延长奥斯麦特炉寿命的技术改造与实践

延长奥斯麦特炉寿命的技术改造与实践
延长奥斯麦特炉寿命的技术改造与实践

 第5期总第165期冶 金 丛 刊Su m.165 No.5 2006年10月M ET ALLURGI C AL C OLLECTI O NS Oct ober 2006 

延长奥斯麦特炉寿命的技术改造与实践

车驾才

(北方铜业侯马冶炼厂)

摘 要 本文阐述了侯马冶炼厂关于奥斯麦特炉耐火材料的优化选择和使用情况。结合生产实践,论述了影响耐火材料使用寿命的因素及采取的应对措施。

关键词 奥斯麦特;耐火材料;炉寿命

中图分类号:TF806.9 文献标识码:B 文章编号:1671-3818(2006)05-0028-03

THE TECHNOLO GY TRANSFO R M AT I O N AND PRACT I CE

O F PROLO NG I NG THE L I FE O F AUS M T FURNACE

Che J iacai

(The north copper Hou Ma s melt fact ory)

Abstract This paper expatiated on the op ti m izing choice and service conditi on of Aus melt furnace re2 fract ory material of Hou Ma S melt Fact https://www.360docs.net/doc/0f178623.html,bined with p r oductive p ractice,it discussed the life of re2 fract ory material and the counter measures.

Key words Aus melt;refract ory material;furnace life

1 前言

奥斯麦特工艺双炉操作系统在侯马冶炼厂进行初次大规模工业化应用,存在许多技术不完善的地方。炉寿命短就是奥斯麦特工艺最大的缺陷,试生产初期最短炉寿命才两个月左右。频繁的炉子检修不但增加了成本投入,还由于炉寿命短导致生产作业率低,粗铜生产能力迟迟不能达产,严重制约企业健康发展。经过技术攻关与改造,历经六年的生产历程,炉寿命有了显著提高,大修周期由最初的两个月延长到现在最高的16个月;炉盖等部位实际使用寿命也通过技术改造由原来的3个月延长到现在的8个月,使炉寿命整体提高,降低了检修频次。

2 历年耐火材料使用情况

奥斯麦特炉炉衬材质在2001年以前采用镁铬质耐火材料,不适应候马冶炼厂的生产工艺,炉寿命才3~5个月。通过技术攻关,后来采用铝铬质耐火材料(2#铝铬尖晶石砖),由于其抗冲刷性强和耐水性好,炉使用寿命有所延长,渣线部位的炉寿命延长到目前的9个月,其它部位使用寿命已经达到12个月以上。经技术人员进一步研究分析认为炉子渣线易损部位采用质量更好的1#铝铬尖晶石砖,同时把渣线部位炉衬厚度由原来的345mm改为400mm,可以延长其渣线部位蚀损时间。将炉盖捣打料由原来的镁铬捣打料改为现在的钢纤维增强浇铸料(LH—1100),延长了炉盖使用寿命。经大修和改造,提高了炉的寿命。表1为1999~2005年奥斯麦特炉保用寿命统计表。

3 奥斯麦特炉耐火材料蚀损的原因分析

3.1 炉体耐火材料的蚀损原因

依据历次奥斯麦特炉小修与大修对炉体耐火材料的检测情况分析,造成耐火炉衬蚀损的主要因素有以下几个方面。

3.1.1 耐火材料理化指标适应性影响

(1)奥斯麦特炉采用水幕冷却,炉壳密闭隔离不好就会导致冷却水接触耐火材料,造成耐火材料水化,变酥,耐压强度、抗冲刷强度降低,蚀损急剧加快,根据炉衬检修情况分析,有几次局部修补就是因为炉内进水导致炉衬损坏造成的。耐火材料防水性差。

 第5期车驾才:延长奥斯麦特炉寿命的技术改造与实践?29

 ? 表1 1999年至2005年奥斯麦特炉使用寿命统计表

熔炼炉吹炼炉

检修时间检修记录检修时间检修记录

1999.8.12~10.13大修1999.8.12~11.10大修

1999.12.23~2000.1.29大修

2000.2.28~3.26大修2000.1.3~1.30大修

2000.8.1~9.7大修2000.5.12~7.1大修

2000.12.17~2001.2.1大修2000.12,23~2001.2.1大修

2001.3.12~3.31局部修补

2001.8.7~9.24大修2001.9.3~9.25大修

2002.3.23~5.15大修2002.2.23~4.3大修

2002.6.13~6.19炉盖修补2002.5.7~5.15炉盖修补

2002.10.14~11.12大修2002.10.14~11.10大修

2003.3.24~4,7炉盖修补2003.3.24~3.31炉盖修补

2003.5.3~5.7炉盖修补2003.6.18~6.22炉盖修补

2003.7.5~8.5大修2003.7.12~7.31大修

2004.2.12~2.14炉盖修补2004.3.6~3.8炉盖修补

2004.5.11~5.12炉盖修补

2004.6.10~7.10大修2004.6.10~7.10大修

2005.1启动2005.1启动

2005.6.11~6.18局部修补2005.11.7~11.17局部修补炉盖修补

2006.2.7~2.16局部修补炉盖修补

2006.4大修2006.4大修平均检修周期4个月平均检修周期 5.7个月

最大大修周期14个月最大大修周期14个月 (2)耐火材料在使用过程中,炉渣通过毛细气孔侵入耐火材料内,并与之反应形成与砖结构性质不同的变质层,当炉温剧烈变化时,耐火材料内部发生平行于工作面的裂纹,变质层就会崩裂和脱落。每次检修检查耐火材料时发现耐火砖与熔体接触部位有严重的浸蚀现象,同时伴随砖体成片剥落。耐火材料抗浸蚀能力低。

(3)奥斯麦特炉属顶吹工艺,喷枪所供反应作用的高压高速流体会引起高温下气浪及搅拌熔体对耐火材料的冲击与磨损。从局部比较严重蚀损部位分析,耐火材料有明显的被冲刷留下来的痕迹,耐火材料抗冲刷性不好。

3.1.2 炉温控制过高

由于奥斯麦特熔炼炉独特的连续溢流排放方式,炉温控制要求比其它工艺方法的稍高,控制范围在1180~1210℃。由于操作工的操作技能存在差异,使炉温有时超过1250℃,对炉衬造成安全隐患。

3.1.3 冷却水管理不好,耐火材料没有挂渣保护

(1)奥斯麦特炉炉衬保护有别于其它工艺,它主要依靠炉衬挂渣保护耐火材料,而炉体外壳采用水幕冷却就是要在短时间内将炉衬温度降下来,保证炉衬温度低于熔体温度,确保炉衬挂渣质量,砌筑时在炉壳与砖体之间捣打有高导热石墨粉,加速炉衬与冷却水之间的热交换。假若冷却水幕没有均匀覆盖,导致局部炉衬冷却效果不好,这将导致炉衬蚀损严重。从历次检修情况看,某些部位冷却水覆盖不好,该处的残留炉衬明显比别处薄。

(2)冷却水从炉盖连接处或炉壳开焊处进入炉内,炉衬水化或因为温度巨变及水汽的溢散导致耐火材料受损。

3.1.4 炉子急冷急热

生产初期,由于工艺和设备故障频繁,奥斯麦特炉作业率低,同时炉子升温和降温制度不完善,导致炉子频繁快速升降温,造成炉衬耐火材料的崩裂和脱落。

3.1.5喷枪使用造成的熔体冲刷

喷枪是奥斯麦特工艺的核心设备。它由四层同心管组成,从里到外依此提供粉煤、反应用氧气与空气,同时,喷枪管内装有双螺旋结构,保证喷枪提供的入炉流体充分混合。喷枪供风压力为320kPa,高压高速流体经过喷枪螺旋混合后入炉,引起高温熔体的旋转搅拌,这种搅拌造成对炉衬的高强度冲刷。另外,熔炼炉喷枪位置固定造成了冲刷面固定,影响炉寿,历次检修都发现,渣线部位的冲刷较其它位置严重。

3.2 炉盖部位耐火材料蚀损原因确认

3.2.1 耐火材料理化指标影响

炉盖采用水幕冷却,炉壳密闭隔离不好就会导致冷却水接触耐火材料,导致耐火材料水化,变酥,耐压强度、抗冲刷强度降低,蚀损急剧加快。炉盖捣打料热稳定性和防水性差是影响炉盖寿命的主要因素。

