变压器不平衡率

变压器不平衡率
变压器不平衡率

三相负荷不平衡对低压供电系统的影响

吴建宾周文波浙江电力公司衢州电力局 (324000)

随着国民经济的发展,人们生活水平的日益提高,大量大功率的单相家用电器如:空调器、热水器、微波炉、电磁炉等进入百姓人家,这些家用电器给人们带来舒适、方便、快捷生活的同时,也给供电部门低压供电系统的安全、经济运行带来一定影响,造成这种影响的原因是由于低压供电系统的三相负荷不平衡。三相负荷不平衡程度由三相负荷电流不平衡度Kbp表示,一般要求变压器出线电流不平衡度小于10%;低压供电网络始端的负荷电流不平衡度小于20%。而在实际的负荷实测中常常发现三相负荷电流不平衡度大于20%,有的甚至高达50%以上。三相负荷不平衡对低压供电系统的安全、经济运行的影响主要有以下几方面:

1 对电能质量的影响

电压合格率是衡量电能质量的主要指标,低压供电系统中三相负荷不平衡对电压合格率的影响较大。在接入大负荷的一相上会产生较高的电压降,从而使接在该相上的用户(特别是供电半径长的用户)电压质量不合格,有的甚至达到无法用电的严重程度。

2 对线路损耗的影响

在低压供电系统中,如三相负荷不平衡会引起线损的增加。设一条线路低压的三相负荷电流为IA、IB、IC,中性线的电流为I0,若相线的电阻为R,中性线的电阻为相电阻的2倍2R,则该低压线路的损耗为:

ΔP1=[A2R+I B2R+I C2R+I O2×2R]10-3=(I A2+I B2+I C2+2I O2)R×10-3

当三相负荷电流平衡后,设每相电流为I

A ′、I

B

′、I

C

I A ′=I

B

′=I

C

′=(I

A

+I

B

+I

C

)/3,中性线电流为零,这时该低压线路的损耗为:

ΔP2=(I A′+I B′+I C′)2R×10-3/3=(I A2+I B2+I C2+2I A I B+2I B I C+2I C I A)R/3×10-3

降低损耗为:

ΔP=ΔP1-ΔP2=2(I A2+I B2+I C2-I A I B-I B I C-I C I A+3I O2)R×10-3

3 引起中性点偏移

低压供电系统中,如三相负荷不平衡,则会在中性线上产生一中性线电流,其大小可用实测法测得,也可用向量计算法算出。中性线电流使中性线上产生电压降,因而使中性点的电位发生偏移,偏移的程度随三相负荷不平衡度增加而增大,破坏供电平衡。由于中性点电位不为零,影响了该低压供电系统所有接中性线保护设备的用电安全。

4 降低设备利用率

在低压供电系统中,三相负荷的不平衡还会降低设备的利用率,特别是配变的利用率。原因是要使设备满负荷运行,大负荷相就出现过载运行,这是不允许的,只有降低设备利用率运行。

针对上面分析的三相负荷不平衡对低压供电系统的影响,在实际工作中可采取以下措施消除或减少三相负荷不平衡带来的影响。

(1) 加强基础资料管理,减少接火的随意性:

供电企业中低压网络基础资料管理是一项薄弱环节,造成新增用户接火的随意性,是引起三相负荷不平衡的源头。为此要趁两网改造之际,建立健全低压网络(特别是公变台区)的资料管理,同时在业扩流程中要对用户的情况作全面掌握,做到知己知彼,这样在新上用户接火时就有针对性,从源头上降低三相负荷不平衡出现的程度。

(2) 增大中性线的导线截面:

在实际运行的三相四线低压供电系统中,中性线的导线截面往往小于相线的导线截面,这样在三相负荷不平稳时不但增加了线路损耗,有的甚至出现中性线熔断引起用户电气设备烧毁的事故,因此建议在三相四线中,中性线的导线截面应选择与相线一致,以减少损耗,消除断线的事故隐患。

(3) 对进户点处采用重复接地:

对由于三相负荷不平衡而引起中性点电位偏移,而使接中性线保护的电气设备达不到保护的目的,建议在进户线进户点处采用重复接地,以达到保护目的。

(4) 做好负荷实测工作,以便及时发现处理出现的严重不平衡情况:

负荷实测是供电部门运行维护必不可少的工作,通过负荷实测不但可以了解网络的运行情况,而且能及时发现运行中出现的各种问题,包括三相负荷不平衡情况,以便采取措施予以解决。

配变三相电流平衡对电网的影响

发布时间:2011-7-20 阅读次数:416 次

当前城乡配电网中大部分配电变压器均采用三相变压器,变压器出口三相负荷理论上应该达到对称,但是在低压配电网中存在大量的单相负荷,由于单相负荷分布的不均衡和投入的时间不同时性,使得三相负荷不平衡成为低压电网运行维护中一个比较突出的问题。

配变长期偏负荷运行主要是三相电流没有调整平衡所致。三相电流不平衡,尤其在高温下运行,极易引发配变烧坏。另外,在低压供电系统中,配电变压器的三相负荷平衡状况与电能损耗有一定的关系。三相负荷基本平衡时,零线没有电流流过,这是电能损耗最小。当三相负荷严重不平衡时,零线有电流流过,这是电能损耗就会增大。我们平时测试三相负荷平衡,一般用钳形电流表在变压器二次出口测量,如果发现三相负荷值接近,就认为是平衡了,但是这可能是表面化的平衡,仍然可能存在较大的电能损耗。配电变压器的三相电流平衡,必须让每个节点电流平衡,才能保证低压电网在最佳的运行状态。

配电变压器在三相负荷不平衡状态下运行,在低压侧产生零序电流。对于Y/Y0接线的配电变压器来说,变压器高压侧无中性线,所以高压侧无零序电流,低压侧零序电流产生的零序磁通就不能和高压侧相互抵消。所以,零序磁通将从通过配电变压器的铁心、油箱壁等钢铁构件中,因为铁心等构件本身也是导体,在垂直于磁力线的平面上就会产生感应电动势,这个电动势形成闭合回路并产生电流,使变压器的损耗增加,这也就是常讲的变压器的铁损增加了。目前虽然由于三相负荷不平衡造成配变自身电能损耗在整个配电网中损耗不是太大,但是也不能忽视。

因此,低压配电网三相负荷不平衡,将降低配变出力,增大线路上的功率损失,影响电压质量。因此在有关设计运行的规程中提出变压器三相负载不平衡率不能大于20%。所以解决三相负荷不平衡已经成为做好配电网运行的重要工作。

农网改造前,农村低压线损率普遍较高,低的百分之十以上,一般的在百分之二十左右,高的达到百分之三十左右。各级领导和农电职工都把降低线损的希望寄托在农网改造上,希望一次性解决问题。农网改造后在一定程度上极大地改变了农村电网状况,显著降低了农村低压线损,好的下降到百分之八及以下,一般在百分之十左右。平均下降约百分之十一,但与上级要求的百分之六还有一定差距。农网改造完成后有的低压线损率却依然达不到标准,给农电企业的运营带来不小的压力,对巩固“两改一同价”成果造成潜在困难。为更好的服务于广大用户,科学合理的做好营销工作。在原有工作经验的基础上,我本着求真务实的原则,着重对降低低压居民台区损失三相负荷不平衡的危害和影响进行了探索,把降低低压台区线损的方法—平衡降损法作为课题进行论诉。

现状调查:①某村A台区变压器为400KVA、月电量在25000KWH、考核损失率为百分之十二。哈达村356台区变压器为315KVA、月电量在16000KWH、考核损失率为百分之十二点五。②某村B台区变压器为250KVA、月电量在15000KWH、考核损失率为百分之十点九。③某村C201台区变压器为200KVA、月电量为9000KWH、考核损失率为百分之十一点二。④某村D台区变压器为200KVA、月电量为11000KWH、考核损失率为百分之十三点五。⑤某村F台区变压器为250KVA、月电量为13000KWH、考核损失率为百分之十点六。从一条供电线路的普查的情况看有的个别台区损失率高于百分之十。低压台区的损失电量占线路损失电量的百分之三十。低压台区的损失率的波动,进而造成该线路整体的损失率波动。

通过以上数据的结果可以看出,加强对低压台区的损失管理,深挖降损节能的潜力,使低压损失率合理稳定。将对供电企业的线损管理工作将是非常有益的。不但可以为本企业节省供电成本,进一步提高企业的经济效益,同时也会产生间接的社会效益。

按照国家一流供电企业及营业管理工作标准。对低压台区的三相负荷进行理论计算如下:

调平三相负荷理论计算:

设总的负荷电流为I,每根导线的电阻为R,功率因数COSφ=1,采用单相二线供电时的功率损耗为:

ΔP1=2I2R(1)

把全部单相负荷平均接到两根相线上,采用二相三线制供电,则每相的电流为原来的1/2,其功率损耗为:

ΔP2=3(I/2)2R=3I2R/4 (2)

采用三相四线制供电线路,把负荷平均分配到三相上,则每相的电流为原来的1/3,其功率损耗为:

ΔP3=3(I/3)2R=I2R/3 (3)

(l)、(2)两式相除,得ΔP1/ΔP2=2.67(倍)

(l)、(3)两式相除,得ΔP1/ΔP3=6(倍)

可见若不平衡,线损增加数倍。跟据目前城乡居民用电需求不断增长,单相负荷已成为电力负荷的主要方面,供电企业的低压线路虽多为三相四线,但很多没有注意到把单相负荷均衡的分配到三相上,且有存在单相两线。经计算单相负荷的线损可能增加2至4倍,由此可知调整三相负荷的降损潜力。

按照计划2005年底完成某供电企业10个损失相对较高台区进行推广试验。调平三相负荷,使损失率降到百分之八以下。

目标值的可行性分析和前期工作:

1、供电企业领导重视,把此项作为节能降损重点工作。

2、组织工作人员对各台区进行普查。

3、组织抄表员对台区进行周期抄表。

4、专项目投入0.5万元。

5、对台区内商服用电进行普查。

6、抄表员与线路维护员配合进行周期电压测试。

7、收集数据进行分析总结。

8、对三相不平衡的台区进行负荷调整。

要因确认经以上数据和现场测试的结果认为台区调平三相负荷的要因如下:

1、电度表的计量误差率必须合格。

2、台区商服用电占台区总电量比重较大,且为两相供电。

3、因台区商服用电负荷比重较大,造成用电高峰时段用电负荷情况不均衡。

4、部分用户的用电容量超负荷情况时有发生。

5、个别台区供电半径较长。

自供电企业的农网改造工程的结束后,对供电变压器三相不平衡问题进行了深入的探索,发现电压三相不平衡给线路损失率带来潜在的危害,三相不平衡是指三相电源各相的电压不对称。由各相电源所加的负荷不均衡所致,属于基波负荷配置问题。发生三相不平衡即与用户负荷特性有关,同时与电力系统的规划、负荷分配也有关。在电力系统正常运行方式下,该标准规定:电力系统公共连接点正常运行方式下不平衡度允许值为百分之二,短时间不得超过百分之四。对变压器的危害,在生产、生活用电中,三相负载不平衡时,使变压器处于不对称运行状态。造成变压器的损耗增大(包括空载损耗和负载损耗)。根据变压器运行规程规定,在运行中的变压器中性线电流不得超过变压器低压侧额定电流的百分之二十五。此外,三相负载不平衡运行会造成变压器零序电流过大,局部金属件升温增高,甚至会导致变压器烧毁。对线损的影响,三相四线结线方式,当三相负荷平衡时线损最小;当一相负荷重,两相负荷轻的情况下线损增量较小;当一相负荷重,一相负荷轻,而第三相的负荷为平均负荷的情况下线损增量较大;当一相负荷轻,两相负荷重的情况下线损增量最大。当三相负荷不平衡时,无论何种负荷分配情况,电流不平衡度越大,线损增量也越大。我处在王岗镇四个低压台区,搞过几个降损试点,典型的如某台区:配变200kVA,供电半径长三百五十米,一百八十一户,月用电量11000kWh,全为居民用户。低压线损一直百分之十三左右,测量见三相负荷严重不平衡,达百分之三十二至百分之四十六!在组织专职电工用时一周时间,精细调整单相负荷,调整后三相不平衡度降低约为一半。按运行十天计算,线损率降为百分之五点四,降低近七个百分点,效果很好。

经济效益:

有形效益通过以上的理论计算和实际操作采用此方法,线损就可下降2至3个百分点。某供电企业按全年供电量为3亿千瓦时,低压台区供电量占百分之十五。也就是4500万千瓦时,线损率平均下降2个百分点。全年就节电90万千瓦时,共节省供电成本15万元。低压台区线损率平均下降2个百分点。将节省供电成本50万元。由此可知调整三相负荷平衡具有很大的降损潜力。

无形效益(社会效益)提高了为低压线路供电水平,巩固了农网改造工程成果。低压线损管理上到一个新的阶段。

农网改造后针对低压有的台区线损较高的原因,就技术方面来说,主要是没有进一步完善三相负荷平衡。因此要坚持对各台区的电流测试和对三相平衡措施不断进行完善。为更好的服务于广大用电户,提高供电质量。降损节能只有“逗号”而永远没有“句号”,在完善三相负荷平衡技术上还存在缺陷。所以需要我们不断的进行探索、查找不足,通过学习堵塞漏洞并加以改进。总之实行本方法,可使我们供电企业在线损管理上得到进一步的提高,彻实降低线路损耗,真正做到“多供少损”从而在整体上提高供电企业的经济效益。

低压配电网三相负荷分配不平衡的分析与解决措施

发布: 2011-8-16 | 作者: —— | 来源:lilaohushi| 查看: 491次| 用户关注:

摘要:目前单相负荷已经在低压配电网中占有相当大的比例,由于单相负荷投入的不同时性以及在低压电网建设改造和运行维护的不到位,导致了低压配电网三相负荷分配不平衡,由此对低压配电网的运行造成了一定的影响,本文对此进行了原因分析并提出一些切实可行的解决措施。关键词:配电网、负荷、不平衡、分析、解决当前城乡配电网中大部分配电变压器均采用三相变压器,变压器出口三相负荷理论上应该达到对称,但是在低压配电网中存在

摘要:目前单相负荷已经在低压配电网中占有相当大的比例,由于单相负荷投入的不同时性以及在低压电网建设改造和运行维护的不到位,导致了低压配电网三相负荷分配不平衡,由此对低压配电网的运行造成了一定的影响,本文对此进行了原因分析并提出一些切实可行的解决措施。

关键词:配电网、负荷、不平衡、分析、解决

当前城乡配电网中大部分配电变压器均采用三相变压器,变压器出口三相负荷理论上应该达到对称,但是在低压配电网中存在大量的单相负荷,由于单相负荷分布的不均衡和投入的时间不同时性,使得三相负荷不平衡成为低压电网运行维护中一个比较突出的问题,笔者从电能质量和电网损耗两个方面来分析三相负荷不平衡所带来的影响,同时就此提出一些切实可行的解决措施.

1 三相负荷不平衡产生对电能质量的影响分析

目前在10千伏配变的绕组接线都采用Dyn0或者采用Yyn0的接线方式,配变一次绕组无中性线、二次绕组中性线接地,并接有零线。在二次低压供电方式中一般采取3相4线制供电。配变低压侧3相负荷不平衡直接体现在3相负荷电流的不对称,从电机学的原理来分析3相不对称电流可以分解为对称的正序、负序、零序电流,也可以简单的看成是对称的3相负荷加上单相负荷负荷的叠加。由于配电变压器的一次绕组没有中性线,所以在二次绕组侧产生的零序电流无法在一次绕组中平衡,零序电流在零序电阻上产生电压降直接导致了在配变二次侧产生了中性点位置偏移。

同样根据简单的电路原理也可以分析出,由于在A、B、C相的负荷不等,所以在A、B、C三相上的电流也就不等,那么A、B、C三相电流矢量和一般不等于0,也就是在中性线上的电流一般不等于0,也即零线电流一般不等于0,在实际情况下,零线的电阻是不等于0的, 这样在零线上就存在电压,形成了中性点位移,导致了A、B、C相的相电压不对称,当某一相上接的负荷越大,这一相上的电压也就越低,而另外两相的电压将变高,所以当三相负荷的差值越大,也就是三相负荷的电流不平衡度越大,那么中性点的位移也就越大,所以导致电压的偏差也就越大。在城区配网中大多数低压负荷为照明和家用电器,这些都是单相负荷,同时用户的单相负荷的启用时间又不同时,所以三相电流的不平衡将会很明显,导致了某些用户的电压偏低,有些用户的电压偏高,特别是在夏天用电高峰期间,我们发现在有些配变的某一相

上接了多台空调,在同时启动是就会产生单相电流严重超过其他两相,导致该相上的电压偏低,使有些用户的电器无法启动。这就是3相负荷不平衡导致3相电流、电压出现不对称的产生的原因。

2 三相负荷不平衡对线损的影响分析:

2.1 三相负荷不平衡造成低压线路电能损耗增大。

低压配电线路有三相四线制、三相三线制、单相二线制等供电形式,线路交错繁杂,各相电流不平衡,沿线负荷分布没有一定规律,并且缺乏完整的线路参数和负荷资料,所以要准确地计算线路损耗是比较困难的,目前利用电流或者电压的不平衡度结合电流电压的向量计算在实际情况下比较复杂同时在实际应用中也不太切实可行,笔者在本文中利用一种简单近似的方法推导出因为的对低压配网的损耗影响,

以目前低压配网常见的三相四线制的接线方式分析,设定3相负荷平衡下3相负荷为3P负载=PA+PB+PC=3P (PA=PB=PC=P),此时的线路损耗为设定P损耗=IA2R+IB2R+IC2R=3IA2RA=3P2/U2 (IA=IB=IC=I,

RA=RB=RC=R),假设三相负荷出现最严重偏相的情况下,即出现二相缺相运行,假设所有负荷接在C相的情况上运行,同时认为每个电气节点的电压相等,

P损耗,=IC,2 *R=(3P/U)2 *R=9P2/U2 *R=9P

可以推出当出现负荷最严重偏相时,低压线路的损耗增加了6倍。

目前由于低压电网的3相负荷分布不均的现象比较普遍,负荷分配的实时变化很大,所以如果引入实际情况下的电流、电压的矢量值计算非常烦琐,而且意义不大,笔者在这里引入一种平均不平衡度的计算,在正常的误差范围内,可以说明负荷分配的不平衡对电网低压线路的损耗变化的影响,设定三相负荷为PA、PB、PC,三相的平均负荷为Pav为(PA+PB+PC)/3,假定各相功率因数相同, 每个电气节点的电压相等,三相的负荷的平均不平衡度对应为△A、△B、△C,(△A=(PA-Pav)/ Pav的差值)

相线的功率损耗为:

P损耗=IA2*R+IB2*R+IC2*R=[Pav(1+△A)/ U]2*R+[Pav(1+△B)/ U]2*R+[Pav(1+△A)/ U]2*R=(U/R)2*Pav2[(1+△A)2+(1+△B)2+(1+△A)2]=(Pav*U/R)2 *[(1+△A)2+(1+△B)2+(1+△C)2]

因为△A+△B+△C=0,所以P损耗=(Pav*U/R)2 *[3+△A2+△B2+△C2],对此我们可以通过负荷实际测量出A、B、C的实际负荷数值推出配变台区的相线低压损耗。

