变压器负荷不平衡对系统的影响(园区)

变压器负荷不平衡对系统的影响(园区)
变压器负荷不平衡对系统的影响(园区)

变压器负荷不平衡对系统的影响

1.1增加线损

配电变压器三相负荷不平衡时,线损增加表现在两部分:一是增加配电变压器损耗;二是增加线路损耗。

1.2降低变压器的利用率,威胁安全运行

配电变压器的额定容量是按每相绕组设计的,当配电变压器在三相负荷不平衡状态下运行时,变压器负荷高的那相时常出现故障,如缺相、接点过热、个别密封胶垫劣化等。同时,配电变压器在三相负荷不平衡状态下运行,在低压侧产生零序电流。对于变压器(Y,yn0)接线的配电变压器来说,变压器高压侧无中性线,高压侧不可能有零序电流,低压侧零序电流产生的零序磁通不能抵消。所以,零序磁通只能由配电变压器的油箱壁及钢铁构件中通过,磁滞和涡流在钢铁构件内发热,造成配电变压器散热条件降低,温升增高,严重时损坏变压器绝缘,烧损配电变压器。

1.3对用电设备的影响

当配电变压器三相负荷不平衡运行时,中性点将产生位移,偏移严重时单相电压可能升高到线电压。如果线路接地保护不好,中性线电流产生的电压严重危及人身安全。同时电流不平衡会造成单相设备不能正常用电,或过电压烧损用户设备。

1.4变压器三相负荷不平衡对系统电压的影响

变压器在三相负荷不平衡运行时,由于变压器绕组压降不同,出口电压不均衡,用户端电压更是三相偏差较大,电压质量得不到保障。

2影响变压器三相负荷不平衡的原因

2.1管理上存在薄弱环节

由于对配电变压器三相负荷不平衡的运行管理重视不够,一直没有一个考核管理办法,对配电变压器三相负荷的管理带有盲目性、工作随意性,以至于使运行、维护人员放松了对配电变压器三相负荷的管理,致使很多配电变压器长期在三相负荷极不平衡状态下运行。

2.2单相用电设备影响

由于线路大多为动力、照明混载。而单相用电设备使用的同时率较低,用户横向用电差异较大,经常会造成配电变压器三相负荷的不平衡,并给管理增加了难度。

2.3电网格局不合理的影响

低压电网结构薄弱,运行时间较长,改造投入不彻底,单相低压线路是台区的主网架问题,一直得不到有效根治。

其次居民用电大多为单相供电,负荷发展时无序延伸,造成台区三相电流不平衡无法调整。对于这样的低压网络必须投入较大的资金,彻底解决低压网布局,增加低压四线的覆盖面积,对线损、电压质量、供电可靠性、供电安全等都有很大改善效果。

2.4临时用电及季节性用电影响

临时用电和季节性用电都有一定的时间性,用电增容不收费后,大量的单相设备应用较多,而又分布极为分散,用电时间不好掌握,同时由于在管理上未考虑其三相负荷的分配问题,又未能及时监测、调整配电变压器的三相负荷,它的使用和停电,对配电变压器三相负荷的平衡都有较大的影响,特别是单相用电设备容量较大时,影响更

大。

2.5线路故障的影响

由于运行维护及管理不当或外力破坏等原因,低压导线断线,变压器缺相运行,修理不及时或现场临时处理,都可能造成某一相长时间甩掉部分负荷,使配电变压器处于不平衡状态下运行。

3防止变压器负荷不平衡的措施

3.1加强配电变压器负荷不平衡运行管理

定期进行三相不平衡电流测试,按季度考核变压器三相负荷不平衡度的情况,责任到人。负荷每月至少进行一次测量,特殊情况下(如高峰负荷期间,负荷变化较大时等)可增加测量次数,对配电变压器负荷状况做到心中有数,为调整配电变压器负荷提供准确可靠的数据。

3.2改造配电网,加强对三相负荷分布控制

结合农网线路改造,合理设计电网改造方案。配电变压器设臵于负荷中心,供电半径不大于500m,主干线、分支干线均采用三相四线制供电,5户以上居民建议不采用单相供电,同时制定台区负荷分配接线图,做到任何一个用户的用电改造接入系统,都受三相负荷平衡度的限制,避免改造的随意性。

3.3加强供用电管理,确保变压器负荷平衡

用电与配电应密切配合。用户的临时用电,季节性用电,配电变压器运行人员都要及时掌握。尤其对单相设备申请用电,要进行合理搭接。

3.4加强无功补偿,促进三相负荷就地平衡

由于单项感性设备增多,三相电流补平衡,导致电压质量下降、

零线电流增大。进行就地无功补偿,可以降低零线电流,提高电压质量,降低线损。

什么叫变压器的不平衡电流

什么叫变压器的不平衡电流?有什么要求? 变压器的不平衡电流系统指三相变压器绕组之间的电流差而言。三相三线式变压器中,各相负荷的不平衡度不许超过20%,在三相四线式变压器中,不平衡电流引起的中性线电流不许超过低压绕组额定电流的25%。如不符合上述规定,应进行调整负荷。 变压器长时间在极限温度下运行有哪些危害? 答:一般变压气的主要绝缘是A级绝缘,规定最高使用温度为105℃,变压器在运行中绕组的温度要比上层油温高10~15℃.如果运行中的变压器上层油温总在80~90℃左右,也就是绕组经常在95~105℃左右,就会因温度过高绝缘老化严重,加快绝缘油的劣化,影响使用寿命。 断路器电动合闸时应注意:1)操作把手必须扭到终点位置,监视电流表,当红灯亮后将把手返回,操作把手返回过早可能造成合不上闸。2)油断路器合上以后,注意直流电流表应返回,防止接触器KII保持,烧毁合闸线圈。3)油断路器合上以后,注意检查机械拉合闸位置指示、传动杆、支持绝缘子等应正常,内部无异常。 如何正确进行电器设备停电后的验电工作 1)设备停电后进行验电时,应使用相应电压等级而合格的接触式验电器,在装设接地线或合接地刀闸处对各相分别验电。验电前,应先在有电设备上进行试验,确证验电器良好。2)无法在有电设备上进行试验时可用高压发生器等确证验电器良好。3)如果在木杆、木梯或木架上验电,不接地线不能指示者,可在验电器绝缘杆尾部接上接地线,但经运行值班负责人或工作负责人许可。 变压器油位过低,对运行有何危害啊 变压器油位过低会使轻瓦斯保护动作,严重缺油时,变压器内部铁芯线圈暴露在空气中,容易绝缘受潮(并且影响带负荷散热)发生引线放电与绝缘击穿事故。 电流互感器运行中为什么二次侧不准开路 二次开路会长生以下后果:1出现的高电压会危及人身安全及设备安全;2铁心高度饱和将在铁心中产生较大的剩磁,使误差增大;3长时间作用可能造成铁心过热

