BEG 粉尘气溶胶发生器

BEG 粉尘气溶胶发生器
BEG 粉尘气溶胶发生器

BEG 粉尘气溶胶发生器

产品型号:BEG

供应商报价:面议

品牌:德国palas

产地:德国

3I指数:418

更新时间:2012-3-15

所属分类:首页> 环境监测仪器> 气体检测仪> 气溶胶

仪器特点:

?连续、稳定的高浓度气溶胶输出

?可连续运行5天

?精密的ISO 5011扩散喷嘴

?远程控制操作

技术参数:

?粒径范围:0.1 –200μm

?气溶胶物质:非黏性粉末及粉尘

?质量流量:9 – 6000 g/h

?体积流量:5 – 10

应用:

?冶炼厂:Engine filters according to ISO 5011;Hot gas filters;Baghouse filters;Air Filters;Cyclones ?化工和药物工业

?水泥工业

BEG 1000 BEG 2000带质量流量控制 BEG 3000质量流量控制+加料器

纯蒸汽发生器原理

纯蒸汽发生器工作原理 原料水通过一个进料泵输送到除污染柱体和热交换器的管子一侧,液位由液位计控制。工业蒸汽或者加热水进入到热交换器后,将原料水加热到蒸发温度,并在两个柱体内部形成了强烈的热循环。纯蒸汽就会在蒸发器(除污染柱)中产生。蒸汽的低速和柱体的高度在重力作用下将会去除任何可能不纯净的小水滴。通过一个气动调节器调节工业蒸汽进汽阀门的开启度,纯蒸汽压力可以恒定维持在用户设定的压力值,范围在0-3bar之间。 结构特点 纯蒸汽发生器由两个并联的柱体组成: 双壳无缝管卫生洁净型交换器。 除污染柱体。 设备全部用AISI 316L不锈钢制造,柱体和交换器工作表面经过标准程序的酸洗钝化处理。 采用制药级聚四氟乙烯(Toflon)材质的垫圈。 所有部件都安装在坚固的碳钢支架上,并且能方便的拆卸与组装。 矿棉保温,表面覆盖AISI304不锈钢缎面抛光保护层。 S型纯蒸汽发生器工作原理 S型纯蒸汽发生器工作流程如下:原料水通过进料泵进入到分离器的及蒸发器的管程中(二者是连通的),液位由液位传感器与PLC连接进行控制,工业蒸汽则进入到蒸发器的壳程中对管程中的原料水加热到蒸发温度,原料水就转变成了蒸汽,此蒸汽在低速及分离器的高度行程中通过重

力作用将小液滴分离出去回到原料水中,进行重新蒸发,蒸汽就变成了纯蒸汽通过一个特殊设计的洁净丝网装置后进入到分离器的顶部,通过输出管路纯蒸汽进入到各个分配系统中及使用点。 工业蒸汽的调节使纯蒸汽的压力可以根据生产工艺的要2通过程序进行设置并可以稳定维持在用户设定的压力值。在原料水蒸发过程中,通过液位来控制料水的补给,使料水的液位始终维持在正常的水平,对于浓缩水可以在程序中设置间歇排放。 1、蒸发器 2、分离器 3、工业蒸汽 4、原料水 5、纯蒸汽 6、浓缩水排放 7、冷凝水排放 F型纯蒸汽发生器工作原理 F型纯蒸汽发生器工作流程如下:原料水在一效预热器被工业蒸汽加热,进入以后二效预热器被工业蒸汽凝结水继续加热;然后在进入蒸发器顶部经分水装置,均匀地分布进入蒸发列管,在蒸发列管内形成薄膜状的水流;这些水流因为薄所以很快被蒸发,产生二次蒸汽;未被蒸发的原料水被排到机外。被蒸发的原料水,现在是二次蒸汽,继续在蒸发器中盘旋上升,经过汽水分离装置,作为纯蒸汽从纯蒸汽出口输出。工业蒸汽在蒸发器被原料水吸收热量后凝结成工业蒸汽凝结水作为预热器的加热源,预热原料水最后从预热器不凝结水排放出口排出机外。微量纯蒸汽被冷凝取样器收集,并经过与冷却水换热,冷却成为蒸馏水;经过电导率的在线检测,判断纯蒸汽是否合格。 原料水转化成的二次蒸汽是洁净蒸汽,它经过三次分离作用:在最初进入蒸发器后,沿列管向下流动,同时蒸发,这是第一次分离;被蒸发的原料水(二次蒸汽)在蒸发器的下端180度折返,杂质在重力作用下,被分离到下部,这是第二次分离;被蒸发的原料水,即二次蒸汽,继续在蒸发器中盘旋上升,到中上部特殊分离装置处,进行第三次分离。 在原料水有一种不能凝结成水的一部分气体,被称作不凝性气体,此部分不凝气体依自动化控制程度的不同,在蒸发器顶部设有不凝气体连续排放装置。

