光致发光原理

光致发光原理
光致发光原理

体依赖外界光源进行照射,从而获得能量,产生激发导至发光的现象,它大致经过吸收、能量传递及光发射三个主要阶段,光的吸收及发射都发生于能级之间的跃迁,都经过激发态。而能量传递则是由于激发态的运动。紫外辐射、可见光及红外辐射均可引起光致发光。如磷光与荧

产生激发态的分布按能量的高低可以分为三个区域。低于禁带宽度的激发态主要是分立中心的激发态。关于这些激发态能谱项及其性质的研究,涉及到杂质中心与点阵的相互作用,可利用晶体场理论进行分析。随着这一相互作用的加强,吸收及发射谱带都由窄变宽,温度效应也由弱变强,特别是猝灭现象变强,使一部分激发能变为点阵振动。在相互作用较强的情况下,激发态或基态都只能表示中心及点阵作为一个统一系统的状态。通常用位形坐标曲线[1]表示。电子跃迁一般都在曲线的极小值附近发生。但是,近年关于过热发光的研究,证明发光也可以从比较高的振动能级起始,这在分时光谱中可得到直观的图像,反映出参与跃迁的声子结构。

接近禁带宽度的激发态是比较丰富的,包括自由激子、束缚激子及施主-受主对等。当激发密度很高时,还可出现激子分子,而在间接带隙半导体内甚至观察到电子-空穴液滴。激子又可以和能量相近的光子耦合在一起,形成电磁激子(excitonic polariton)。束缚激子的发光是常见的现象,它在束缚能上的微小差异常被用来反映束缚中心的特征。在有机分子晶体中,最低的电子激发态是三重激子态,而单态激子的能量几乎是三重态激子能量的两倍。分子晶体中的分子由于近邻同类分子的存在,会出现两种效应:“红移”(约几百cm)及“达维多夫劈裂”。这两种效应对单态的影响都大于对三重态的影响。

能量更高的激发态是导带中的电子,包括热载流子所处的状态。后者是在能量较高的光学激发下。载流子被激发到高出在导带(或价带)中热平衡态的情况,通常可用电子(或空穴)温度(不同于点阵温度)描述它们的分布。实验证明,热载流子不需要和点阵充分交换能量直至达到和点阵处于热平衡的状态即可复合发光,尽管它的复合截面较后者小。热载流子也可在导带(或价带)内部向低能跃迁。这类发光可以反映能带结构及有关性质。

激发态的运动是发光中的重要过程,能量传递是它的一个重要途径。分子之间的能量传递几率很大,处于激发态的分子被看作是激子态。无机材料中的能量传递也非常重要,在技术上已得到应用。无辐射跃迁是激发态弛豫中的另一重要途径。对发光效率有决定性的影响。

应用

光致发光最普遍的应用为日光灯。它是灯管内气体放电产生的紫外线激发管壁上的发光粉而发出可见光的。其效率约为白炽灯的5倍。此外,“黑光灯”及其他单色灯的光致发光广泛地用于印刷、复制、医疗、植物生长、诱虫及装饰等技术中。上转换材料则可将红外光转换为可见光,可用于探测红外线,例如红外激光的光场等。

光致发光可以提供有关材料的结构、成分及环境原子排列的信息,是一种非破坏性的、灵敏度高的分析方法。激光的应用更使这类分析方法深入到微区、选择激发及瞬态过程的领域,使它又进一步成为重要的研究手段,应用到物理学、材料科学、化学及分子生物学等领域,逐步出现新的边缘学科。

光致发光原理

体依赖外界光源进行照射,从而获得能量,产生激发导至发光的现象,它大致经过吸收、能量传递及光发射三个主要阶段,光的吸收及发射都发生于能级之间的跃迁,都经过激发态。而能量传递则是由于激发态的运动。紫外辐射、可见光及红外辐射均可引起光致发光。如磷光与荧 产生激发态的分布按能量的高低可以分为三个区域。低于禁带宽度的激发态主要是分立中心的激发态。关于这些激发态能谱项及其性质的研究,涉及到杂质中心与点阵的相互作用,可利用晶体场理论进行分析。随着这一相互作用的加强,吸收及发射谱带都由窄变宽,温度效应也由弱变强,特别是猝灭现象变强,使一部分激发能变为点阵振动。在相互作用较强的情况下,激发态或基态都只能表示中心及点阵作为一个统一系统的状态。通常用位形坐标曲线[1]表示。电子跃迁一般都在曲线的极小值附近发生。但是,近年关于过热发光的研究,证明发光也可以从比较高的振动能级起始,这在分时光谱中可得到直观的图像,反映出参与跃迁的声子结构。 接近禁带宽度的激发态是比较丰富的,包括自由激子、束缚激子及施主-受主对等。当激发密度很高时,还可出现激子分子,而在间接带隙半导体内甚至观察到电子-空穴液滴。激子又可以和能量相近的光子耦合在一起,形成电磁激子(excitonic polariton)。束缚激子的发光是常见的现象,它在束缚能上的微小差异常被用来反映束缚中心的特征。在有机分子晶体中,最低的电子激发态是三重激子态,而单态激子的能量几乎是三重态激子能量的两倍。分子晶体中的分子由于近邻同类分子的存在,会出现两种效应:“红移”(约几百cm)及“达维多夫劈裂”。这两种效应对单态的影响都大于对三重态的影响。 能量更高的激发态是导带中的电子,包括热载流子所处的状态。后者是在能量较高的光学激发下。载流子被激发到高出在导带(或价带)中热平衡态的情况,通常可用电子(或空穴)温度(不同于点阵温度)描述它们的分布。实验证明,热载流子不需要和点阵充分交换能量直至达到和点阵处于热平衡的状态即可复合发光,尽管它的复合截面较后者小。热载流子也可在导带(或价带)内部向低能跃迁。这类发光可以反映能带结构及有关性质。 激发态的运动是发光中的重要过程,能量传递是它的一个重要途径。分子之间的能量传递几率很大,处于激发态的分子被看作是激子态。无机材料中的能量传递也非常重要,在技术上已得到应用。无辐射跃迁是激发态弛豫中的另一重要途径。对发光效率有决定性的影响。 应用 光致发光最普遍的应用为日光灯。它是灯管内气体放电产生的紫外线激发管壁上的发光粉而发出可见光的。其效率约为白炽灯的5倍。此外,“黑光灯”及其他单色灯的光致发光广泛地用于印刷、复制、医疗、植物生长、诱虫及装饰等技术中。上转换材料则可将红外光转换为可见光,可用于探测红外线,例如红外激光的光场等。 光致发光可以提供有关材料的结构、成分及环境原子排列的信息,是一种非破坏性的、灵敏度高的分析方法。激光的应用更使这类分析方法深入到微区、选择激发及瞬态过程的领域,使它又进一步成为重要的研究手段,应用到物理学、材料科学、化学及分子生物学等领域,逐步出现新的边缘学科。