配电变压器三相负荷不平衡运行的管理

管理制度参考范本 配电变压器三相负荷不平衡运行的管 理 S a H 撰写人: 部门:___■_! 间:__|1| 摘要:本文主要针对配电变压器三相负荷不平衡 的现状,分析产生的原因,针对原因制定了改善措 施。 关键词:配电变压器三相负荷不平衡运行管理 * 1 / 6 \

碾子山供电局XX区现有配电变压器193台,总容量25305kVA 近几年来,由于配电变压器三相负荷不平衡,运行中出现问题较多,主要表现在:部分变压器运行不经济、变压器故障率高,个别接点频繁过热烧损,个别台 区电压变化大,烧损用户设备。20xx 年,碾子山供电局对XX区所有配电变压器的负荷进行了测量,结果表明,三相电流不平衡度不合格的占35%、不平衡度超过25%的变压器占15%, 最高的达到75%。 1变压器负荷不平衡对系统的影响 1.1增加线损 配电变压器三相负荷不平衡时,线损增加表现在两部分:一是增加配电变压器损耗;二是增加线路损耗。 以低压线路增加的损耗,按照三种情况来分析(三相不平衡度为r) : ①一相负荷重、一相负荷轻,第3相为平均负荷: 单位长度线路上的功率损耗为: P1=3I2R+8r2I2R 当三相平衡时,P=3I2R, 两者相比, 规程规定:不平衡度r 应不大于20%,经计算当r=0.2 时, k=1.11,即由于三相不平衡所引起的线损增加11%,当r=100%时, k=3.67 ,测算出线损增加2.67 倍。 ②一相负荷重、两相负荷轻: 则k=1+2r2 当r=200 %,经测算线损增加8倍。 ③一相负荷轻、两相负荷重: 则k=1+20r2 当r=0.2时,k=1.8,计算得三相不平衡所引起的线损增加

分析主变纵差动保护不平衡电流原因及解决方法

分析主变纵差动保护不平衡电流原因及解 决方法 摘要:本文从对变压器纵差保护原理进行阐述的基础上,较详细地分析了纵差保护不平衡电流的形成原因,并提出了解决变压器纵差保护中不平衡电流的方法。 关键词:主变;纵差保护;不平衡电流;解决方法 前言:纵差动保护是变电站主变压器的主保护,它灵敏度高、选择性好,在变压器保护上运用较为成功。但是变压器纵差保护一直存在励磁涌流难以鉴定的问题,虽然已经有几种较为有效的闭锁方案,又因为高压输电线路长度的增加、静止无功补偿容量的增大以及变压器硅钢片工艺的改进、磁化特性的改善等因素,使得变压器纵差保护所固有原理性矛盾更加突显。 一、变压器纵差保护原理 纵差保护作为变压器内部故障的主保护,将有许多特点和困难。变压器具有两个或更多个电压等级,构成纵差保护所用电流互感器的额定参数各不相同,由此产生的纵差保护不平衡电流将比发电机的大得多,纵差保护是利用比较被保护元件各端电流的幅值和相位的原理构成的,根据KCL基本定理,当被保护设备无故障时恒有各流入电流之和必等于各流出电流之和。当被保护设备内部本身发生故障时,短路点成为一个新的端子,此时电流大于“0”,但是实际上在外

部发生短路时还存在一个不平衡电流。事实上,外部发生短路故障时,因为外部短路电流大,特别是暂态过程中含有非周期分量电流,使电流互感器的励磁电流急剧增大,而呈饱和状态使得变压器两侧互感器的传变特性很难保持一致,而出现较大的不平衡电流。因此采用带制动特性的原理,外部短路电流越大,制动电流也越大,继电器能够可靠制动。 另外,由于纵差保护的构成原理是基于比较变压器各侧电流的大小和相位,受变压器各侧电流互感器以及诸多因素影响,变压器在正常运行和外部故障时,其动差保护回路中有不平衡电流,使纵差保护处于不利的工作条件下。为保证变压器纵差保护的正确灵敏动作,必须对其回路中的不平衡电流进行分析,找出产生的原因,采取措施予以消除。 二、纵差保护不平衡电流分析 1、稳态情况下的不平衡电流 变压器在正常运行时纵差保护回路中不平衡电流主要是由电流互感器、变压器接线方式及变压器带负荷调压引起。 (1)由电流互感器计算变比与实际变比不同而产生。正常运行时变压器各侧电流的大小是不相等的。为了满足正常运行或外部短路时流入继电器差动回路的电流为零,则应使高、低压两侧流入继电器的电流相等,即高、低侧电流互感器变比的比值应等于变压器的变比。但是,实际上由于电流

三相不平衡的影响

三相负荷不平衡的危害 3.1 对配电变压器的影响 (1)三相负荷不平衡将增加变压器的损耗: 变压器的损耗包括空载损耗和负荷损耗。正常情况下变压器运行电压基本不变,即空载损耗是一个恒量。而负荷损耗则随变压器运行负荷的变化而变化,且与负荷电流的平方成正比。当三相负荷不平衡运行时,变压器的负荷损耗可看成三只单相变压器的负荷损耗之和。 从数学定理中我们知道:假设a、b、c 3个数都大于或等于零,那么a+b+c≥33√abc 。 当a=b=c时,代数和a+b+c取得最小值:a+b+c=33√abc 。 因此我们可以假设变压器的三相损耗分别为:Qa=Ia2 R、Qb= Ib2 R 、Qc =Ic2 R,式中Ia、Ib、Ic分别为变压器二次负荷相电流,R为变压器的相电阻。则变压器的损耗表达式如下: Qa+Qb+Qc≥33√〔(Ia2 R)(Ib2 R)(Ic2 R)〕 由此可知,变压器的在负荷不变的情况下,当Ia=Ib=Ic时,即三相负荷达到平衡时,变压 器的损耗最小。 则变压器损耗: 当变压器三相平衡运行时,即Ia=Ib=Ic=I时,Qa+Qb+Qc=3I2R; 当变压器运行在最大不平衡时,即Ia=3I,Ib=Ic=0时,Qa=(3I)2R=9I2R=3(3I2R); 即最大不平衡时的变损是平衡时的3倍。 (2)三相负荷不平衡可能造成烧毁变压器的严重后果: 上述不平衡时重负荷相电流过大(增为3倍),超载过多,可能造成绕组和变压器油的过热。绕组过热,绝缘老化加快;变压器油过热,引起油质劣化,迅速降低变压器的绝缘性能,减少变压器寿命(温度每升高8℃,使用年限将减少一半),甚至烧毁绕组。 (3)三相负荷不平衡运行会造成变压器零序电流过大,局部金属件温升增高: 在三相负荷不平衡运行下的变压器,必然会产生零序电流,而变压器内部零序电流的存在,会在铁芯中产生零序磁通,这些零序磁通就会在变压器的油箱壁或其他金属构件中构成回路。但配电变压器设计时不考虑这些金属构件为导磁部件,则由此引起的磁滞和涡流损耗使这些部件发热,致使变压器局部金属件温度异常升高,严重时将导致变压器运行事故。 3.2 对高压线路的影响 (1)增加高压线路损耗: 低压侧三相负荷平衡时,6~10k V高压侧也平衡,设高压线路每相的电流为I,其功率损耗为:ΔP1 = 3I2R 低压电网三相负荷不平衡将反映到高压侧,在最大不平衡时,高压对应相为1.5I,另外两相都为0.75 I,功率损耗为: ΔP2 = 2(0.75I)2R+(1.5I)2R = 3.375I2R =1.125(3I2R); 即高压线路上电能损耗增加12.5%。 (2)增加高压线路跳闸次数、降低开关设备使用寿命: 我们知道高压线路过流故障占相当比例,其原因是电流过大。低压电网三相负荷不平衡可能引起高压某相电流过大,从而引起高压线路过流跳闸停电,引发大面积停电事故,同时变电站的开关设备频繁跳闸将降低使用寿命。 3.3 对配电屏和低压线路的影响 (1)三相负荷不平衡将增加线路损耗:

变压器差的动保护原理(详细)

变压器差动保护 一:这里讲的是差动保护的一种,即变压器比例制动式完全纵差保护(以下简称差动); 二:差动保护的定义 由于在各种参考书中没有找到差动保护的具体定义,这里只根据自己所掌握的知识给差动保护下一个定义:当区内发生某些短路性故障的时候,在变压器各侧电流互感器CT的二次回路中将产生大小相同,相位不同的短路电流,当这些短路电流的向量和即差流达到一定值时,跳开变压器各侧断路器的保护,就是变压器差动保护 三:下面我以两圈变变压器为例,针对以上所述变压器差动保护的定义,对差动保护进行阐述: 1、图一所示:为一两圈变变压器,具体参数如下:主变高压侧电压U高 =220KV,主变低压侧电压U低=110KV,变压器容量Sn=240000KV A, I1’:流过变压器高压侧的一次电流; I”:流过变压器低压侧的一次电流; I2’:流过变压器高压侧所装设电流互感器即CT1的二次电流; I2”:流过变压器低压侧所装设电流互感器即CT1的二次电流; nh:高压侧电流互感器CT1变比; nl:低压侧电流互感器CT2变比; nB:变压器的变比; 各参数之间的关系:I1’/ I2’= nh I”/ I2”= nl I2’= I2” I1’/ I”= nh/ nl=1/ nB 2、区内:CT1到CT2的范围之内; 3、反映故障类型:高压侧内部相间短路故障,高压侧(中性点直接接地) 单相接地故障以及匝间、层间短路故障;

四:差动的特性 1、比率制动:如图二所示,为差动保护比率特性的曲线图: 下面我们就以上图讲一下差动保护的比率特性: o:图二的坐标原点; f:差动保护的最小制动电流; d:差动保护的最小动作电流; p:比率制动斜线上的任一点; e:p点的纵坐标; b:p点的横坐标; 动作区:在of范围内,由于电流小于最小制动电流,因此在此范围内,只要电流大于最小动作电流Iopo,差动保护动作;当电流大于f点时, 由于电流大于最小制动电流,此时保护开始进行比率制动运算,曲 线抬高,此时只有当电流在比率制动曲线以上时保护动作;因此, 图中阴影部分,即差动保护的动作区; 制动区:当电流在落在曲线以下而大于最小动作电流的时候,由于受比率制动系数的制约,保护部动作,这个区域就是差动保护的制动区; 比率制动系数K:实际上比率制动系数,就是图二中斜线的斜率,因此我们只要计算出此斜线的斜率,就等于算出了比率制动系数。以p点为 例:计算出斜线pc的斜率K=pa/ac=(pb-ab)/(ob-of);举例说明一下: 差动保护有关定值整定如下:最小动作电流Iopo=2,最小制动电流 Iopo=5,比率制动系数k=0.5;按照做差动保护比率制动系数的方法, 施加高压侧电流I1=6A,180度,低压侧电流I2=6A,0度,固定I1升 I2,当I2升到9.4A的时候保护动作,计算一下此时的比率制动系数。 由于两圈变差动的制动电流为(I1+I2)/2,因此,Izd=(9.4+6)/2=7.7, 所以K=(9.4-6-2)/(7.7-5)=1.4/2.7=0.52; 2、谐波制动:当差动电流中的谐波含量达到一定值的时候,我们的装置就 判此电流为非故障电流,进行谐波闭锁。500kv一下等级的变压器之

三相不平衡危害

不平衡电流的危害 时间:2013-01-28 11:27来源:未知作者:admin 点击: 231 次 . 电网中三相间的不平衡电流是普遍存在的,在城市民用电网及农用电网中由于大量单相负荷的存在,三相间的电流不平衡现象尤为严重。对于三相不平衡电流,除了尽量合理地分配负荷之外几乎没有什么行之有效的解决办法。正因为找不到解决问题的有效办法,因此反而不被人们所重视,也很少有人进行研究。 电网中的不平衡电流会增加线路及变压器的铜损,增加变压器的铁损,降低变压器的出力甚至会影响变压器的安全运行,会造成三相电压不平衡因而降低供电质量,甚至会影响电能表的精度而造成计量损失。 理论研究证明:在输出同样功率的情况下,三相电流平衡时变压器及线路的铜损最小,也就是说:三相不平衡现象增加了变压器及线路的铜损。 不平衡电流对系统铜损的影响: 设某系统的三相线路及变压器绕组的总电阻为R。如果三相电流平衡, IA=100A,IB=100A,IC=100A,则总铜损=100*100R+100*100R+100*100R=30000R。 如果三相电流不平衡,IA=50A,IB=100A,IC=150A,则总铜损 =50*50R+100*100R+150*150R=35000R,比平衡状态的铜损增加了17%。 在更为严重的状态下,如果IA=0A,IB=150A,IC=150A,则总铜损 =150*150R+150*150R=45000R,比平衡状态的铜损增加了50%。 在最严重的状态下,如果IA=0A,IB=0A,IC=300A,则总铜损=300*300R=90000R,比平衡状态的铜损增加了3倍。 不平衡电流对变压器的影响: 现有的10/0.4KV的低压配电变压器多为Yyn0接法三相三柱铁心的变压器。这种类型的变压器,当二次侧负荷不平衡且有零线电流时,零线电流即为零序电流,而在一次侧由于无中点引出线因此零序电流无法流通,故零序电流不能安匝平衡,对铁心而言,有一个激磁零序电流,它受零序激磁阻抗控制,根据磁路的设计,这一零序激磁阻抗较大,零序电流使相电压的对称受到影响,中性点会偏移。 由计算得知,当零线电流为额定电流的25%时,中性点移位约为额定电压的7%。国家标准GB50052-95第6.08条规定: “当选用Yyn0结线组别的三相变压器,其由单相不平衡负荷引起的电流不得超过低压绕组额定电流的25%,且其中一相的电流在满载时不得超过额定电流值。”由于上述规定,限制了Yyn0结线配电变压器接用单相负荷的容量,也影响了变压器设备能力的充分利用。 并且,对三相三柱的磁路而言,零序磁通不能在磁路内成回路,必须在油箱壁及紧固件内形成回路,而油箱壁及紧固件内的磁通会产生较大的涡流损耗,因而使变压器的铁损增加。当零序电流过大导致零序磁通过大时,由于中性点漂移过大会引起某些相电压过高而导致铁心磁饱和,使铁损急剧增加,加上紧固件过热等因素,可能会发生任何一相电流均未过载而变压器却因局部过热而损坏的事