硅溶胶简介

Finesilicon Silica 福赛科 硅溶胶 产品特性描述: 硅溶胶属胶体溶液,无臭、无毒,分子式可表示为mSiO2.nH2O 。 由于胶体粒子微细(10-20nm ),有相当大的比表面积,粒子本身无色透明,不影响被覆盖物的本色。 粘度较低,水能渗透的地方都能渗透,因此和其它物质混合时分散性和渗透性都非常好。 当硅溶胶水分蒸发时,胶体粒子牢固地附着在物体表面,粒子间形成硅氧结合,是很好的粘合剂。 应用领域: 用作各种耐火材料粘结剂,具有粘结力强、耐高温(1500-1600℃)等特点。 用于涂料工业,能使涂料牢固,又有抗污防尘、耐老化、防火等功能。 用于薄壳精密铸造,可使壳型强度大、铸造光洁度高。用其造型比水玻璃造型质量好,代替硅酸乙酯造型可降低成本和改善操作条件。 硅溶胶有较高的比表面积,可用于催化剂制造及催化剂载体。 用于造纸工业,可作为玻璃纸防粘剂、照相用纸前处理剂、水泥袋防滑剂等。 用作纺织工业上浆剂,它与油剂并用处理羊毛、兔毛,可以改善羊毛、兔毛的可纺性,减少断头,防止飞花,提高成品率,增加经济效益。 用作矽钢片处理剂、显像管分散剂、地板蜡抗滑等。 使用 技术指标 包装 25KG 、200 KG /包装 ,塑料桶 安全和运输 根据运输法律,硅溶胶属于非危险品,按非危险品运输。正确使用本品不会造成任何伤害。 储存 硅溶胶应放在阴凉、干燥处,在满足以上条件下储存,储存期限为一年。 特别说明 以上产品技术信息与数据是基于最好的有效信息之上的,并不提供任何保证且无侵犯任何专利之嫌。用户在使用之前,有责任对产品的适用性进行检测。 青岛福赛科硅制品有限公司 (Qingdao silicon Co., Ltd )中国区域生产

大气气溶胶相关研究综述

摘要 近日,环保部公布了我国第一部综合性大气污染防治规划——《重点区域大气污染防治“十二五”规划》。事实上,随着大气污染给人民生活带来的不便增多,人们空前关注大气科学进展以及PM2.5治理的理论依据。本文将从三个方面对大气气溶胶的研究做出总结和分析:大气气溶胶的基本特征,大气气溶胶的气候效应,国内外相关的大气气溶胶研究计划。 关键词:大气气溶胶;气候效应;环境健康;研究综述 前言 气溶胶是指长时间悬浮在空气中能被观察或测量的液体或固体粒子,其实际直径一般为0.001~100μm,动力学直径为0.002~100μm,对人体、环境、气候等产生着重要的影响。 [4] 由于大气气溶胶在气候、环境等方面的重要作用,近年来越来越引起科学界的重视。 很多过程可以产生气溶胶,根据来源可分为自然气溶胶和人为气溶胶。自然源主要是海洋、土壤和生物圈以及火山等;人为源主要来自化石燃料的燃烧、工农业生产活动等。工业革命以来,人类活动不仅直接向大气排放大量粒子,更重要的是向大气排放大量的SO2和SO X,NO2和NO X在大气中通过非均相化学反应逐渐转化成硫酸盐和硝酸盐粒子,形成二次气溶胶。污染气体形成的大气气溶胶自工业革命以来有大幅度增加。来自自然源的气溶胶如沙尘,也由于人类活动利用土地变化而发生着改变。尽管气溶胶只是地球大气成分中含量很少的组分,但由于其在许多大气过程中的重要作用而日益受到重视。随着环境污染问题的发展,人们已认识到大气气溶胶自身的污染特性与其物理化学性质以及在大气中的非均相化学反应有着密切的关系。[5] 气溶胶还与其他环境问题如臭氧层的破坏、酸雨的形成、烟雾事件的发生等密切相关。此外,气溶胶对人体和其他生物的生理健康也有其特有的影响。[1] 由于气溶胶的气候效应问题,气溶胶再次成为国际学术界的研究热点之一,大气气溶胶是当今大气化学研究中前沿的领域。国际大气化学研究计划(IGAC)科学指导委员会于1994年将国际全球大气化学研究计划和国际气溶胶计划(ICAP)合并重组,大气气溶胶研究被列为3大研究方向之一。大气气溶胶的研究内容,发展到包括物理和化学的性状、来源和形成、时空分布、对气候变化和环境质量的影响以及对大气化学过程的影响等多方面、多层次的综合研究,也涉及到大气科学的各个领域,具有很强的综合性。

外文文献翻译-:上海冬季亚微米级气溶胶吸湿性增长特性说课讲解

冬季上海地区亚微米级城市气溶胶的吸湿性增长 摘要: 吸湿性增长因子和混合状态的信息对理解被严重污染的长三角地区的雾的形成机制具有重要的作用。在此研究了环境气溶胶的吸湿性增长。用HTDMA测量了复旦大学校园中粒径在30-250nm的干粒子的吸湿性增长因子,研究两种模式化的表面混合物。较少吸湿组在85%的相对湿度下的吸湿性增长因子为1.10。较少吸湿组的平均数部分在0.33-0.17范围内呈现多样化,随着干粒子的尺度的增长有轻微的减少。较多吸湿组的吸湿性增长因子显示出爱根核与积聚模态的粒子有显著的不同。爱根核为接近1.3,而积聚模态为1.4以上。在以硫酸铵盐为基础的模式中,较多吸湿组的吸湿体积增长分数在0.47-0.70这个范围内,而且爱根核和积聚模态的粒子的吸湿性增长分数的界限很清晰。以相对湿度测试为背景的吸湿性增长不仅显示出潮解相对湿度决定于粒子大小,同时也显示出硝酸盐粒子的增长最初是由硫酸盐的凝结提升的。结果也表明了大多数积聚模态的粒子在有雾的情况下都会潮解。 1前言: 近20年来,随着经济的快速增长和城市化进程的加快,中国超大城市的空气污染问题越来越受到关注。由化石燃料燃烧排放的一次污染物和由光化学氧化和多相反应而来的二次污染物对城市居民的环境和健康造成了极大地威胁。雾这种能见度小于十公里的现象是由于高浓度的微粒排放造成的。长江三角洲是中国四大雾区之一。作为长三角的经济中心,上海为国家GDP做出了4.6%的贡献。作为全国最大的超大城市,上海有1800万的常住居民和280万的流动人口(Geng等人,2008)。由当前研究为基础做出结论,上海雾天能见度的下降主要是由于PM2.5浓度升高造成的(Fu等人,2008)。 很多因素影响着大气能见度,比如化学组成、粒子大小的贡献、气溶胶的构成和气溶胶的混合状态。水相、海盐和矿物尘埃的参与促进了硝酸的吸湿反应。N2O5在对流层表面的水解(Dentener和Crutzen,1993;Mongili等人,2006),硫酸盐在有雾状态下的组成(Tursic等人,2004)。环境气溶胶的吸湿增长会改变粒子大小和光学特性(Gasso等人,2000;Kotchenruther等人,1999;Swietlicki等人,1999)。作为相对湿度RH的功能之一的光散射性质是衡量大气气溶胶直接影响气候的衡量参数之一,有些人已经试图将吸湿性增长因子包含到全球气候模型中去(Boucher 和