初中物理教案:灯泡发光原理

初中物理教案:灯泡发光原理一,课时安排: 一课时 二,重点,难点: 本节课的重点是认识简单电路,并能动手连接简单电路和学会画电路图。在科学探究能力方面,重点是经历从实验中归纳结论的过程,形成安全操作的初步意识。让学生较规范的画出电路图是难点。 三,教材分析: 本节包括三部分知识:电路的组成:通路、开路和短路;电路图 电路的组成主要包括电路的组成部分有哪些和各部分元件的作用,通路、开路和短路部分,主要是认识这三种电路的.状态和短路的危害。电路图部分,要首先认识几种常用的电路元件及其符号,知道什么叫电路图,并根据实物画电路图。 四,课标要求: 通过实验探究了解电路的组成,形成电路的概念,通过实验探究培养学生的分析归纳能力,竞争与合作精神,安全操作意识。了解通路、开路和短路,认识短路和危害。通过实物认识电路元件及其符号,会读、会画简单的电路图。

五,措施与建议: 首先通过实验探究引出了电路的组成,学生会根据他的生活经验,选择使灯发光的器材,并连接,这样可激发学生的学习兴趣。组织学生交流与讨论得出电路的组成。通过“加油站”,了解电池的正、负极,以及电流的形成和方向。 通路、开路和短路部分,柯让学生通过实物连接加深认识,特别是短路的危害。 电路图部分,一定要让学生会学生会画电路元件符号,强调规范电路图的注意事项,让学生练习,根据实物图,画出电路图。 六,教学目标: 1,了解电路的组成,形成电路的概念。 2、了解通路、开路、短路,认识短路的危害。 3、认识电路元件及其符号,会读、会画简单的电路图。。 4、通过实验探究培养学生的分析归纳能力,竞争意识与合作精神,安全操作意识。 七,教学准备: 演示用器材:两节干电池、电路板、灯座,两个小灯泡、开关、导线若干、蓄电池、电路图符号挂图。 学生用器材:一节干电池、电路板、灯座、小灯泡、开关、导线若干。 八,教学过程:

电致发光及原理

电致发光及原理 电致发光ElectroluminescenceEL是物质在一定的电场作用下被相应的电能所激发而产生的发光现象。电致发光EL是一种直接将电能转化为光能的现象。早在20世纪初虞瑟福就发现了SiC晶体在电场作用下的发光。电致发光作为一种平面光源引起了人们的极大爱好。人们企图实现照明光源从点光源、线光源到面光源的革命。自从无机发光板硫化锌和磷砷化镓化合物发明以来电致发光已被广泛应用在很多领域取得了令人瞩目的成就。尽管粉末电致发光现象早在1937年就被发现但直到50年代将硫化锌和有机介质涂敷在透明导电玻璃上再做上第二电极加上交流电压才实现稳定的电致发光。人们逐渐把目光投向了性能更为优良的新一代平板显示器件工艺更简单的新型有机电致发光器件OLED。 1.电致发光材料从发光材料角度可将电致发光分为无机电致发光和有机电致发光。无机电致发光材料一般为等半导体材料。有机电致发光材料依占有机发光材料的分子量的不同可以区分为小分子和高分子两大类。小分子OLED材料以有机染料或颜料为发光材料高分子OLED材料以共轭或者非共轭高分子聚合物为发光材料典型的高分子发光材料为PPV及其衍生物。有机电致发光材料依据在OLED器件中的功能及器件结构的不同又可以区分为空穴注进层HIL、空穴传输层HTL、发光层EML、电子传输层ETL、电子注进层EIL等材料。其中有些发光材料本身具有空穴传输层或者电子传输层的功能这样的发光材料也通常被称为主发光体发光材料层中少量掺杂的有机荧光或者磷光染料可以接受来自主发光体的能量转移和经过载流子捕捉carriertrap的机制而发出不同颜色的光这样的掺杂发光材料通常也称为客发光体或者掺杂发光体英文用Dopant表示。从发光原理角度电致发光可以分为高场电致发光和低场电致发光。 2.电致发光的原理和器件结构从发光原理电致发光可以分为高场电致发光和低场电致发光。高场电致发光是一种体内发光效应。发光材料是一种半导体化合物掺杂适当的杂质引进发光中心或形成某种介电状

道路照明设计.

目录 一设计目的 (2) 二设计要求 (2) 三关键字 (2) 四设计内容 (3) 五具体步骤 (3) <1> 道路照明的国家标准 (3) <2> 道路照明的细节要求 (4) <3> 主干道照明的有关曲线图表分析 (6) <4> 次干道照明的有关曲线图表分析 (16) 参考文献资料

一:设计目的 通过对道路照明的设计首先应该学习道路照明光源种类、结构,能够根据不同的道路类型选择合适的光源;其次应用《光源原理与设计》中的理论知识来解决实际问题,对理论知识进一步的加强和巩固; 二:设计要求 1、学习DIALUX软件; 2、列出道路照明的国标,选择合适的光源及灯具; 3、道路级别有:快速路、主干路通向大型公共建筑的政府机关的 主要道路、次干路、支路,要求至少选择两种; 4、设计中应列出照明器具表、灯具的配光曲线图、渲染过后的效 果图、照度图等。 三:关键字 道路光源照度配光金属卤化物灯主干道次干道