变压器差动保护的平衡系数

变压器微机差动保护平衡系数说明 1、影响变压器差动保护差流计算的因素 1)、变压器高低压侧电流幅值不同造成的不平衡。由于变压器高低压侧电压等级不同,所以变压器高低压侧的电流幅值不同。 2)、变压器高低压侧电流相位不同造成的不平衡。由于变压器接线方式导致高低压侧电压的相位不同,所以变压器高低压侧的电流相位也不同。 3)、变压器高低压侧电流互感器的不匹配造成的不平衡。由于电流互感器的变比是一个标准的数值,而变压器虽然容量是一个标准值,但其额定电流是一个不规则的数,所以,电流互感器的选择并不考虑其对差流的影响。 2、消除电流不平衡的方法 1)、通过引入平衡系数消除高低压侧电流幅值不同及高低压侧电流互感器不匹配造成的不平衡。 2)、根据变压器高低压侧电流的相位关系,通过数学公式的计算,消除变压器高低压侧电流相位不同造成的不平衡。 3、平衡系数概念和计算方法 1)、概念:两个不同单位或相同单位而基准不同的物量归算到同一单位或同一基准时所用到的比例系数就是平衡系数。举例如下: a、一斤大米3元,一斤白面2元,归算到大米侧,白面的平衡系数为2/3。 b、一斤大米3元,一斤白面2元,归算到白面侧,大米的平衡系数为3/2。 c、一斤大米3元,一斤白面2元,一斤鸡蛋4元,归算到鸡蛋侧,大米的平衡系数为3/4,白面的平衡系数为1/2。 2)、计算方法 主变的型号为100000kVA-110kV/35kV,高压侧一次额定电流:Ieg1=524.9A,低压侧一次额定电流:Ie d1=1649.6A,高压侧电流互感器变比:800/5,低压侧电流互感器变比:2000/1。 a、以高压侧电流互感器为基准,把高压侧电流互感器折算到低压侧。 I12=800*110/35=2514.3A,K ph2=2000/ I12=2000/2514.3=0.80。 b、以低压侧电流互感器为基准,把低压侧电流互感器折算到高压侧。 I21=2000*35/110=636.4A,K ph1=800/ I21=800/636.4=1.26。 c、以变压器额定电流为基准,把高低压侧电流互感器折算到额定电流侧。