此外,在三相系统中每个相线对星形接法的中点电压间有120°的相位移动,故当每相的负荷相等时,在零线上的电流为零。当三相负荷不均衡时,零线电流等于3相不平衡电流的矢量和,在抵消基波电流后的不平衡电流流入零线,由于谐波的影响,零线电流可以达到相线电流的1.5倍。此零线电流在零线回路造成的损耗在低压线路损耗中也占有一定的比

例。

2.2 三相负荷不平衡造成配变自身电能损耗增大。

配电变压器在三相负荷不平衡状态下运行,在低压侧产生零序电流。对于Y/Y0接线的配电变压器来说,变压器高压侧无中性线,所以高压侧无零序电流,低压侧零序电流产生的零序磁通就不能和高压侧相互抵消。所以,零序磁通将从通过配电变压器的铁心、油箱壁等钢铁构件中,因为铁心等构件本身也是导体,在垂直于磁力线的平面上就会产生感应电动势,这个电动势形成闭合回路并产生电流,使变压器的损耗增加,这也就是常讲的变压器的铁损增加了。目前虽然由于三相负荷不平衡造成配变自身电能损耗在整个配电网中损耗不是太大,但是也不能忽视。

综上所述,,低压配电网三相负荷不平衡,将降低配变出力,增大线路上的功率损失,影响电压质量。因此在有关设计运行的规程中提出变压器三相负载不平衡率不能大于20%。所以解决三相负荷不平衡已经成为做好配电网运行的重要工作。

3 解决3相负荷不平衡的几点措施

3.1 重视低压配电网的规划工作,加强与地方政府规划等部门的工作沟通,避免配电网建设无序,尤其避免在低压配电网中出现头痛医头,脚痛医脚的局面,在配电网建设和改造当中对低压台区进行合理的分区分片供电,配变布点尽量接近负荷中心,避免扇型供电和迂回供电,配电网络的建设要遵循“小容量、多布点、短半径”的配变选址原则。

3.2 在对采用低压三相四线制供电的地区,要积极争取对有条件的配电台区采用3芯或者4芯电缆或者用低压集束导线供电至用户端,这样可以在低压线路施工中最大程度的避免三相负荷出现偏相的出现,同时要做好低压装表工作,单相电表在A、B、C三相的分布尽量均匀,避免出现单相电只挂接在一相或者两相上,在线路末端造成负荷偏相。

3.3 在低压配电网零线采用多点接地,降低零线电能损耗。目前由于三相负荷的分布不平衡,导致了零线出现电流,按照规程要求零线电流不得超过相线电流的25%,在实际运行当中,由于零线导线截面较细,电阻值较相同长度的相线大,零线电流过大在导线上也会造成一定比例的电能损耗,所以建议在低压配电网公用主零线采用多点接地,降低零线电能损耗,避免因为负荷不平衡出现的零线电流产生的电压严重危及人身安全,而且通过多点接地,减低了因为发热等原因造成的零线断股断线,使得用户使用的相电压升高,损坏家用电器。此外对于零线损耗问题,在目前一般低压电缆中,零线的截面为相线的1/2,电阻值大造成了在三相负荷不平衡时,零线损耗加大,为此可以考虑到适当增大零线的导线截面,例如采用五芯电缆,每相用一个芯线而零线则用两个芯线。

3.4 对单相负荷占较大比重的供电地区积极推广单相变供电。目前在城市居民小区内大部分的负载电器是采用单相电,

由于线路负荷大多为动力、照明混载,而电气设备使用的同时率较低,这样使得低压三相负荷在实际运行中的不平衡的幅度更大。另外从目前农村的生活用电情况看,在很多欠发达和不发达地区的农村存在着人均用电量小,居住分散,供电线路长等问题,对这些地区可以考虑到对于用户较分散、用电负荷主要以照明为主、负荷不大的情况,采用采用单相变压器供电的方式,以达减少损耗和建设资金的目的。目前单相变压器损耗比同容量三相变压器减少15%~20%,有的厂家生产的单相变在低压侧可以引出380V和220V两种电压等级,同时在一些地区也已开展利用多台单相变向三相负荷供电的试点,为使用单相变供电提供了更加广阔的空间。

3.5 积极开展变压器负荷实际测量和调整工作。配变的负荷实测工作看似简单,但是在实际工作中有几点需要注意,一是实测工作不能简单地测量配变低压侧A、B、C三相引出线的相电流,而且要测量零线上的电流,或者是测量零线(排)对地电压,从而可以更好地比较出三相负荷的不平衡情况,二是实测工作要向低压配电线路的末端和分支端延伸,这样可以进一步发现不平衡负荷的出现地点,确定调荷点,三是负荷实测工作既要定期开展也要不定期开展,尤其是在大的用户负荷投运和在高峰负荷期间,要增加实测的次数,通过及时的测量配变低压出线和接近用户端的低压线路电流,便于准确地了解设备的运行情况,做好负荷的均衡合理分配。

1 项目研究背景

信息来源:https://www.360docs.net/doc/b07742608.html,

为严格贯彻落实上级部门要求,全面推动“低电压”综合治理试点工作,结合江西省广丰县低电压实际情况,选取有代表性的台区开展配变三相负荷不平衡治理研究,分析总结治理效果和工作经验,制定一套通过配变三相负荷不平衡治理,达到提高客户端电压和降低损耗的工作流程和标准,实现以点带面,达到解决三相负荷不平衡造成用户出现低电压问题的目的。

信息来源:https://www.360docs.net/doc/b07742608.html,

2 项目研究内容

信息来源:https://www.360docs.net/doc/b07742608.html,

2.1 项目研究解决的关键问题和主要思路

信息来源:https://www.360docs.net/doc/b07742608.html,

变压器在三相负荷不平衡运行时,由于变压器绕组压降不同,出口电压不均衡,用户端电压更是三相偏差较大,电压质量得不到保障。当低压三相负荷不平衡时,不论在三相四线上线路带的负荷如何分配,负荷不平衡度越大,线损增量也越大。当线路输送有效功率P和无功功率Q越大(电流越大)时,线路压降越大,如果某一相负荷过大,而线路线径较小,在线路末端则可能出现低电压。通过调整三相负荷分配,降低三相负荷不平衡率,可以有效降低线路电流,减少压降,提高末端电压。信息来源:https://www.360docs.net/doc/b07742608.html,

2.2 改善三相负荷不平衡的调整措施

信息来源:https://www.360docs.net/doc/b07742608.html,

通过前期开展的大量调查、分析工作,找出造成配变三相负荷不平衡的原因,并结合实际管理情况,制定出了以下措施,对配变三相负荷不平衡情况进行治理。信息来源:https://www.360docs.net/doc/b07742608.html,

由于台区主要供电方式为单相两线供电,如果不进行线路改造,在进行三相负荷调整时只能将整片的客户负荷进行调整,很难降低三相负荷不平衡率。针对现有采用单相二线制供电的台区,建议对负荷大、容易出现或已经出现“低电压”现象的线路进行线路改造,加大线径和改为三相四线制供电,然后根据台区负荷分布情况制定台区客户接线相序计划,进行三相负荷调整工作,降低配变三相负荷不平衡率,提高末端电压,降低损耗。信息来源:https://www.360docs.net/doc/b07742608.html,

运行管理理念滞后,台区管理人员对三相负荷不平衡管理观念淡薄,未对三相负荷不平衡进行治理。修订《业扩报装管理办法》和相关工作流程。针对新增、移表、迁址等容易造成台区负荷分布发生变化的用电业务流程,在现场查勘环节中,增加台区三相负荷分布、客户负荷等查勘内容情况;在《供电方案》中,增加客户接线相序意见;要求在装表接电时应严格按查勘意见进行施工,并在验收环节中核对实际接线相序是否与查勘意见一致。信息来源:https://www.360docs.net/doc/b07742608.html,

农村负荷构成变化造成三相负荷不平衡的情况在所有台区均会出现,可依据本次课题研究经验,制定《配变低压三相负荷测试及调整管理办法》,通过建立常态管理机制,规范配变三相负荷的管理与考核制度,依靠加强对配变负荷的日常监测、分析,有针对性地制定技改计划和三相负荷调整计划,对客户接线相序进行调整,确保配变三相负荷不平衡率可控、在控。信息来源:https://www.360docs.net/doc/b07742608.html,

客户内部负荷不平衡导致台区三相负荷不平衡,应加强与客户的沟通协调,向客户说明达到三相负荷平衡后的安全性和经济性,取得客户的支持,帮助客户对内部进行三相负荷调整。

信息来源:https://www.360docs.net/doc/b07742608.html,

2.3 预期目标

信息来源:https://www.360docs.net/doc/b07742608.html,

通过配变三相负荷的调整,将配变三相负荷不平衡率控制在标准范围以内,达到有效提高客户端电压和降低线路损耗的目标。请登陆:https://www.360docs.net/doc/b07742608.html, 浏览更多信息

3 项目执行情况信息来源:https://www.360docs.net/doc/b07742608.html,

根据以上分析,广丰供电公司选择了两个代表性台区,分别采用技术改造(三相四线改造)和加强管理手段(单纯采用调整客户接线相序)两种方式对台区三相负荷进行调整。

信息来源:https://www.360docs.net/doc/b07742608.html,

3.1 枧底供电所蔡家台区请登陆:https://www.360docs.net/doc/b07742608.html, 浏览更多信息

对于主线是三相四线,支线及以下是二线供电的蔡家台区,通过延伸低压四线,调整支线的搭火相位达到主线负荷的平衡,降低台区的三相负荷不平衡率。请登陆:https://www.360docs.net/doc/b07742608.html, 浏览更多信息