3.2.2 炉温控制过高

由于奥斯麦特熔炼炉独特的连续溢流排放方式,炉温控制要求比其它工艺方法的熔炼炉要求稍高,控制范围在1180~1210℃,炉温过高就会导致炉顶耐火材料挂渣质量差,加速耐火材料的蚀损。

3.2.3 冷却水管理不好,炉盖没有挂渣保护

炉子孔口多,炉盖结构复杂,喷淋冷却方式很难覆盖炉盖表面,加上与炉子操作平台太近,管理困难,在近几年的生产实践中,经常出现炉盖因为缺水烧漏情况。

3.2.4 炉子急冷急热

炉子急冷急热导致炉衬结构剥落,在试生产初期,由于设备和工艺等原因导致停炉启动频繁,炉子作业率低,耐火材料使用寿命短,同时耐火材料升降

 ?30

 ?冶金丛刊总第165期 

温制度不完善,导致耐火材料急冷急热,缩短了耐火材料的使用寿命。

3.2.5 炉压操作过大

奥斯麦特炉炉压控制要求在0~-10Pa,候马冶炼厂工艺要求控制在-30~30Pa。实际上,由于烟道粘结和烟气处理系统问题,经常出现炉子负压大于30Pa的现象,负压过高导致高温气体冲刷、烧损炉盖和炉子孔口,是导致炉盖炉衬受损的主要原因。

4 生产技术与操作制度管理

4.1 技术管理

4.1.1 炉体耐火材料理化指标的改进(见表2)

根据历次检修对炉墙耐火材料的检测及蚀损原因分析,2001年大修将渣线部位原有镁铬质耐火材料改为S A2#铝铬尖晶石耐火材料,2004年大修时取消了原设计时的距拱脚砖3000mm高的第一层砖托,现在砖托位置距拱脚砖5000mm。拱脚砖距砖托共50层耐火材料,采用高档铝铬尖晶石耐火材料(S A1#),砖托以上24层采用铝铬尖晶石S A3#耐火砖。(考虑此部位不是关键蚀损部位,为节约成本选用S A3#)。2005年元月奥斯麦特炉启动生产,同年6月,S A3#砖所在部位出现砖体崩落,而使用S A1#砖所在部位砖体蚀损只有100mm左右,为此在2006年大修时将炉墙砖整体换为S A1#铝铬尖晶石砖。

表2 炉体耐火材料理化指标

牌号S A1#S A2#S A3#碱性直接结合砖耐火度/℃≥1900≥1860≥1850

显气孔率/%≤11≤12≤12≤17

常温耐压强度/MPa≥139≥136≥132

体积密度/(g?m-3)≥3.52≥3.50≥3.49≥3.23

重烧线变(1500℃×3h)0001700℃×3h 1~-0.2

热震稳定性(1100℃水冷)/次332

荷重软化温度/℃(MPa×变形)≥1700(0.2×0.6)≥1700(0.2×0.6)≥1700(0.2×0.6)

导热系数(1200℃)/W?(m?k)-1 3.1

莫氏硬度Moh’s≥9≥9≥9

最高使用温度/℃175017001700

常温裂断模数/MPa14冷压强度/MPa54

典型化学组成/%Mg O55 Cr2O3≥8724 A l2O37 Fe2O312 Ca O0.5 Si O2 1.0

4.1.2 改变砌砖结构和耐火材料厚度

根据奥斯麦特炉渣线部位耐火材料损坏速度不同的实际情况,对耐火材料的砌筑结构重新设计,由原来立砌改为现在的平砌。尽量减少砖缝的数量,取消原设计的第一层托板,以减少熔体对砖缝的机械冲刷。同时改变砖体尺寸,由原来的345mm改为400mm,尽量使炉内各处耐火材料蚀损和检修同步。

4.1.3 更换炉盖耐火材料

由于炉盖结构的特殊性,将原设计炉顶镁铬质捣打料改为钢纤维铝铬质浇铸料(LH-1103),以增强炉盖耐火材料的热稳定性和防水性。两种材料的指标参数见表3。

4.1.4 严格控制生产参数

在生产中,严格控制炉内温度、炉内负压、渣型等参数,采取小幅度勤调节的办法,尽量避免各参数大幅波动。同时,经过摸索总结,优化了渣型,将渣中Fe∶Si O

2

由原设计的1.2~1.4降为0.9~1.1,降低了渣的碱性,减少了渣对耐火材料的蚀损。

4.1.5 完善升温降温制度

严格按照耐火材料厂家提供的升温降温曲线操作,杜绝快速升降炉温,避免耐火材料的结构崩落。

4.2 操作制度管理

4.2.1 加强炉体冷却水的管理

(1)对冷却水系统的喷淋管进行改造,保证水幕分布合理。

(2)对炉盖冷却水方式由原来喷淋管改为溢流,保证水幕均匀。

(3)对回水管道、低位水箱、积水槽进行改造,保证循环水量。

(4)对冷却水质进行监控,(下转第39页)

 第5期丁树峰:轧制始极片?39

 ? 

(5)轧制法生产8100t始极片所需加工费为7459×2600=1939万元。

(6)采用轧制法生产的始极片生产电解铜,可增加的利润为1496+787.5-1939=344.5万元。5 结论

轧制始极片具有表面光滑、组织致密、不易变形、平直度高、几何尺寸精确等优点,可减少电极间距,一定程度上增加电解槽内排放始极片的数量,取消了制造始极片所占用的电介槽,因而可提高电解车间的生产能力。可使电解铜产品的外观质量较明显提高,减少废品率,提高合格品率。并且可使电解车间始极片的制作的机械化水平、自动化水平和效率大幅提高,为铜冶炼厂带来较好的经济效益。

因此,轧制始极片对提高铜电解行业的技术水平和经济效益有较大的促进作用,是一项有较高推广应用价值的新技术。

参 考 文 献

[1] 重有色金属材料加工手册(第三分册)1北京:冶金工业出版社,19791

[2] 杨守山1有色金属塑性加工学1冶金工业出版社,19851

(上接第30页)

表3 镁铬质捣打料与LH-1103浇铸料的指标参数

LH-1103理化指标镁铬质捣打料

化学成分/%A l2O3≥76.00Mg O/%≥90 Si O2≤12.00Cr2O3%≥8

体积密度/(g?c m-3)110℃×24h干燥后≥2.80Fe2O3/%≤0.5 110℃×3h烧后≥2.76Si O2/%5

常温抗折强度/MPa 110℃×24h≥12.0

110℃×3h≥13.5

抗折强度(1350℃×24h)/MPa10~12

常温耐压强度/MPa 110℃×24h≥85.0

110℃×3h≥90.0

线变化率(1450℃)/%±1.0

烧后线变化率/% 110℃×3h耐压强度/MPa

150℃×24h≥20 1100℃×24h烧后30~40 1400℃×24h烧后50~65

保证冷却水pH值6~8,杂质含量低,防止水质变化导致水管路堵塞和腐蚀,避免炉壳遭受高温水腐蚀造成冷却水进入炉内侵蚀耐火材料。

(5)控制冷却水进出水温差,加强冷却效果,保证炉内耐火材料均匀挂渣。

4.2.2 制定操作制度,按工艺要求控制负压

(1)通过烟道人孔门架设柴油枪,对烟道斜坡段、水平段、垂直段进行定期高温熔化处理。成立专门的烟道黏结处理班组,保证烟道畅通,确保炉负压正常。

(2)加强烟气处理系统的堵漏工作,尤其是余热锅炉和电收尘,防止漏风造成炉内负压过高。

5 结论

通过对奥斯麦特炉耐火材料理化指标的不断改进,采用适应侯马冶炼厂奥斯麦特工艺要求的耐火材料,并从生产中不断摸索,逐步强化技术和操作制度管理,奥斯麦特炉的寿命得到了有效提高,粗铜产量完成设计产量的137%,为企业健康发展奠定了坚实的基础。

参 考 文 献[1] 侯马冶炼厂熔炼车间QC攻关小组1侯马冶炼厂冶金炉炉龄延长QC攻关12004.

