实验三二叉树的基本操作

实验三二叉树的基本操作
实验三二叉树的基本操作

实验三二叉树的基本运算

一、实验目的

1、使学生熟练掌握二叉树的逻辑结构和存储结构。

2、熟练掌握二叉树的各种遍历算法。

二、实验内容

题目一:二叉树的基本操作实现(必做题)

[问题描述]

建立一棵二叉树,试编程实现二叉树的如下基本操作:

1. 按先序序列构造一棵二叉链表表示的二叉树T;

2. 对这棵二叉树进行遍历:先序、中序、后序以及层次遍历,分别输出结点的遍历序列;

3. 求二叉树的深度/结点数目/叶结点数目;(选做)

4. 将二叉树每个结点的左右子树交换位置。(选做)

[基本要求]

从键盘接受输入(先序),以二叉链表作为存储结构,建立二叉树(以先序来建立),

[测试数据]

如输入:ABCффDEфGффFффф(其中ф表示空格字符)

则输出结果为

先序:ABCDEGF

中序:CBEGDFA

后序:CGEFDBA

层序:ABCDEFG

[选作内容]

采用非递归算法实现二叉树遍历。

三、算法设计

1、主要思想:根据二叉树的图形结构创建出二叉树的数据结构,然后

用指针对树进行操作,重点掌握二叉树的结构和性质。

2、本程序包含四个模块:

(1)结构体定义

(2)创建二叉树

(3)对树的几个操作

(4)主函数

四、调试分析

这是一个比较简单程序,调试过程中并没有出现什么问题,思路比较清晰

五、实验结果

六、总结

此次上机实验对二叉树进行了以一次实际操作,让我对二叉树有了更深的了解,对二叉树的特性有了更熟悉的认知,让我知

道了二叉树的重要性和便利性,这对以后的编程有更好的帮助。

七、源程序

#include

#include

using namespace std;

#define TElemType char

#define Status int

#define OK 1

#define ERROR 0

typedef struct BiTNode{

TElemType data;

struct BiTNode * lchild, *rchild;

}BiTNode,* BiTree;

Status CreateBiTree(BiTree &T)

{

TElemType ch;

cin >> ch;

if (ch == '#')

T = NULL;

else

{

if (!(T = (BiTNode *)malloc(sizeof(BiTNode))))

exit(OVERFLOW);

T->data = ch;

CreateBiTree(T->lchild);

CreateBiTree(T->rchild);

}

return OK;

}

Status PreOrderTraverse(BiTree T)

{

if (T)

{

cout << T->data;

if (PreOrderTraverse(T->lchild))

if (PreOrderTraverse(T->rchild))

return OK;

return ERROR;

}

else

return OK;

}

Status InOrderTraverse(BiTree T)

{

if (T)

{

InOrderTraverse(T->lchild);

cout << T->data;

InOrderTraverse(T->rchild);

}

return OK;

}

Status PostOrderTraverse(BiTree T) {

if (T)

{

PostOrderTraverse(T->lchild);

PostOrderTraverse(T->rchild);

cout << T->data;

}

return OK;

}

Status leOrderTraverse(BiTree T)

{

std::queue Q;

if (T == NULL)return ERROR;

else{

Q.push(T);

while (!Q.empty())

{

T = Q.front();

Q.pop();

cout << T->data;

if (T->lchild != NULL)

Q.push(T->lchild);

if (T->rchild != NULL)

Q.push(T->rchild);

}

}

return OK;

}

Status change(BiTree T)

{

BiTree temp = NULL;

if (T->lchild == NULL && T->rchild == NULL) return OK;

else{

temp = T->lchild;

T->lchild = T->rchild;

T->rchild = temp;

}

if (T->lchild)

change(T->lchild);

if (T->rchild)

change(T->rchild);

return OK;

}

int FindTreeDeep(BiTree T){

int deep = 0;

if (T){

int lchilddeep = FindTreeDeep(T->lchild);

int rchilddeep = FindTreeDeep(T->rchild);

deep = lchilddeep >= rchilddeep ? lchilddeep + 1 : rchilddeep + 1;

}

return deep;

}

int main()

{

BiTree T;

CreateBiTree(T);

cout << "先序遍历顺序为:";

PreOrderTraverse(T);

cout << endl;

cout << "中序遍历顺序为:";

InOrderTraverse(T);

cout << endl;

cout << "后序遍历顺序为:";

PostOrderTraverse(T);

cout << endl;

cout << "层序遍历顺序为:";

leOrderTraverse(T);

cout << endl;

cout << "二叉树深度为:" << FindTreeDeep(T)<

cout << "左右子树交换后:";

change(T);

cout << "先序遍历顺序为:";

PreOrderTraverse(T);

cout << endl;

return 0;

