-+= =-<<∴=- 7.在△ABC 中,已知2a b c =+,2 sin sin sin A B C =,试判断△ABC 的形状。 解:由正弦定理 2sin sin sin a b c R A B C ===得:sin 2a A R =,sin 2b B R =, sin 2c C R = 。 所以由2sin sin sin A B C =可得:2()222a b c R R R =?,即:2 a bc =。 又已知2a b c =+,所以224()a b c =+,所以24()bc b c =+,即2()0b c -=, 因而b c =。故由2a b c =+得:22a b b b =+=,a b =。所以a b c ==,△ABC 为等边三角形。 6.在ABC ?中, b A a B sin sin <是B A >成立的 ( C ) A.必要不充分条件 B.充分不必要条件 C.充要条件 D.既不充分也不必要条件 1.△ABC 的内角A 、B 、C 的对边分别为a 、b 、c ,若c =2,b =6,B =120°,则 a 等于 ( ) A.6 B.2 C.3 D.2 答案 D 3.下列判断中正确的是 ( )

二项式定理知识点及典型题型总结

二项式定理 一、基本知识点 1、二项式定理:)()(1110*--∈+++++=+N n b C b a C b a C a C b a n n n r r n r n n n n n n ΛΛ 2、几个基本概念 (1)二项展开式:右边的多项式叫做n b a )(+的二项展开式 (2)项数:二项展开式中共有1+n 项 (3)二项式系数:),,2,1,0(n r C r n Λ=叫做二项展开式中第1+r 项的二项式系数 (4)通项:展开式的第1+r 项,即),,1,0(1n r b a C T r r n r n r Λ==-+ 3、展开式的特点 (1)系数 都是组合数,依次为C 1n ,C 2n ,C n n ,…,C n n (2)指数的特点①a 的指数 由n 0( 降幂)。 ②b 的指数由0 n (升幂)。 ③a 和b 的指数和为n 。 (3)展开式是一个恒等式,a ,b 可取任意的复数,n 为任意的自然数。 4、二项式系数的性质: (1)对称性: 在二项展开式中,与首末两端等距离的任意两项的二项式系数相等.即 (2)增减性与最值 二项式系数先增后减且在中间取得最大值 当n 是偶数时,中间一项取得最大值2n n C 当n 是奇数时,中间两项相等且同时取得最大值21-n n C =21+n n C (3)二项式系数的和: 奇数项的二项式系数的和等于偶数项的二项式系数和.即 m n n m n C C -=n n n k n n n n C C C C C 2 210=+???++???+++∴L L 0213n-1 n n n n C +C +=C +C +=2

二项式定理的常见题型 一、求二项展开式 1.“n b a )(+”型的展开式 例1.求4)13(x x +的展开式;a 2. “n b a )(-”型的展开式 例2.求4)13(x x -的展开式; 3.二项式展开式的“逆用” 例3.计算c C C C n n n n n n n 3)1( (279313) 2 1 -++-+-; 二、通项公式的应用 1.确定二项式中的有关元素 例4.已知9)2(x x a -的展开式中3x 的系数为4 9 ,常数a 的值为 2.确定二项展开式的常数项

正弦定理知识点与典型例题

正弦定理 【基础知识点】 1. 三角形常用公式:A +B +C =π;S =21ab sin C =21bc sin A ==2 1ca sin B ; sin(A+B)=sinC, cos(A+B)=-cosC, sin(A+B)/2=cosC/2, cos(A+B)/2=sinC/2 2.三角形中的边角不等关系: A>B ?a>b,a+b>c,a-bb 时有一解. 也可利用正弦定理a A b B sin sin =进行讨论. 如果sinB>1,则问题无解;如果sinB =1,则问题有一解; 如果求出sinB<1,则可得B 的两个值,但要通过“三角形内角和定理”或“大边对大角”

动能定理典型例题

动能定理典型例题

————————————————————————————————作者: ————————————————————————————————日期: ?

动能定理典型例题 【例题】 1、一架喷气式飞机,质量m=5.0×103kg,起飞过程中从静止开始滑跑的路程为s=5.3×102m,达到起飞速度v=60m/s,在此过程中飞机受到的平均阻力是飞机重量的0.02倍(k=0.02)。求飞机受到的牵引力。 2、在动摩擦因数为μ的粗糙水平面上,有一个物体的质量为m,初速度为V1,在与 运动方向相同的恒力F的作用下发生一段位移S,如图所示,试求物体的末速度V2。 拓展:若施加的力F变成斜向右下方且与水平方向成θ角,求物体的末速度V2 V滑上动摩擦因数为μ的粗糙水平面上,最后3、一个质量为m的物体以初速度 静止在水平面上,求物体在水平面上滑动的位移。

4、一质量为m的物体从距地面高h的光滑斜面上滑下,试求物体滑到斜面底端 的速度。 拓展1:若斜面变为光滑曲面,其它条件不变,则物体滑到斜面底端的速度是多少? 拓展2:若曲面是粗糙的,物体到达底端时的速度恰好为零,求这一过程中摩擦力做的功。 类型题 题型一:应用动能定理求解变力做功 1、一质量为m的小球,用长为L的轻绳悬挂于O点,小球在水平力F作用下,从平衡位置缓慢地移Q点如图所示,则此过程中力F所做的功为() A.mgLcos0 B.FLsinθ C.FLθ?D.(1cos). - mgLθ