垃圾焚烧和焚烧炉除尘技术_百度文库(精)

垃圾焚烧和焚烧炉除尘技术 蔡益臣钱怡松顾李定 一:概述 近年来随着生活水平的提高,而使得城市垃圾排出量增加,它的处理问题成为了社会性问题。对一般城市垃圾,固态物质的减容、无害化,尽可能的由焚烧炉处理已成为主流,但是,对于城市垃圾焚烧处理,不仅排气中的烟尘、NOX 、SOX 、HCL 等去除技术是必要的,而且有烟尘中含有二恶英类和重金属类物的减低技术也是重要的。此外,从最近地球的环境问题,特别从温室效应气体的抑制的观点出发,把垃圾焚烧时产生的热有效地利用。(杭州、深圳等地已建成垃圾发电厂,利用垃圾焚烧时产生的热来发电)。 二:城市垃圾焚烧生成气体和飞灰的特性 1.垃圾焚烧生成气体的特性 从垃圾处理焚烧设施排出的气体含灰尘、NOX 、SOX 、HCL 、CO 和二恶英等成份,对这些物质的排放国家也制定了一些相应的标准和法规。限制排放物质的排放标准。 为了遵守这一类的规定,各种环境环保技术在垃圾焚烧设施中使用,为了减少NOX ,使用了二段燃烧法(把燃烧空气的一部分在火炉中间加入,控制氧化气氛及减少NOX 产生量的方法),排气再循环法(把燃气混和到燃烧用空气中,减弱氧化气氛,同时减低NOX 的发生量的方法)等控制产生NOX 技术和加入氛而使NOX 分解、减少的脱硝技术。 烟气中的硫,通常由于垃圾中含有硫成份少,浓度较低,如后所述的那样,随着在除去HCL 时被去除,酸性气体的去除有湿式、半干式、干式等各种方法,在湿式中,通过碱液进行吸收,但存在由于吸收液的腐蚀,选定装置材料较难,并有废水处理问题,最近多采用半干式、干式,一般采用向炉内注入CaCO3及向烟道

喷雾消石灰粉末或泥浆的洗涤器等,以往的半干式、干式提高SOX 的去除率较难,但在存在HCL 情况下,注入消石灰,显示了较高的脱硫效率。反应中产生的反应生成物可在后面的除尘器进行回收。 以前,对于在燃料中含有的重金属、hg 、pb 、cd 等,人们但心由于低沸点、易形成气态物,以及具有浓缩成重金属难以捕集的微粒子倾向的物质排放,但由于现在的除尘器对微粒子的捕集性能的提高,近年这已不作主要的问题考虑。在废弃物中,除上述物质外,HCL 和二恶英被关注,HCL 的去除和SOX 的去除相同,通过向烟道进行喷消石灰粉末和泥浆。在气流中进行反应,或在过滤器上堆积了的粉尘层内通过吸收反应,充分显示去除性能。 二恶英以气体状或附着在粒子上被排出,为了抑制在燃烧炉中的产生,可使用促进空气完全燃烧,提高燃烧温度,增加在燃烧器内滞留的时间等措施,但因为在300℃附近的排气中,会再生成,故不长时间运行这个温度域是最有效的。对于垃圾焚烧设施,为了防止设备腐蚀及氯化物的吸湿,多在300℃左右运行除尘器,但是由于在此温度会产生近二恶英物质及以飞灰中的重金属等作为催化剂在除尘器内产生二恶英的情况,所以可采用降低除尘器运行温度及提高除尘器性能等措施。 2.焚烧炉生成飞灰的特性 在除尘器入口的由焚烧生成飞灰的浓度,随由垃圾的值、燃烧方式而不同,从数g/Nm3至20g/Nm3左右,平均粒径是10~40μm 左右,但也含有亚微米领域的灰尘,在这个领域里含有重金属等被浓缩,因此有必要可采电除尘或袋除尘。对于电除器的除尘效率有很大影响的由焚烧炉产生的灰尘的比电阻,几乎在范围为108~1011Ω.cm, 的电除器适用范围内。通常垃圾焚烧炉灰尘,从灰尘的比电阻方面,较容易把电除尘器作为除尘适用对象。 三:焚烧炉的除尘 除尘器有旋风除尘器、洗涤器、颗粒层除尘器、电除尘器、袋除尘器等各种方法,它的选定,有设备费,运行费、维修、所需动力,除尘效率、大型化的适应

延长奥斯麦特炉寿命的技术改造与实践

第5期总第165期冶 金 丛 刊Su m.165 No.5 2006年10月M ET ALLURGI C AL C OLLECTI O NS Oct ober 2006  延长奥斯麦特炉寿命的技术改造与实践 车驾才 (北方铜业侯马冶炼厂) 摘 要 本文阐述了侯马冶炼厂关于奥斯麦特炉耐火材料的优化选择和使用情况。结合生产实践,论述了影响耐火材料使用寿命的因素及采取的应对措施。 关键词 奥斯麦特;耐火材料;炉寿命 中图分类号:TF806.9 文献标识码:B 文章编号:1671-3818(2006)05-0028-03 THE TECHNOLO GY TRANSFO R M AT I O N AND PRACT I CE O F PROLO NG I NG THE L I FE O F AUS M T FURNACE Che J iacai (The north copper Hou Ma s melt fact ory) Abstract This paper expatiated on the op ti m izing choice and service conditi on of Aus melt furnace re2 fract ory material of Hou Ma S melt Fact https://www.360docs.net/doc/0f178623.html,bined with p r oductive p ractice,it discussed the life of re2 fract ory material and the counter measures. Key words Aus melt;refract ory material;furnace life 1 前言 奥斯麦特工艺双炉操作系统在侯马冶炼厂进行初次大规模工业化应用,存在许多技术不完善的地方。炉寿命短就是奥斯麦特工艺最大的缺陷,试生产初期最短炉寿命才两个月左右。频繁的炉子检修不但增加了成本投入,还由于炉寿命短导致生产作业率低,粗铜生产能力迟迟不能达产,严重制约企业健康发展。经过技术攻关与改造,历经六年的生产历程,炉寿命有了显著提高,大修周期由最初的两个月延长到现在最高的16个月;炉盖等部位实际使用寿命也通过技术改造由原来的3个月延长到现在的8个月,使炉寿命整体提高,降低了检修频次。 2 历年耐火材料使用情况 奥斯麦特炉炉衬材质在2001年以前采用镁铬质耐火材料,不适应候马冶炼厂的生产工艺,炉寿命才3~5个月。通过技术攻关,后来采用铝铬质耐火材料(2#铝铬尖晶石砖),由于其抗冲刷性强和耐水性好,炉使用寿命有所延长,渣线部位的炉寿命延长到目前的9个月,其它部位使用寿命已经达到12个月以上。经技术人员进一步研究分析认为炉子渣线易损部位采用质量更好的1#铝铬尖晶石砖,同时把渣线部位炉衬厚度由原来的345mm改为400mm,可以延长其渣线部位蚀损时间。将炉盖捣打料由原来的镁铬捣打料改为现在的钢纤维增强浇铸料(LH—1100),延长了炉盖使用寿命。经大修和改造,提高了炉的寿命。表1为1999~2005年奥斯麦特炉保用寿命统计表。 3 奥斯麦特炉耐火材料蚀损的原因分析 3.1 炉体耐火材料的蚀损原因 依据历次奥斯麦特炉小修与大修对炉体耐火材料的检测情况分析,造成耐火炉衬蚀损的主要因素有以下几个方面。 3.1.1 耐火材料理化指标适应性影响 (1)奥斯麦特炉采用水幕冷却,炉壳密闭隔离不好就会导致冷却水接触耐火材料,造成耐火材料水化,变酥,耐压强度、抗冲刷强度降低,蚀损急剧加快,根据炉衬检修情况分析,有几次局部修补就是因为炉内进水导致炉衬损坏造成的。耐火材料防水性差。