四:设计内容 1:列出道路照明的国家标准。 2:光源灯具的选择(选用金属卤化物灯作为道路照明光源,选用单排灯具布置作为道路照明光源的排列方式)。 3:道路光源的设计(选用欧司朗单端金属卤化物灯HQI-BT 400W/D)。 4:有关参数的测试(光源的配光曲线、照度图,和每条道路的测光结果)。 五:具体步骤 <1>:道路照明的国家标准(如表1) 道路照明的国家标准(CJJ45-2006) 道路级别道路亮度(cd/cm2)路面照度(lx)炫光 限制 TI(%) 最大 初始 值环境比SR 最小值 平均亮度Lav(维持值) 总均 匀度 Uo最 小值 纵向 均匀 度Ul 最小 值 平均照 度Eav 维持值 (沥青 路面) 均匀度 Ue最小 值 快速路 1.5/ 2 0.4 0.7 20/30 0.4 10 0.5 主干路通向大型公共建筑和政府机关的主要道路,市中心和商业中心的道路1.5/ 2 0.4 0.7 20/30 0.4 10 0.5 次干路0.75 /1 0.4 0.5 10/15 0.35 10 0.5 支路0.5/ 0.75 0.4 / 8/10 0.3 15 / (表1)

LED灯及其发光原理

LED灯及其发光原理 一、LED的结构及发光原理 50年前人们已经了解半导体材料可产生光线的基本知识,第一个商用二极管产生于1960年。LED是英文light emitting diode(发光二极管)的缩写,它的基本结构是一块电致发光的半导体材料,置于一个有引线的架子上,然后四周用环氧树脂密封,起到保护内部芯线的作用,所以LED的抗震性能好 LED结构图如下图所示 发光二极管的核心部分是由p型半导体和n型半导体组成的晶片,在p 型半导体和n型半导体之间有一个过渡层,称为p-n结。在某些半导体材料

的PN结中,注入的少数载流子与多数载流子复合时会把多余的能量以光的形式释放出来,从而把电能直接转换为光能。PN结加反向电压,少数载流子难以注入,故不发光。这种利用注入式电致发光原理制作的二极管叫发光二极管,通称LED。当它处于正向工作状态时(即两端加上正向电压),电流从LED阳极流向阴极时,半导体晶体就发出从紫外到红外不同颜色的光线,光的强弱与电流有关。 二、LED光源的特点 1. 电压:LED使用低压电源,供电电压在6-24V之间,根据产品不同而异,所以它是一个比使用高压电源更安全的电源,特别适用于公共场所。 2. 效能:消耗能量较同光效的白炽灯减少80% 3. 适用性:很小,每个单元LED小片是3-5mm的正方形,所以可以制 备成各种形状的器件,并且适合于易变的环境 4. 稳定性:10万小时,光衰为初始的50% 5. 响应时间:其白炽灯的响应时间为毫秒级,LED灯的响应时间为纳秒级 6. 对环境污染:无有害金属汞 7. 颜色:改变电流可以变色,发光二极管方便地通过化学修饰方法,调整材料的能带结构和带隙,实现红黄绿兰橙多色发光。如小电流时为红

小太阳就应当发光发热六年级写人作文

小太阳就应当发光发热六年级写人作 文 小太阳就应当发光发热六年级写人作文 XX年,在河北省秦皇岛市传送着一个“10岁男孩撑起一个家”的故事。 大大的眼睛,小小的身材,破旧的衣服,是孟祥贺给人们留下的第一印象。正是这个10岁的男孩,用自己为嫩的肩膀撑起了一片蓝天。 小祥贺曾经有一个幸福的家庭。爸妈爷奶,一家人过着平静的生活。他是家里的小太阳。 然而,那年,爸在工地摔成重伤,由于家里没钱,放弃了治疗,第二年,妈的身子不听使唤。随后,爷奶都去世了。 从此,每天早上6点,就早早的起床,给爸妈做饭,然后去上学,由于学校比较远,只带1元钱买着吃。 晚上放学后,他赶紧做饭。 一开始,他啥也不会做,总是把手弄伤。现在,

他们天天做白菜、腌萝卜。孩子实在馋了,就买点芹菜吃。别的孩子都是一来伸手饭来张口,和小祥贺怎是相差太远了。 有人问他最大的愿望是什么?他说,希望父母身体健康。问他为什莫能做到现在这样子?他说,过去我是家里的小太阳,现在需要小太阳就应该发光发热啊! 真令我们感动啊! 六年级:纆伤 小太阳就应当发光发热六年级写人作文 XX年,在河北省秦皇岛市传送着一个“10岁男孩撑起一个家”的故事。 大大的眼睛,小小的身材,破旧的衣服,是孟祥贺给人们留下的第一印象。正是这个10岁的男孩,用自己为嫩的肩膀撑起了一片蓝天。 小祥贺曾经有一个幸福的家庭。爸妈爷奶,一家人过着平静的生活。他是家里的小太阳。 然而,那年,爸在工地摔成重伤,由于家里没

钱,放弃了治疗,第二年,妈的身子不听使唤。随后,爷奶都去世了。 从此,每天早上6点,就早早的起床,给爸妈做饭,然后去上学,由于学校比较远,只带1元钱买着吃。 晚上放学后,他赶紧做饭。 一开始,他啥也不会做,总是把手弄伤。现在,他们天天做白菜、腌萝卜。孩子实在馋了,就买点芹菜吃。别的孩子都是一来伸手饭来张口,和小祥贺怎是相差太远了。 有人问他最大的愿望是什么?他说,希望父母身体健康。问他为什莫能做到现在这样子?他说,过去我是家里的小太阳,现在需要小太阳就应该发光发热啊! 真令我们感动啊! 六年级:纆伤 小太阳就应当发光发热六年级写人作文 XX年,在河北省秦皇岛市传送着一个“10岁男

白炽灯、日光灯、LED的发光原理

白炽灯、日光灯、LED的发光原理 评论:1 条查看:2240 次taoluezheLED发表于2008-01-05 14:24 1.白炽灯 根据白炽灯技术,主要有四种灯泡形式,分别为钨丝灯(tungsten-filament)、卤钨灯(tungsten halogen)、石英卤素灯(quartz halogen)及红外线反射灯 (infra-lamps,简称IR灯)。 1.1 白炽灯的发光原理 白炽灯是将电能转化为光能以提供照明的设备。其工作原理是:电首先被转化成了热,将灯丝加热至极高的温度(钨丝,熔点达3000℃多),这时候组成灯丝的元素的原子核外电子会被激发,从而使得其向较高能量的外层跃迁,当电子再次向低能量的电子层跃迁时,多余的能量便以光的形式放出来了。同时产生热量,螺旋状的灯丝不断将热量聚集,使得灯丝的温度达2000℃以上,灯丝在处于白炽状态时,就象烧红了的铁能发光一样而发出光来。灯丝的温度越高,发出的光就越亮。故称之为白炽灯。 白炽灯是由发光用的金属钨丝、与外界电源相通的电极,尾部的密封部分组成。一般将灯泡里面抽成真空或充入其它惰性气体,利用钨的熔点高的特点,将其制造成丝状,通入电流后,钨丝便发光,并有一部分电能转化为热能。在使用白炽灯时,注意不要去处接触灯泡,第一,灯泡表面温度很高,容易烫着手;第二,灯泡在工作时,钨丝在很高的温度下变软,如果晃动灯泡,容易使灯泡损坏。在刚开关刚闭合时钨丝最容易烧断。 1.2 灯丝材料 做灯丝的材料要求具有一定的电阻率、机械强度、化学稳定性和低挥发(即高熔点)。钨满足以上这些基本要求,当然这并不是说只有这一种材料,事实上还有铼,钼,钽,锇以及金属碳化物。