智能变电站变压器差动保护的不平衡电流产生原因分析

智能变电站变压器差动保护的不平衡电流产生原因分析 发表时间:2018-06-27T09:41:18.663Z 来源:《电力设备》2018年第6期作者:郭财[导读] 摘要:本文扼要分析智能变电站变压器合并单元采样差动保护的工作原理,分析导致智能变电站变压器差动保护产生不平衡电流异常的原因,并针对智能变电站变压器差动保护不平衡电流产生提出有效的防范措施,提高智能变电站变压器差动保护动作的正确性,防止保护装置误动,从而保证变压器的安全稳定运行。 (国网青海省电力公司检修公司青海西宁 810007)摘要:本文扼要分析智能变电站变压器合并单元采样差动保护的工作原理,分析导致智能变电站变压器差动保护产生不平衡电流异常的原因,并针对智能变电站变压器差动保护不平衡电流产生提出有效的防范措施,提高智能变电站变压器差动保护动作的正确性,防止保护装置误动,从而保证变压器的安全稳定运行。 关键词:智能变电站;差动保护;不平衡;合并单元前言 变压器的纵差保护作为变压器故障时的主保护,差动保护的保护范围是构成变压器差动保护的各侧电流互感器之间包围的设备,可以反映变压器的引线、内部线圈的匝间短路、大电流接地系统中线圈及引线的接地等故障。变压器的差动保护是按照循环电流原理构成的,变压器各侧装设电流互感器,当各侧电流互感器的同极性相同一般减极性设置电流从母线流向变压器,在正常运行或外部故障时,各侧的二次电流大小相等、方向相反、差动电流为零,因此差动保护不动作。 与常规变电站相比智能变电站交流采样采用合并单元,在一次设备就近将来自电压、电流互感器的交流量通过合并单元进行时间数字的组合,组合后将采样数据以数字信号发送出去供保护装置、测控装置等使用。在变压器实际运行中由于各种原因引起的不平衡电流使得差动电流增大,就可能造成保护误动。在常规变电站内,因运行时间较长对各种不平衡电流已经有较完善防范措施,所以不至导致保护误动。但智能变电站推广技术较短,相关技术不是很成熟,尤其是合并单元在处理数据采样及传输中出现问题较多,引起电流不平衡的现象较多,易引起保护误动,给电力系统稳定性带来较大隐患。 1、产生的原因 变压器正常运行的状态时,会产生不平衡电流,从而对差动保护造成影响。常规变电站变压器差动不平衡电流的产生的原因有:在变压器正常运行时产生较大的励磁涌流,比如变压器在空载合闸的状态,或在切除故障中突然产生电压时有较大的励磁涌流,通常能达到额定电流的7倍左右,通过CT以二次电流的形式全部进入到保护当中,从而产生不平衡电流;变压器两侧接线不同产生的不平衡电流,变压器两侧的电流相位是由变压器的接线方式决定的,不同的接线方式,两侧的电流有一定相位差,即CT上两侧二次电流值虽然一样,但通过参考电压折算会产生不平衡电流;由CT变比误差产生的不平衡电流;由计算变比与标准变比不同产生的不平衡电流及带负荷调整变压器分接头位置改变产生的不平衡电流。 相对于常规站,智能变电站中由于引进合并单元,且运维人员对设备原理认识欠缺验收不到位等原因导致变压器差动异常时有发生。由合并单元引起的的不平衡原因,有因各侧合并单元程序设计缺陷造成不同电流、电压量之间不同步产生不平衡电流;也有因智能变电站保护电流电压接收需要投入SV接收漏投产生不平衡电流;还有因装置虚端子额定延时错误造成不平衡电流。 2、影响和防范措施 在运维中,常规变电站中确定的几条不平衡电流在运维中已有比较完善的防范措施,下面就智能变电站变压器差动保护中的几种产生不平衡电流原因和防范措施进行阐述。 2.1 变压器合并单元程序设计缺陷的影响和防范措施 由于装置设计中的软、硬件等出现问题导致合并单元发送出数据异常导致保护误动。应增加出厂前的测试项目,对要使用的装置软件硬件都必须经过国网公司检测合格且版本硬件均与入网测试合格的产品一致。加强现场验收由于现场调试中对合并单元验收不重视在测试中部分项目未开展,应在验收细则中增加该类验收项目。并采用专用的合并单元校验仪测试合并单元的绝对延时、稳态性能检验、动态性能检验等测试项目,测试装置数据正确性。 2.2 变压器压板未正确投入的影响和防范措施 智能变电站大量减少硬压板的设置,只有检修压板为硬压板,保护装置广泛采用软压板。SV软压板(数据接收软压板)的主要功能是按MU投入状态控制本端是否接收处理采样数据。智能变电站继电保护装置模拟量输入要求一个MU设置一个SV压板,此压板作用如下:SV接收软压板投入时,该链路中的采样值才参与保护计算,否则不参与保护计算同时显示为0;SV接收软压板投入时,对该链路状态进行检测,包括断链、失步和接收不匹配;SV接收软压板投入时,对该链路所包含采样进行品质异常、检修不一致、双AD不一致、交流断线和交流反序的判别。SV接收软压板位于保护装置内部,其功能是控制保护装置是否处理SV报文中的数据。此压板相当于PT、CT的二次连线。退出间隔SV接收软压板相当于封CT,退出母线电压SV接收软压板相当于断开PT二次。退出SV接收软压板后,保护装置面板上会显示该SV报文的电流信息,但不用于保护计算以及逻辑判断。当保护装置SV软压板与实际运行状态不一致时就会造成保护误动或拒动,造成事故扩大。应加强智能变电站保护装置的“SV投入”软压板的管理,在运规编制中严格执行国网间隔检修压板投退要求进行编写,保证运规正确性,运维人员在操作过程中,应严格执行操作票制度,并与运规一致。 2.3 额定延时错误的影响和防范措施 主变保护装置采样来自不同合并单元时,各侧测样数据同步问题可能会导致保护装置采样数据异常,导致保护不正确动作。合并单元的延时主要是由合并单元自身采样到各插件数据传输延时导致。当交流电流、电压经合并单元转换为数字量输出时就会产生延时,延时主要有A/D变换时间、插件数据接收时间、CPU数据处理时间和光口插件数据发送延时。不同厂家由于软、硬件不同,合并单元的延时也不相同。为了消除保护装置接收到不同合并单元采样数据不同步的问题,通常采用额定延时来消除,即所有合并单元发出的电流电压都等待一定的时间后再将电流电压输出给保护测控装置,保护测控装置解析数据报文中的时标,并通过额定延时进行时间或相角补偿,来消除各侧采样不同步的影响。为了避免由于矢量计算导致的差流及合并单元额定延时不正确对保护同步计算产生较大影响,验收调试中运维人员必须清楚装置采样同步原理和实现方法并增加对合并单元对额定延时的测试,以避免因多个合并单元额定延时设置错误导致的保护异常。 3、结语

变压器直流电阻

变压器直流电阻 1.变压器直流电阻不平衡率标准。 当变压器容量等于或者小于1 600kVA时,要求相电阻不平衡率≤4%,线电阻不平衡率≤2%;当容量大于1 600kVA时,则相电阻不平衡率(中性点引出时)和线电阻不平衡率均为≤2%。也就是说超过上述限值,即可认为变压器存在质量问题。 2.影响变压器电阻的原因分析。 ①导线材质对直流电阻不平衡率的影响。导线材质的差异,也会导致线规一致的导线,其电阻率可能不一样,若相差较大,则会使所绕制变压器的直流电阻不平衡率超标。导线截面尺寸的窄边,宽边和圆角半径等规定了允许偏差,截面积就有大有小。 ②引线结构对直流电阻不平衡率的影响。由于变压器的高压线圈电阻相对高压引线电阻要大的多,因而高压引线电阻对高压直流电阻不平衡的影响很小。而变压器的低压线圈电阻通常较小,其低压引线电阻的大小对低压直流电阻不平衡率有很大的影响,而且在生产中所发生的直流电阻不平衡率超标也大都由其引线结构上的原因造成的,这一点在低压中性点引出的变压器中表现得尤为明显(电压≥3.3KV变压器中性点引出)。改善方法:在条件允许的情况下,为减小直流电阻的不平衡,套装器身时,将三个线圈中电阻值最大的线圈套在b

相:对于中性点引出的,在电阻偏差不大的情况下,可把中性点焊接位置往电阻值大的线包位置靠近:将封线铜排改成截面积较大的铜排,以降低引线电阻对相电阻不平衡的影响: 3.焊接质量对直流电阻不平衡率的影响。变压器线圈在绕制、装配过程中,线圈本身内部导线与导线的连接以及线圈出头与引线的连接,都是采用铜焊或气焊。当变压器电流较大时,线圈的线匝往往由数根并联导线组成,若出现“虚焊”,其中有一根甚至几根导线未能焊接牢固,或者是线圈的出线与引线的焊接处接触不良,则会引起阻值上升,造成变压器三相直流电阻不平衡过大,以至超过国家标准。 4.成品装配环节对直流电阻不平衡的影响。在进行成品装配时,有时由于人为的原因,使得引线与套管导杆间的连接不紧密发生松动, 变压器分接开关的动静触头间的接触不良,均可造成直流电阻不平衡率超标,只要使发生问题的部位保证良好接触,就可以基本解决这一问题。如果变压器分接开关的动静触头上存在一定厚度的氧化膜,而且变压器线圈的直流电阻较小,也会使直流电阻不平衡系数超标。