工业锅炉能耗现状分析与节能措施

67 石油和化工设备 节能减排 JIE NENG JIAN PAI 2009.07工业锅炉能耗现状分析与节能措施 【摘 要】工业锅炉是重点的耗能设备之一。文章全面分析了目前影响工业锅炉能耗的因素,并就如何提高工业锅炉热效率从政策上、管理上、技术上几方面提出了详细具体的对策措施。【关键词】工业锅炉 节能 热效率 现状与对策 李茂东 黎 华 钟志强 (广州市特种承压设备检测研究院 广东 广州 510050) 并针对实际情况提出了提高热效率的具体对策。 1 影响工业锅炉能耗偏高的 因素 1.1锅炉管理人员节能意识薄弱, 锅炉节能管理水平偏低 一些单位对锅炉节能存在 “三不”:不懂、不管、不愿。个别 企业认为锅炉能耗高低是企业自 己的事,对推动锅炉节能工作不 积极、没兴趣,不愿在锅炉节能上 投资或加强管理。一些企业连统 计锅炉能耗最基本的计量器具都 没有配备。甚至有的单位购买非 法商人翻新的旧锅炉充当新锅炉 使用。 一些燃煤锅炉单位,燃料管 理粗放。购进燃料煤不进行成分 检验,绝大多数原煤未经洗选、筛 分和配煤就直接燃用,加之燃煤 作者简介 李茂东(1972-) 辽宁葫芦岛人,高级工程师,从事锅炉水处理、锅 炉检验与节能等工作。工业锅炉是高耗能特种设备之一,每年消耗的能源约占我国能源消耗总量的1/4。至2007年底,我国在用工业锅炉(含生活锅炉)52万多台[1],其中燃煤工业锅炉占总量的80%以上,燃油(气)锅炉约占15%,电加热锅炉占1%左右,其余的锅炉以沼气、黑液、甘蔗渣、生物质(垃圾)等为燃料。燃煤工业锅炉中层燃锅炉约占95%,高效、低污染、宽煤种的循环流化床锅炉数量较少。燃油(气)工业锅炉中火管锅炉锅炉约占85%以上,水管锅炉数量较少。目前我国燃油(气)锅炉的实际热效率平均在80%-85%,燃煤锅炉的实际热效率平均仅为60%-65%[2],与设计效率有较大差距。锅炉总体能耗水平高、节能管理水平低,能源浪费严重。本文以广州地区在用工业锅炉能耗普查数据为基础,详细分析了工业锅炉能耗高的原因, 质量波动较大,煤不完全燃烧情况十分普遍,锅炉难以稳定经济运行,导致锅炉热效率普遍偏低,燃料浪费惊人。 1.2 锅炉水质管理力度不够 水质管理上存在“三低一高” 现象:一是锅炉配置的水处理设备 利用率低,大约在70%左右。存在 不配备水处理设备、配备了不匹配 或不合适的设备以及配备了设备而 长期闲置不使用现象。一些单位设 备长期不维护,把软化设备当作过 滤器使用,除氧器安装了却因各种 原因长期不使用。二是水处理人员 的配备率低,不足70%。普遍存在 不重视水质管理、不配备专兼职 水处理人员、锅炉运行期间不进 行水质监测化验的现象。三是锅 炉水质达标率低,平均在50%左 右,结垢问题突出。有的锅炉结水 垢厚度达到10mm 以上。一些企业 用日常加药代替水处理,运行过 程中难以做到科学防垢除垢。四 是锅炉排污率高。一些单位没有根据锅炉水质变化调整排污率, 能节减排

垃圾发电厂焚烧系统和主要设备的选用

垃圾发电厂焚烧系统和主要设备的选用 摘要:对垃圾焚烧发电厂设计中主要设备与系统的选用进行了讨论,主要设备为焚烧锅炉与汽轮机,主要系统为垃圾进料与前处理系统、烟气净化系统等。最后,给出了本类电厂目前的发电效率与供电效率的水平。 关键词:垃圾焚烧;发电厂设计;主要设备;选用 1概述 随着经济迅速发展,人民生活水平的提高,城市生活垃圾量增长迅速,我国每年以6%~8%的速度增长2000年全国城市垃圾产出量达14亿t。因此,如何有效地对城市生活垃圾进行净化处理,己成为人们广泛关注的问题。 用焚烧方式并回收其中能量的垃圾处理技术在近20年得到了迅速发展,美国、欧洲、日本等发达国家己开始大量应用,并产生了良好的环保效益与经济效益。焚烧垃圾,回收能源,以实现城市生活垃圾的减容化、无害化和资源化,被认为是我国处理城市生活垃圾的一个重要方向。 城市生活垃圾焚烧发电厂由于有自己的特点,发电效率比现代化火电厂低得多,本文对其主要设备(焚烧锅炉、汽轮机)及主要系统(垃圾进料及前处理系统、烟气净化系统)的选用进行讨论,做到在避免和控制二次污染的前提下,在技术和经济可行的情况下,提高发电效率。 2焚烧锅炉的选用 焚烧锅炉包括焚烧炉及余热锅炉两大部分。按我国生活垃圾焚烧污染控制标准(GWKB3-2000)要求:垃圾应在焚烧炉内充分燃烧,烟气在后燃室应在不低于850℃的条件下停留不少于2s。 2.1选型 目前,适合我国高水分、低热值城市生活垃圾并经过运行考验的焚烧锅炉有引进三菱重工技术的炉排式焚烧锅炉和浙江大学开发的异重循环流化床焚烧锅炉。前者1997年己在深圳投入运行,日处理垃圾150t,但设备为部分国产化,价格昂贵,垃圾能源化利用程度不高。后者1998年8月在杭州余杭锦江热电有限公司建成投产,蒸发量35t/h,日处理垃圾150t,最大日处理超过216t,应用与煤助燃方式,运行一直稳定。浙江省电力设计院设计的山东菏泽、杭州乔司等垃圾焚烧发电厂均采用后者。 2.2容量 作为垃圾发电产业的首批电厂,焚烧锅炉蒸发量采用与示范电厂一样为35t/h。在流化床焚烧锅炉中垃圾焚烧处理采用与煤助燃方式,这样有利于燃烧稳定,提高了炉内燃烧温度从而可降低有害排放,并有利于蒸汽参数的提高。目前由浙江大学和杭州锅炉厂共同研制生产的异重循环流化床垃圾焚烧锅炉单炉垃圾处理量为200t/d,辅助燃煤与垃圾量重量比为3:7;在相同的蒸发量(35t/h)下,今后单炉垃圾处理量可提高为300t/d,此时辅助燃煤与垃圾量重量比为2:8。 2.3蒸汽参数 垃圾焚烧锅炉生产的蒸汽其参数偏低,原因如下:(1)焚烧锅炉的热功率较小,在同容量的小型火电厂中也同样不会应用高压蒸汽参数;(2)焚烧锅炉燃烧气体中含有的氯化物盐类会引起过热器的高温腐蚀。在日本通常将焚烧锅炉的蒸汽参数设计为2.94MPa,300℃以下;在欧洲与美国,过热器管材应用低合金钢与高镍合金,蒸汽参数一般不超过4.5MPa,450℃。深圳市政环卫综合处理厂[1]是我国第一家采用焚烧工艺处理城市生活垃圾并用其热能进行发电与供热的工厂,安装进口的2台日本三菱重工炉排式焚烧锅炉,每台可供1.6MPa饱和蒸汽12t/h,后经技改后,每台可供1.4MPa,350℃过热蒸汽10.7t/h。同一工厂的3号焚烧

德士古气化炉简介与基本原理和特点

德士古气化炉 Texaco(德士古)气化炉 德士古气化炉是一种以水煤气为进料的加压气流床气化工艺。德士古气化炉由美国德士古石油公司所属的德士古开发公司在1946年研制成功的,1953年第一台德士古重油气化工业装置投产。在此基础上,1956年开始开发煤的气化。本世纪70年代初期发生世界性危机,美国能源部制定了煤液化开发计划,于是,德士古公司据此在加利福尼亚州蒙特贝洛(Montebello)研究所建设了日处理15t的德士古气化装置,用于烧制煤和煤液化残渣。目前国内大化肥装置较多采用德士古气化炉,并且世界范围内IGCC电站多采用德士古式气化炉。 典型代表产品我厂制造过的德士古气化炉典型的产品有:渭河气化炉、恒升气化炉、神木气化炉、神华气化炉等。1992年为渭河研制的德士古气化炉是国际80年代的新技术,制造技术为国内先例,该气化炉获1995年度国家级新产品奖。它的研制成功为化工设备实现国产化,替代进口做出了重要贡献。德士古气化炉是所以第二代气化炉中发展最迅速、开发最成功的一个,并已实现工业化。 一、德士古气化的基本原理 德士古水煤浆加压气化过程属于气化床疏相并流反应,水煤浆通过