湘科版小学二年级科学上册教案发光发热的太阳

发光发热的太阳 【教学目标】 1.科学知识:知道太阳能够发光发热,描述太阳对动植物和人类生活有着重要影响。 2.科学探究:用观察、比较的方法,获取太阳发光发热的证据;用归纳、总结的方法,梳理关于太阳发光发热的影响的认识。 3.科学态度:初步培养学生用事实和证据说话的思维习惯。 4.让学生明白太阳的发光发热对动植物和我们都意义重大。 【教学重难点】 太阳带来光和热的证据,对动植物的影响,对人类生活的作用。 【教学准备】 教师准备:各种有关太阳发光发热的图片、录像、小的冰块。 学生准备:活动手册。 【教学过程】 一、教学导入。 太阳给我们带来了什么? 1.太阳的升起意味着白天的来临,我们开始一天的工作和学习。 2.阳光带来温暖,所以冬天晒太阳是一件幸福的事情。 二、新课学习。 (一)寻找太阳带给我们光和热的证据。 1.提问:如何证明太阳带给我们光和热? 2.生活经验的证据举例:太阳可见时,空中光线充足明亮;太阳不可见时,天空是阴暗乃至是黑暗。用手去摸阳光下与阴影中的同一个物体,冷热是不一样的。 例如:墙的光照面和阴面,用手触摸,感受到光面比较暖和,阴面比较冰冷。 需要注意的是,不同物体在同一光照下,用手感受它们的温度也是不同的。 3.讨论:列举上述证据时,需要注意什么?(注意渗透对比实验的公平性的问题,即阳光的有无)。 4.实验的证据:拿出两块同样大小的冰块,分别放在阳光下和阴影下,观察冰块的变化。 5.记录实验情况。发现:阳光下的冰块比阴影下同样的冰块融化得更快。

此处实验需要注意,两块冰块体积大小必须完全相同;阳光下和阴影下两处地方不要距离太远,以免不同的自然风会影响冰块的融化。 6.小结:太阳给我们带来了光和热。 (二)了解太阳对动植物的影响。 1.说一说:太阳发光发热对动植物的生存和生活产生了哪些影响? 2.举例。例如:晒太阳的蜥蜴、向阳的向日葵、晨起唱歌的小鸟、夜晚狩猎的猫头鹰。 向日葵的花面朝着太阳的方向移动着,这是植物对阳光作出的反应。夜晚狩猎的猫头鹰也是在夜间捕食夜间活动的小动物,与人类相反,经过长期的进化,昼伏夜出是很多动物的习性。 3.小结:动植物的生存和生活离不开太阳。 另外,随着人类城市化的发展,我们在夜间也亮了许多灯,导致一些动植物无法生存,从城市中消失。 (三)太阳和我们的生活。 1.说一说:太阳发光发热,对我们人类的生产生活产生了哪些影响? 2.举例。例如:日出而耕的农夫和耕牛、太阳能热水器、海滩边晒太阳的人、盐田中收获的食盐。 太阳能热水器将太阳光能转化为电能供人类使用;盐田晒盐是通过太阳将盐田中的水分蒸

最新光源原理 考题答案

光源原理考题答案

考试信息 ?时间:1月19日上午8:30~10:30 ?地点:HGX210 ?题型:判断, 选择, 填空, 名词解释, 简答, 计算 ?答疑:1月18日下午1:30~4:30, 电光源楼207 2009-01-08 源原理与设计, 复习要点 第一章光源的特性参量 1. 光波长的划分区域(P1) 2. 辐射度量和光度量, 以及它们之间的关系(辐射度量P1~4,光度量P8~12) (一)辐射度量 1.辐射能量Q e 定义:光源辐射出来的光(包括红外线、可见光和紫外线)的能量称为光源的辐射能量。 单位:J焦耳。

2.辐射通量(辐射功率)P e 定义:在单位时间内通过某一面积的辐射能量称为经过该面积的辐射通量,而光源在单位时 间内辐射出去的总能量就叫做光源的辐射通量。辐射通量也可称为辐射功率。单位:W瓦。 3.辐射强度I e 定义:光源在某一方向上的辐射强度I e是指光源在包含该方向的立体角Ω内发射的辐射通 量P e与该立体角Ω之比:I e=P e/Ω 单位:W/sr 当光源在空间各个方向发出的辐射通量均匀分布时,I e=P e/4π 4.辐射出(射)度M e 和辐照度E e M e 定义:一个有一定面积的光源,如果它表面上的一个发光面积S在各个方向(在半个空间内)的总辐射通量为P e,则该发光S超的辐射出(射)度为M e=P e/S 单位:W/m2 E e 定义:表示物体被辐射程度的量称为辐照度E e 。它是每单位面积上所接收到 的辐射通量数,即E e=dP e/dS’(s’表示接收器的面积元) 5.辐射量度L e 定义:光源在给定方向上的辐射亮度L e(φ,θ)是光源在该方向上的单位投影面积、在单位立体角中的辐射通量即L e(φ,θ)= P e(φ,θ)/(S*cosθ*Ω)S代表发光面的面积,θ是在给定方向和发光面法线之间的夹角,Ω是给定方向的立体角,P e(φ,θ)是在该立体角内的辐射通量。