气溶胶的光学特性参数

气溶胶的光学特性参数 (1)气溶胶光学厚度 气溶胶光学厚度,英文名称为AOD(Aerosol Optical Depth)或AOT(Aerosol Optical Thickness),表示的是单位截面的垂直气柱上的透过率,有时候又叫大气混浊度,它是一个无量纲的正值。数值范围在0-1之间,0代表完全不透明大气,1代表完全透明的大气,气溶胶光学厚度越大,大气透过率越低。值的大小主要由气溶胶质粒的数密度、尺度分布、气溶胶类型等物理、光学属性来决定。 气溶胶光学厚度的反演: 公式:L=L0+F*T*P/[1-S*P] L:传感器收到的辐射;L0:大气路径辐射;F:下行辐射 P:地表反射率;T:大气透过率;S:大气半球反射率 F*T*P/[1-S*P]:地表反射辐射 对于大气路径辐射项L0,它只是大气气溶胶光学厚度和几何参数的函数,假如地表反射辐射比较小或为零,就可以通过大气路径辐射项来反演获得气溶胶光学厚度,对于地表反射辐射(F*T*P/[1-S*P])来说,仅是气溶胶光学厚度的函数,如果消去路径辐射信息,便可以通过它来反演气溶胶光学厚度。 (2)散射相函数 散射相函数反映的是电磁波入射能量经粒子散射后在方向上的分布,或者称相函数是粒子(散射体)将某个方向的入射波散射到其他方向的概率。定义相函数P(θ)为在θ角方向的散射辐射能量与各向同性散射时该方向的散射辐射能量之比。目前,常用的相函数有Mie散射相函数、HG相函数、双HG相函数和改进的HG*相函数等,这些函数各有优缺点。 Mie散射相函数: P Mie(θ)= [S1(θ)2 +S2(θ) 2]/ 2πα2 Qsca α=2πR/λ:球形气溶胶粒子的尺寸参数; S1(θ)、S2(θ):散射振幅矩阵元; Qsca:气溶胶粒子的散射效率因子; S1(θ)、S2(θ)和Qsca可由Mie展开系数求解,Mie散射相函数适合于球形粒子求解。 (3)单次散射反照率 单次散射反照率(single scattering albedo,SSA),在随机介质中传播的光将会被介质中的粒子散射和吸收而衰减,我们称之为消光,其中因散射而导致入射光消光在总消光中所占的比例,可以用粒子的平均单次散射反照率来表示,其定义为: 0(x,m)= Cs(x,m)/C(x,m) C、Cs:粒子的消光截面和散射截面,消光截面是粒子或粒子群在电磁波传播路径上对电磁波衰减能力的度量; x=2πr/λ:为粒子的尺度因子,r、λ分别为粒子的半径和入射光的波长; m:复折射率,为复数m=n–ki,式中实数部分n为介质的折射率,虚数部分的k为介质的吸收系数; 如果用Ca表示粒子的吸收截面,则应满足C=Cs+Ca;如果粒子对入射光完全无吸收,即Ca=0,于是C=Cs,反照率为1,达到它的最大值。粒子有吸收时,反照率介于0到1之间。

气溶胶自动灭火装置使用说明书解读

新一代环保洁净型气溶胶自动灭火装置 使 用 说 明 书

广州海安消防设备有限公司 目录 第一章概述 (1) 第二章S型自动灭火装置的灭火原理 (1) 第三章适用范围和不适用范围 (1) 第四章装置构成及型号编制 (1) 第五章S型灭火装置的主要技术参数 (2) 第六章简明设计指南 (2) 第七章S型灭火系统控制模式 (3) 第八章S型灭火装置的安装、日常维护和使用 (4)

第一章概述 金海安牌(S)环保型自动灭火装置(以下简称S型自动灭火装置)是由广州海安消防设备有限公司利用现代化工技术自行研制和生产的环保型混合气体灭火产品。在生产过程中无毒、无污染、无公害,实施灭火过程中效率高、压力低、无残留物、对被保护物无腐蚀、安全性强、不存在F、Cl、Br、CO等有害物质,ODP=0、GWP≤0.35、不破坏大气臭氧层。是目前消防领域代替哈龙产品的理想产品。 第二章 S型自动灭火装置的灭火原理 1、IVS型灭火剂的特性 IVS型灭火剂是一种固体含能化学物质,属于烟火药剂。利用电子气化启动器激活IVs 型灭火剂,使其发生化学反应,能产生大量惰性气体、水汽和微量固体颗粒,形成混合气体,混合气体从IVS型自动灭火装置的喷口向外释放喷射,扑灭火灾。 2、S型自动灭火装置的灭火原理 S型自动灭火装置的灭火机理是以物理、化学、水汽降温三种灭火方式同时进行的全淹没灭火形式: a、以物理性稀释空气中氧气“窒息灭火”为主要方式,切断火焰反应链进行链式反应 破坏火灾现场的燃烧条件,迅速降低自由基的浓度; b、存在抑制链式燃烧反应进行的化学灭火方式; c、水蒸汽冷凝与气化降低燃烧物温度。 第三章适用范围和不适用范围 1、适用范围 S型气溶胶系统为全淹没系统,适用于扑灭相对封闭空间的A、B类火灾以及电气电缆初起火灾。 a、扑灭A类火灾: 如木材、纸张等固体物质初起火灾,适用于木制品库、档案库、博物馆、图书馆、资料室等场所;