喷嘴在高速氧气流的作用下,破碎、雾化喷入气化炉。氧气和雾状水煤浆在炉内受到耐火砖里的高温辐射作用,迅速经历预热、水分蒸发、煤的干馏、挥发物的裂解燃烧以及碳的气化等一系列复杂的物理、化学过程,最后生成一氧化碳,氢气二氧化碳和水蒸气为主要成分的湿煤气,熔渣和未反应的碳,一起同向流下,离开反应区,进入炉子底部激冷室水浴,熔渣经淬冷、固化后被截流在水中,落入渣罐,经排渣系统定时排放。煤气和饱和蒸汽进入煤气冷却系统。 水煤浆是一种最现实的煤基流体燃料,燃烧效率达96~99%或更高,锅炉效率在90%左右,达到燃油等同水平。也是一种制备相对简单,便于输送储存,安全可靠,低污染的新型清洁燃料[1]。具有较好的发展与应用前景。水煤浆的气化是将一定粒度的煤颗粒及少量的添加剂在磨机中磨成可以泵送的非牛顿型流体,与氧气在加压及高温条件下不完全燃烧,制得高温合成气的技术,以其合成气质量好、碳转化率高、单炉产气能力大、三废排放少的优点一直受到国际社会的关注,我国也将水煤浆气化技术列为“六五”、“七五”、“八五”、“九五”的科技攻关项目。本文基于目前我国水煤浆气化技术的现状,以Texaco气化炉为研究对象,根据对气化炉内流动、燃烧和气化反应的特性分析,将Texaco气化炉膛分成三个模拟区域,即燃烧区、回流区和管流区,分别对各区运用质量守恒和能量守恒方程,建立了过程仿

各种垃圾焚烧技术综合

各种垃圾焚烧技术整理(初稿) 一、流化床焚烧炉 1.原理 炉体是由多孔分布板组成,在炉膛内加入大量的石英砂,将石英砂加热到600℃以上,并在炉底鼓入200℃以上的热风,使热砂沸腾起来,再投入垃圾。 垃圾同热砂一起沸腾,垃圾很快被干燥、着火、燃烧。未燃尽的垃圾比重较轻,继续沸腾燃烧,燃尽的垃圾比重较大,落到炉底,经过水冷后,用分选设备将粗渣、细渣送到厂外,少量的中等炉渣和石英砂通过提升设备送回到炉中继续使用。 2.特点 ●需要石英砂作为辅料,需要掺煤才能焚烧垃圾,在煤价较低或上网电价 较高的情况下,掺煤越多,焚烧厂的经济效益就越好; ●可以混烧多种废物,但是进料越均匀越好,一般需要有前分选和破碎工 序; ●焚烧炉内垃圾处于悬浮流化状态,为瞬时燃烧,燃烧不完全,飞灰量大, 飞灰热酌减率高,二恶英产生量大,但是由于飞灰量是炉排炉的3~4 倍,所以飞灰中二恶英的浓度反而较低;此外,流化床焚烧的一个特点 是炉渣的热酌减率较低,仅为1%~2%; ●物料处于悬浮状态,烟气流速高,对焚烧炉的冲刷和磨损比较严重,设 备使用年限较短; ●流化床炉的检修相对较多,年运行时间较短,通常只有6000多个小时; ●流化床炉起炉和停炉较为方便。 3.优点 ●燃烧比较复杂、水分比较多的垃圾也能够把垃圾燃烧彻底,比较适合我

国的国情; ●流化床燃烧充分,炉内燃烧控制较好,燃烧温度也比较高; ●投资也比较低 4.缺点 ●烟气中灰尘量大, ●操作复杂, ●运行费用较高, ●对燃料粒度均匀性要求较高,需大功率的破碎装置, ●石英砂对设备磨损严重,设备维护量大 5.投资 每日吨投资: 进口设备:万元 引进技术:30-40万元 全国产:25-30万元; 6.运行费用 进口设备:100元/吨垃圾 7.自耗电力 ? 8、主要生产厂家 流化床焚烧炉采用国外进口技术的仅有三例,均是采用日本荏原制造所的内循环流化床技术,即哈尔滨垃圾焚烧厂(已建成)、太原市垃圾焚烧厂(已建成)和大连市垃圾焚烧厂(在建) 国产流化床焚烧技术主要有两家:北京中科通用能源环保有限责任公司和浙江大学的异重循环流化床技术。北京中科通用能源环保有限责任公司成立于1987年,是中科实业集团(控股)子公司 日本流化床焚烧技术曾经一度发展较快,主要是因为其可以非连续性运转(每天工作16小时),适应于日本中小城市的需求。但是10年前日本业界发现由于流化床炉为瞬间燃烧,速度快,难以控制,会导致二恶英大量产生,因而日本国内达成共识,逐步停止使用流化床焚烧炉。流化床焚烧炉生产厂商利用流化床焚烧炉的技术开发了流化床气化熔融炉,即将流化床炉温降到500℃~650℃,使其热解气化,然后将气化后的产物(炭和气化气等)输送到后续的焚烧熔融炉进行焚烧熔融

铜冶炼三种方法

目前,中国已引进世界上最先进的炼铜新工艺有:闪速炉熔炼、艾萨熔炼、奥斯麦特熔炼、诺兰达熔炼等。国内自主创新的有白银法熔炼、金川合成炉熔炼、东营方圆的氧气底吹熔炼。后3种都是中国人自己研制的,都具有自主知识产权。这7种也算世界上较先进的炼铜法。通过多年的实践,国外的先进技术尚存不足之处,分述如下: 1、双闪速炉熔炼法: 投资大,专利费昂贵,熔剂和原料先进行磨细再进行深度干燥,需额外消耗能源这不尽合理。熔炉产出的铜硫需要水碎再干燥再细磨,工序繁杂。每道工序均难以保证100%回收率,会产生部分机械损失;热态高温铜锍水碎物理热几乎全部损失,水碎后再干燥,再加上炉内大量水套由冷却水带走热量,热能利用也不尽合理。铜锍水碎需要大量的水冲,增加动力消耗。破碎、干燥要增加人力和动力的消耗。这些都是多年来该工艺没有得到大量推广的重要原因。 2、艾萨法和澳斯麦特法均属于顶吹冶炼系列: 顶吹都要建立高层厂房,噪音大、高氧浓度低烟气量大、顶吹的氧枪12米长,3天至一周要更换一次,不锈钢消耗量大、投资大、操作不方便。都用电炉做贫化炉,渣含铜一般大于%不合国情。 3、三菱法的不足 4个炉子(熔炼炉、贫化电炉、吹炼炉、阳极炉)自流配置,第一道工序的熔炼炉需要配置在较高的楼层位置,建筑成本相对较高,炉渣采用电炉贫化,弃渣含铜量达%~%,远远高于我国多数大型铜矿开采的矿石平均品位,资源没有得到充分的利用。 4、诺兰达和特尼恩特连续吹炼法,尚在工业试验阶段。 诺兰达是侧吹、要人工打风眼、劳动强度很大、风眼漏风率达10%~15%。有很大噪音、操作条件不好、冶炼环境不理想。如果掌握不好容易引起泡沫渣喷炉事故。 综上所述,让我们来寻求新的冶炼工艺,在不断的探索中发现新途径。 氧气底吹炉炼铅、炼铜最早是湖南水口山和中国有色工程设计研究总院共同研发在水口

奥斯麦特炉

澳斯麦特炉炼锡工艺与生产实践 宋兴诚黄书泽 (云南锡业集团有限责任公司,云南个旧661000) [摘要】简要描述了云锡集团引进澳斯麦特炉取代原有的反射炉、电炉等锡精矿还原熔炼炉的工艺过 程和对配套的工序进行全面的技术改造后形成的新的炼锡系统,以及试生产的实践。 [关键词】澳斯麦特技术;锡冶炼;工艺;试生产 [中图分类号】TF814 [文献标识码】B [文章编号】 1002—8943(2003)02—0015—07 1、前言 澳大利亚澳斯麦特技术(Ausmelt Technology)也被称为顶吹沉没喷枪熔炼技术(top submergedlance technology),它是由澳大利亚澳斯麦特公司在赛罗熔炼技术(Sirosmelt Technology)基础上开发成功的有色金属强化熔炼技术。1999年通过反复论证,云锡公司决定引进澳斯麦特技术,用一座澳斯麦特炉取代所有的锡精矿还原熔炼反射炉和电炉。并对锡精矿还原熔炼车间及其配套工序和设施进行全面改造,使云锡公司的整体锡冶炼技术达到世界领先水平。工程于20o0年11月1日破土动工,2002年4月11日点火烘炉,4月18日炼出第一炉锡, 5月14日完成引进合同规定的对澳方的72 h验收指标考核,正式验收。5月20日澳方人员撤离现场,转入试生产阶段。在试生产过程中,利用云锡长期积累的丰富经验,除很快掌握了基本操作外,还对澳方提供的炉渣渣型、喷枪风煤比、二次燃烧(套筒)风等工艺条件进行了调整和改进的探索,取得显著成效,多项指标超过了澳方人员指导热调试阶段的水平,各项技术指标全面达到或超过设计指标。因炉衬损坏,9月3日停炉整改至此第一炉期结束,期间连续运行了303周期(炉),共处理锡物料24 731.159 t,产出粗锡9 139.52 t,炉床能力达到14.62 t /(m ·d),粗锡品位在90%以上;共发电715.68万kW·h,日发电量已达90 000 kW·h,基本满足澳斯麦特系统用电需要;熔剂率接近零,充分体现了澳斯麦特炉炼锡系统优质、高效、节能、低消耗的特点。但同时也暴露出诸如因烟尘量过大致使锡直收率低,收尘系统不适应等问题。停炉后除更换渣线附近的耐火砖外,同时针对发现的问题进行了全面整改。本文对云锡澳斯麦特炉炼锡工艺以及在第一炉期内的试生产的实际情况作一简要的描述。 2 澳斯麦特炉炼锡系统的组成 澳斯麦特炉炼锡系统由炼前处理、配料、澳斯麦特炉、余热发电、收尘与烟气治理、冷却水循环、粉煤供应和供风系统等8个部分组成(见图1)。 2.1 澳斯麦特炼锡炉 澳斯麦特炉是一个高8.6 m、外径5.2 m、内径4.4 m的钢壳圆柱体,上接呈收缩的锥体部分。圆锥体通过过渡段与余热锅炉的垂直上升烟道连接,炉子总高约12 m,炉子内壁全部衬砌优质铬镁砖。炉顶为倾斜的平板钢壳,内衬带钢纤维的高铝质浇注料,其上分别开有喷枪口、进料口、备用烧咀口和取样观察口。在炉子底部则分别开有相互成90゜角的锡排放口和渣排放口,渣口比锡口高出200mm。 熔炼过程中,经润湿混捏的物料从炉顶进料口加入熔池,燃料(粉煤)和燃烧空气