有机电致发光显示器件基本原理与进展

有机电致发光显示器件基本原理与进展 副标题:有机电致发光显示器件基本原理与进展 发表日期: 2006-2-14 21:33:35 作者:佚名点击数5224 摘要: 本文对有机电致发光显示器件的发展历史,器件结构、工作特征、获得彩色显示的方法以及所具有的优缺点、发展现状和趋势等都做了简要的概括。详细比较了小分子OLED与聚合物PLED、OLED与LCD性质上的比较,对OLED显示的发光机理进行了详细的综述。此外,对获得彩色显示的无源驱动电路和有源驱动电路的结构进行了总结,认为有源驱动将是最终发展趋势。最后总结了国内外OLED技术的发展状况。 关键词:小分子有机电致发光有机聚合物电致发光无源驱动有源驱动 (作者:姚华文,上海华嘉光电技术有限公司,上海市嘉定区招贤路928号,201821) 有机电致发光显示(organic electroluminesence Display)技术被誉为具有梦幻般显示特征的平面显示技术,因其发光机理与发光二极管(LED)相似,所以又称之为OLED(organic light emitting diode)。2000年以来,OLED受到了业界的极大关注,开始步入产业化阶段。 1.发展历史 1936年,Destriau将有机荧光化合物分散在聚合物中制成薄膜,得到最早的电致发光器件。20 世纪50年代人们就开始用有机材料制作电致发光器件的探索,A. Bernanose等人在蒽单晶片的两侧加上400V的直流电压观测到发光现象,单晶厚10mm~20mm,所以驱动电压较高。1963年M. Pope等人也获得了蒽单晶的电致发光。70年代宾夕法尼亚大学的He eger探索了合成金属[1]。1987年Kodak公司的邓青云首次研制出具有实用价值的低驱动电压(<10V,>1000cd/m2)OL ED器件(Alq作为发光层)[2]。1990年,Burroughes及其合作者研究成功第一个高分子EL(PLED)(PPV作为发光层),更为有机电致发光显示器件实用化进一步奠定了基础。1997年单色有机电致发光显示器件首先在日本产品化,1999年月,日本先锋公司率先推出了为汽车音视通信设备而设计的多彩有机电致发光显示器面板,并开始量产,同年9月,使用了先锋公司多色有机电致发光显示器件的摩托罗拉手机大批量上市[3]。这一切都表明,OLED技术正在逐步实用化,显示

LED光源的发光机理简介

LED光源的发光机理简介 现在随着LED产业供应连发展成熟,入门门槛低,大量小企业涌入,造成了LED产业过剩,并且由于企业产能利用率低,在市场上肯定竞争不过品牌大厂飞利浦(Philips)、欧司朗 (Osram)及GE,这些大厂通过垂直整合或策略联盟布局,积极占领LED主照明市场。无论是毛利率经过层层剥削或强敌环伺,因而小厂难逃巨大的市场压力。 中国具有丰富的有色金属资源,镓、铟储量丰富,占世界储量的70%-80%,这使我国发展半导体照明产业具有资源上的优势。到2010年,整个中国LED产业产值将超过1500亿元。日本则早在2002年耗费50亿日元推行白光照明,整个计划的财政预算为60亿日元。 随着LED的渗透急速增长速度,伴随着价格战将在2010年到来,因为LED不同于传统灯具与光源分开的销售模式,在这种压力下,有些企业无法兼顾产品品质与价格竞争力,可能会落入到并购或是被淘汰的命运。 2010年5月7日-12日,河南省照明学会组织照明专家及企业家一行赴日考察了日本照明现状,发现日本的LED照明现状并不尽如人意。 近年来,在照明领域最引人关注的事 件是半导体照明的兴起。20世纪90年代中期,日本日亚化学公司的Nakamura等人经过不懈努力,突破了制造蓝光发光二极管(LED)的关键技术,并由此开发出以荧光材料覆盖蓝光LED产生白光光源的技术。 led是LightEmittingDiode(发光二极管)的缩写。发光二极管是一种新型固态冷光源,LED的最显著特点是使用寿命长,光电转换效能高、抗震性能好、使用方便等优点,在照明系统中的应用越来越广泛。在同样照度下,LED灯的电能消耗和寿命比白炽灯和日光灯都有明显的优势。 各种白色发光方法的开发,以及新一代荧光粉的开发,已经使得LED的发光效率大幅提高,目前产业化产品已从45l m/w提高到100lm/w(到2009年,Cree公司的冷白光光效在350mA时已经超过100lm/W,而暖白光也超过75lm/W),研究水平160lm/w,目标最高水平期望达200lm/w以上。寿命4万小时至8万小时。 一、LED光源的发光机理 与白炽灯或者气体放电灯的发光原理迥然不同。LED自发性的发光是由于电子与空穴的复合而产生的。 LED是由P型半导体形成的P层和N型半导体形成的N层,以及中间的由双异质结构成的有源层组成。有源层是发光区,利用外电源向PN结注入电子,在正向偏压作用下,N区的电子将向正方向扩散,进入有源层,P区的空穴也将向负方向扩散,进入有源层,电子与空穴复合时,将产生自发辐射光。LED因其使用的材料不同,其二极管内中电子、空穴所占的能阶也有所不同,能阶的高低差影响结合后光子的能量而产生不同波长光,也就是不同颜色的光,如红、橙光、黄、绿、蓝或不可见光等。 二、白光LED 白光LED的出现为越来越多的室内室外照明工程提供了白光LED半导体照明。白光LED的光效等都有了长足的进步 ,白光LED甚至已经开始挑战传统光源的地位。 目前获得白光LED主要有两个途径:第一个是通过荧光粉转换得到白光;第二个是把不同颜色的LED芯片封装到一起,多芯片混合发出白光。对于上述两种途径,根据参与混合白光的基色光源的数目,又可分为二基色体系和多基色体系。 荧光粉转换白光LED (1)二基色荧光粉转换白光LED 二基色白光LED是利用蓝光LED芯片和YAG荧光粉制成的。一般使用的蓝光芯片是InGaN芯片,另外也可以使用AlI nGaN芯片。蓝光芯片LED配YAG荧光粉方法的优点是:结构简单,成本较低,制作工艺相对简单,不过该方法也存在若干缺点,比如蓝光LED效率不够高,致使白光LED效率较低;荧光粉自身存在能量损耗;荧光粉与封装材料随着