经进行线路改造后,三相四线低压线路基本可以到达各居民片区负荷中心,经调整后,线路各节点三相负荷基本平衡,如图1所示,线路末端客户电压符合标准,台区消除了低电压情况,同时由于供电线路导线截面加大和改为三相四线供电后,提高了线路供电能力。

信息来源:https://www.360docs.net/doc/b07742608.html,

调整后经实测负荷高峰时段,变台输出电压为:A相226 V,B相224 V,C相225 V,原有21户低电压客户电压在210~214 V之间,电压符合标准。调整前蔡家台区低压线损率13.28%,调整后线损率为11.65%,线损率下降1.63个百分点。

请登陆:https://www.360docs.net/doc/b07742608.html, 浏览更多信息

3.2 桐畈供电所上墩台区

信息来源:https://www.360docs.net/doc/b07742608.html,

上墩台区配变位于两个自然村中间偏上墩方向,其主要供电方式为三相四线制供电,线路结构较好,但客户接线相序分配很随意。其中上墩片A相用户2户,B相用户13户,C相用户44户,三相负荷不平衡率达96%,但由于变压器三档运行,加上上墩片供电距离近,线路电压损失小,末段电压仍可以达到标准;下墩片A相用户34户,B相用户16户,C相用户38户,三相负荷不平衡率达80%,由于线路距离较长,C相用户负荷较大,电压损失值较高,在最末段线路上有20户客户压降超过8.6%,其中用电客户俞直树、俞方全家电压压降超过17%,如果在负荷高峰,变压器输出电压降低,同时低压线路电流增大,势必造成以上20户客户出现“低电压”情况。

信息来源:https://www.360docs.net/doc/b07742608.html,

根据以上分析,上墩台区可以采用直接改变客户接线相序,或调整部分二线分支点接线相序的方式,对配变三相负荷不平衡率进行调整,降低C相线路电流,减少压降。对于三相四线已覆盖的地方,通过调整用户的相位,来实现支线负荷的平衡,确保主线的负荷平衡。首先通过“静态”调整客户搭火相位,基本实现支线负荷的平衡;在此基础上,在部分用户端安装负荷转换开关,通过此开关“动态”调整客户搭火相位,实现支线负荷的平衡,最终达到主线的负荷平衡。信息来源:https://www.360docs.net/doc/b07742608.html,

用户端安装负荷转换开关,利用类似吊扇变换档位方法,制做一种能切换三相电源的旋转开关。对电量较大单相客户(3户以上)安装旋转开关(每只70元),通过切换用户所接电源相序,确保分支线三相负荷平衡,有效提高线路末段客户电压,解决居民“低电压”问题,降低台区线损率。

信息来源:https://www.360docs.net/doc/b07742608.html,

使用旋转开关,可随负荷变化增加调整次数,缩短调购电成本45元/月,全年增加效益540元。

低压电网三相不平衡问题的影响及解决方法

近年来,由于城农网改造及加强供用电管理,使供电企业的经济和社会效益有了明显提高。但一些单位在加强管理、降损节能的同时,只看到了许多表面化现象,而对有关技术改进方面缺少足够的重视。

低压电网的三相平衡一直就是困扰供电单位的主要问题之一,低压电网大多是经10/0.4KV变压器降压后,以三相四线制向用户供电,是三相生产用电与单相负载混合用电的供电网络。在装接单相用户时,供电部门应该将单相负载均衡地分接在A、B、C三相上。但在实际工作及运行中,线路的标志、接电人员的疏忽再加上由于单相用户的不可控增容、大功率单相负载的接入以及单相负载用电的不同时性等,都造成了三相负载的不平衡。低压电网若在三相负荷不平衡度较大情况下运行,将会给低压电网与电气设备造成不良影响。

一、低压电网三相平衡的重要性

1.三相负荷平衡是安全供电的基础。三相负荷不平衡,轻则降低线路和配电变压器的供电效率,重则会因重负荷相超载过多,可能造成某相导线烧断、开关烧坏甚至配电变压器单相烧毁等严重后果。

2.三相负荷平衡才能保证用户的电能质量。三相负荷严重不对称,中性点电位就会发生偏移,线路压降和功率损失就会大大增加。接在重负荷相的单相用户易出现电压偏低,电灯不亮、电器效能降低、小水泵易烧毁等问题。而接在轻负荷相的单相用户易出现电压偏高,可能造成电器绝缘击穿、缩短电器使用寿命或损坏电器。对动力用户来说,三相电压不平衡,会引起电机过热现象。

3.三相负荷保持平衡是节约能耗、降损降价的基础。三相负荷不平衡将产生不平衡电压,加大电压偏移,增大中性线电流,从而增大线路损耗。实践证明,一般情况下三相负荷不平衡可引起线损率升高2%-10%,三相负荷不平衡度若超过10%,则线损显著增加。

有关规程规定:配电变压器出口处的负荷电流不平衡度应小于10%,中性线电流不应超过低压侧额定电流的25%,低压主干线及主要分支线的首端电流不平衡度应小于20%。通过电网技术改造,要真正使低压电网线损达到12%以下,上述指标只能紧缩,不能放大。

4.只有三相阻抗平衡,才能保证低压漏电总保护良好运行,防止人身触电伤亡事故。

二、三相负载不平衡的影响

1.增加线路的电能损耗。在三相四线制供电网络中,电流通过线路导线时,因存在阻抗必将产生电能损耗,其损耗与通过电流的平方成正比。当低压电网以三相四线制供电时,由于有单相负载存在,造成三相负载不平衡在所难免。当三相负载不平衡运行时,中性线即有电流通过。这样不但相线有损耗,而且中性线也产生损耗,从而增加了电网线路的损耗。

2.增加配电变压器的电能损耗。配电变压器是低压电网的供电主设备,当其在三相负载不平衡工况下运行时,将会造成配变损耗的增加。因为配变的功率损耗是随负载的不平衡度而变化的。

3.配变出力减少。配变设计时,其绕组结构是按负载平衡运行工况设计的,其绕组性能基本一致,各相额定容量相等。配变的最大允许出力要受到每相额定容量的限制。假如当配变处于三相负载不平衡工况下运行,负载轻的一相就有富余容量,从而使配变的出力减少。其出力减少程度与三相负载的不平衡度有关。三相负载不平衡越大,配变出力减少越多。为此,配变在三相负载不平衡时运行,其输出的容量就无法达到额定值,其备用容量亦相应减少,过载能力也降低。假如配变在过载工况下运行,即极易引发配变发热,严重时甚至会造成配变烧损。

4.配变产生零序电流。配变在三相负载不平衡工况下运行,将产生零序电流,该电流将随三相负载不平衡的程度而变化,不平衡度越大,则零序电流也越大。运行中的配变若存在零序电流,则其铁芯中将产生零序磁通。(高压侧没有零序电流)这迫使零序磁通只能以油箱壁

及钢构件作为通道通过,而钢构件的导磁率较低,零序电流通过钢构件时,即要产生磁滞和涡流损耗,从而使配变的钢构件局部温度升高发热。配变的绕组绝缘因过热而加快老化,导致设备寿命降低。同时,零序电流的存也会增加配变的损耗。

5.影响用电设备的安全运行。配变是根据三相负载平衡运行工况设计的,其每相绕组的电阻、漏抗和激磁阻抗基本一致。当配变在三相负载平衡时运行,其三相电流基本相等,配变内部每相压降也基本相同,则配变输出的三相电压也是平衡的。

假如配变在三相负载不平衡时运行,其各相输出电流就不相等,其配变内部三相压降就不相等,这必将导致配变输出电压三相不平衡。同时,配变在三相负载不平衡时运行,三相输出电流不一样,而中性线就会有电流通过。因而使中性线产生阻抗压降,从而导致中性点漂移,致使各相相电压发生变化。负载重的一相电压降低,而负载轻的一相电压升高。在电压不平衡状况下供电,即容易造成电压高的一相接带的用户用电设备烧坏,而电压低的一相接带的用户用电设备则可能无法使用。所以三相负载不平衡运行时,将严重危及用电设备的安全运行。

6.电动机效率降低。配变在三相负载不平衡工况下运行,将引起输出电压三相不平衡。由于不平衡电压存在着正序、负序、零序三个电压分量,当这种不平衡的电压输入电动机后,负序电压产生旋转磁场与正序电压产生的旋转磁场相反,起到制动作用。但由于正序磁场比负序磁场要强得多,电动机仍按正序磁场方向转动。而由于负序磁场的制动作用,必将引起电动机输出功率减少,从而导致电动机效率降低。同时,电动机的温升和无功损耗,也将随三相电压的不平衡度而增大。所以电动机在三相电压不平衡状况下运行,是非常不经济和不安全的。

三、如何实现三相负载平衡

综上所述,调整三相负载使之趋于平衡,这是无需增加设备投资的最佳降损措施。把单相用户均衡地接在A、B、C三相上,减少中性线电流,降低损耗。同时要减少单相负载接户线的总长度。如果单相用户功率因数较低,就应进行无功补偿。也可以装置三相断相保护器,当任何一相断相时,能立即切断电源以消除三相不平衡。

实际中,每相的用电负荷比较直观:动力线路三相平衡,而单相用户负荷有较大差异。每相的对地阻抗又由什么决定呢?三相动力线路一般质量较好,对地绝缘阻抗较高;而涉及到职明等单相负荷则用电线路情况复杂、质量低劣、绝缘程度差,使该相的对地阻抗显著降低,且用电户数越多,线路越密杂,则绝缘程度越差,使接带该类用户多相的对地阻抗降低越显著。因此,在正常漏电(总漏电电流由各处微小的漏电流汇集组成)情况下,每相对地阻抗的高低主要由接在该相上的单相负荷用电户的多少来决定。