蒸汽发生器操作规程

蒸汽发生器操作规程 本规程适用于ZFQ型蒸汽发生器的操作。 1.启动前的准备与检查 1.1连接好蒸汽发生器水箱的进水管和蒸汽排出管,连接好符合要求的电源线,电源线接至相应的配电柜开关上。 1.2检查水泵是否转动灵活。 1.3检查各处电气连接线是否牢固。 1.4给蒸汽发生器供电。 2.启动 2.1打开电源开关,电源指示灯亮。 2.2此时水泵自动向炉胆内加水,加水指示灯亮。当炉胆内加水达到设定水位后便自动转换到加热,此时加水指示灯熄灭,加热指示灯亮。 2.3约10分钟左右,便可得到约0.4MPa压力的饱和蒸汽,此时便可使用蒸汽。 2.4当压力达到0.4MPa时,加热指示灯自动熄灭,低于0.3MPa时又重新开始加热。 2.5炉胆内的水不断下降到补水时,水泵又向炉内补水,这样周而复始工作。 2.6面板上的“大、小”转换开关可以控制蒸汽出

口压力。 3.停运 3.1关闭电源开关,拔掉电源插头。 3.2将炉内的余汽排尽,打开炉胆排污阀门,将炉胆内的水排尽。 3.3打开后面板,拔掉水泵进水软管将水箱内的水排放干净,以防冻堵。 4.安全管理 4.1操作人员必须劳保护具上岗,劳保护具穿戴符合规范要求。 4.2使用时必须两人以上操作,严格操作过程监护,查看蒸汽排出压力,如果超压,应及时停运。 4.3手动盘泵时必须确保电源插头处于断开状态,并做好监护。 5.风险识别 5.1物体打击(蒸汽排出管)。蒸汽排出管末端使用铁管或木棒绑扎牢固,操作时,应抓紧铁管或木棒,防止蒸汽管脱手;操作时人员不要站在蒸汽排出管上部。 5.2机械伤害(转动部件)。在水泵转动部件附近作业时,必须保证身体各部位在转动部件20cm范围外。严禁将手和身体其它部位深入到转动空间,进入

粉尘气溶胶发生器、雾化气溶胶发生器、碳黑气溶胶发生器……

气溶胶测量技术综述 Operating principle SAG-410 SAG-410 干粉气溶胶发生器干粉气溶胶发生器--SAG410 技术指标: 应用:非黏性粉尘 粒径范围:0.1-150 μm 粉尘容量:3-1500 g 质量流量:1-6000 g/h 气溶胶输出:非常稳定 适用于:?滤料及滤器测试系统?粉尘监测仪的标定?粉尘再悬浮实验研究?基础大气环境研究? 吸入毒性研究

气溶胶测量技术综述 干粉气溶胶发生器干粉气溶胶发生器--SAG410

气溶胶测量技术综述 技术指标: 发尘类型:ASHRAE 52.2 尘 质量流量:4-350g/h 压缩空气: 7 m3/h,max.6bar 电源要求:100-240VAC/50-60Hz Operating principle SAG-440 SAG-440ASHRAE尘扩散器 尘扩散器- -SAG440 适用于: ?ASHRAE 52.2 ?滤料及滤器测试系统?流场示踪粒子 ?基础大气环境研究

气溶胶测量技术综述 ATM -220雾化气溶胶发生器 气溶胶出口 O 型圈 溶液进口 压缩空气入口 小孔 颗粒类型:DEHS 、DOP 、盐溶液 及PSL 球 粒径范围:0.01-2 μm 体积流量:50-500 L/h 颗粒产生速率:(0.5-2.5)?1013P/h 压缩空气:最大8 bar 仪器重量:1.6 kg

气溶胶测量技术综述 雾化非挥发性液体 雾化液滴 最终颗粒物 雾化非挥发性溶质和挥发性溶剂 PSL 球悬浮液雾化扩散 D p =D d C v 1/3 NaCl 等盐类 DOP 等油类 PSL 球等 雾化气溶胶发生器应用举例

常用胶料的性质及溶胶温度的调校2009

常用胶料的性质及溶胶温度的调校2009-03-15 14:52 : 加料段: 底经较小,主要作用是输送原料给后段,因此主要是输送能力问题,参数(L1,h1),h1=(0.12-0.14)D。 压缩段: 底经变化,主要作用是压实、熔融物料,建立压力。参数压缩比ε=h1/h3及L2。准确应以渐变度A=(h1-h3)/L2。 均化段(计量段): 将压缩段已熔物料定量定温地挤到螺杆最前端、参数(L3,h3),h3=(0.05-0.07)D。 对整条螺杆而言,参数L/D-长径比 L/D利弊:L/D与转速n,是螺杆塑化能力及效果的重要因素,L/D大则物料在机筒里停留时间长,有利于塑化,同时压力流、漏流减少,提高了塑化能力,同时对温度分布要求较高的物料有利,但大之后,对制造装配使用上又有负面影响,一般L/D为(18~20),但目前有加大的趋势。

其它螺距S,螺旋升角φ=πDtgφ,一般D=S,则φ=17°40′。 φ对塑化能力有影响,一般来说φ大一些则输送速度快一些,因此,物料形状不同,其φ也有变化。粉料可取φ=25°左右,圆柱料φ=17°左右,方块料φ=15°左右,但φ的不同,对加工而言,也比较困难,所以一般φ取17°40′。 棱宽e,对粘度小的物料而言,e尽量取大一些,太小易漏流,但太大会增加动力消耗,易过热,e=(0.08~0.12)D。 总而言之,在目前情况下,因缺乏必要的试验手段,对螺杆的设计并没有完整的设计手段。大部分都要根据不同的物料性质,凭经验制订参数以满足不同的需要,各厂大致都一样。 下面就几种专用螺杆的设计结合其物料特性作简单介绍: PC料(聚碳酸酯) 特点: ①非结晶性塑料,无明显熔点,玻璃化温度140°~150℃,熔融温度215℃~225℃,成型温度250℃~320℃。