2、如图所示,质量为m的物体静放在光滑的平台上,系在物体上的绳子跨过光 V向右匀速运动的人拉着,设人从地面上由平台的滑的定滑轮由地面上以速度 边缘向右行至绳与水平方向成30角处,在此过程中人所做的功为多少? 3、一个质量为m的小球拴在钢绳的一端,另一端用大小为F1的拉力作用,在水平面上做半径为R1的匀速圆周运动(如图所示),今将力的大小改为F2,使小球仍在水平面上做匀速圆周运动,但半径变为R2,小球运动的半径由R1变为R2过程中拉力对小球做的功多大? 4、如图所示,AB为1/4圆弧轨道,半径为R=0.8m,BC是水平轨道,长S =3m,BC处的摩擦系数为μ=1/15,今有质量m=1kg的物体,自A点从静止起下滑到C点刚好停止。求物体在轨道AB段所受的阻力对物体做的功。

动能及动能定理典型例题剖析

动能和动能定理、重力势能·典型例题剖析例1一个物体从斜面上高h处由静止滑下并紧接着在水平面上滑行一段距离后停止,量得停止处对开始运动处的水平距离为S,如图8-27,不考虑物体滑至斜面底端的碰撞作用,并设斜面与水平面对物体的摩擦因数相同.求摩擦因数μ. [思路点拨]以物体为研究对象,它从静止开始运动,最后又静止在平面上,考查全过程中物体的动能没有变化,即ΔEK=0,因此可以根据全过程中各力的合功与物体动能的变化上找出联系. [解题过程]设该面倾角为α,斜坡长为l,则物体沿斜面下滑时, 物体在平面上滑行时仅有摩擦力做功,设平面上滑行距离为S2,则 对物体在全过程中应用动能定理:ΣW=ΔEk. mgl·sinα-μmgl·cosα-μmgS2=0 得h-μS1-μS2=0. 式中S1为斜面底端与物体初位置间的水平距离.故 [小结]本题中物体的滑行明显地可分为斜面与平面两个阶段,而且运动性质也显然分别为匀加速运动和匀减速运动.依据各阶段中动力学和运动学关系也可求解本题.比较上述两种研究问题的方法,不难显现动能定理解题的优越性.用动能定理解题,只需抓住始、末两状态动能变化,不必追究从始至末的过程中运动的细节,因此不仅适用于中间过程为匀变速的,同样适用于中间过程是变加速的.不仅适用于恒力作用下的问题,同样适用于变力作用的问题. 例2 质量为500t的机车以恒定的功率由静止出发,经5min行驶2.25km,速度达到最大值54km/h,设阻力恒定且取g=10m/s2.求:(1)机车的功率P=?(2)机车的速度为36km/h时机车的加速度a=? [思路点拨]因为机车的功率恒定,由公式P=Fv可知随着速度的增加,机车的牵引力必定逐渐减小,机车做变加速运动,虽然牵引力是变力,但由W=P·t可求出牵引力做功,由动能定理结合P=f·vm,可

解三角形(正弦定理余弦定理)知识点例题解析高考题汇总及答案

解三角形 【考纲说明】 1、掌握正弦定理、余弦定理,并能解决一些简单的三角形度量问题。 2、能够运用正弦定理、余弦定理等知识和方法解决一些与测量和几何计算有关的实际问题 【知识梳理】 一、正弦定理 1、正弦定理:在△ABC 中,R C c B b A a 2sin sin sin ===(R 为△AB C 外接圆半径)。 2、变形公式:(1)化边为角:2sin ,2sin ,2sin ;a R A b R B c R C === (2)化角为边:sin ,sin ,sin ;222a b c A B C R R R === (3)::sin :sin :sin a b c A B C = (4)2sin sin sin sin sin sin a b c a b c R A B C A B C ++====++. 3、三角形面积公式:21111sin sin sin 2sin sin sin 22224ABC abc S ah ab C ac B bc A R A B C R ?====== 4、正弦定理可解决两类问题: (1)两角和任意一边,求其它两边和一角;(解唯一) (2)两边和其中一边对角,求另一边的对角,进而可求其它的边和角.(解可能不唯一) 二、余弦定理 1、余弦定理:A bc c b a cos 22 2 2 -+=?bc a c b A 2cos 2 2 2 -+= B ac a c b cos 22 2 2 -+=?ca b a c B 2cos 2 2 2 -+= C ab b a c cos 22 2 2 -+=?ab c b a C 2cos 2 2 2 -+= 2、余弦定理可以解决的问题: (1)已知三边,求三个角;(解唯一) (2)已知两边和它们的夹角,求第三边和其他两个角;(解唯一): (3)两边和其中一边对角,求另一边,进而可求其它的边和角.(解可能不唯一) 三、正、余弦定理的应用 1、仰角和俯角 在视线和水平线所成的角中,视线在水平线上方的角叫仰角,在水平线下方的角叫俯角(如图1).