节能灯工作原理

节能灯工作原理 1、节能灯又叫紧凑型荧光灯(国外简称CFL灯)它是1978年由国外厂家首先发明的,由于它具有光效高(是普通灯泡的5倍),节能效果明显,寿命长(是普通灯泡的8倍),体积小,使用方便等优点,受到各国人民和国家的重视和欢迎,我国于1982年,首先在复旦大学电光源研究所成功研制SL型紧凑型荧光灯,二十年来,产量迅速增长,质量稳步提高,国家已经把它作为国家重点发展的节能产品(绿色照明产品)作为推广和使用。 现如今我们所讲的节能产品主要都是针对白炽灯来讲。普通的白炽灯光效大约在每瓦10流明左右,寿命大约在1000小时左右,它的工作原理是:当灯接入电路中,电流流过灯丝,电流的热效应,使白炽灯发出连续的可见光和红外线,此现象在灯丝温度升到700K即可觉察,由于工作时的灯丝温度很高,大部分的能量以红外辐射的形式浪费掉了,由于灯丝温度很高,蒸发也很快,所以寿命也大缩短了,大约在1000小时左右。 节能灯主要是通过镇流器给灯管灯丝加热,大约在1160K温度时,灯丝就开始发射电子(因为在灯丝上涂了一些电子粉),电子碰撞氩原子产生非弹性碰撞,氩原子碰撞后获得了能量又撞击汞原子,汞原子在吸收能量后跃迁产生电离,发出253.7nm 的紫外线,紫外线激发荧光粉发光,由于荧光灯工作时灯丝的温度在1160K左右,比白炽灯工作的温度2200K-2700K低很多,所以它的寿命也大提高,达到5000小时以上,由于它不存在白炽灯那样的电流热效应,荧光粉的能量转换效率也很高,达到每瓦50流明以上。 2、节能灯是利用气体放电的原理运作,它的术名叫自镇流荧光灯,除了白色(冷光)的外,现在还有黄色(暖光)的。一般来说,在同一瓦数之下,一盏节能灯比白炽灯节能80%,平均寿命延长8倍,热辐射仅20%。非严格的情况下,一盏5

电致发光

电致发光研究 目录 摘要 ................................................................................................................................................... I Abstract ............................................................................................................................................ II 前言 .. (1) 一、电致发光分类 (1) 1.1 结型电致发光 (1) 1.2 粉末电致发光 (2) 1.3 薄膜电致发光 (3) 二、发光器件分类 (4) 2.1 无机电致发光显示器。 (4) 2.1.1无机电致发光器件的结构 (4) 2.1.2无机电致发光应用及展望。 (6) 2.2 OLED器件 (6) 2.2.1 OLED器件的结构和原理 (6) 2.2.2 OLED发光器件结构 (7) 2.2.3 OLED发光材料的选用 (9) 2.2.4 OLED的优缺点 (10) 2.2.5 OLED器件的现状及展望 (10) 三、总结 (10) 参考文献 (12)

摘要 电致发光又可称电场发光,简称EL,是通过加在两电极的电压产生电场,被电场激发的电子碰击发光中心,而引致电子能级的跃进、变化、复合导致发光的一种物理现象。本文通过介绍结型电致发光,粉末型电致发光和薄膜型电致发光,从不同发光原理上对电致发光进行了分析和研究对比了不同类型发光的优点和缺点。而电致发光器件是基于电致发光技术的一种显示器件,本文介绍了无机电致发光和有机电致发光器件中的OLED 的发光原理,材料选用,优缺点以及电致发光器件在各方面的应用,虽然电致发光器件现在存在诸多不足,但是随着有机电致发光市场的崛起,电致发光在显示行业取得了一定的进展和市场,而且由于有机电致发光具有许多其他发光技术无法比拟的优点,OLED技术也吸引了大量的研究投入,所以技术也在不断的成熟,很多研究表明,电致发光以后将很有可能成为主流显示技术,存在于人们生产和生活的每个角落。 关键词:电致发光有机电致发光EL 器件

LED背光的结构及发光原理

赛 维公司培训资 料(保密)LED 背光的结构及发光原理 ?所谓LED 电视,就是使用LED 作为背光源的液晶电视,和传统液晶电视在技术原理上差别不大,只是采用的背光不同,传统液晶电视是CCFL 光源,LED 电视则采用LED 光源。 ? 50年前人们已经了解半导体材料可产生光线的基本知识,第一个商用二极管产生于1960年。LED 是英文light emitting diode(发光二极管)的缩写,它的基本结构是一块电致发光的半导体材料,置于一个有引线的架子上,然后四周用环氧树脂密封,起到保护内部芯线的作用,所以LED 的抗震性能好。? 发光二极管的核心部分是由p 型半导体和n 型半导体组成的晶片,在p 型半导体和n 型半导体之间有一个过渡层,称为p-n 结。在某些半导体材料的PN 结中,注入的少数载流子与多数载流子复合时会把多余的能量以光的形式释放出来,从而把电能直接转换为光能。PN 结加反向电压,少数载流子难以注入,故不发光。这种利用注入式电致发光原理制作的二极管叫发光二极管,通称LED 。当它处于正向工作状态时(即两端加上正向电压),电流从LED 阳极流向阴极时,半导体晶体就发出从紫外到红外不同颜色的光线,光的强弱与电流有关。

赛 维公司培训资料(保密)LED 光源的特点 ?LED 是点光源,CCFL 是线光源. ?电压:LED 使用低压电源,供电电压在6-50V 之间,根据产品不同而异,所以它是一个比使用高压电源更安全的电源,特别适用于公共场所。?效能:消耗能量较同光效的白炽灯减少80% ,与CCFL 相当.?适用性:体积很小,每个单元LED 小片是3-5mm 的正方形,所以可以制备成各种形状的器件,并且适合于易变的环境。?寿命:10万小时,光衰为初始的50%。?响应时间:其白炽灯的响应时间为毫秒级,LED 灯的响应时间为纳秒级。?对环境无污染:无有害金属汞。 ? 颜色:改变电流可以变色,发光二极管方便地通过化学修饰方法,调整材料的能带结构和带隙,实现红黄绿蓝橙多色发光。如小电流时为红色的LED ,随着电流的增加,可以依次变为橙色,黄色,最后为绿色。 ? 价格:LED 的价格比较昂贵

led灯的结构及发光原理(精)

led灯的结构及发光原理 50年前人们已经了解半导体材料可产生光线的基本知识,第一个商用二极管产生于1960年。LED是英文light emitting diode(发光二极管)的缩写,它的基本结构是一块电致发光的半导体材料,置于一个有引线的架子上,然后四周用环氧树脂密封,起到保护内部芯线的作用,所以LED的抗震性能好。 led灯结构图如下图所示 发光二极管的核心部分是由p型半导体和n型半导体组成的晶片,在p型半导体和n型半导体之间有一个过渡层,称为p-n结。在某些半导体材料的PN 结中,注入的少数载流子与多数载流子复合时会把多余的能量以光的形式释放出来,从而把电能直接转换为光能。PN结加反向电压,少数载流子难以注入,故不发光。这种利用注入式电致发光原理制作的二极管叫发光二极管,通称LED。当它处于正向工作状态时(即两端加上正向电压),电流从LED阳极流向阴极时,半导体晶体就发出从紫外到红外不同颜色的光线,光的强弱与电流有关。 二、什么是led光源,led光源的特点 1. 电压:LED使用低压电源,供电电压在6-24V之间,根据产品不同而异,所以它是一个比使用高压电源更安全的电源,特别适用于公共场所。 2. 效能:消耗能量较同光效的白炽灯减少80% 3. 适用性:很小,每个单元LED小片是3-5mm的正方形,所以可以制备成各种形状的器件,并且适合于易变的环境 4. 稳定性:10万小时,光衰为初始的50%