因此,只要把单相负荷用电户均衡地分配到三相上,就能实现三相平衡。但必须要注意,均衡分配用户不仅仅是形式上看来每相接单相负荷用户总数的三分之一,而是要把其中用电负荷、漏电情况在同一等级的用户也均衡地分配到三相上。例如,某村单相用户,其中用电水平一般户,负荷较小,日用电时间较短,线路质量较差;用电水平较高户,负荷较大,日用电时间较长,线路质量较好;地埋线户,泄露电流较大,则每相上应尽量接这三类用户的各三分之一。

具体实施为(1)从公用变出线至进户表电源侧的低压干线、分支线应尽量采用三相四线制,减少迂回,避免交叉跨越。(2)无论架空或电缆线路,相线与零线应按A、B、C、O采用不同颜色的导线或标识,并按一定顺序排列。(3)在低压线路架好、下线集装各户电能表前,要把配变下的单相负荷用电户统一规划,均衡地分配到低压线路的三相上,并记录在册。下线集表施工时要查对无误。表箱编号要注明相位,如"***线路A相**号"。(4)下线集表完工后,要看一下低压电网实际运行三相负载是否在平衡度范围内,必要时可做些调整。(5)在以后发展用户或变更用户时,要顾及三相平衡问题,在实际工作中形成常态机制,不断完善提高。

没有绝对的平衡,但要相对的平衡,以平衡度指标为限,在实际工作中加大负荷调查分析力度,将各配变各类负载最大、平均负荷及发展趋势记录在案,经常性对目2变负荷电流进行测试,及时发现不平衡超标情况,反馈负荷分析同时,不定期组织进行有针对性地调整。只有这样,才能从根本上控制不平衡现象发生,避免发生损坏用电设备等故障和事故。

浅谈配网变压器负荷不平衡的危害与解决

摘要:本文分析了配网变压器负荷不平衡引起的危害,提出其相应的解决方法,并通过矢量图与算例分析证明了该解决方法的可行性与科学性关键词:配网变压器/三相负荷不平衡、危害

一、引言

由于目前我国城乡配电网中一般都采用了三相四线制接线方式,即大部分配电变压器均采用Y/Yo接线方式,但大部分居民用电、商业用电、个体经营工厂都是单相负载,即使是大型工厂由于其内部负荷分配不正确也会造成配网变压器三相负荷的不平衡,所以无法避免配电变压器在三相负荷不平衡的情况下运行。国标GB50052《变压器运行规程》、《供配电设计规范》中规定了Y/Yo接线的配电变压器运行时所允许的中线点电流不能超过变压器相电流及线电流的25%,而三相负荷不平衡必然引起中性点电压偏移,从而产生中性点电流,它与三相负荷不平衡的严重性成正比,一旦中性点电流增加就会引起变压器损耗与中性点电位的偏移超过规程允许值,必然导致配网变压器的损坏[1]。本文详细分析了这些影响,并据此提出解决方法以尽可能地解决三相负荷不平衡所带来的附加损耗与中性点电压偏移的危害。

二、配网变压器负荷不平衡的危害

2.1配变负荷不平衡的损耗分析

①配变负荷不平衡的附加铁损分析。Y/Yo接线的配网变压器多采用三铁心柱结构,当发生三相负荷不平衡或者出现接地故障时,其一次侧无零序电流存在,二次侧有零序电流存在,因此二次侧的零序电流完全是励磁电流,产生的零序磁通不能在铁心中闭合,需通过油箱壁闭合,从而在铁箱等附件中发热产生铁损。Y/Yno接线变压器的零序电阻比正序电阻大得多,变压器的正序电阻可测得,一般在铭牌上用Ud%表示,从资料上可以查得一般315kVA变压器的零序电阻是正序电阻的15倍[2],因此零序电流所产生的附加铁损相当大的。

②配变负荷不平衡的附加铜损分析。配电变压器运行时三相绕组的总损耗(单位为kW)可计算为:Pf1=(Ia2+Ib2+Ic2)R1×10-3(1)

因此每相绕组的电流为:I相=(Ia+Ib+Ic)/3,三相电流平衡时,即I相=Ia=Ib=Ic,所以其三相绕组总的损耗为:

Pf2=3[(Ia+Ib+Ic)/3]2×R1×10-3(2)

故当三相电流平衡时Pf1=Pf2,就是说当变压器三相负荷平衡时,理论上是不会产生附加铜耗的。但是现实生活中,不可能存在着三相电流完全

相同的情况,因此,当三相负荷失衡时,即Ia≠Ib≠Ic时所带来的附加损耗为:

△Pf=Pf2-Pf1

△Pf={[(Ia-Ib)2+(Ib-Ic)2+(Ic-Ia)2]/3}×R1×10-3(3)

从以上的分析可知:当变压器运行时,所引起的附加损耗基本上是由变压器的附加的铁耗与铜耗所组成,可知变压器三相电流接近平衡时运行附加损耗并不是很严重,可一旦变压器运行三相电流越来越不平衡时,附加损耗就很严重的,最严重时甚至于危害到电网设备的安全。

2.2配变负荷不平衡的电压偏移分析

由于Y/Yo接线的变压器负荷不平衡运行时,Y接的一侧没有零序电流,但由于每相电流不等,必然在Yo接线的变压器侧产生零序电流。因此在Yo接线侧产生的零序电流,就完全是励磁电流,产生的零序磁通重叠在主磁通上,感应出零序电动势,造成中性点电压偏移,而且是造成重负荷相电压降低,轻负荷相电压上升[3]。

2.3实例分析

为了进一步认识配网变压器三相不平衡运行时,产生大量的附加损耗和造成中性点电压严重偏移对电网产生极其严重的危害,在这里应用一个简单的算例来具体说明。型号为:S11-M.RL,315kVA,10kV/0.4kV的配网变压器;其零序电阻R0=0.122Ω,零序电抗X0=0.174Ω,绕组电阻R1=0.0084Ω。当它在Ia=100A,Ib=200A,Ic=300A,且cosψ=0.7的运行情况下,可以根据公式(1)、(2)、(3)计算可得:I0=173A,P0=I02×R0=3.65kW 0=0.17kW,总损耗功率△P=P0+△Pf=3.82kW。因此一年下来在此运行方式下的损耗电量为:W=3.82×8760=33463kWh;如果按每度电0.6元计算,那么就是一台配网变压器一年的经济损失为20077.8元,如果再计算整个电网,那么损失就更加巨大了,我们无法接受。同时,通过计算得到中性点偏移电压为:

由上述算例分析可知,Y/Yo接线方式的配电变压器负荷不平衡运行带来的损耗与电压偏移是很大的,就目前来讲,过于严重的负荷不平衡运行是不允许存在的。

三、配变负荷不平衡的调整方法

从以上可知配网变压器严重的负荷不平衡运行是不允许存在的,那么有没有方法,解决这种矛盾呢?答案是可以的,首先从源头上抓起,在配网变压器新安装的时侯,我们就尽量平衡分配负荷,使得配变负荷不平衡情况从源头加以遏制。但是随着用户的增加,配变负荷平衡必然被打破,短时间内又无法进行负荷调整,那么我们也可以通过无功的补偿,实现负荷不平衡的调整,从而实现电网的经济运行,同时提高电能质量。

3.1无功补偿装置的原理。在三相系统中,跨接在相线与相线之间的电容或电感元件具有转移相间有功功率的作用,由于相间电感或电容元件

的电流相量与每相电压相量成60°或120°夹角,可通过一个简单的示例来说明这一原理(在这里称为三相不平衡–无功补偿方法)。有一单相负荷接于A相与零线之间,其电流IA=100A,功率因数cosφa=0.85,其中有功电流为85A,无功电流为53A。在A、B相间接入产生61A电流的电容器时,相量图如图1所示,图中,UA为A相电压相量,IAB为接于A、B相间的电容器电流相量,超前A相电压120o;A相负荷情况为:无功电流为零,有功电流为54A,有功电流相量与无功电流相量合成的总电流为54A,A相有功负荷减少了;B相负荷的情况为:B相有功电流为31A,无功电流为53A,有功电流相量和无功电流相量合成的总电流为61A。

由图1可见,通过在A、B相间跨接一电容器,A相的有功转移到B相一部分,而接电容器前后A相与B相的有功之和并未改变,这说明通过这种方法可以在变压器三相之间调整有功,也就是说变压器的三相不平衡是可以通过无功的补偿进行调整,重新分配的。对于三相不平衡系统,可采用对称分量法将电流分解为正序电流、负序电流和零序电流,而三相平衡系统的电流只有正序电流,因此只需补偿掉负序电流和零序电流,不平衡的三相电流就可转变成平衡的三相电流[4]。采用星角混合接法的电容、电抗元件可补偿掉或大大减少零序电流与负序电流,使系统转变成基本平衡系统。

3.2实例分析

三相不平衡—无功补偿方法的接线如图2所示。实例参数采用2.3中的模型参数。图中,Ia、Ib、Ic为负荷电流;Iao、Ibo、Ico为星接补偿元件电流;Iab、Ibc、Ica为角接补偿元件电流。

(1)采用三相不平衡–无功补偿方法得到如下数据:①Iab=140A,Ico=120A,Ica=110A,Ibc=0,Iab=0,Iao=0;②A相补偿后电流

ax=Ia+Iab?-Ica+Iao,Iax=120A,功率因数为0.982(见图3(a));③B相补偿后电流Ibx=Ib+Ibc-Iab+Ibo,Ibx=140A,功率因数为0.9998(见图3(b));④C相补偿后电流Icx=Ic+Ica-Ibc+Ico,Icx=155A,功率因数为0.9999(见图3(c));⑤补偿后零序电流Io=45A。