ATI TDA-4B 气溶胶发生器

ATI TDA-4B 气溶胶发生器 ATI TDA-4B 气溶胶发生器/美国ATI高效过滤器完整性检测仪/ 高效过滤器泄露检测仪/ 洁净房粉尘仪/ DOP检测仪ATI TDA-4B 美国ATI高效过滤器完整性检测仪/ 高效过滤器泄露检测仪/ 洁净房粉尘仪/ DOP发生器/ DOP检测仪ATI TDA-4B Generator TDA-4B是美国ATI公司最新的Laskin Nozzle发生器,TDA-4B在操作中需要清洁的、干燥的压缩空气来产生多分散次微米级的气溶胶。 TDA-4B有6个Laskin Nozzle,当输出压力为20PSIG,流量是810cfm,气溶胶的浓度大致在100微克/升。三个调节阀将允许使用1-6个喷嘴,提供范围比较广的气溶胶浓度。 TDA-4B应该使用在流量小于8100cfm的系统中。是工作台、负压过滤系统、生物安全柜、小的或者是便携移动的洁净房,高效过滤器安装的有效的检测手段。 可使用的流量范围50~8,100cfm (1.4-229m2min) 10ug/L:流量8,100cfm(约230m2/min时) 发生浓度 100ug/L:流量810cfm(约23m2/min时) 测试精度100ug/L:流量810cfm(约23m2/min时) 发生粒子PAO、DOP、多分散 发生方法1-6Laskin Nozzles 压缩气体3-18cfm (85-510L/min) 20psi (0.14Mpa) 电源不需要 外形尺寸约280x230x250mm 重量约7.3kg **适用20psi(0.14Mpa)的压力时注:不建议采用 ATI 4B气溶胶发生器TDA-4B Aerosol Generator TDA-4B气溶胶发生器/悬浮粒子发生器/产尘仪美国ATI TDA-4B 气溶胶发生器气溶胶发生器TDA-4B 气溶胶发生器ATI PAO高效过滤器检漏仪---TDA-4B气溶胶发生器产尘仪ATI 4B气溶胶悬浮粒子发生器PSL标准粒子发生器ATI高效过滤器检漏仪PSL发生器过滤器完整性测试用产尘仪ATI 检漏仪系统PSL Jet Atomizer PSL标准粒子发生器气体发生器气溶胶发生器气溶

气溶胶发生器解读

气溶胶发生器 一、简介 目前,数字粉尘仪已广泛应用于室内空气质量检测、工作场所空气质量检测、矿井粉尘浓度检测及户外空气质量检测。不同厂家对其生产的粉尘仪命名不尽相同,如数字粉尘仪、智能型数字粉尘仪、微电脑粉尘仪、呼吸性粉尘仪、防爆型粉尘仪等等。总体来说,这些仪器可统称为粉尘仪,为检测环境空气中粉尘颗粒质量浓度的仪器。粉尘仪根据测量原理可分为光散射式粉尘仪及压电天平式粉尘仪两种。光散射式粉尘仪根据粉尘颗粒对激光的散射通量来测定粉尘质量浓度,这类仪器构造相对简单、响应快、维护方便,为目前数字粉尘仪的主流产品,占市场总量的90%以上。但光散射式粉尘仪各厂家所用光源、探测器及光室不尽相同,仪器出厂前所用标定方法不尽相同,导致仪器的响应曲线及准确度千差万别,测得同一环境下的质量浓度差别较大,给用户使用带来不便,数据可比性较差。压电天平式粉尘仪目前生产厂家较少,因为其维护量较大,目前市场占有率不高。针对以上现状,各地质量技术监督部门非常有必要建立起数字粉尘仪的标定方法规范,用以检定不同厂家及不同用户的粉尘仪,以使粉尘检测的工作得以规范化管理。 数字粉尘仪有全尘及可吸入性粉尘之分。全尘是指测定空气中总的悬浮颗粒物,可吸入性粉尘是指空气中可吸入的那一部分粉尘,按照美国环保局及中国环保局的定义,可吸入性粉尘指空气动力学直径小于10微米以下的粉尘。所以一般的吸入性粉尘仪应该具备PM10入口切割头,该切割头对空气动力学直径为10微米的颗粒应该有50%的去除效率。切割粒径的偏差是影响粉尘仪准确度的一个关键因素。标定切割头的方法需用单分散标准PSL粒子。光散射仪器散射信号受颗粒的折射率的影响较大,同样质量的颗粒,如果成分不同,折射率就不同,由光散射型仪器测得的质量就不同。所以,针对不同的光散射仪器,有必要在统一的、稳定的散射介质下进行质量浓度的标定,目前应用较多的方法是利用ISO标准粉尘来标定。