}

二叉树遍历方法技巧

二叉树遍历方法 1.中序遍历的投影法 如果给定一棵二叉树的图形形态,是否能根据此图快速地得出其中序遍历的序列?回答是肯定的。具体做法是:首先按照二叉树的标准绘制二叉树形态,即将所有左子树都严格绘于根结点的左边;将所有右子树都严格绘于根结点的右边。然后假设现在有一个光源从该二叉树的顶部投射下来,那么所有结点在地平线上一定会有相应的投影,从左至右顺序读出投影结点的数据即为该二叉树的中序遍历序列。如图11.10所示。 图示的中序遍历序列: D J G B H E A F I C 2.先序遍历的填空法 如果给定一棵二叉树的图形形态,可在图形基础上,采用填空法迅速写出该二叉树的先序遍历序列。具体做法是:我们知道,对于每个结点都由三个要素组成,即根结点,左子树、右子树;又已知先序遍历顺序是先访问根结点、然后访问左子树、访问右子树。那么,我们按层分别展开,逐层填空即可得到该二叉树的先序遍历序列。 图11.10 中序遍历投影法示意图 如图11.10 中的二叉树采用填空法的步骤如下: (1)根结点左子树右子树 A( )( ) (2)A (根结点(左子树)(右子树))(根结点(左子树)(右子树)) A B C (3)A(B(根结点(左)(右))(根结点(左)(右)))(C(……)(……)) A B D 无 G E H 无 C F 无 (4)A B D G J E H C F I 此即为该二叉树的先序遍历序列。 注:后序遍历的序列亦可以此方法类推,请读者自己尝试。

3.利用遍历序列构造二叉树 如果已知一棵二叉树的先序遍历序列和中序遍历序列,则可以用这两个遍历序列构造一棵唯一的二叉树形态。我们知道任意一棵二叉树的先序遍历序列和中序遍历序列是唯一的,那么首先从给定的先序遍历序列入手,该先序序列的第一个元素一定是该二叉树的根;再分析这个根结点在中序遍历序列中的位置,中序遍历序列中根结点的左边即为左子树的全部元素,而根结点的右边即为右子树的全部元素;然后据此再将先序遍历序列除根结点以外的其余部分分为左、右子树两部分,并在这两部分中分别找出左、右子树的根结点。依此类推,即可得到完整的二叉树。例11.1 已知一棵二叉树的先序遍历和中序遍历序列分别为: 先序: A B C I D E F H G 中序: C I B E D A H F G 请构造这棵二叉树。 按前述分析,这棵二叉树的构造过程如图11.11所示 图11.11 二叉树的构造过程 树、森林与二叉树的转换(flash演示) 如前所述,树(或森林)的存储结构及其操作算法的实现,由于其“度”的不确定性而导致其存储结构不是较为复杂就是浪费空间,因而,定义在其存储结构上的算法也相应地较难兼顾全面。如果我们设定一定的规则,用二叉树来表示树和森林的话,就可以方便地解决树、森林的存储结构及其相关算法问题。 1.树、森林转换为二叉树 我们知道,一棵树中每个结点的孩子是无序的,而二叉树中各结点的孩子必须有左右之分。在此,为避免概念混淆,首先约定树中每个结点的孩子按从左至右的顺序升序编号,即将树中同一层上的兄弟分出大小。那么将一棵树转换成二叉树的方法是: (1)在树中同层兄弟间加一连线; (2)对树中每个结点仅保留其与长兄(左边第一个孩子)的连线,擦去其与其它孩子的连线; (3)以树(或子树)的根作为轴心,将所有的水平连线顺时针旋转45度,即可得到与该树完全等价的一棵二叉树。

二叉树遍历所有代码

#include #include #include #include #include #define SIZE 100 using namespace std; typedef struct BiTNode //定义二叉树节点结构 { char data; //数据域 struct BiTNode *lchild,*rchild; //左右孩子指针域 }BiTNode,*BiTree; int visit(BiTree t); void CreateBiTree(BiTree &T); //生成一个二叉树 void PreOrder(BiTree); //递归先序遍历二叉树 void InOrder(BiTree); //递归中序遍历二叉树 void PostOrder(BiTree); //递归后序遍历二叉树 void InOrderTraverse(BiTree T); //非递归中序遍历二叉树 void PreOrder_Nonrecursive(BiTree T);//非递归先序遍历二叉树 void LeverTraverse(BiTree T);//非递归层序遍历二叉树 //主函数 void main() { BiTree T; char j; int flag=1; //---------------------程序解说----------------------- printf("本程序实现二叉树的操作。\n"); printf("叶子结点以空格表示。\n"); printf("可以进行建立二叉树,递归先序、中序、后序遍历,非递归先序、中序遍历及非递归层序遍历等操作。\n"); //---------------------------------------------------- printf("\n"); printf("请建立二叉树。\n"); printf("建树将以三个空格后回车结束。\n"); printf("例如:1 2 3 4 5 6 (回车)\n"); CreateBiTree(T); //初始化队列 getchar(); while(flag) {