变压器纵差保护中不平衡电流的克服方法

变压器纵差保护中不平衡电流的克服方法 纵差保护是一切电气主设备的主保护,它灵敏度高、选择性好,在变压器保护上运用较为成功。但是变压器纵差保护一直存在励磁涌流难以鉴定的问题,虽然已经有几种较为有效的闭锁方案,又因为超高压输电线路长度的增加、静止无功补偿容量的增大以及变压器硅钢片工艺的改进、磁化特性的改善等因素,变压器纵差保护的固有原理性矛盾更加突出。 1.变压器纵差保护基本原理 纵差保护在发电机上的应用比较简单,但是作为变压器内部故障的主保护,纵差保护将有许多特点和困难。变压器具有两个或更多个电压等级,构成纵差保护所用电流互感器的额定参数各不相同,由此产生的纵差保护不平衡电流将比发电机的大得多,纵差保护是利用比较被保护元件各端电流的幅值和相位的原理构成的,根据KCL基本定理,当被保护设备无故障时恒有各流入电流之和必等于各流出电流之和。 当被保护设备内部本身发生故障时,短路点成为一个新的端子,此时电流大于0,但是实际上在外部发生短路时还存在一个不平衡电流。事实上,外部发生短路故障时,

因为外部短路电流大,非凡是暂态过程中含有非周期分量电流,使电流互感器的励磁电流急剧增大,而呈饱和状态使得变压器两侧互感器的传变特性很难保持一致,而出现较大的不平衡电流。因此采用带制动特性的原理,外部短路电流越大,制动电流也越大,继电器能够可靠制动。 另外,由于纵差保护的构成原理是基于比较变压器各侧电流的大小和相位,受变压器各侧电流互感器以及诸多因素影响,变压器在正常运行和外部故障时,其动差保护回路中有不平衡电流,使纵差保护处于不利的工作条件下。为保证变压器纵差保护的正确灵敏动作,必须对其回路中的不平衡电流进行分析,找出产生的原因,采取措施予以消除。 2.纵差保护不平衡电流分析 2.1稳态情况下的不平衡电流 变压器在正常运行时纵差保护回路中不平衡电流主要是由电流互感器、变压器接线方式及变压器带负荷调压引起。 由电流互感器计算变比与实际变比不同而产生。正常运行时变压器各侧电流的大小是不相等的。为了满足正常运行或外部短路时流入继电器差动回路的电流为零,则应使高、低压两侧流入继电器的电流相等,即高、低侧电流互感器变比的比值应等于变压器的变比。但是,实际上由于电流互感器的变比都是根据产品目录选取的标准变比,而变压器的变

变压器三相负荷不平衡原因分析及防范措施

变压器三相负荷不平衡原因分析及防范措施 发表时间:2018-06-11T15:06:54.410Z 来源:《河南电力》2018年2期作者:张璇 [导读] 变压器三相负荷不平衡,可能使低压电网的三相负荷不平衡度加大,这不仅关系到供电可靠性和稳定性,还会增加低压线路线损,使变压器出力下降。 (国网山西省电力公司太原供电公司山西太原 030012) 摘要:变压器三相负荷不平衡,可能使低压电网的三相负荷不平衡度加大,这不仅关系到供电可靠性和稳定性,还会增加低压线路线损,使变压器出力下降。因此变压器台区三相负荷不平衡问题应当引起重视。 关键词:变压器三相负荷不平衡;原因;防范措施 一、变压器三相负荷不平衡引起的麻烦 某地区多个台变多次出现一相总熔断器熔丝烧断的情况,利用用电采集系统采集配变的三相负荷数据,均为三相负荷不平衡引起,随着夏季用电负荷的不断增加,这种不平衡的情况也突显出来,随之带来抢报修以及服务热线诉求工单的数量猛增,给企业的优质服务带来影响。 在线损合格台区整改提高工作中也发现,因三相负荷的不平衡也会造成台区线损率的增加。在三相负荷不平衡度较大的情况下,在配电变压器中性点不接地或接地电阻达不到技术要求时,中性点将发生位移造成中性线带有一定的电压,从而加大线路电压的电压降,降低功率的输出,线路供电电压偏低,尤其是线路末端的电压远远超出电压降的允许范围,直接导致用户的用电设备不能正常工作,电气效能降低,同时极大的增加了低压线损率。通过用电采集系统提供的相关数据证明,一般情况下三相负荷不平衡可引起低压线损率升高2%~10%,三相负荷不平衡度若超过15%,则线损率显著增加,不平衡度越高对低压线损率的影响越大,如不平衡度超过30%,通过计算影响低压线损可以达到3%~6%。而事实上由于城乡用户受经济条件的制约和家用电器普及率的逐年提高,三相负荷不平衡度情况越来越严重,目前通过用电采集系统提供的数据计算,每天三个用电高峰期三相负荷不平衡度超过10%的占总综合变台区的60%,不平衡度超20%的台区数占总台区的40%,不平衡度超过30%的台区数占台区的26%。不平衡度越大的台区供电线路末端用户普遍反映电压偏低,而低压线损率也普遍反映较大。在低压三相负荷不平衡度的影响下,使配电变压器处于不对称运行状态,造成配电变压器的负载损耗和空载损耗增大,而影响到10kV线损率。 二、三相不平衡对变压器的影响 (1)三相不平衡将增加变压器的损耗 变压器的损耗包含空载损耗和负荷损耗,正常情况下变压器运行电压基本不变,即空载损耗是一个恒量。而负荷损耗则随着变压器运行负荷的变化而变化,且与负荷电流的平方成正比。当三相负荷不平衡运行时,变压器的负荷损耗可看成三只单相变压器的负荷损耗之和。 (2)三相不平衡降低了配电变压器的出力 配电变压器容量的设计和制造是以三相负载平衡条件确定的,如果三相负载不平衡,配电变压器的最大出力只能按三相负载中最大一相不超过额定容量为限,负荷轻的相就有富裕容量,从而使配电变压器出力降低。例如100kVA配电变压器,二次额定电流为144A,若Ia为144A,Ib、Ic分别为72A,配电变压器的出力只有67%。 (3)三相不平衡可能造成烧毁变压器的严重后果 上述不平衡时重负荷相电流过大(增为3倍),超载过多,可能造成绕组和变压器油的过热。绕组过热,绝缘老化加快;变压器油过热,引起油质劣化,迅速降低变压器的绝缘性能,减少变压器的寿命。(温度每增加8度,使用年限将减少一半,甚至烧毁绕组。 (4)三相负荷不平衡运行会造成变压器零序电流过大,局部金属件温升增高 在三相负荷不平衡运行下的变压器,必然会产生零序电流,而变压器内部零序电流的存在,会在铁芯中产生零序通磁,这些零序通磁就会在变压器的油箱壁或其它金属构件中构成回路。但配电变压器设计时不考虑这些金属构件为导磁部件,则由此引起的磁滞和涡流损耗使这些部件发热,致使变压器局部金属件温度异常升高,严重使将导致变压器运行事故。 三、影响变压器三相负荷不平衡的原因 三相负荷不平衡发生的原因主要是管理上存在薄弱环节,由于在对配电变压器三相负荷的分配上存在盲目性、工作随意性,以及运行维护人员对配电变压器三相负荷管理的责任心不到位,农村用电动力、照明的混用,尤其是居民用电单相负荷发展时无序延伸,用户用电情况不好掌握等客观因素,而在管理中又由于缺乏有效的监测、调整和考核机制,导致目前农村综合变压器三相负荷处于不平衡状态下运行。 四、防止变压器负荷不平衡运行采取的措施 (1)加强配电变压器负荷不平衡运行管理。运维班安排专人负责利用用电采集系统定期进行三相不平衡电流测试,并结合台区责任人的现场测量情况,按季度考核变压器三相负荷不平衡度的情况,把它列入考核项目,以提高农电管理人员搞好三相负荷平衡的自觉性和积极性。负荷每月至少进行一次测量,特殊情况下(如高峰负荷期间,负荷变化较大时等)可增加测量次数,对配电变压器负荷状况做到心中有数,并完善相关记录台帐,为调整配电变压器负荷提供准确可靠的数据。 管理人员应熟悉台区的每个用户用电情况、设备安装地点、用电能量变化情况,特别是注意大功率用电设备数量和容量等,看其分布在那相上。然后根据情况及时调整负荷。 (2)改造配电网,加强对三相负荷分布控制。在改造台区供电方案前,要了解所改造台区的负荷变化规律和负荷分配情况,对所改造的台区进行现场勘察,掌握负荷分布情况,同时绘制台区负荷分配接线图,并严格按三相负荷平衡的原则进行布线,尽量使三相四线深入到各重要负荷中心。配电变压器设置于负荷中心,供电半径不大于500m,主干线、分支干线均采用三相四线制供电,5户以上居民尽量不采用单相供电,中性线导线截面与其它相线截面一致,以减少损耗,消除断线的事故隐患。同时制定台区负荷分配接线图,做到任何一