3组主要气化工艺及8种典型气化炉图文详解

组主要气化工艺及种典型气化炉图文详解 中国耐火材料网 一、气化简介 气化是指含碳固体或液体物质向主要成分为和的气体的转换。所产生的气体可用作燃料或作为生产诸如或甲醇类产品的化学原料。 气化的限定化学特性是使给料部分氧化;在燃烧中,给料完全氧化,而在热解中,给料在缺少的情况下经过热降解。 气化的氧化剂是或空气和,一般为蒸汽。蒸汽有助于作为一种温度调节剂作用;因为蒸汽与给料中的碳的反应是吸热反应(即吸收热)。空气或纯的选择依几个因素而定,如给料的反应性、所产生的气体用途和气化炉的类型。 气化最初的主要应用是将煤转化成燃料气,用于民用照明和供暖。虽然在中国(及东欧)气化仍有上述用途,但在大多数地区,由于可利用天然气,这种应用已逐渐消亡。最近几十年中,气化主要用于石化工业,将各种碳氢化合物流转换成"合成气",如为制造甲醇,为生产提供或为石油流氢化脱硫或氢化裂解提供。另外,气化更为专门的用途还包括煤转换为合成汽车燃料(在南非应用)和生产代用天然气()(至今未有商业化应用,但在年代末和年代初已受到重视)。 二、气化工艺的种类 有多种不同的气化工艺。这些工艺在某些方面差别很大,例如,技术设计、规模、参考经验和燃料处理。最实用的分类方法是按流动方式分,即按燃料和氧化剂经气化炉的流动方式分类。 正像传统固体燃料锅炉可以划分成三种基本类型(称为粉煤燃烧、流化床和层燃),气化炉分为三组:气流床、流化床和移动床(有时被误称为固动床)。流化床气化炉完全类似于流化床燃烧器;气流床气化炉的原理与粉煤燃烧类似,而移动床气化炉与层燃类似。每种类型的特性比较见表。

* 如果在气化炉容器内有淬冷段,则温度将较低。 .气流床气化炉 在一台气流床气化炉内,粉煤或雾化油流与氧化剂(典型的氧化剂是氧)一起汇流。气流床气化炉的主要特性是其温度非常高,且均匀(一般高于℃),气化炉内的燃料滞留时间非常短。由于这一原因,给进气化炉的固体必须被细分并均化,就是说气流床气化炉不适于用生物质或废物等类原料,这类原料不易粉化。气流床气化炉内的高温使煤中的灰溶解,并作为熔渣排出。气流床气化炉也适于气化液体,如今这种气化炉主要在炼油厂应用,气化石油原料。 现在,运营中的或在建的几乎所有煤气化发电厂和所有油气化发电厂都已选择气流床气化炉。气流床气化炉包括德士古气化炉、两种类型的谢尔气化炉(一种是以煤为原料,另一种以石油为原料)、气化炉和气化炉。其中,德士古气化炉和谢尔油气化炉在全世界已有部以上在运转。 .流化床气化炉 在一个流化床内,固体(如煤、灰)悬浮在一般向上流动的气流中。在流化床气化炉内,气体流包含氧化介质(一般是空气而非)。流化床气化炉的重要特点(像流化床燃烧器一样)是不能让燃料灰过热,以至熔化粘接在一起。假如燃料颗粒粘在一起,则流化床的流态化作用将停滞。空气作为氧化剂的作用是保持温度低于℃。这表示流化床气化炉最适合用比较易反应的燃料,如生物质燃料。 流化床气化炉的优点包括能接受宽范围的固体供料,包括家庭垃圾(经预先适当处理的)和生物质,如木柴,灰份非常高的煤也是受欢迎的供料,尤其是那些灰熔点高的煤,因为其他类型的气化炉(气流床和移动床)在熔化灰形成熔渣中损失大量能。 流化床气化炉包括高温温克勒(),该气化炉由英国煤炭公司开发,目前由能源有限公司()销售,作为吹空气气化联合循环发电()的一部分。在运转的大型流化床气化炉相对较少。流化床气化炉不适用液体供料。 .移动床气化炉 在移动动床气化炉里,氧化剂(蒸汽和)被吹入气化炉的底部。产生的粗燃料气通过固体燃料床向上移动,随着床底部的供料消耗,固体原料逐渐下移。因此移动床的限定特性是逆向流动。在粗燃料气流经床层时,被进来的给料冷却,而给料被干燥和脱去挥发分。因此在气化炉内上下温度显着不同,底部温度为℃或更高,顶部温度大约℃。燃料在气化过程中脱除挥发分意味着输出的燃料气含有大量煤焦油成分和甲烷。故粗燃料气在出口处用水洗来除去焦油。其结果是,燃料气不需要在合成气冷却器中来高温冷却,假如燃料气来自气流反应器,它就需冷却。移动床气化炉为气化煤而设计,但它也能接受其他固体燃料,比如废物。

垃圾焚烧电厂二恶英减排技改实例

垃圾焚烧电厂二噁英减排工作实例 汪嘉涛1胡津烽2 1、2.杭州绿能环保发电有限公司,浙江杭州 310053 摘要:本文通过总结公司多年来在二噁英减排方面的一些工作经验,说明了二噁英减排工作的成效,为垃圾焚烧行业的二噁英减排提供参考。 关键词;垃圾焚烧、二噁英、减排 一.公司简介 杭州绿能环保发电项目于1999年开始筹建,工程按“一次规划、分期建设”的原则建设,一期工程设计日处理生活垃圾450吨。一期工程项目设置三台日本三菱重工制造的150吨/日马丁逆推式生活垃圾焚烧炉以及由杭州锅炉集团和日本三菱重工合作生产的相配套的余热锅炉,并且配置了一台7.5 MW的汽轮发电机组,烟气处理系统采用了循环流化反应+活性炭喷射+布袋除尘+尾气在线检测的半干式循环流化烟气处理装置。我公司(杭州绿能环保发电有限公司)于2002年9月接手项目工作,经过约两年的建设,一期工程项目于2004年10月建成投运,投运以来所有的环保排放指标均符合《生活垃圾焚烧污染控制标准GB18485-2001》的标准。 二.减排背景 2009年下半年广州市番禺垃圾焚烧项目的群体事件在全国范围内造成很大的影响,同时网络等媒介上对以焚烧方式处理垃圾的质疑越来越多,公众对垃圾焚烧日益关注,其焦点就集中于“二噁英”及其对环境的危害。2012年,国家环保部开始准备对生活垃圾焚烧污染控制标准进行修改,其中拟大幅度提高对烟气中二噁英排放限值的要求。 针对上述情况,也出于公司从事此行业应承担的社会责任,在国家相