实验三 二叉树的基本操作实现及其应用

二叉树的基本操作实现及其应用 一、实验目的 1.熟悉二叉树结点的结构和对二叉树的基本操作。 2.掌握对二叉树每一种操作的具体实现。 3.学会利用递归方法编写对二叉树这种递归数据结构进行处理的算法。 4.会用二叉树解决简单的实际问题。 二、实验内容 设计程序实现二叉树结点的类型定义和对二叉树的基本操作。该程序包括二叉树结构类型以及每一种操作的具体的函数定义和主函数。 1 按先序次序建立一个二叉树, 2按(A:先序 B:中序 C:后序)遍历输出二叉树的所有结点 以上比做,以下选做 3求二叉树中所有结点数 4求二叉树的深度 三、实验步骤 ㈠、数据结构与核心算法的设计描述 /* 定义DataType为char类型 */ typedef char DataType; /* 二叉树的结点类型 */ typedef struct BitNode { DataType data; struct BitNode *lchild,*rchild; }*BitTree; 相关函数声明: 1、/* 初始化二叉树,即把树根指针置空 */ void BinTreeInit(BitTree *BT) { BT=(BitTree)malloc(sizeof(BitNode)); BT->data=NULL; cout<<"二叉树初始化成功!"<>ch; if(ch=='#') BT=NULL; else { if(!(BT=(BitTree)malloc(sizeof(BitNode)))) exit(0);

二叉树的基本 操作

//二叉树的基本操作 #include typedef struct node //定义结点 { char data; struct node *lchild, *rchild; } BinTNode; typedef BinTNode *BinTree; //定义二叉树 void CreateBinTree(BinTree &T); //先序创建二叉树 void PreOrder(BinTree T); //先序遍历二叉树 void InOrder(BinTree T); //中序遍历二叉树 void PostOrder(BinTree T); //后序遍历二叉树 int onechild(BinTree T); //求度为1的结点的个数int leafs(BinTree T); //求叶子结点的个数 int twochild(BinTree T); //度为2的结点的个数void translevel(BinTree b); //层序遍历二叉树 void main() { int n; BinTree T; char ch1,ch2; cout<<"欢迎进入二叉树测试程序的基本操作"<

二叉树遍历C语言(递归,非递归)六种算法

数据结构(双语) ——项目文档报告用两种方式实现表达式自动计算 专业: 班级: 指导教师: 姓名: 学号:

目录 一、设计思想 (01) 二、算法流程图 (02) 三、源代码 (04) 四、运行结果 (11) 五、遇到的问题及解决 (11) 六、心得体会 (12)

一、设计思想 二叉树的遍历分为三种方式,分别是先序遍历,中序遍历和后序遍历。先序遍历实现的顺序是:根左右,中序遍历实现的是:左根右,后续遍历实现的是:左右根。根据不同的算法分,又分为递归遍历和非递归遍历。 递归算法: 1.先序遍历:先序遍历就是首先判断根结点是否为空,为空则停止遍历,不为空则将左子作为新的根结点重新进行上述判断,左子遍历结束后,再将右子作为根结点判断,直至结束。到达每一个结点时,打印该结点数据,即得先序遍历结果。 2.中序遍历:中序遍历是首先判断该结点是否为空,为空则结束,不为空则将左子作为根结点再进行判断,打印左子,然后打印二叉树的根结点,最后再将右子作为参数进行判断,打印右子,直至结束。 3.后续遍历:指针到达一个结点时,判断该结点是否为空,为空则停止遍历,不为空则将左子作为新的结点参数进行判断,打印左子。左子判断完成后,将右子作为结点参数传入判断,打印右子。左右子判断完成后打印根结点。 非递归算法: 1.先序遍历:首先建立一个栈,当指针到达根结点时,打印根结点,判断根结点是否有左子和右子。有左子和右子的话就打印左子同时将右子入栈,将左子作为新的根结点进行判断,方法同上。若当前结点没有左子,则直接将右子打印,同时将右子作为新的根结点判断。若当前结点没有右子,则打印左子,同时将左子作为新的根结点判断。若当前结点既没有左子也没有右子,则当前结点为叶子结点,此时将从栈中出栈一个元素,作为当前的根结点,打印结点元素,同时将当前结点同样按上述方法判断,依次进行。直至当前结点的左右子都为空,且栈为空时,遍历结束。 2.中序遍历:首先建立一个栈,定义一个常量flag(flag为0或者1),用flag记录结点的左子是否去过,没有去过为0,去过为1,默认为0.首先将指针指向根结点,将根结点入栈,然后将指针指向左子,左子作为新的结点,将新结点入栈,然后再将指针指向当前结点的左子,直至左子为空,则指针返回,flag置1,出栈一个元素,作为当前结点,打印该结点,然后判断flag,flag为1则将指针指向当前结点右子,将右子作为新的结点,结点入栈,再次进行上面的判断,直至当前结点右子也为空,则再出栈一个元素作为当前结点,一直到结束,使得当前结点右子为空,且栈空,遍历结束。 3.后续遍历:首先建立两个栈,然后定义两个常量。第一个为status,取值为0,1,2.0代表左右子都没有去过,1代表去过左子,2,代表左右子都去过,默认为0。第二个常量为flag,取值为0或者1,0代表进左栈,1代表进右栈。初始时指针指向根结点,判断根结点是否有左子,有左子则,将根结点入左栈,status置0,flag置0,若没有左子则判断结点有没有右子,有右子就把结点入右栈,status置0,flag置1,若左右子都没有,则打印该结点,并将指针指向空,此时判断flag,若flag为0,则从左栈出栈一个元素作为当前结点,重新判断;若flag为1则从右栈出栈一个元素作为当前结点,重新判断左右子是否去过,若status 为1,则判断该结点有没有右子,若有右子,则将该结点入右栈,status置1,flag置1,若没有右子,则打印当前结点,并将指针置空,然后再次判断flag。若当前结点status为2,且栈为空,则遍历结束。若指针指向了左子,则将左子作为当前结点,判断其左右子情况,按上述方法处理,直至遍历结束。