10kV配电变压器三相电压不平衡的危害及防治措施

10kV 配电变压器三相电压不平衡的危害及防治措施 摘要: 10kV 配电变压器三相电压不平衡会对农村电网产生严重的影响, 该现象产生的原因主要有结构性因素、功能性因素和故障型因素,必须要做 好对现象产生因素的分析,采取合理的措施改善不平衡的现象。 10kV 配电变压器三相电压不平衡产生的原因分析:农村电网10kV 配电变 压器大多为D,yn11 接线方式,可灵活实现单相和三相供电。但三相电压不 平衡长时间运行,容易造成配电变压器中性线断线,中性线断线后,会影响 大部分农村用电设备的正常用电。良好的三相电压除了振幅、频率、谐波成 分都符合标准之外,三相电压的对称性也是重要的指标之一。理想的三相电 压是三相电压的大小相等,任两相之间的相位相差120°,如果三相电压偏离 了这两个条件,我们就称为三相电压不平衡。县级供电企业不论在发电、输 电或配电的阶段,均致力于维持三相电压的平衡,一般来说,造成三相电压 不平衡的原因可分为结构性、功能性和故障性三种。 1.结构性因素 结构性因素(structural cause)是指配电线路阻抗的非对称。如果三相配电线路中的电流为平衡,但是三相线路的阻抗却不相等,那幺所产生的压降 也不相等,致使受电端的三相电压产生不平衡。变压器的连接方式有时也是 造成阻抗不平衡的原因。另一个由变压器所引起的电压不平衡为三相变压器 的激磁电流。铁式三相变压器(three-phase core-type transformer)的铁芯为三个(three limbs)的磁路,由于各个磁路之长度不完全相同,铁芯的磁阻就不 相等,致使各相之磁化电抗也不相等,因此三相激磁电流就不平衡。如果变

变压器直流电阻测试的方法

https://www.360docs.net/doc/101024523.html,/ 变压器直流电阻测试的方法 变压器绕组直流电阻的测量是变压器试验中既简便又重要的一个试验项目。测量变压器绕组连同套管的直流电阻,可以检查出绕组内部导线接头的焊接质量、引线与绕组接头的焊接质量、电压分接开关各个分接位置及引线与套管的接触是否良好、并联支路连接是否正确、变压器载流部分有无短路情况以及绕组有无短路现象;另外,在变压器短路试验和温升试验中,为提供准确的绕组电阻值,也需要进行直流电阻的测量。因此,绕组直流电阻的测量是变压器是变压器试验的主要项目。交接试验标准规定为必做项目;预防性试验规程规定,变压器运行1-3年后、无励磁调压变压器变换分接位置后、有载调压变压器分接开关检修后和大修后及必要时,都必须做此项试验。 一般系统的测量方法有如下三种。 第一种为电流电压法,其原理是在被测绕组中,通以适当大小的直流电流,然后测量绕组中的电流和绕组两端的电压降,再根据欧姆定律,即可算出绕组的直流电阻。测量时,所用仪表应不低于0.5级,电流表应选用内阻较小的,电压表应选用较高内阻的表,引线要有足够的截面。测量电感量较大的绕组时,还需要有足够的充电时间。绕组通过的电流应限制在绕组额定电流的百分之二十以内。该方法的主要缺点是需要较长的时间才能测出准确值。因为每相绕组可以等效成电阻和电感的串联电路,在接通电源后,电感中电流从零逐渐增加到电源电压,然后逐渐下降到稳态值,需要一个过渡过程,过渡时间的长短取决于电路的时间常数t=L/R。由于变压器铁芯的磁导率很高,L值大大增加,而线圈的直流电阻数值又很小,因此时间常数t值很大。一般来说,电流表和电压表内阻对测量结果产生一定的影响,而且经过时间大约T=3~5倍时间常数,电流才能达到稳态值,即需要几十分钟甚至更长时间,才能测出直流电阻的准确值。