5. 响应时间:其白炽灯的响应时间为毫秒级,LED灯的响应时间为纳秒级 6. 对环境污染:无有害金属汞 7.颜色:改变电流可以变色,发光二极管方便地通过化学修饰方法,调整材料的能带结构和带隙,实现红黄绿兰橙多色发光。如小电流时为红色的LED,随着电流的增加,可以依次变为橙色,黄色,最后为绿色 8. 价格:LED的价格比较昂贵,较之于白炽灯,几只LED的价格就可以与一只白炽灯的价格相当,而通常每组信号灯需由上300~500只二极管构成。 三、单色光led灯的种类及其发展历史 最早应用半导体P-N结发光原理制成的LED光源问世于20世纪60年代初。当时所用的材料是GaAsP,发红光(λp=650nm),在驱动电流为20毫安时,光通量只有千分之几个流明,相应的发光效率约0.1流明/瓦。 70年代中期,引入元素In和N,使LED产生绿光(λp=555nm),黄光(λp=590nm)和橙光(λp=610nm),光效也提高到1流明/瓦。 到了80年代初,出现了GaAlAs的LED光源,使得红色LED的光效达到10流明/瓦。 90年代初,发红光、黄光的GaAlInP和发绿、蓝光的GaInN两种新材料的开发成功,使LED的光效得到大幅度的提高。在2000年,前者做成的LED在红、橙区(λp=615nm)的光效达到100流明/瓦,而后者制成的LED在绿色区域(λp=530nm)的光效可以达到50流明/瓦。 四、单色光LED的应用 最初LED用作仪器仪表的指示光源,后来各种光色的LED在交通信号灯和大面积显示屏中得到了广泛应用,产生了很好的经济效益和社会效益。以12 英寸的红色交通信号灯为例,在美国本来是采用长寿命,低光效的140瓦白炽灯作为光源,它产生2000流明的白光。经红色滤光片后,光损失90%,只剩下200流明的红光。而在新设计的灯中,Lumileds公司采用了18个红色LED光源,包括电路损失在内,共耗电14瓦,即可产生同样的光效。 汽车信号灯也是LED光源应用的重要领域。1987年,我国开始在汽车上安装高位刹车灯,由于LED响应速度快(纳秒级),可以及早让尾随车辆的司机知道行驶状况,减少汽车追尾事故的发生。 另外,LED灯在室外红、绿、蓝全彩显示屏,匙扣式微型电筒等领域都得到了应用。 五、白光led灯的开发 对于一般照明而言,人们更需要白色的光源。1998年发白光的led灯开发成功。这种led灯是将GaN芯片和钇铝石榴石(YAG)封装在一起做成。GaN芯片发蓝光(λp=465nm,Wd=30nm),高温烧结制成的含

LED发光原理、光源特点及应用

LED发光原理、光源特点及应用 一、LED的结构及发光 50年前人们已经了解半导体材料可产生光线的基本知识,第一个商用二极管产生于1960年。LED是英文light emitting diode(发光二极管)的缩写,它的基本结构是一块电致发光的半导体材料,置于一个有引线的架子上,然后四周用环氧树脂密封,起到保护内部芯线的作用,所以LED的抗震性能好。 发光二极管的核心部分是由p型半导体和n型半导体组成的晶片,在p型半导体和n型半导体之间有一个过渡层,称为p-n结。在某些半导体材料的PN 结中,注入的少数载流子与多数载流子复合时会把多余的能量以光的形式释放出来,从而把电能直接转换为光能。PN结加反向电压,少数载流子难以注入,故不发光。这种利用注入式电致发光原理制作的二极管叫发光二极管,通称LED。当它处于正向工作状态时(即两端加上正向电压),电流从LED阳极流向阴极时,半导体晶体就发出从紫外到红外不同颜色的光线,光的强弱与电流有关。 二、LED光源的特点 1.电压:LED使用低压电源,供电电压在6-24V之间,根据产品不同而异,所以它是一个比使用高压电源更安全的电源,特别适用于公共场所。 2.效能:消耗能量较同光效的白炽灯减少80% 3.适用性:很小,每个单元LED小片是3-5mm的正方形,所以可以制备成各种形状的器件,并且适合于易变的环境 4.稳定性:10万小时,光衰为初始的50% 5.响应时间:其白炽灯的响应时间为毫秒级,LED灯的响应时间为纳秒级 6.对环境污染:无有害金属汞 7.颜色:改变电流可以变色,发光二极管方便地通过化学修饰方法,调整材料的能带结构和带隙,实现红黄绿兰橙多色发光。如小电流时为红色的LED,随着电流的增加,可以依次变为橙色,黄色,最后为绿色

5太阳的光和热

《太阳的光和热》说课 教学目标: 科学知识目标:知道太阳能发光发热。 科学探究目标:能用语言描述自己观察到的现象。 科学态度目标:能对太阳发光发热的现象表现出浓厚的探究兴趣,并如实讲述观察到的现象。 教学重难点 教学重点:知道太阳能发光发热 教学难点:能描述观察到的现象与活动过程,并能与同学讨论交流,从多个角度总结太阳的发光发热。 四、教学准备 分为教师准备和学生准备。 教师准备:强光护目镜、石块、玻璃片、铁片、塑料片、平面镜,教学用的ppt,图片视频等。 第一部分:情景导入,引发兴趣 图片导入选择的是炎炎夏日人们打遮阳伞的图片,引导学生说一说为什么不下雨也打伞从而导入新课。 第二部分联系生活,认识太阳光。 这部分我设计了这么几个活动: 第一个活动:教师可以出示一些白天晚上对比的视频,或者准备多组白天和晚上对比的图片(晚上拍摄的图片不要只是出示黑乎乎的图片要是真实的晚上拍