二叉树的基本操作实验

实验三二叉树的基本运算 一、实验目的 1、使学生熟练掌握二叉树的逻辑结构和存储结构。 2、熟练掌握二叉树的各种遍历算法。 二、实验内容 [问题描述] 建立一棵二叉树,试编程实现二叉树的如下基本操作: 1. 按先序序列构造一棵二叉链表表示的二叉树T; 2. 对这棵二叉树进行遍历:先序、中序、后序以及层次遍历,分别输出结点的遍历序列; 3. 求二叉树的深度/结点数目/叶结点数目;(选做) 4. 将二叉树每个结点的左右子树交换位置。(选做) [基本要求] 从键盘接受输入(先序),以二叉链表作为存储结构,建立二叉树(以先序来建立), [测试数据] 如输入:ABCффDEфGффFффф(其中ф表示空格字符) 则输出结果为 先序:ABCDEGF 中序:CBEGDFA 后序:CGEFDBA 层序:ABCDEFG [选作内容] 采用非递归算法实现二叉树遍历。 三、实验前的准备工作 1、掌握树的逻辑结构。 2、掌握二叉树的逻辑结构和存储结构。 3、掌握二叉树的各种遍历算法的实现。 一实验分析 本次试验是关于二叉树的常见操作,主要是二叉树的建立和遍历。二叉树的遍历有多种方法,本次试验我采用递归法,递归法比较简单。 二概要设计 功能实现

1.int CreatBiTree(BiTree &T) 用递归的方法先序建立二叉树, 并用链表储存该二叉树 2.int PreTravel(BiTree &T) 前序遍历 3. int MidTravel(BiTree &T) 中序遍历 4.int PostTravel(BiTree &T) 后序遍历 5.int Depth(BiTree &T) //计算树的深度 6.int howmuch(BiTree T,int h) 采用树节点指针数组,用于存放遍历到的元素地址,如果有左孩子,存入地址,j加一,否则没操作,通过访问数组输出层次遍历的结果。k计算叶子数,j为总节点。 7. int exchang(BiTree &T) 交换左右子树,利用递归,当有左右孩子时才交换 三详细设计 #include #include typedef struct BiTNode { char data; struct BiTNode *lchild,*rchild; }BiTNode,*BiTree;

二叉树遍历课程设计】汇编

数据结构程序设计报告 学院: 班级: 学号: 姓名:

实验名称:二叉树的建立与遍历 一、实验目的: 1.掌握二叉树的二叉链表存储结构; 2.掌握二叉树创建方法; 3.掌握二叉树的先序、中序、后序的递归实现方法。 二、实验内容和要求: 创建二叉树,分别对该二叉树进行先序、中序、后序遍历,并输出遍历结果。 三、叉树的建立与遍历代码如下: #include #include struct tnode//结点结构体 { char data; struct tnode *lchild,*rchild; }; typedef struct tnode TNODE; TNODE *creat(void) { TNODE *root,*p; TNODE *queue[50];

int front=0,rear=-1,counter=0;//初始队列中需要的变量front、rear和计数器counter char ch; printf("建立二叉树,请输入结点:(#表示虚节点,!表示结束)\n"); ch=getchar(); while(ch!='!') { if(ch!='#') { p=(TNODE *)malloc(sizeof(TNODE)); p->data=ch; p->lchild=NULL; p->rchild=NULL; rear++; queue[rear]=p;//把非#的元素入队 if(rear==0)//如果是第一个元素,则作为根节点 { root=p; counter++; } else { if(counter%2==1)//奇数时与其双亲的左子树连接 { queue[front]->lchild=p; } if(counter%2==0)//偶数时与其双亲的右子树连接 { queue[front]->rchild=p;

数据结构——二叉树基本操作源代码

数据结构二叉树基本操作 (1). // 对二叉树的基本操作的类模板封装 //------------------------------------------------------------------------------------------------------------------------ #include using namespace std; //------------------------------------------------------------------------------------------------------------------------ //定义二叉树的结点类型BTNode,其中包含数据域、左孩子,右孩子结点。template struct BTNode { T data ; //数据域 BTNode* lchild; //指向左子树的指针 BTNode* rchild; //指向右子树的指针 }; //------------------------------------------------------------------------------------------------------------------------ //CBinary的类模板 template class BinaryTree { BTNode* BT; public: BinaryTree(){BT=NULL;} // 构造函数,将根结点置空 ~BinaryTree(){clear(BT);} // 调用Clear()函数将二叉树销毁 void ClearBiTree(){clear(BT);BT=NULL;}; // 销毁一棵二叉树 void CreateBiTree(T end); // 创建一棵二叉树,end为空指针域标志 bool IsEmpty(); // 判断二叉树是否为空 int BiTreeDepth(); // 计算二叉树的深度 bool RootValue(T &e); // 若二叉树不为空用e返回根结点的值,函数返回true,否则函数返回false BTNode*GetRoot(); // 二叉树不为空获取根结点指针,否则返回NULL bool Assign(T e,T value); // 找到二叉树中值为e的结点,并将其值修改为value。