关要求未改变时我们从2012年开始就着手开展了二噁英减排工作。 三.减排工作实施 (一)技术路线的确定 图1 减排技术路线图 工作开展初期,我们就二噁英的减排工作组织技术人员对国内外多种二噁英治理工艺进行了调研,结合公司的实际情况确定了减排的技术路线,如图1所示。 技术路线整体分两个部分:一是在二噁英生成阶段,通过控制生活垃圾焚烧过程中一氧化碳的含量,减少二噁英类物质的生成;二是在烟气处理阶段,通过技术改造来提高二噁英的去除效果,达到二噁英减排的目的。 由于我公司厂区布局的局限性,无法在焚烧线的烟气处理系统中新增加工艺设备,故我们最终选择了具有二噁英催化降解功能的滤袋作为烟气处理阶段二噁英减排的主要手段。这种新型滤袋上附有催化剂,可在165℃~260℃时对烟气中的二噁英类物质进行催化降解;同时根据多年的经验,我们认为细颗粒的粉末对二噁英类物质具有一定的吸附作用,因此决定对原半干法脱硫系统进行改造。 (二)运行管理的措施 城市生活垃圾焚烧过程中二噁英的生成量与燃烧的状态有直接关系,因此可以通过控制燃烧状态来抑制二噁英的生成。生活垃圾焚烧厂通常采

工业锅炉节能技术及应用

工业锅炉节能技术及应用 摘要:工业锅炉在能源供应方面发挥重要的作用,负责工业领域内的供热、供水,工业锅炉在能量供应的过程中,同样需要消耗能源。我国工业锅炉能源的消 耗量非常高,而且引发了严重的环境污染,面对工业锅炉的消耗状态,必须落实 节能减排技术的应用,最大程度的降低工业锅炉中的能源投入,做好节能、环保 的工作,推进工业锅炉的绿色化发展。 关键词:工业锅炉;节能技术;应用发展 1.工业锅炉的节能改造 为了与发电用大型锅炉相区别,中国把容量在65t/h以下为工业生产供热、 为建筑物供暖的锅炉称之为工业锅炉。据1998年工业普查统计,全国工业锅炉 保有量为52万台,其中70%是蒸汽锅炉,其余是热水锅炉,年耗燃料约4亿吨 标准煤。工业锅炉型式各异,主要是层燃锅炉,高效低污染宽煤种的循环流化床 锅炉为数很少。 由于种种原因,如结构设计不合理,制造质量不良,辅机配套不协调,可用 煤种与设计不符,运行操作不当等,都会造成锅炉出力不足、热效率低下和输出 参数不合格等问题,结果是能源消耗量过大,甚至不能满足生产要求。对于半新 以下的锅炉,采取技术改造措施即可解决问题,经济合理;对于接近寿命期的锅炉,则以更新为佳。究竟采取何种措施,应以技术先进、成熟,经济合理为原则。 1.1给煤装置改造 层燃锅炉都是燃用原煤,其中占多数的是链条炉排锅炉,原有的斗式给煤装置,使得块、末煤混合堆实在炉排上,阻碍锅炉进风,影响燃烧。将斗式给煤改 造成分层给煤,即使,重力筛选将原煤中块、末自下而上松散地分布在炉排上, 有利于进风,改善了燃烧状况,提高煤的燃烧率,减少灰渣含碳量,可获得 5%~20%的节煤率,节能效果视改前炉况而异,炉况越差,效果越好。投资很少,回收很快。 1.2燃烧系统改造 对于链条炉排锅炉,燃烧系统技术改造是从炉前适当位置喷入适量煤粉到炉 膛的适当位置,使之在炉排层燃基础上,增加适量的悬浮燃烧,可以获得10%左 右的节能率。但是,喷入的煤粉量、喷射速度与位置要控制适当,否则,将增大 排烟黑度,影响节能效果。 1.3炉拱改造 链条炉排锅炉的炉拱是按设计煤种配置的,有不少锅炉不能燃用设计煤种, 导致燃烧状况不佳,直接影响锅炉的热效率,甚至影响锅炉出力。按照实际使用 的煤种,适当改变炉拱的形状与位置,可以改善燃烧状况,提高燃烧效率,减少 燃煤消耗,现在已有适用多种煤种的炉拱配置技术。这项改造可获得10%左右的 节能效果。 1.4锅炉辅机节能改造 燃煤锅炉的主要辅机――鼓风机和引风机的运行参数,与锅炉的热效率和耗 能量直接相关,用适当的调速技术,按照锅炉的负荷需要调节鼓风量、引风量, 维持锅炉运行在最佳状况,一方面可以节约锅炉燃煤,又可以节约风机的耗电, 节能效果是很好的。 1.5层燃锅炉改造成循环流化床锅炉 循环流化床锅炉是煤粉在炉膛内循环流化燃烧,所以,它的热效率比层燃锅

有色冶炼行业冶炼炉型_及其需要使用的耐火材料介绍

有色冶炼行业冶炼炉型及其需要使用的耐火材料介绍 一鼓风炉 鼓风炉广泛应用于铜、铅、铅锌、锑等金属的粗炼过程。鼓风炉由炉顶、炉身、本床(也称咽喉口)、炉缸、风口装置等组成。冶炼炉料(精矿、烧结矿等)、焦炭、熔剂、反料等固体物料,从炉顶加入,炉身下部侧面风口装置中鼓入的高压空气,在向上走的过程中,与向下的物料进行熔化、氧化、还原等反应,完成冶炼过程,液态金属、锍、炉渣从炉子下部的咽喉口或炉缸排出,烟气、烟尘、气态金属或金属氧化物从炉顶烟气出口排出。目前多为密闭炉顶,炉身为全水套,耐火材料只在咽喉口和炉缸使用,因其炉渣属碱性炉渣,故咽喉口部分主要用镁砖、镁铬砖、铝铬砖;炉缸侧壁和炉底上部用镁砖、镁铬砖、铝铬砖;炉底砌成反拱形。二反射炉 反射炉有熔炼反射炉和精炼反射炉,其结构形式基本相同只是精炼反射炉规格较小。为长方形炉体,生产是连续的,反射炉炉头操作温度一般为1400~1500℃,出炉烟气温度一般为1150~1200℃。炉底由下而上依次为石棉板、保温砖层、粘土砖层、镁铝砖或镁砖层。炉墙多采用镁铝砖或镁砖,有些重要部位为了延长使用寿命均采用镁铬砖砌筑,外墙一般采用粘土砖。炉顶采用吊挂式炉顶,小型反射炉炉顶采用砖拱,拱顶材质为镁铝砖。 我国炼铅(铜)工厂大多采用传统的烧结—鼓风炉熔炼流程,由于它存在着以下缺陷: a、烧结过程中硫燃烧很不充分,返回料比率高; b、鼓风炉炉料中铅(铜)含量低; c、大量烟气污染环境。 因而人们一直在努力探索炼铅新工艺,其目的不外乎两个方面: 1、利用反应热进行熔炼; 2、用一步法工艺代替原来的多步法。 国外已成功地研究出艾萨炉(奥斯麦特炉)、卡尔多炉、QSL法、基夫赛特法、悉罗法、富氧炼铅炉等新型炼铅炉和新工艺。 三艾萨炉(奥斯麦特炉) 艾萨炉炉体为简单的竖式圆筒形,其技术核心是采用了浸没式顶吹燃烧喷枪,在多年小规模试验研究基础上,芒特&8226;艾萨冶炼厂于1983年建成了一个处理量为5T/H的炼铅艾萨炉。溶池温度1170~1200℃艾萨熔炼工艺过程:炉体为具有耐火材料衬里的垂直圆柱体喷枪从炉顶中心插入炉内,喷枪头部浸没在熔池的熔渣层内,冶炼工艺所需的空气或者富氧空气通过喷枪送到渣面以下液态层中形成强烈搅 动状态的熔池,炉料从炉顶加入直接落入处于强烈搅动的熔池,快速被卷入熔体与吹入的氧反应,炉料被迅速熔化,生成炉渣和铅(铜)。 由于艾萨炉炼铅(铜)工艺特点是物料混合时间很短,熔融金属、渣、酸气在炉子内发生强烈搅拌,因而也决定了其工作环境比传统炼铅(铜)法苛刻得多: a、熔融铅(铜)、熔渣以及酸气对耐火炉衬的强烈冲刷; b、铳对耐火炉衬的化学侵蚀、渗透; c、热应力破坏。 因此,艾萨炉铅(铜)冶炼耐火材料炉衬必须具有以下优良使用性能,才能实现炉窑长寿、高效、低耗等目的: a、具有较高的常温、高温耐压强度,较低的气孔率以抵抗物料和熔融金属、渣的冲刷; b、用优质高纯原料制作,产品中低熔物很少,能有效抵御环境与炉衬发生化学反应而变质损毁并提高抗渗透性; c、具有优质的热震稳定性能,受热应力(温度变化产生的应力破坏轻微)。 艾萨炉各部位的耐耐火材料配置 1 炉底 炉底一般为反拱,向放出口倾斜约2%,也可是平底,同样向放出口倾斜2%,内衬分三层:上面工作层用电熔再结合镁铬砖、半再结合镁铬砖;工作层下面为镁铬质捣打料;最下面是低气孔粘土砖。 2 炉墙 炉墙工作条件非常恶劣,下部(距炉底1000~2000mm的范围)受到了强烈搅动的熔体侵蚀、冲刷,因此采用耐高温、耐冲刷、抗侵蚀性能好的电熔再结合镁铬砖或半再结合镁铬砖。 上部受喷溅熔渣的侵蚀和高温烟气的冲刷也宜采用炉 墙下部同材质或抗渣蚀能弱的直接结合镁铬砖。 3 炉顶 由于炉顶结构复杂,工作条件恶劣,宜用施工方便、耐侵蚀的镁铬浇注料,为增加其抗剥落性能,可在其中加入部分耐热钢纤维。 四卡尔多炉 卡尔多炉用耐火材料损毁的主要因素及对耐火材料的 要求和艾萨炉(奥斯麦特炉)相同。 卡尔多炉又称氧气斜吹转炉,由于炉体倾斜而且旋转, 增加了液态金属和液态渣的接触,提高了反应效率。由于炉体旋转,炉体受热均匀,侵蚀均匀,有利于延长炉子寿命。由于使用了氧气,熔炼和吹炼都在同一炉内进行,故强化了熔 炼过程,缩短了流程,且提高了烟气中SO2浓度。 正确地选择炉子内膛形状及尺寸,对于卡尔多炉冶炼过程化学反应的顺利进行,减少喷溅,减轻炉底侵蚀,制造及安装方便是很重要的。吹炼是在1100~1300℃左右的高温中进行的,所以为保证一定的炉子寿命,必须选择合理的炉衬材质,并确定严格的砌筑方法。 卡尔多炉炉衬由电熔半再结合镁铬砖、直接结合镁铬砖、镁砂和耐火纤维毡组成, 电熔半再结合镁铬砖在吹炼过程中直接与炉内液体金属、液态炉渣和炉气接触,受到强烈的化学侵蚀和机械冲刷;在炉体旋转过程中由于炉衬的自重作用而不断地产生应力改变;电熔半再结合镁铬耐火材料的