纯蒸汽发生器操作手册

纯蒸汽发生器操作手册 目录 1换热器原理 (6) 1.1蒸发原理 (6) 1.2控制系统原理 (7) 1.3支持机架 (8) 1.4饱和水及饱和蒸汽表 (8) 1.5操作流程 (10) 1.5.1待机状态 (10) 1.5.2开机前准备 (11) 1.5.3开机操作 (11) 1.5.3.1自动模式操作 (11) 1.5.3.2手动模式操作 (12) 1.5.4关机操作 (13) 1.6报警类型 (14) 1.6.1错误报警 (14) 1.6.2非关键性报警 (15) 1.6.3关键性报警 (15) 1.7供电中断和恢复 (15) 1.8操作模式 (16) 1.8.1手动模式 (16) 1.8.2自动模式 (16) 1.9报警描述 (17) 1.9.1工业蒸汽压力低“报警” (17) 1.9.3“纯蒸汽凝结水温度高”报警 (17) 1.9.4纯蒸汽凝结水温度低“报警” (18) 1.95“纯蒸汽压力下限”报警“ (18) 1.9.6纯蒸汽压力下限“报警” (18) 1.9.7蒸发器液位高“报警” (19) 1.9.8“工业蒸汽压力高”报警“ (19) 1.9.9工业凝结水温度低“报警“ (20) 1.9.11纯蒸汽凝结水温度显示错误“报警“ (20) 1.9.12工业蒸汽压力错误显示错误“报警“ (20) 1.9.13工业蒸汽压力错误显示 (21)

1.9.14纯蒸汽凝结水电导率错误显示 (21) 1.9.15纯蒸汽温度错误显示“报警“ (22) 1.9.16纯蒸汽压力错误显示“报警” (22) 2控制面板说明 (22) 2.1人机窗口HMI功能HMI (23) 2.2开关功能 (24) 2.2.1急停开关 (24) 2.2.2电源开关 (24) 2.3有纸记录仪 (25) 2.4图表记录 (25) 2.4.1设备铭牌标记 (25) 2.4.2电器警示 (25) 2.4.3设备配置元件标识 (25) 2.5蒸汽发生器操作前概述 (26) 2.5.1水位信号发生器 (26) 3纯蒸汽发生器操作前概述 (26) 3.1开机前设备检查 (26) 3.1.1检查设备的连接和拧紧 (27) 3.1.2检查设备的电力配线和控制连接 (27) 3.1.3检查设备控制气源 (27) 3.1.4检查工业蒸汽管路 (28) 3.1.6最后确认 (28) 3.1.7非维护性故障排除 (29) 3.1.7.1蒸汽调节阀故障 (29) 3.2准备开机 (30) 3.2.1HMI触摸屏功能说明 (30) 3.2.1.1HMI初始窗口功能 (30) 3.2.1.2HMI主菜单窗口功能 (33) 3.2.1.3HMI流程窗口功能 (34) 3.2.1.4HMI数据显示窗口功能 (36) 3.2.1.5HMI参数设置窗口功能 (37) 3.2.1.6HMI时间设置 (37) 3.2.1.7HMI报警状态窗口功能 (38) 3.3开机操作 (40) 3.3.1自动操作 (40) 3.3.2运行过程的调节 (41) 3.3.3HMI监视与控制 (43) 3.3.3.1HMI流程监视 (43) 3.3.3.2HMI数据监视 (45) 3.3.3.3HMI控制 (46) 3.3.3.3.1密码控制 (46)

中国大气气溶胶气候效应研究进展

李明华,范绍佳 中山大学大气科学系(510275) Email:lmh20000@https://www.360docs.net/doc/0f9232864.html, 摘要:全球和区域气候变化是当今各国政府和科学界关注的重大问题。大气气溶胶作为影响气候变化的一个重要因子,引起了全球科学界的重视,是当今国际科学界的热门研究话题。本文总结了二十世纪九十年代以来我国科学家在大气气溶胶气候效应研究方面的一系列成果,讨论了未来研究的主要难题及研究方向。 关键词:中国;大气气溶胶;气候效应 1.引言 全球和区域气候变化是当前各国政府和科学界关注的重大问题。大气气溶胶作为影响气候变化的一个重要因子,引起了全球科学界的重视,是当今国际科学界的热门研究话题[1-4]。 大气气溶胶是指大气与悬浮在其中的固体和液体微粒共同组成的多相体系,习惯上用来指大气中悬浮的10-3~101μm固体和液体粒子。大气气溶胶对气候的影响主要通过两种方式:一种是大气气溶胶粒子通过吸收和散射太阳辐射改变地-气系统的能量收支,直接影响气候;另一种是大气气溶胶粒子作为云凝结核(CCN)改变云的光学特性、分布和生命期,间接影响气候。理论上,只要知道大气气溶胶浓度时空分布的信息及其物理、化学、光学特性、尺度分布和大气含量的准确信息,便可精确计算其直接辐射强迫的大小。而实际上所缺乏的也正是对这些量和其变化过程的详细了解。因此,对其直接辐射强迫的估计只能是基于现有实验结果和观测资料基础上的理论数值模拟。模式结果表明,目前对人为大气气溶胶(硫酸盐、硝酸盐、煤烟、矿尘和生物大气气溶胶等)全球年平均直接辐射强迫的估值大体介于-0.3~-1.0W/m2 之间,不确定性是估值的两倍。由于理论上对云的夹卷和混合过程,以及大气气溶胶-云-辐射-气候之间的微物理和化学反应过程了解还很不全面,准确地估计大气气溶胶间接辐射强迫的大小是相当困难的。全球年平均间接辐射强迫估值介于0~-1.5W/m2之间,不确定性更大,还没有一个合理的中间估值[5]。 大气气溶胶的气候效应比温室气体复杂得多,尽管大多数研究认为大气气溶胶对气候的影响与温室效应气体的影响是反向的,但二者不能简单抵消[6]。从二者寿命来看,对流层大气气溶胶的寿命只有几天到几周,它的辐射强迫作用集中在排放源附近,而且基本只影响北 - 1 -