(2)采用共补–分补的无功补偿装置将无功全部补偿[5],补偿相量图如图4所示,补偿后A相电流Iax=Ia+Iao,Iax=70A;补偿后B相电流bx=Ib+Ibo,Ibx=140A;补偿后C相电流Icx=Ic+Ico,Icx=210A;补偿后零序电流Io=120A。

比较图3和图4可见,三相不平衡–无功补偿方法与分补–共补方法相比,零序电流下降很多,使不平衡系统基本恢复到平衡状态。表(一)为某供电线路采用三相不平衡–无功补偿装置补偿与采用普通的共补与分补补偿无功后相电流、零序电流、功率因数的对比情况,可以看出三相不平衡—无功补偿方法可以很好地降低零序电流,遏制中性点电压偏移,而采用一般的分补—共补进行无功补偿,则在补偿前后零序电流不一定会减少,而且还会增加,导致中性点电压偏移更严重,补偿的效果大打折扣。

四、结论

从上述对配网变压器负荷不平衡的变压器附加损耗、电压偏差分析可知,负荷失衡对变压器的附加损耗、电压偏差的影响是很大的,如不及时解决,最终会导致变压器烧毁,供电中断。但由于配电网的负荷失衡是无法消除,所以提出利用三相不平衡–无功补偿对变压器负荷不平衡进行无功补偿的方法,从而减少其危害。通过矢量图结合算例的有效分析,对比分补—共补无功补偿方法,验证这种方法简单而更加有效地解决配网变压器负荷不平衡的危害问题。

相负荷不平衡对配电网运行的影响分析发布日期:

2011-3-13 点击508次

当前单相负荷已经在低压配电网中占有相当大的比例,由于单相负荷投入的不同

时性以及在低压电网建设改造和运行维护的不到位,导致了低压配电网三相负荷分配不平衡,

由此对低压配电网的运行造成了一定的影响,对此进行了原因分析并提出一些切实可行的解

决措施。

配电网、负荷、不平衡、分析

当前城乡配电网中大部分配电变压器均采用三相变压器,变压器出口三相负

荷理论上应该达到对称,但是在低压配电网中存在大量的单相负荷,由于单相负荷分布的不均

衡和投入的时间不同时性,使得三相负荷不平衡成为低压电网运行维护中一个比较突出的问

题,从电能质量和电网损耗两个方面来分析三相负荷不平衡所带来的影响,同时就此提出一些

切实可行的解决措施.

1 三相负荷不平衡产生对电能质量的影响分析

目前在10千伏配变的绕组接线都采用Dyn0或者采用Yyn0的接线方式,配变一次绕

配电变压器三相负荷不平衡运行的管理

管理制度参考范本 配电变压器三相负荷不平衡运行的管 理 S a H 撰写人: 部门:___■_! 间:__|1| 摘要:本文主要针对配电变压器三相负荷不平衡 的现状,分析产生的原因,针对原因制定了改善措 施。 关键词:配电变压器三相负荷不平衡运行管理 * 1 / 6 \

碾子山供电局XX区现有配电变压器193台,总容量25305kVA 近几年来,由于配电变压器三相负荷不平衡,运行中出现问题较多,主要表现在:部分变压器运行不经济、变压器故障率高,个别接点频繁过热烧损,个别台 区电压变化大,烧损用户设备。20xx 年,碾子山供电局对XX区所有配电变压器的负荷进行了测量,结果表明,三相电流不平衡度不合格的占35%、不平衡度超过25%的变压器占15%, 最高的达到75%。 1变压器负荷不平衡对系统的影响 1.1增加线损 配电变压器三相负荷不平衡时,线损增加表现在两部分:一是增加配电变压器损耗;二是增加线路损耗。 以低压线路增加的损耗,按照三种情况来分析(三相不平衡度为r) : ①一相负荷重、一相负荷轻,第3相为平均负荷: 单位长度线路上的功率损耗为: P1=3I2R+8r2I2R 当三相平衡时,P=3I2R, 两者相比, 规程规定:不平衡度r 应不大于20%,经计算当r=0.2 时, k=1.11,即由于三相不平衡所引起的线损增加11%,当r=100%时, k=3.67 ,测算出线损增加2.67 倍。 ②一相负荷重、两相负荷轻: 则k=1+2r2 当r=200 %,经测算线损增加8倍。 ③一相负荷轻、两相负荷重: 则k=1+20r2 当r=0.2时,k=1.8,计算得三相不平衡所引起的线损增加

什么叫变压器的不平衡电流

什么叫变压器的不平衡电流?有什么要求? 变压器的不平衡电流系统指三相变压器绕组之间的电流差而言。三相三线式变压器中,各相负荷的不平衡度不许超过20%,在三相四线式变压器中,不平衡电流引起的中性线电流不许超过低压绕组额定电流的25%。如不符合上述规定,应进行调整负荷。 变压器长时间在极限温度下运行有哪些危害? 答:一般变压气的主要绝缘是A级绝缘,规定最高使用温度为105℃,变压器在运行中绕组的温度要比上层油温高10~15℃.如果运行中的变压器上层油温总在80~90℃左右,也就是绕组经常在95~105℃左右,就会因温度过高绝缘老化严重,加快绝缘油的劣化,影响使用寿命。 断路器电动合闸时应注意:1)操作把手必须扭到终点位置,监视电流表,当红灯亮后将把手返回,操作把手返回过早可能造成合不上闸。2)油断路器合上以后,注意直流电流表应返回,防止接触器KII保持,烧毁合闸线圈。3)油断路器合上以后,注意检查机械拉合闸位置指示、传动杆、支持绝缘子等应正常,内部无异常。 如何正确进行电器设备停电后的验电工作 1)设备停电后进行验电时,应使用相应电压等级而合格的接触式验电器,在装设接地线或合接地刀闸处对各相分别验电。验电前,应先在有电设备上进行试验,确证验电器良好。2)无法在有电设备上进行试验时可用高压发生器等确证验电器良好。3)如果在木杆、木梯或木架上验电,不接地线不能指示者,可在验电器绝缘杆尾部接上接地线,但经运行值班负责人或工作负责人许可。 变压器油位过低,对运行有何危害啊 变压器油位过低会使轻瓦斯保护动作,严重缺油时,变压器内部铁芯线圈暴露在空气中,容易绝缘受潮(并且影响带负荷散热)发生引线放电与绝缘击穿事故。 电流互感器运行中为什么二次侧不准开路 二次开路会长生以下后果:1出现的高电压会危及人身安全及设备安全;2铁心高度饱和将在铁心中产生较大的剩磁,使误差增大;3长时间作用可能造成铁心过热

变压器负荷不平衡对系统的影响(园区)

变压器负荷不平衡对系统的影响 1.1增加线损 配电变压器三相负荷不平衡时,线损增加表现在两部分:一是增加配电变压器损耗;二是增加线路损耗。 1.2降低变压器的利用率,威胁安全运行 配电变压器的额定容量是按每相绕组设计的,当配电变压器在三相负荷不平衡状态下运行时,变压器负荷高的那相时常出现故障,如缺相、接点过热、个别密封胶垫劣化等。同时,配电变压器在三相负荷不平衡状态下运行,在低压侧产生零序电流。对于变压器(Y,yn0)接线的配电变压器来说,变压器高压侧无中性线,高压侧不可能有零序电流,低压侧零序电流产生的零序磁通不能抵消。所以,零序磁通只能由配电变压器的油箱壁及钢铁构件中通过,磁滞和涡流在钢铁构件内发热,造成配电变压器散热条件降低,温升增高,严重时损坏变压器绝缘,烧损配电变压器。 1.3对用电设备的影响 当配电变压器三相负荷不平衡运行时,中性点将产生位移,偏移严重时单相电压可能升高到线电压。如果线路接地保护不好,中性线电流产生的电压严重危及人身安全。同时电流不平衡会造成单相设备不能正常用电,或过电压烧损用户设备。 1.4变压器三相负荷不平衡对系统电压的影响 变压器在三相负荷不平衡运行时,由于变压器绕组压降不同,出口电压不均衡,用户端电压更是三相偏差较大,电压质量得不到保障。

2影响变压器三相负荷不平衡的原因 2.1管理上存在薄弱环节 由于对配电变压器三相负荷不平衡的运行管理重视不够,一直没有一个考核管理办法,对配电变压器三相负荷的管理带有盲目性、工作随意性,以至于使运行、维护人员放松了对配电变压器三相负荷的管理,致使很多配电变压器长期在三相负荷极不平衡状态下运行。 2.2单相用电设备影响 由于线路大多为动力、照明混载。而单相用电设备使用的同时率较低,用户横向用电差异较大,经常会造成配电变压器三相负荷的不平衡,并给管理增加了难度。 2.3电网格局不合理的影响 低压电网结构薄弱,运行时间较长,改造投入不彻底,单相低压线路是台区的主网架问题,一直得不到有效根治。 其次居民用电大多为单相供电,负荷发展时无序延伸,造成台区三相电流不平衡无法调整。对于这样的低压网络必须投入较大的资金,彻底解决低压网布局,增加低压四线的覆盖面积,对线损、电压质量、供电可靠性、供电安全等都有很大改善效果。 2.4临时用电及季节性用电影响 临时用电和季节性用电都有一定的时间性,用电增容不收费后,大量的单相设备应用较多,而又分布极为分散,用电时间不好掌握,同时由于在管理上未考虑其三相负荷的分配问题,又未能及时监测、调整配电变压器的三相负荷,它的使用和停电,对配电变压器三相负荷的平衡都有较大的影响,特别是单相用电设备容量较大时,影响更