垃圾焚烧炉原理

垃圾焚烧炉原理 垃圾通过相关的控制和操作后,垃圾进入焚烧炉,必须经过干燥、燃烧和燃烬三个阶段,其中的有机物在高温下完全燃烧,生成二氧化碳气体,释放热量。但是,在实际的燃烧过程中,由于焚烧炉内的燃烧条件不可能达到理想效果,致使燃烧不完全。严重的情况下将会产生大量的黑烟,并且从焚烧炉排出的炉渣中还含有有机可燃物。生活垃圾焚烧的影响因素包括:生活垃圾的性质、停留时间、温度、湍流度、空气过量系数及其他因素。其中,停留时间、温度及湍流度称为“3T”要素,是反映焚烧炉运行性能的主要指标。针对垃圾的性质、停留时间、温度、湍流度和过量空气系数进行分析,并用于指导垃圾焚烧炉运行管理和操作。 一.生活垃圾的性质 生活垃圾的热值、组成成分及外形尺寸是影响生活垃圾焚烧的主要因素。热值越高,燃烧过程越易进行,焚烧效果也就越好。生活垃圾组成成分的尺寸越小,单位质量或体积生活垃圾效果越好,燃烧越完全;反之,传质及传热效果较差,易发生不完全燃烧。进厂垃圾在贮坑内停留一定的时间,通过自然压缩及部分发酵作用,以提高进炉垃圾的热值,改善垃圾的焚烧效果,同时亦是垃圾焚烧好坏的关键所在。 合理贮存让垃圾充分发酵和干燥 进厂生活垃圾并不是直接送入垃圾焚烧炉,而是必须经过贮存这一道工序。设置垃圾贮坑,一是贮存进厂垃圾,起到对垃圾数量的调节作用;二是对垃圾进行搅拌、混合、脱水等处理,起到对垃圾性质的调节作用。另外,进厂垃圾在贮坑内停留一定的时间,通过自然压缩及部分发酵作用,可以减低垃圾的含水量,以提高进炉垃圾的热值,改善垃圾的焚烧效果。生活垃圾在贮坑内停留时间为3~5天较为合适,气温低和湿度大的可以适当延长停留时间。 二.停留时间 停留时间有两方面的含义:一是生活垃圾在焚烧炉内的停留时间,它是指生活垃圾从进炉开始到焚烧结束,炉渣从炉中排出所需的时间;二是生活垃圾焚烧烟气在炉中的停留时间,它是指生活垃圾焚烧产生的烟气从生活垃圾中逸出到排出二燃室所需的时间。实际操作过程中,生活垃圾在炉中的停留时间必须大于理论上干燥、热分解及燃烧所需的总时间。同时,焚烧烟气在炉中的停留时间应保证烟气中气态可燃物达到完全燃烧。当其他条件保持不变时,停留时间越长,焚烧效果越好,但停留时间过长会使焚烧炉的处理量减少,停留时间过短会引起垃圾燃烧不完全。所以,停留时间的长短应由具体情况来定。 合理调整垃圾在炉内的停留时间 垃圾种类的不同,在炉内的停留时间也不一致。司炉必须根据垃圾的干燥程度、种类和焚烧效果,合理调整停留时间才能让垃圾稳定燃烧和彻底焚烧。垃圾进入锅炉后首先利用炉膛热量在第一级炉排上干燥,然后在第二、三级炉排上焚烧,最后在四级炉排上燃尽。各级炉排的停留时间太长影响垃圾处理量,太短又影响垃圾焚烧效果。经过笔者一年多生产经验

(工艺技术)世界炼铜工艺的新秀

世界炼铜工艺的新秀 ——氧气底吹炼铜工艺简介 东营方圆有色金属有限公司 1.前言 1991—1992年,湖南水口山矿务局和北京有色金属设计研究总院等单位在日处理3-5 t炉料,年产3千吨粗铜的炉子上进行了连续217天的半工业试验,先后处理了铜精矿,铜精矿与含金硫精矿混合矿的熔炼,取得了较好的技术经济指标。1994年获得国家发明专利。 2005年,我国东营方圆有色金属有限公司(以下简称方圆公司)决定采用氧气底吹炼铜新工艺,生产规模是年产10万吨粗铜,年处理矿量达到50万吨,为我国科技成果的产业化进行工业化试验。经过论证、设计、施工于2008年投产运行。【2009年】9号文国务院正式将该项目列入“关于发挥科技支撑作用,促进经济平稳较快发展的意见”中,将该技术列入“十一五”支撑计划重点督导实施。 2009年10月27日,中国有色金属工业协会(以下简称有色协会)在东营市召开了氧气底吹炼铜技术交流会,会上康义会长发表了重要讲话,会后有色协会正式发文指出:“氧气底吹熔炼多金属捕集新工艺是我国自主研发的、具有自主知识产权、在铜熔炼领域的重大技术创新成果,是世界先进的铜熔炼新技术之一”。 2010年8月29日,有色协会组织业内专家对该项目进行科技成果鉴定,其中明确指出:“该项目是自主创新的一种强化熔池熔炼

新工艺,该项目技术先进,经济和社会效益显著,整体达到国际领先水平”。 2010年12月30日该项目荣获有色协会科学技术进步一等奖。 2011年1月12日该项目荣获山东省科学技术进步一等奖。 2011年4月国家科技部组织专家对该项目进行了技术验收。 2010年6月在德国汉堡举行的2010年国际铜业会议上和2011年6月在德国杜塞尔多夫举行的第六届欧洲有色金属国际会议上分别介绍了氧气底吹炼铜工艺的生产运行和进展,受到了与会同行们的关注与好评。 2010年10月世界著名的产铜企业——智利Codelo公司在它的宣传招贴广告中正式将氧气底吹炼铜新工艺列为第四代铜熔池熔炼技术。(见图1) 图1铜发展冶炼史 2.熔池熔炼的发展

相关文档
最新文档