摄的图片,我拍的这几张图片仔细看的话是可以大体看得出轮廓的。)让学生说一说白天看的很清楚?晚上为什么看不清楚了呢? 鼓励学生善于观察生活,引导学生说出白天有太阳,太阳能发光。 第二个活动:教师出示白天、晚上房屋的图片,说一说为什么白天在家里不用开灯,而夜晚需要开灯呢?学生讨论可能会说出白天有光晚上没有光,之后出示房屋和山洞的图片让学生交流:都是白天,房屋安装门窗户的房屋和没有门窗的山洞光线看起来有什么不一样?引起学生思考,太阳照着的地方和照不到的地方是不一样的。待学生说出自己的想法后教师可追问:房屋安装门供人行走就好了为什么还要安装窗户? 进一步让学生意识到太阳能发光,并且认识到太阳光照到的地方和照不到的地方是不一样的,太阳光照到的地方亮,照不到的地方暗,凉,初步感知太阳光和热的关系。 第三个活动:让学生交流我们在太阳光线强烈时有什么感觉?太阳光照着眼睛时为什么我们要捂住眼睛? 设计目的:引导学生说出在太阳光线强烈时会觉得太阳光非常刺眼,睁不开眼睛。让学生从自身感受出发认识到太阳会发光,太阳发出的光对眼睛有伤害,提醒学生不能用眼睛直接看太阳增强学生的安全意识,也为下边户外活动要带强光护目镜做好安全铺垫。 第四个活动:(出示图片):观察一下自己一个夏天裸露在外的皮肤(裸露在外的胳膊部分)与衣服覆盖的皮肤(衣服覆盖的胳膊部分) 有什么不同?能不能说说为什么会出现这样的情况?经过学生交流讨论之后教师引导指出:在太阳光下照射时间长了人们就会感觉到太阳的热。然后教师

各类灯的发光原理

高压钠灯 高压钠灯使用时发出金白色光,它具有发光效率高、耗电少、寿命长、透雾能力强和不诱虫等优点。广泛应用于道路、高速公路、机场、码头、船坞、车站、广场、街道交汇处、工矿企业、公园、庭院照明及植物栽培。高显色高压钠灯主要应用于体育馆、展览厅、娱乐场、百货商店和宾馆等场所照明。 工作原理 当灯泡启动后,电弧管两端电极之间产生电弧,由于电弧的高温作用使管内的钠汞齐受热蒸发成为汞蒸气和钠蒸气,阴极发射的电在向阳极运动过程中,撞击放电物质有原子,使其获得能量产生电离激发,然后由激发态回复到稳定态;或由电离态变为激发态,再回到基戊无限循环,多余的能量以光辐射的形式释放,便产生了光。高压钠灯中放电物质蒸气压很高,也即钠原子密度高,电子与钠原子之间碰撞次数频繁,使共振辐射谱线加宽,出现其它可见光谱的辐射,因此高压钠灯的光色优于低压钠灯。 高压钠灯是一种高强度气体放电灯泡。由于气体放电灯泡的负阻特性,如果把灯泡单独接到电网中去,其工作状态是不稳定的,随着放电过程继续,它必将导致电路中电流无限上升,最后直至灯光或电路中的零、部件被过流烧毁。 伏—安特性 高压钠灯同其他气体放电灯泡一样,工作是弧光放电状态,伏—安特性曲线为负斜率,即灯泡电流上升,而灯泡电压却下降。在恒定电源条件下,为了保证灯泡稳定地工作,电路中必须串联一具有正阻特性的电路无件来平衡这种负阻特性,稳定工作电流,该元件称为镇流器或限流器。电阻器、电容器、电感受器等均肯有限流作用。 电阻性镇流器体积小,价格便宜,与高压钠灯配套使用会发生启动困难,工作时电阻产生很高的热量,需有较大的散热空间、消耗功率很大,将会使电路总照明效率下降。它一般在直流电路中使用,百交流电路中使用灯光有明显所闪烁现象。 电容性镇流器虽然不象电阻性镇流器自身消耗功率很大,温升低,在电源频率较低时,电容器充电时,会产生脉冲峰值电流,对电极造成极大损害,灯光闪烁,影响灯泡使用寿命;在高频电路中工作,电压波动能达到理想状态,成为理想的镇流器。 电感性镇流器损耗小,阻抗稳定,阻抗菌素性偏差小,使用寿命长,灯泡的稳定度比电阻性镇流器好,目前与高压钠灯配套使用的镇流器均为电感性镇流器。其缺点较苯重及价格偏高。另外,电子镇流器已经开始出现,目前其价格昂贵,可靠性还不能与高压钠灯相匹配,除特殊场合使用外,一般情况下很少被采用。所以,高压钠灯必须串联与灯泡规格相应的镇流器后方可使用。高压钠灯的点灯电路是一个非线性电路,功率因数较低,因此在网路上考虑接补偿电容,以提高网路的功率因数。结构和材料电弧管电弧管是高压钠灯的关键部件。电弧管工作时,高温高压的钠蒸气腐蚀性极强,一般的抗钠玻璃和石英玻璃均不能胜任;而采用半透明多晶氧化铝和陶瓷管做电弧管管体较为理想。它不仅具有良好的耐高温和抗菌素钠蒸气腐蚀性能,还有良好的可见光穿越能力。另外,单晶氧化铝陶瓷管在耐高温、抗菌素钠蒸气腐蚀和透光率等性能均优于多晶扪化铝陶瓷管;因其价格昂贵,所以目前很少被采用。电弧管是把电极、多晶扪化铝陶瓷这、帽、焊料环装配在一起,加入钠汞齐进入封接炉封接;同时充入少量氙气,以改善灯泡的启动特性。电极是用高纯钨丝绕成螺旋状,在螺旋孔中插入芯杆,浸渍电子粉,然后将电极芯杆一端和铌管封闭端焊接成一体。多晶氧化铝陶瓷管(帽)是选用多晶氧化铝陶瓷粉经混粉、喷泉雾干燥、等静压成形、素烧、高温烧结和切割等工序制成。高压钠灯的光、电参数与电弧管的内径和弧长(两电极之间距离)有着密切联系。 灯芯

相关文档
最新文档