数据结构实验二叉树

实验六:二叉树及其应用 一、实验目的 树是数据结构中应用极为广泛的非线性结构,本单元的实验达到熟悉二叉树的存储结构的特性,以及如何应用树结构解决具体问题。 二、问题描述 首先,掌握二叉树的各种存储结构和熟悉对二叉树的基本操作。其次,以二叉树表示算术表达式的基础上,设计一个十进制的四则运算的计算器。 如算术表达式:a+b*(c-d)-e/f 三、实验要求 如果利用完全二叉树的性质和二叉链表结构建立一棵二叉树,分别计算统计叶子结点的个数。求二叉树的深度。十进制的四则运算的计算器可以接收用户来自键盘的输入。由输入的表达式字符串动态生成算术表达式所对应的二叉树。自动完成求值运算和输出结果。四、实验环境 PC微机 DOS操作系统或 Windows 操作系统 Turbo C 程序集成环境或 Visual C++ 程序集成环境 五、实验步骤 1、根据二叉树的各种存储结构建立二叉树; 2、设计求叶子结点个数算法和树的深度算法; 3、根据表达式建立相应的二叉树,生成表达式树的模块; 4、根据表达式树,求出表达式值,生成求值模块; 5、程序运行效果,测试数据分析算法。 六、测试数据 1、输入数据:*(+)3 正确结果: 2、输入数据:(1+2)*3+(5+6*7);

正确输出:56 七、表达式求值 由于表达式求值算法较为复杂,所以单独列出来加以分析: 1、主要思路:由于操作数是任意的实数,所以必须将原始的中缀表达式中的操作数、操作符以及括号分解出来,并以字符串的形式保存;然后再将其转换为后缀表达式的顺序,后缀表达式可以很容易地利用堆栈计算出表达式的值。 例如有如下的中缀表达式: a+b-c 转换成后缀表达式为: ab+c- 然后分别按从左到右放入栈中,如果碰到操作符就从栈中弹出两个操作数进行运算,最后再将运算结果放入栈中,依次进行直到表达式结束。如上述的后缀表达式先将a 和b 放入栈中,然后碰到操作符“+”,则从栈中弹出a 和b 进行a+b 的运算,并将其结果d(假设为d)放入栈中,然后再将c 放入栈中,最后是操作符“-”,所以再弹出d和c 进行d-c 运算,并将其结果再次放入栈中,此时表达式结束,则栈中的元素值就是该表达式最后的运算结果。当然将原始的中缀表达式转换为后缀表达式比较关键,要同时考虑操作符的优先级以及对有括号的情况下的处理,相关内容会在算法具体实现中详细讨论。 2、求值过程 一、将原始的中缀表达式中的操作数、操作符以及括号按顺序分解出来,并以字符串的 形式保存。 二、将分解的中缀表达式转换为后缀表达式的形式,即调整各项字符串的顺序,并将括 号处理掉。 三、计算后缀表达式的值。 3、中缀表达式分解 DivideExpressionToItem()函数。分解出原始中缀表达式中的操作数、操作符以及括号,保存在队列中,以本实验中的数据为例,分解完成后队列中的保存顺序如下图所示:

数据结构实验三——二叉树基本操作及运算实验报告

《数据结构与数据库》 实验报告 实验题目 二叉树的基本操作及运算 一、需要分析 问题描述: 实现二叉树(包括二叉排序树)的建立,并实现先序、中序、后序和按层次遍历,计算叶子结点数、树的深度、树的宽度,求树的非空子孙结点个数、度为2的结点数目、度为2的结点数目,以及二叉树常用运算。 问题分析: 二叉树树型结构是一类重要的非线性数据结构,对它的熟练掌握是学习数据结构的基本要求。由于二叉树的定义本身就是一种递归定义,所以二叉树的一些基本操作也可采用递归调用的方法。处理本问题,我觉得应该:

1、建立二叉树; 2、通过递归方法来遍历(先序、中序和后序)二叉树; 3、通过队列应用来实现对二叉树的层次遍历; 4、借用递归方法对二叉树进行一些基本操作,如:求叶子数、树的深度宽度等; 5、运用广义表对二叉树进行广义表形式的打印。 算法规定: 输入形式:为了方便操作,规定二叉树的元素类型都为字符型,允许各种字符类型的输入,没有元素的结点以空格输入表示,并且本实验是以先序顺序输入的。 输出形式:通过先序、中序和后序遍历的方法对树的各字符型元素进行遍历打印,再以广义表形式进行打印。对二叉树的一些运算结果以整型输出。 程序功能:实现对二叉树的先序、中序和后序遍历,层次遍历。计算叶子结点数、树的深度、树的宽度,求树的非空子孙结点个数、度为2的结点数目、度为2的结点数目。对二叉树的某个元素进行查找,对二叉树的某个结点进行删除。 测试数据:输入一:ABC□□DE□G□□F□□□(以□表示空格),查找5,删除E 预测结果:先序遍历ABCDEGF 中序遍历CBEGDFA 后序遍历CGEFDBA 层次遍历ABCDEFG 广义表打印A(B(C,D(E(,G),F))) 叶子数3 深度5 宽度2 非空子孙数6 度为2的数目2 度为1的数目2 查找5,成功,查找的元素为E 删除E后,以广义表形式打印A(B(C,D(,F))) 输入二:ABD□□EH□□□CF□G□□□(以□表示空格),查找10,删除B 预测结果:先序遍历ABDEHCFG 中序遍历DBHEAGFC 后序遍历DHEBGFCA 层次遍历ABCDEFHG 广义表打印A(B(D,E(H)),C(F(,G))) 叶子数3 深度4 宽度3 非空子孙数7 度为2的数目2 度为1的数目3 查找10,失败。

实验10 二叉树的基本操作

浙江大学城市学院实验报告 课程名称数据结构 实验项目名称实验十二叉树的基本操作 学生姓名专业班级学号 实验成绩指导老师(签名)日期 一.实验目的和要求 1、掌握二叉树的链式存储结构。 2、掌握在二叉链表上的二叉树操作的实现原理与方法。 3、进一步掌握递归算法的设计方法。 二.实验内容 1、按照下面二叉树二叉链表的存储表示,编写头文件binary_tree.h,实现二叉链表的定义与基本操作实现函数;编写主函数文件test10.cpp,验证头文件中各个操作。 二叉树二叉链表存储表示如下: typedef struct BiTNode { TElemType data ; struct BiTNode *lchild , *rchild ; }BiTNode,*BiTree ; 基本操作如下: ①void InitBiTree(BiTree &T ) //初始化二叉树T ②void CreateBiTree(BiTree &T) //按先序遍历序列建立二叉链表T ③bool BiTreeEmpty (BiTree T); //检查二叉树T是否为空,空返回1,否则返回0 ④int BiTreeDepth(BiTree T); //求二叉树T的深度并返回该值 ⑤void PreOrderTraverse (BiTree T); //先序遍历二叉树T ⑥void InOrderTraverse (BiTree T); //中序遍历二叉树T ⑦void PostOrderTraverse (BiTree T); //后序遍历二叉树T ⑧void DestroyBiTree(BiTree &T) //销毁二叉树T

基于二叉树遍历系统设计与实现

长春建筑学院《数据结构》课程设计(论文) 基于二叉树遍历系统设计与实现Binary tree traversal System Design and Implementation 年级: 学号: 姓名: 专业: 指导老师: 二零一三年十二月

摘要 针对现实世界中许多关系复杂的数据,如人类社会的家谱,各种社会组织机构,博弈交通等复杂事物或过程以及客观世界中广泛存在的具有分支关系或层次特性的对象.如操作系统的文件构成、人工智能和算法分析的模型表示以及数据库系统的信息组织形式等,用线性结构难以把其中的逻辑关系表达出来,必须借助于数和图这样的非线性结构,因此在以模拟客观世界问题,解决客观世界问题为主要任务的计算机领域中树型结构是信息的一种重要组织形式,树有着广泛应用。在树型结构的应用中又以二叉树最为常用。 二叉树是一种非常重要的非线性结构,所描述的数据有明显的层次关系,其中的每个元素只有一个前驱,二叉树是最为常用的数据结构,它的实际应用非常广泛,二叉树的遍历方式有三种,前序遍历,中序遍历,后序遍历,先序遍历的顺序为:NLR 先根结点,然后左子树,右子树;中序遍历顺序为;LNR先左子树,然后根结点,右子树;后序遍历顺序为:LRN先左子树,然后右子树,根结点。由前序和中序遍历,有中序和后序遍历序列可以唯一确定一棵二叉树。 对于给几个数据的排序或在已知的几个数据中进行查找,二叉树均能提供一种十分有效的方法,比如在查找问题上,任何借助于比较法查找长度为Ⅳ的一个序表的算法,都可以表示成一株二叉树。反之,任何二叉树都对应一个查找有序表的有效方法根据树的数学理论,对于算法分析的某些最有启发性的应用,是与给出用于计算各种类型中不同树的数目的公式有关的。 本文对二叉树以及二叉树的各种功能做介绍以及写出一些基本的程序,让读者对二叉树的理解有更好的效果。 关键词:二叉树;左子树;右子树