气溶胶灭火器使用手册

“气溶胶灭火器”使用手册 一、气溶胶灭火剂介绍 气溶胶灭火剂,是将有化学灭火功能的超微粉体灭火剂喷射入大气中,与气体混和形成有很高灭火效能的“云状灭火剂”。 以磷酸铵微粒为基料的平均粒径5微米的超细粉体灭火剂,是将高聚合度的聚磷酸铵,和有催化、消烟、润滑功能的聚合物,经微、纳米级的粉碎、复合和微胶囊化处理,形成新的功能粉体,获得如下效果:粉体的总表面积增大,表面分子数量和表面活性增加,在火焰中受热分解速度加快,捕获自由基的能力增强,使中断火灾链式反应的灭火效能大幅提高。微小颗粒又易于形成均匀分散、悬浮于空气中的相对稳定的气溶胶,以占满三维空间的方式与火焰接触,产生“全淹没”灭火效果,成为“全淹没”型灭火剂中灭火效能最高的灭火剂,见表1。 气体灭火剂与超细粉体灭火剂灭火效能表表1 气溶胶灭火剂常态下以粉状体存贮在容器内,灭火时由压缩气体加压喷射,生成气溶胶灭火剂。因此,气溶胶灭火剂具有气体灭火剂的迅速充满有限空间,以“全淹没”的方式灭火的功能,被称为“准气体灭火剂”。它可快速扑灭飞机舱内的燃油火灾、电气火灾、固体燃烧物火灾。灭火后的粉粒不粘附在机件表面,易于清理。因此,它是一种全新概念的高效灭火剂。 二、气溶胶灭火器的组成 气溶胶灭火器,由安装有安全阀的承压罐体、压缩气瓶、减压器、出粉软管、阀门、喷枪组成。 罐体容积: 50 L; 罐体内充装超细粉体灭火剂: 30kg

压缩气瓶容积: 6.8升 压缩气瓶内充入氮气: 30MPa 减压阀输出压力: 1.4~1.6 MPa 安全阀开启压力: 2MPa。 输粉软管长度: 15m 超细粉体灭火剂喷射流量: 1kg/s 三、使用方法 1、喷射气溶胶灭火剂的方法 打开气溶胶灭火器的压缩气瓶开关,压缩氮气经减压阀减至 1.4~1.6MPa 后,进入灭火器罐体内。拉出输粉软管,将喷头对准火源,打开喷头的球阀开关后,气溶胶灭火剂向火源方向高速射出。 2、扑灭油盘火或机外火的方法 对准油盘火或机身外部的油火,打开压缩气瓶开关,打开喷头的球阀开关,使气溶胶灭火剂高速射出,将灭火剂射流对准油盘火或机身外部的油火的根部喷射,此时不要左右摆动喷头,以免降低射进火焰区域的局部气溶胶灭火剂的浓度,待被喷射处的油火熄灭后再水平缓慢转动喷头,扑灭其余火焰。 3、扑灭飞机初期火灾的方法 飞机初期火灾分为电气短路引发火灾、静电引发燃油火灾、喷射型漏油引发火灾,扑上述火灾的方法有所不同。对于电气短路火灾、静电引发燃油火灾,将喷头对准火源后喷射气溶胶灭火剂,可迅速将火扑灭;对于喷射型漏油引发的火

新型流化床气溶胶发生装置及其特性

第35卷第5期2005年9月 东南大学学报 (自然科学版) J OURNAL O F SOUTHEAST UN I V ERS I TY (Natural S ci en ce Ed iti on) V o l 135No 15 Sep.t 2005 新型流化床气溶胶发生装置及其特性 李永旺 赵长遂 吴 新 韩 松 鲁端峰 沈湘林 (东南大学洁净煤发电及燃烧技术教育部重点实验室,南京210096) 摘要:根据气固流态化原理,设计了一种实用新颖的流化床气溶胶发生装置.该气溶胶发生装置可以稳定地输出高粒子数浓度、空气动力学直径小于10L m 的气溶胶颗粒物.应用该装置对燃 煤电站锅炉电除尘器粉煤灰进行了气溶胶化实验.实验表明,通过改变流化气体(氮气)流量、待气溶胶化的粉煤灰和青铜珠床料组成的混合物料的给料速率以及流化床床层物料中飞灰的掺混质量比,可以调节流化床气溶胶发生装置输出的飞灰粒子数浓度.测试结果表明:飞灰粒子数浓度呈双峰分布,2个峰值分别位于空气动力学直径为0101~011L m 和011~10L m 的范围内;飞灰质量浓度随着颗粒粒径的增大而增加.关键词:气溶胶发生器;流化床;粒子数浓度 中图分类号:X 513 文献标识码:A 文章编号:1001-0505(2005)05-0742-04 Develop m ent and characteristic of novel flui dized bed aerosol generator L iY ongw ang Zhao C hang sui W u X in Han Song Lu D uanfeng Shen X iang li n (K ey Laborat ory of C lean Coal Pow erG enerati on and C o m bustion Tec hno l ogy ofM i n i stry o f Educati on,Sou t heas tU niversi ty ,Nan ji ng 210096,Ch i na) Abst ract :An inno vative fl u idized bed aer o so l generato r w a s deve l o ped fo r the purpo se o f generati n g a constant output o f dry ,under 10L m particles w ith a large num ber concentration .The output of the fluidized bed fo r generati n g aero so l particles o f dry fly ash fro m co a-l fired utility bo iler w as charac -ter i z ed using the e lectrica l l o w pressure i m pacto r (ELPI).The num ber concentration o f particles produced i n the range o f 0101to 10L m w a s found to v ary w ith the m ass rati o o f fl y ash to bronze beads i n the m ixed bedm ater i a ,l and nitrog en flow rate t h rough the fluidized bed and feed rate o f the m i x ture .The partic le size d istri b uti o n is bi m oda,l w ith one m ode in 0101to 011L m d i a m eter size range and t h e o ther in 011to 10L m dia m e ter si z e range .The particle m ass concentration rises w ith the increase o f particle dia m eter .K ey w ords :aero so l generato r ;fluidized bed;particle num ber concentration 收稿日期:2005-03-18. 基金项目:国家重点基础研究发展计划(973计划)资助项目 (2002CB 211600). 作者简介:李永旺(1979)),男,博士生;赵长遂(联系人),男,教 授,博士生导师,cszhao @s https://www.360docs.net/doc/0f9232864.html, .cn. 气体介质中加入固态或液态颗粒而形成的分散体系称为气溶胶[1] .构成大气气溶胶的可吸入颗粒物已成为大气环境污染的突出问题,日益引起世界各国的高度重视.无论是在可吸入颗粒物环境与健康影响方面还是形成演化与控制技术方面的试验研究,都需要一个能够稳定地输出一定范围内的粒子数浓度和粒径分布的气溶胶发生源. 在当前气溶胶的各种发生方法中,雾化法仅适用于少数能溶解于液体的粉末物质,凝集法 [2] 只 适用于容易发生物理化学反应的固体物质,而干分散法适用于大多数粉末物质,但发生装置结构复杂,而且对聚合粒子的分散效果不佳,形成的气溶胶中以多重态聚合大粒子居多[3] .不同于以上3种 气溶胶发生方法,流化床法 [4,5] 不仅适用于各种粉 末物质,而且可以有效地将粉末物质分散产生粒径较小的气溶胶颗粒物.Boucher 等 [6] 于1982年提 出一种可以稳定地输出亚微米级颗粒物的流化床气溶胶发生装置,但是该气溶胶发生装置要求有复杂的给料系统和振动再分散装置,且气体流速较大.相比而言,Lua [7] 于1992年提出了一种简易的流化床气溶胶发生装置,但该装置只能产生空气动力学直径大于1L m 的气溶胶颗粒物,而且输出的