2020年高考理科数学 《二项式定理》题型归纳与训练及参考答案

2020年高考理科数学 《二项式定理》题型归纳与训练 【题型归纳】 题型一 二项式定理展开的特殊项 例 在二项式5 21??? ??-x x 的展开式中,含4x 的项的系数是( ) A .10- B .10 C .5- D .5 【答案】B 【解析】对于()()r r r r r r r x C x x C T 3105525111--+-=??? ??-=,对于2,4310=∴=-r r ,则4x 的项的系数是()101225=-C 【易错点】公式记错,计算错误。 【思维点拨】本题主要考查二项式定理的展开公式,知道什么是系数,会求每一项的系数. 题型二 求参数的值 例 若二项式n x x ??? ? ?+21的展开式中,第4项与第7项的二项式系数相等,则展开式6x 的系数为________.(用数字作答) 【答案】9 【解析】根据已知条件可得: 96363=+=?=n C C n n , 所以n x x ??? ? ?+21的展开式的通项为23999912121C r r r r r x C x x T --+??? ??=??? ??=,令26239=?=-r r ,所以所求系数为921292=??? ??C . 【易错点】分数指数幂的计算 【思维点拨】本题主要考查二项式定理的展开公式,并用其公式求参数的值. 题型三 展开项的系数和 例 已知()()()()10 102210101...111x a x a x a a x -++-+-+=+,则8a 等于( ) A .180- B .180 C .45 D .45- 【答案】B

【解析】由于()()[]1010121x x --=+,又()[]10 12x --的展开式的通项公式为: ()[]()()r r r r r r r r x C x C T -???-=--??=--+12112101010101,在展开式中8a 是()81x -的系数,所以应取8=r , ∴()1802128108 8=??-=C a . 【易错点】对二项式的整体理解 【思维点拨】本题主要对二项式定理展开式的综合考查,学会构建模型 题型四 二项式定理中的赋值 二项式()932y x -的展开式中,求: (1)二项式系数之和; (2)各项系数之和; (3)所有奇数项系数之和. 【答案】(1)9 2 (2)-1 (3)2 159- 【解析】设()9927281909...32y a y x a y x a x a y x ++++=+ (1)二项式系数之和为9992919 092...=++++C C C C . (2)各项系数之和为()132 (9) 9210-=-=++++a a a a (3)由(2)知1...9210-=++++a a a a ,令1,1-==y x ,得992105...=++++a a a a ,将两式相加,得2 15986420-=++++a a a a a ,即为所有奇数项系数之和. 【思维点拨】本题主要学会赋值法求二项式系数和、系数和,难点在于赋值 【巩固训练】 题型一 二项式定理展开的特殊项 1.在 ()10 2-x 的展开式中,6x 的系数为( ) A .41016C B .41032C C .6108C - D .61016C - 【答案】A

正弦定理经典练习题

《正弦定理、余弦定理、解斜三角形》 一、复习要求 : 1. 掌握正弦、余弦定理,能运用知识解斜三角形。 2. 用正弦、余弦定理判断三角形的形状。 二、知识点回顾 (1) 正弦定理:,22sin sin sin ? ====S abc R C c B b A a (2R 为三角形外接圆直径), (?S 为三角形面积),其他形式: a :b :c = sinA :sinB :sinC a=2RsinA, b=2RsinB , c=2RsinC (2) 余弦定理:a 2=b 2+c 2-2bccosA,(可按a,b,c,a 轮换得另二式) 余弦定理变式:bc a c b A 2cos 2 22-+= , (轮换得另二式) 余弦定理向量式:如图 a=b+ c , c= a – b c 2=|c|2=|a-b |2=(a-b)2=a 2+b 2 - 2﹒a ﹒b =a 2+b 2 - 2abcosC (其中|a|=a,|b|=b,|c|=c) 三、典型例题分析: 例1:在三角形ABC 中,若C=3B ,求b c 的范围 分析:角边比转化,可用正弦定理 解:1cos 4cos 22cos sin ) 2sin(sin 3sin sin sin 2-=+=+===B B B B B B B B B C b c A+B+C=1800 ,C=3B , ∴4B<1800,00<B<450, 1cos 22 <C ,且b 2+c 2 =a 2+bc, 求A ,B ,C 。 解:21 22cosA 2 22==-+=bc bc bc a c b , ∴ A=600 又 4sinBsinC=1 ∴4sinBsin(1200-B)=11 sin 22sin 31)sin 21 cos 23 (sin 42=+?=+?B B B B B B con B 22sin 3=? ∴33 2t a n =B ∴2B=300 或2100 B>C , ∴2B=2100 即 B=1050 ∴A=600 B=1050 C=150 练习2:在?ABC 中,2B=A+C 且tanAtanC=2+3 求(1)A 、B 、C 的大小 (2) 若AB 边上的高CD=43,求三边a 、b 、c 例3:如图,已知P为?ABC 内一点,且满足∠PAB =∠PBC= ∠PCA=θ 求证cot θ=cotA+cotB+cotC C A B a c b θ A B C P θ θ

相关文档
最新文档