二叉树基本操作经典实例

本程序由SOGOF完成 该完整程序主要是递归函数的使用及模板的使用,完成了对二叉树基本的链表操作,主要有二叉树的建立,前序、中序、后序遍历,求树的高度,每层结点数(包含树的最大宽度),左右结点对换,二叉树的内存释放,求解树的叶子数。 #include using namespace std; #define FLAG'#' typedef char Record; template struct Binary_Node { Entry data; Binary_Node*left; Binary_Node*right; Binary_Node(); Binary_Node(const Entry& x); }; template Binary_Node::Binary_Node() { left=NULL; right=NULL; } template Binary_Node::Binary_Node(const Entry &x) { data=x; left=NULL; right=NULL; } template class Binary_tree { public: bool empty()const; Binary_tree(); Binary_tree(Binary_tree&org); void create_tree(Binary_Node*&tree);//建立二叉树 void recursive_copy(Binary_Node*&tree,Binary_Node*&cur); void pre_traverse(Binary_Node *tree);//前序 void mid_traverse(Binary_Node *tree);//中序 void post_traverse(Binary_Node *tree);//后序遍历

二叉树的基本操作及实现.cpp

二叉树的基本操作及实现 二叉树的基本操作及实现的代码如下: #include #define MAXNODE 100 typedef char DataType; typedef struct BiTNode{ DataType data; struct BiTNode *lchild,*rchild; }BiTNode,*BiTree; void Visit(DataType bt){ //输出二叉树结点值 cout<lchild=NULL;bt->rchild=NULL; return bt; } BiTree Create_BiTree(DataType x,BiTree lbt,BiTree rbt){ //建立二叉树:以结点值为x的结点为头结点,并以lbt和rbt为左右子树BiTree p; p=new BiTNode; if(!p){ cout<<"无法完成二叉树的建立!"<data=x; p->lchild=lbt;p->rchild=rbt; return p; } BiTree InsertL(BiTree bt,DataType x,BiTree parent){ //在某结点之后插入左结点BiTree p; if(parent==NULL){ cout<<"要插入结点的父节点不存在!"<

二叉树的基本 操作

创作编号: GB8878185555334563BT9125XW 创作者:凤呜大王* //二叉树的基本操作 #include typedef struct node //定义结点 { char data; struct node *lchild, *rchild; } BinTNode; typedef BinTNode *BinTree; //定义二叉树 void CreateBinTree(BinTree &T); //先序创建二叉树 void PreOrder(BinTree T); //先序遍历二叉树 void InOrder(BinTree T); //中序遍历二叉树 void PostOrder(BinTree T); //后序遍历二叉树 int onechild(BinTree T); //求度为1的结点的个数int leafs(BinTree T); //求叶子结点的个数 int twochild(BinTree T); //度为2的结点的个数void translevel(BinTree b); //层序遍历二叉树 void main() { int n; BinTree T; char ch1,ch2; cout<<"欢迎进入二叉树测试程序的基本操作"<

cout<<"--------------请选择------------"<>ch2; switch(ch2) { case '1': cout<<"请输入按先序建立二叉树的结点序列:\n"; CreateBinTree(T); cout<

C++二叉树的创建与遍历实验报告

二叉树的创建与遍历 一、实验目的 1.学会实现二叉树结点结构和对二叉树的基本操作。 2.掌握对二叉树每种操作的具体实现,学会利用递归和非递归方法编写对二叉树这种递归数据结构进行处理的算法。 二、实验要求 1.认真阅读和掌握和本实验相关的教材内容。 2.编写完整程序完成下面的实验内容并上机运行。 3.整理并上交实验报告。 三、实验内容 1.编写程序任意输入二叉树的结点个数和结点值,构造一棵二叉树,采用三种递归和非递归遍历算法(前序、中序、后序)对这棵二叉树进行遍历。 四、实验步骤 源程序代码1 #include #include using namespace std; template struct BinTreeNode //二叉树结点类定义 { T data; //数据域 BinTreeNode *leftChild,*rightChild; //左子女、右子女域 BinTreeNode(T x=T(),BinTreeNode* l =NULL,BinTreeNode* r = NULL ) :data(x),leftChild(l),rightChild(r){} //可选择参数的默认构造函数 }; //------------------------------------------------------------------------- template void PreOrder_2(BinTreeNode *p) //非递归前序遍历 { stack * > S;

实验五-二叉树基本操作的编程实现实验分析报告

实验五-二叉树基本操作的编程实现实验报告

————————————————————————————————作者:————————————————————————————————日期:

HUBEI UNIVERSITY OF AUTOMOTIVE TECHNOLOGY 数据结构 实验报告 这里一定填 写清楚自己 实验项目实验五实验类别基础篇 学生姓名朱忠栋学生学号20120231515 完成日期2014-12-16 指导教师付勇智 实验成绩评阅日期 评阅教师

实验五二叉树基本操作的编程实现 【实验目的】 内容:二叉树基本操作的编程实现 要求: 二叉树基本操作的编程实现(2学时,验证型),掌握二叉树的建立、遍历、插入、删除等基本操作的编程实现,也可以进一步编程实现查找等操作,存储结构主要采用顺序或链接结构。也鼓励学生利用基本操作进行一些应用的程序设计。 【实验性质】 验证性实验(学时数:2H) 【实验内容】 以下的选题都可以作为本次实验的推荐题目 1.建立二叉树,并以前序遍历的方式将结点内容输出。 2.将一个表示二叉树的数组结构转换成链表结构。 3.将表达式二叉树方式存入数组,以递归方式建立表达式之二叉树状结构,再分别输出前序、中序 及后序遍历结果,并计算出表达式之结果。 【注意事项】 1.开发语言:使用C。 2.可以自己增加其他功能。 【实验分析、说明过程】