稀乙烯高效转化技术

第49卷第4期鲁超?制氢装置转化气蒸汽发生器内漏原因分析及处理机械设备 2006,57(1):7. [3]中国石油化工集团公司人事部.制氢装置操作工[M].北京: 中国石化出版社,2007:183. [4]王克华,李少平,尹长学?制氢装置转化催化剂失活原因分析 及对策[J].大氮肥,2006,29(1):66-67.[5]江镇海.大型合成氨装代中高温氢腐蚀与防护[J]?腐蚀9防 护,2008,29(3):170. [6]张艳利.冷换设备管束的腐蚀与防护[J].化学工程师,2004, 109(10):31. (编辑杜婷婷) Analysis of the causes of internal leakage of reforming gas steam generator of hydrogen generation unit and treatment Lu Chao (SINOPEC Wuhan Company,Wuhan,Hubei430000) Abstract:In early March2018,a rapid decline of temperature of refonning gas at the outlet of the steam generator BE101of the120,000TPY hydrogen unit of SINOPEC Wuhan Company occurred,and the differ-ence between water and steam production of BE101was increased,which was the result of internal leakage of BE101.The operation was maintained by reducing the pressure difference between BE101and the reformer system,adding3.5MPa steam,reducing the treatment capacity,controlling the ratio of water to carbon at M3.5,the temperature of reforming gas at the outlet of BE101at^285X.,and the outlet steam tempera-ture of the second stage of convection at W405to maintciin the production.On March26,the unit was shut down when the temperature of reforming gas dropped to281The causes of internal leakage were analyzed by inspection of the tube bundles and analysis of the fouling samples.It was concluded that the concentration of the catalyst powders in BE101tube bundle led to the fouling formation of the tube bundle,and further caused the under-fouling corrosion,resulting in the thinning and perforation of the tube bundles.In addition, the emphasis of monitoring and maintenance during the operation of steam generator as well as the processing concern after the occurrence of internal leakage are recommended. Key Words:hydrogen generation,steam generator,internal leakage,reforming catalyst,powder collection 国内外动态 稀乙烯高效转化技术 新年伊始,国家科技奖励大会在京隆重举行,中国石化稀乙烯增值转化高效催化剂及成套技术项目荣获2018年度国家科技进步二等奖上海石油化工研究院与洛阳工程有限公司、石油化工科学研究院、青岛炼油化工有限公司等单位协力攻关,为中国石化打造又一张亮丽名片。 我国稀乙烯有效成分浓度低、组成复杂,通过精制分离回收乙烯流程长H能耗高、投资巨大。考虑到杂质、浓度及工艺流程等原因,上海石油化工研究院杨为民教授领导的科研团队转换思路.使稀乙烯资源不经精制回收,直接通过催化转化生成乙苯等化学品.顺利实现分离和反应耦合,不仅大幅降低能耗,而且充分利用了乙烯资源:上海石油化I:研究院科研团队与石油化工科学研究院团队密切合作,在催化材料方面取得形貌择向纳米MFI 分子筛及多级孔高硅FAU分子筛催化材料等关键技术突破。他们开发出低苯烯比稀乙烯制乙苯催化剂,在多家企业实现工业应用,结果表明.该催化剂具有优良的扩散性能,在维持高转化率和高选择性指标基础上.可大幅降低乙苯生产能耗.烷基化再生周期超过19个月,使用寿命超过3年,烷基转移催化剂使用寿命达7年以上<在工艺方面,创新选择性预处理及高效反应分离工艺,大幅提高资源利用率.物耗、能耗大幅降低.乙烯总冋收率达到96%以上.集成创新的节能和大型化成套技术,可以适应多种稀乙烯原料,增产高端产品。 目前.稀乙烯增值转化高效催化剂及成套技术11得到许可,应用于包括30万吨/年宁波大榭石化等多家乙苯生产企业,乙苯产量全年超过百万吨:近3年累计新增销售额上百亿元.新增利润数十亿元,经济效益显茗稀乙烯增值转化高效催化剂及成套技术对我国炼油及化工绿色技术的创新引领也发挥了重要作用。该项目具有完全自主知识产权,已获得国内外多家公司的认可和应用意向,市场前景广阔‘ (郑宁来供稿) 33

相关文档
最新文档