三相不平衡的影响

三相负荷不平衡的危害 3.1 对配电变压器的影响 (1)三相负荷不平衡将增加变压器的损耗: 变压器的损耗包括空载损耗和负荷损耗。正常情况下变压器运行电压基本不变,即空载损耗是一个恒量。而负荷损耗则随变压器运行负荷的变化而变化,且与负荷电流的平方成正比。当三相负荷不平衡运行时,变压器的负荷损耗可看成三只单相变压器的负荷损耗之和。 从数学定理中我们知道:假设a、b、c 3个数都大于或等于零,那么a+b+c≥33√abc 。 当a=b=c时,代数和a+b+c取得最小值:a+b+c=33√abc 。 因此我们可以假设变压器的三相损耗分别为:Qa=Ia2 R、Qb= Ib2 R 、Qc =Ic2 R,式中Ia、Ib、Ic分别为变压器二次负荷相电流,R为变压器的相电阻。则变压器的损耗表达式如下: Qa+Qb+Qc≥33√〔(Ia2 R)(Ib2 R)(Ic2 R)〕 由此可知,变压器的在负荷不变的情况下,当Ia=Ib=Ic时,即三相负荷达到平衡时,变压 器的损耗最小。 则变压器损耗: 当变压器三相平衡运行时,即Ia=Ib=Ic=I时,Qa+Qb+Qc=3I2R; 当变压器运行在最大不平衡时,即Ia=3I,Ib=Ic=0时,Qa=(3I)2R=9I2R=3(3I2R); 即最大不平衡时的变损是平衡时的3倍。 (2)三相负荷不平衡可能造成烧毁变压器的严重后果: 上述不平衡时重负荷相电流过大(增为3倍),超载过多,可能造成绕组和变压器油的过热。绕组过热,绝缘老化加快;变压器油过热,引起油质劣化,迅速降低变压器的绝缘性能,减少变压器寿命(温度每升高8℃,使用年限将减少一半),甚至烧毁绕组。 (3)三相负荷不平衡运行会造成变压器零序电流过大,局部金属件温升增高: 在三相负荷不平衡运行下的变压器,必然会产生零序电流,而变压器内部零序电流的存在,会在铁芯中产生零序磁通,这些零序磁通就会在变压器的油箱壁或其他金属构件中构成回路。但配电变压器设计时不考虑这些金属构件为导磁部件,则由此引起的磁滞和涡流损耗使这些部件发热,致使变压器局部金属件温度异常升高,严重时将导致变压器运行事故。 3.2 对高压线路的影响 (1)增加高压线路损耗: 低压侧三相负荷平衡时,6~10k V高压侧也平衡,设高压线路每相的电流为I,其功率损耗为:ΔP1 = 3I2R 低压电网三相负荷不平衡将反映到高压侧,在最大不平衡时,高压对应相为1.5I,另外两相都为0.75 I,功率损耗为: ΔP2 = 2(0.75I)2R+(1.5I)2R = 3.375I2R =1.125(3I2R); 即高压线路上电能损耗增加12.5%。 (2)增加高压线路跳闸次数、降低开关设备使用寿命: 我们知道高压线路过流故障占相当比例,其原因是电流过大。低压电网三相负荷不平衡可能引起高压某相电流过大,从而引起高压线路过流跳闸停电,引发大面积停电事故,同时变电站的开关设备频繁跳闸将降低使用寿命。 3.3 对配电屏和低压线路的影响 (1)三相负荷不平衡将增加线路损耗:

分析主变纵差动保护不平衡电流原因及解决方法

分析主变纵差动保护不平衡电流原因及解 决方法 摘要:本文从对变压器纵差保护原理进行阐述的基础上,较详细地分析了纵差保护不平衡电流的形成原因,并提出了解决变压器纵差保护中不平衡电流的方法。 关键词:主变;纵差保护;不平衡电流;解决方法 前言:纵差动保护是变电站主变压器的主保护,它灵敏度高、选择性好,在变压器保护上运用较为成功。但是变压器纵差保护一直存在励磁涌流难以鉴定的问题,虽然已经有几种较为有效的闭锁方案,又因为高压输电线路长度的增加、静止无功补偿容量的增大以及变压器硅钢片工艺的改进、磁化特性的改善等因素,使得变压器纵差保护所固有原理性矛盾更加突显。 一、变压器纵差保护原理 纵差保护作为变压器内部故障的主保护,将有许多特点和困难。变压器具有两个或更多个电压等级,构成纵差保护所用电流互感器的额定参数各不相同,由此产生的纵差保护不平衡电流将比发电机的大得多,纵差保护是利用比较被保护元件各端电流的幅值和相位的原理构成的,根据KCL基本定理,当被保护设备无故障时恒有各流入电流之和必等于各流出电流之和。当被保护设备内部本身发生故障时,短路点成为一个新的端子,此时电流大于“0”,但是实际上在外

部发生短路时还存在一个不平衡电流。事实上,外部发生短路故障时,因为外部短路电流大,特别是暂态过程中含有非周期分量电流,使电流互感器的励磁电流急剧增大,而呈饱和状态使得变压器两侧互感器的传变特性很难保持一致,而出现较大的不平衡电流。因此采用带制动特性的原理,外部短路电流越大,制动电流也越大,继电器能够可靠制动。 另外,由于纵差保护的构成原理是基于比较变压器各侧电流的大小和相位,受变压器各侧电流互感器以及诸多因素影响,变压器在正常运行和外部故障时,其动差保护回路中有不平衡电流,使纵差保护处于不利的工作条件下。为保证变压器纵差保护的正确灵敏动作,必须对其回路中的不平衡电流进行分析,找出产生的原因,采取措施予以消除。 二、纵差保护不平衡电流分析 1、稳态情况下的不平衡电流 变压器在正常运行时纵差保护回路中不平衡电流主要是由电流互感器、变压器接线方式及变压器带负荷调压引起。 (1)由电流互感器计算变比与实际变比不同而产生。正常运行时变压器各侧电流的大小是不相等的。为了满足正常运行或外部短路时流入继电器差动回路的电流为零,则应使高、低压两侧流入继电器的电流相等,即高、低侧电流互感器变比的比值应等于变压器的变比。但是,实际上由于电流

变压器空载时三相电压不平衡原因分析

变压器空载时三相电压不平衡原因分析 近年来欧阳海水电站因供电负荷不断增长,原来的两台变压器容量已不能满足需求,常过载运行。为了增加供电量,故将2号变压器容量由4MVA更换为,型号为GS9-6300/10,结线为y,d11。2号变压器安装前按规程规定进行了各项测试工作,测试结果正常。安装就位后又进行了必要的测试及耐压试验,都合格。于是进行冲击合闸试验,冲击合闸试验也未出现异常现象。但当检查变压器副边三相对地电压时,却发现中压不平衡,分别为Uao = ,Ubo = ,Uco = ,线电压基本平衡。该变压器安装前是由一台4MVA的变压器供电,现已将该4MVA的变压器移至1号变压器位置,其母线电压是平衡的。新变压器空载时只带Ⅱ段母线及母线上一组电压互感器,由电压互感器TV测得相电压不平衡。为了查明原因,验证TV及表计完好,将2号变退出,由1号变(4MVA变压器)带I、II段母线测电压,I、II段母线三相电压都是平衡的,由此可以排除TV及表计问题。 将2号变停电退出进行,测试未发现问题,再投入空载运行,现象同前。为了查明原因和对用户负责,未送电,将上述情况告知厂家。厂家对该变压器进行了全面的测试,也未发现问题,得出结论该变压器无质量问题,合格。于是将该变压器又投入空载,检查副边电压,现象仍如前。究竟是什么原因产生这种现象的呢对用户是否会有影响呢厂家也不能肯定。而用户急着用电,不能久拖。最后与厂家、用户协商,投入该变压器运行。先投入一条长约4km的空载线路,测母线三相对地电压,分别为Uao = ,Ubo = ,Uco = 。发现三相电压的偏差在变小,继而再投入其它线路,并且投入用户变压器,测用户变压器低压侧(400V侧)电压,看三相电压相差多少,能否使用,于是到用户变压器低压侧测电压,测得三相电压分别为Uao = 235V,Ubo = 234V,Uco = 234V,相电压、线电压都平衡。用户投入各类负荷运行正常。回来后,再测Ⅱ段母线电压,测得电压分别为Uao = ,Ubo = ,Uco = ,三相电压完全平衡。由此进行了总结,得出结论:该变压器空载(只带母线)时三相对地电压不平衡,带上负荷后,电压完全平衡,用户可以放心使用。 经与厂家技术人员进行了分析,到底是什么原因引起这种现象呢根据厂家人员介绍,厂家在设计制造这台变压器时,与以前的变压器结构上进行了改进,△侧接电源,副边侧接负载,中性点不接地未引出,电压调整抽头由侧从首端引出,在结构上与以前使用的1号、2号变压器有所不同。由于变压器原边与副边绕组、原副边绕组对地、相与相绕组之间都存在电容,又由于结构上的原因,导致三相绕组总的对地电容不相等。在空载只带母线电压互感器情况下,对地电容值主要取决于变压器对地电容,母线电压互感器相当于一个电感,组成的电路原理见图1。现以变压器负荷侧(副边侧)作为电源,变压器中性点为O,变压器对地电容及电压互感器组成的负载阻抗为Z,三相负载的中性点为O’,电路原理见图2,作电压向量图。由于Za、Zb、Zc不相等,故电源中性点O与负载中性点O’不重合,中性点电位发生偏移。电压向量图见图3,点O与O’的偏移情况视三相负载阻抗Za、Zb、Zc不平衡情况而变化。O’点随着投入线路及负荷情况而变。当投入负荷后,变压器对地容抗远小于负载总阻抗,对电压偏移不产生影响。而设负荷为三相平衡负荷,故点O与点O’重合,三相电压平衡。这就出现了用户用电后,2号变压器(Ⅱ段母线)三相对地电压反而平衡的缘故。因此,可以肯定,Ⅱ段母线的用户可以放心使用,对电气设备不会有什么影响。