页面不够,可续页。 根据自己选择的层次不同的实验内容,完善程序代码,调试通过后,分析说明该问题处理的详细算法过程。不需要写出详细的代码,只表达清楚详细的处理算法即可。可以采用流程图、形式语言或者其他数学表达方式来说明。 这次实验考查的主要是:递归建立二叉树,递归输出先序,中序和后序遍历的结果;非递归建立二叉树,再以非递归方式分别输出先序,中序和后序遍历的结果。 而对于基础篇考查的主要是:递归建立二叉树,递归输出先序,中序和后序遍历的结果,是以填空的方式进行考查的。 对于第一空:递归实现的先序遍历,其实现方法是: printf("%d",p->data); if(p->lchild!=NULL) preorder(p->lchild); if(p->rchild!=NULL) preorder(p->rchild); 对于第二空:递归实现的中序遍历,其实现方法是: if(p->lchild!=NULL) inorder(p->lchild); printf("%d",p->data); if(p->rchild!=NULL) inorder(p->rchild); 对于第三空:递归实现的后序遍历,其实现方法是: if(p->lchild!=NULL) postorder(p->lchild); if(p->rchild!=NULL) postorder(p->rchild); printf("%d",p->data); 【思考问题】 页面不够,可续页。 1.二叉树是树吗?它的定义为什么是递归的? 答:最多有两棵子树的有序树,称为二叉树。二叉树是一种特殊的树。具有n个结点的完全二叉树的深度为log2n +1 !!!二叉树的计算方法:若一棵二叉树为空,则其深度为0,否则其深度等于左子树和右子树的最大深度加1 2.三种根序遍历主要思路是什么? 答:大体思路差不多,但节点访问位置不一样,先序的话,是先访问,然后节点压栈,移到左子树,至节点空退栈,移到右子树。而中序的话,是先节点压栈,移到左子树,至节点空退栈,访问节点,然后移到右子树。另外,所谓前序、中序、后序遍历,全称是前根序遍历,中根序遍历,后根序遍历,不管哪种遍历,访问左子树一定在访问右子树之前,不同的就是根的访问时机。 所以三种递归/或非递归,程序思路都是一样的。 3.如果不用遍历算法一般启用什么数据结构实现后序遍历? 答:用栈实现后序遍历。 4.举出二叉树的应用范例? 答:一个集合的幂集、排列问题、组合问题

二叉树的基本操作实验报告

二叉树的基本操作实验报告 学号姓名实验日期 2012-12-26 实验室计算机软件技术实验指导教师设备编号 401 实验内容二叉树的基本操作 一实验题目 实现二叉树的基本操作的代码实现 二实验目的 1、掌握二叉树的基本特性 2、掌握二叉树的先序、中序、后序的递归遍历算法 3、通过求二叉树的深度、度为2的结点数和叶子结点数等算法三实习要求 (1)认真阅读书上给出的算法 (2)编写程序并独立调试 四、给出二叉树的抽象数据类型 ADT BinaryTree{ //数据对象D:D是具有相同特性的数据元素的集合。 //数据关系R: // 若D=Φ,则R=Φ,称BinaryTree为空二叉树; // 若D?Φ,则R={H},H是如下二元关系; // (1)在D中存在惟一的称为根的数据元素root,它在关系H下无前驱; // (2)若D-{root}?Φ,则存在D-{root}={D1,Dr},且D1?Dr =Φ; // (3)若D1?Φ,则D1中存在惟一的元素x1,?H,且存在D1上的关系H1 ?H;若Dr?Φ,则Dr中存在惟一的元素xr,?H,且存在上的关系 Hr ?H;H={,,H1,Hr};

// (4)(D1,{H1})是一棵符合本定义的二叉树,称为根的左子树;(Dr,{Hr})是一棵符合本定义的二叉树,称为根的右子树。 //基本操作: CreateBiTree( &T, definition ) // 初始条件:definition给出二叉树T的定义。 // 操作结果:按definiton构造二叉树T。 BiTreeDepth( T ) // 初始条件:二叉树T存在。 // 操作结果:返回T的深度。 PreOrderTraverse( T, visit() ) // 初始条件:二叉树T存在,Visit是对结点操作的应用函数。 // 操作结果:先序遍历T,对每个结点调用函数Visit一次且仅一次。一旦visit()失败,则操 作失败。 InOrderTraverse( T, visit() ) // 初始条件:二叉树T存在,Visit是对结点操作的应用函数。 // 操作结果:中序遍历T,对每个结点调用函数Visit一次且仅一次。一旦visit()失败,则操 作失败。 PostOrderTraverse( T, visit() ) // 初始条件:二叉树T存在,Visit是对结点操作的应用函数。 // 操作结果:后序遍历T,对每个结点调用函数Visit一次且仅一次。一旦visit()失败,则操 作失败。 LeafNodes(p) // 初始条件:二叉树T存在。 // 操作结果:返回T的叶子结点数。

相关文档
最新文档