变压器的基本结构

变压器的用途与分类 变压器是变控电源电压的一种电气设备,为适应不同的使用目的和工作条件,变压器的类型很多,通常安变压器的不同用途、不同容量、绕组个数、相数、调压方式、冷却介质、冷却方式、铁心形式等等进行分类,以满足不同行业对变压器的需求。 一、按用途分类 ①电力变压器 ②电炉变压器 ③整流变压器 ④工频试验变压器 ⑤矿用变压器 ⑥电抗器 ⑦调压变压器 ⑧互感器 ⑨其他特种变压器 二、按容量分类 ①中小型变压器:电压在35KV以下,容量在10-6300KVA ②大型变压器:电压在63-110KV,容量在6300-63000KVA ③特大型变压器:电压在220KV以上,容量在31500-360000KVA 三、按相数分类 变压器按相数分类可分为单相变压器和三相变压器 四、按绕组数量分类 ①双绕组变压器 有高压绕组和低压绕组的变压器 ②三绕组变压器 有高压绕组、中压绕组和低压绕组的变压器 ③自耦电力变压器 自耦电力变压器的特点在于一、二绕组之间不仅有磁耦联系而且还有电的直接联系。采用自耦变压器比采用普通变压器能节省材料、降低成本、缩小变压器体积和减轻重量,有利于大型变压器的运输和安装。 五、按变压器的调压方式分类 按调压方式可分为无载调压变压器和有载调压变压器 六、按变压器的冷却介质分类 按冷却介质可分为油浸式变压器、干式变压器、充气式变压器、充胶式变压器和填砂式变压器等 七、按变压器的冷却方式分类 ①油浸自冷式变压器 ②油浸风冷式变压器 ③油浸强迫油循环风冷却式变压器 ④油浸强迫油循环水冷却式变压器 ⑤干式变压器 八、按铁心结构分类 ①心式变压器 ②壳式变压器

九、其他分类 ①按导线材料分类 有铜导线变压器和铝导线变压器 ②按中性绝缘水平分类 有全绝缘变压器和半绝缘变压器 ③按所连接发电机的台数分类 可分为双分裂与多分裂式变压器,双分列式变压器又可分为沿轴向分裂与沿辐向分裂变压器 ④按高压绕组有无电的联系分类 可分为普通电力变压器和自耦变压器

变压器纵差保护原理及不平衡电流分析(2)

(1)由变压器励磁涌流产生 变压器的励磁电流仅流经变压器接通电源的某一侧,对差动回路来说,励磁电流的存在就相当于变压器内部故障时的短路电流[3]。因此,它必然给纵差保护的正确工作带来不利影响。正常情况下,变压器的励磁电流很小,故纵差保护回路的不平衡电流也很小。在外部短路时,由于系统电压降低,励磁电流也将减小。因此,在正常运行和外部短路时励磁电流对纵差保护的影响常常可忽略不计。但是,在电压突然增加的特殊情况下,比如变压器在空载投入和外部故障切除后恢复供电的情况下,则可能出现很大的励磁电流,这种暂态过程中出现的变压器励磁电流通常称励磁涌流。 (2)由变压器外部故障暂态穿越性短路电流产生 纵差保护是瞬动保护,它是在一次系统短路暂态过程中发出跳闸脉冲。因此,必须考虑外部故障暂态过程的不平衡电流对它的影响。在变压器外部故障的暂态过程中,一次系统的短路电流含有非周期分量,它对时间的变化率很小,很难变换到二次侧,而主要成为互感器的励磁电流,从而使互感器的铁心更加饱和。3.变压器纵差保护中不平衡电流的克服方法 从上面的分析可知,构成纵差保护时,如不采取适当的措施,流入差动继电器的不平衡电流将很大,按躲开变压器外部故障时出现的最大不平衡电流整定的纵差保护定值也将很大,保护的灵敏度会很低。若再考虑励磁涌流的影响,保护将无法工作。因此,如何克服不平衡电流,并消除它对保护的影响,提高保护的灵敏度,就成为纵差保护的中心问题。 (1)由电流互感器变比产生的不平衡电流的克服方法 对于由电流互感器计算变比与实际变比不同而产生的不平衡电流可采用2 种方法来克服:一是采用自耦变流器进行补偿。通常在变压器一侧电流互感器(对三绕组变压器应在两侧)装设自耦变流器,将LH输出端接到变流器的输入端,当改变自耦变流器的变比时,可以使变流器的输出电流等于未装设变流器的LH的二次电流,从而使流入差动继电器的电流为零或接近为零。二是利用中间变流器的平衡线圈进行磁补偿。通常在中间变流器的铁心上绕有主线圈即差动线圈,接入差动电流,另外还绕一个平衡线圈和一个二次线圈,接入二次电流较小的一侧。适当选择平衡线圈的匝数,使平衡线圈产生的磁势能完全抵消差动线圈产生的磁势,则在二次线圈里就不会感应电势,因而差动继电器中也没有电流流过。采用这种方法时,按公式计算出的平衡线圈的匝数一般不是整数,但实际上平衡线圈只能按整数进行选择,

变压器差动保护产生不平衡电流研究分析

变压器差动保护产生不平衡电流研究分析 发表时间:2018-09-12T17:08:10.397Z 来源:《电力设备》2018年第14期作者:栾德燕[导读] 摘要:变压器更换微机保护后,带负荷调试时差动保护产生不平衡电流,经原因分析和试验验证,找到解决问题办法,确保变压器正常运行。 (辽宁蒲石河抽水蓄能有限公司辽宁丹东 118200)摘要:变压器更换微机保护后,带负荷调试时差动保护产生不平衡电流,经原因分析和试验验证,找到解决问题办法,确保变压器正常运行。 关键词:变压器;差动保护;差电流;软件;计算 1.问题的提出 某电站主变压器型号SFPS3—63000/220,额定容量63000/31500/63000kVA,Y/Δ/Δ—11接线(高—中—低),额定电压242±2*2.5%/69/10.5kV,在机变组大修时,由原来的整流型保护更换为DGT801数字式变压器保护,主变差动保护高压侧电流互感器二次侧接线原来为角型接线,现改为星型接线。更换结束后进行带负荷试验(试验时变压器中压测未投入运行),当带20000kW负荷时,变压器差动保护不平衡电流为0.15A,当带54000kW(发电机满负荷)负荷时,变压器差动保护不平衡电流为0.4A。正常运行中差动保护差电 流基本与负荷电流成正比,严重危及设备的安全稳定运行。 2.原因分析 2.1 由于变压器高压侧分接头引起的不平衡电流 2.1.1 变压器高压侧分接头在“3”挡,即高压侧电压为242kV。 按发电机满负荷,即变压器在54000kW负荷下高低压侧二次电流计算如下:高压侧: 2.2 电流互感器实际变比和计算变比不同引起的不平衡电流 如果实际变比与计算变比不同,则差动保护必然产生不平衡电流。 2.3 电流互感器一、二次角度引起的不平衡电流 主变压器一次侧为Y/Δ/Δ接线,则引入差动保护的电流互感器二次侧电流应为Δ/Y/ Y接线,以补偿变压器一次侧的角度误差。但对于微机变压器保护来说,无论变压器一次侧如何接线,电流互感器二次侧均可以按星型接线接入,由微机保护内部软件来实现角度的转换。以变压器带54000kW负荷,高压侧分接头在“3”档计算如下:

相关文档
最新文档