变压器差的动保护原理(详细)

变压器差动保护 一:这里讲的是差动保护的一种,即变压器比例制动式完全纵差保护(以下简称差动); 二:差动保护的定义 由于在各种参考书中没有找到差动保护的具体定义,这里只根据自己所掌握的知识给差动保护下一个定义:当区内发生某些短路性故障的时候,在变压器各侧电流互感器CT的二次回路中将产生大小相同,相位不同的短路电流,当这些短路电流的向量和即差流达到一定值时,跳开变压器各侧断路器的保护,就是变压器差动保护 三:下面我以两圈变变压器为例,针对以上所述变压器差动保护的定义,对差动保护进行阐述: 1、图一所示:为一两圈变变压器,具体参数如下:主变高压侧电压U高 =220KV,主变低压侧电压U低=110KV,变压器容量Sn=240000KV A, I1’:流过变压器高压侧的一次电流; I”:流过变压器低压侧的一次电流; I2’:流过变压器高压侧所装设电流互感器即CT1的二次电流; I2”:流过变压器低压侧所装设电流互感器即CT1的二次电流; nh:高压侧电流互感器CT1变比; nl:低压侧电流互感器CT2变比; nB:变压器的变比; 各参数之间的关系:I1’/ I2’= nh I”/ I2”= nl I2’= I2” I1’/ I”= nh/ nl=1/ nB 2、区内:CT1到CT2的范围之内; 3、反映故障类型:高压侧内部相间短路故障,高压侧(中性点直接接地) 单相接地故障以及匝间、层间短路故障;

四:差动的特性 1、比率制动:如图二所示,为差动保护比率特性的曲线图: 下面我们就以上图讲一下差动保护的比率特性: o:图二的坐标原点; f:差动保护的最小制动电流; d:差动保护的最小动作电流; p:比率制动斜线上的任一点; e:p点的纵坐标; b:p点的横坐标; 动作区:在of范围内,由于电流小于最小制动电流,因此在此范围内,只要电流大于最小动作电流Iopo,差动保护动作;当电流大于f点时, 由于电流大于最小制动电流,此时保护开始进行比率制动运算,曲 线抬高,此时只有当电流在比率制动曲线以上时保护动作;因此, 图中阴影部分,即差动保护的动作区; 制动区:当电流在落在曲线以下而大于最小动作电流的时候,由于受比率制动系数的制约,保护部动作,这个区域就是差动保护的制动区; 比率制动系数K:实际上比率制动系数,就是图二中斜线的斜率,因此我们只要计算出此斜线的斜率,就等于算出了比率制动系数。以p点为 例:计算出斜线pc的斜率K=pa/ac=(pb-ab)/(ob-of);举例说明一下: 差动保护有关定值整定如下:最小动作电流Iopo=2,最小制动电流 Iopo=5,比率制动系数k=0.5;按照做差动保护比率制动系数的方法, 施加高压侧电流I1=6A,180度,低压侧电流I2=6A,0度,固定I1升 I2,当I2升到9.4A的时候保护动作,计算一下此时的比率制动系数。 由于两圈变差动的制动电流为(I1+I2)/2,因此,Izd=(9.4+6)/2=7.7, 所以K=(9.4-6-2)/(7.7-5)=1.4/2.7=0.52; 2、谐波制动:当差动电流中的谐波含量达到一定值的时候,我们的装置就 判此电流为非故障电流,进行谐波闭锁。500kv一下等级的变压器之

三相不平衡危害

不平衡电流的危害 时间:2013-01-28 11:27来源:未知作者:admin 点击: 231 次 . 电网中三相间的不平衡电流是普遍存在的,在城市民用电网及农用电网中由于大量单相负荷的存在,三相间的电流不平衡现象尤为严重。对于三相不平衡电流,除了尽量合理地分配负荷之外几乎没有什么行之有效的解决办法。正因为找不到解决问题的有效办法,因此反而不被人们所重视,也很少有人进行研究。 电网中的不平衡电流会增加线路及变压器的铜损,增加变压器的铁损,降低变压器的出力甚至会影响变压器的安全运行,会造成三相电压不平衡因而降低供电质量,甚至会影响电能表的精度而造成计量损失。 理论研究证明:在输出同样功率的情况下,三相电流平衡时变压器及线路的铜损最小,也就是说:三相不平衡现象增加了变压器及线路的铜损。 不平衡电流对系统铜损的影响: 设某系统的三相线路及变压器绕组的总电阻为R。如果三相电流平衡, IA=100A,IB=100A,IC=100A,则总铜损=100*100R+100*100R+100*100R=30000R。 如果三相电流不平衡,IA=50A,IB=100A,IC=150A,则总铜损 =50*50R+100*100R+150*150R=35000R,比平衡状态的铜损增加了17%。 在更为严重的状态下,如果IA=0A,IB=150A,IC=150A,则总铜损 =150*150R+150*150R=45000R,比平衡状态的铜损增加了50%。 在最严重的状态下,如果IA=0A,IB=0A,IC=300A,则总铜损=300*300R=90000R,比平衡状态的铜损增加了3倍。 不平衡电流对变压器的影响: 现有的10/0.4KV的低压配电变压器多为Yyn0接法三相三柱铁心的变压器。这种类型的变压器,当二次侧负荷不平衡且有零线电流时,零线电流即为零序电流,而在一次侧由于无中点引出线因此零序电流无法流通,故零序电流不能安匝平衡,对铁心而言,有一个激磁零序电流,它受零序激磁阻抗控制,根据磁路的设计,这一零序激磁阻抗较大,零序电流使相电压的对称受到影响,中性点会偏移。 由计算得知,当零线电流为额定电流的25%时,中性点移位约为额定电压的7%。国家标准GB50052-95第6.08条规定: “当选用Yyn0结线组别的三相变压器,其由单相不平衡负荷引起的电流不得超过低压绕组额定电流的25%,且其中一相的电流在满载时不得超过额定电流值。”由于上述规定,限制了Yyn0结线配电变压器接用单相负荷的容量,也影响了变压器设备能力的充分利用。 并且,对三相三柱的磁路而言,零序磁通不能在磁路内成回路,必须在油箱壁及紧固件内形成回路,而油箱壁及紧固件内的磁通会产生较大的涡流损耗,因而使变压器的铁损增加。当零序电流过大导致零序磁通过大时,由于中性点漂移过大会引起某些相电压过高而导致铁心磁饱和,使铁损急剧增加,加上紧固件过热等因素,可能会发生任何一相电流均未过载而变压器却因局部过热而损坏的事

变压器三相负荷不平衡原因分析及防范措施

变压器三相负荷不平衡原因分析及防范措施 发表时间:2018-06-11T15:06:54.410Z 来源:《河南电力》2018年2期作者:张璇 [导读] 变压器三相负荷不平衡,可能使低压电网的三相负荷不平衡度加大,这不仅关系到供电可靠性和稳定性,还会增加低压线路线损,使变压器出力下降。 (国网山西省电力公司太原供电公司山西太原 030012) 摘要:变压器三相负荷不平衡,可能使低压电网的三相负荷不平衡度加大,这不仅关系到供电可靠性和稳定性,还会增加低压线路线损,使变压器出力下降。因此变压器台区三相负荷不平衡问题应当引起重视。 关键词:变压器三相负荷不平衡;原因;防范措施 一、变压器三相负荷不平衡引起的麻烦 某地区多个台变多次出现一相总熔断器熔丝烧断的情况,利用用电采集系统采集配变的三相负荷数据,均为三相负荷不平衡引起,随着夏季用电负荷的不断增加,这种不平衡的情况也突显出来,随之带来抢报修以及服务热线诉求工单的数量猛增,给企业的优质服务带来影响。 在线损合格台区整改提高工作中也发现,因三相负荷的不平衡也会造成台区线损率的增加。在三相负荷不平衡度较大的情况下,在配电变压器中性点不接地或接地电阻达不到技术要求时,中性点将发生位移造成中性线带有一定的电压,从而加大线路电压的电压降,降低功率的输出,线路供电电压偏低,尤其是线路末端的电压远远超出电压降的允许范围,直接导致用户的用电设备不能正常工作,电气效能降低,同时极大的增加了低压线损率。通过用电采集系统提供的相关数据证明,一般情况下三相负荷不平衡可引起低压线损率升高2%~10%,三相负荷不平衡度若超过15%,则线损率显著增加,不平衡度越高对低压线损率的影响越大,如不平衡度超过30%,通过计算影响低压线损可以达到3%~6%。而事实上由于城乡用户受经济条件的制约和家用电器普及率的逐年提高,三相负荷不平衡度情况越来越严重,目前通过用电采集系统提供的数据计算,每天三个用电高峰期三相负荷不平衡度超过10%的占总综合变台区的60%,不平衡度超20%的台区数占总台区的40%,不平衡度超过30%的台区数占台区的26%。不平衡度越大的台区供电线路末端用户普遍反映电压偏低,而低压线损率也普遍反映较大。在低压三相负荷不平衡度的影响下,使配电变压器处于不对称运行状态,造成配电变压器的负载损耗和空载损耗增大,而影响到10kV线损率。 二、三相不平衡对变压器的影响 (1)三相不平衡将增加变压器的损耗 变压器的损耗包含空载损耗和负荷损耗,正常情况下变压器运行电压基本不变,即空载损耗是一个恒量。而负荷损耗则随着变压器运行负荷的变化而变化,且与负荷电流的平方成正比。当三相负荷不平衡运行时,变压器的负荷损耗可看成三只单相变压器的负荷损耗之和。 (2)三相不平衡降低了配电变压器的出力 配电变压器容量的设计和制造是以三相负载平衡条件确定的,如果三相负载不平衡,配电变压器的最大出力只能按三相负载中最大一相不超过额定容量为限,负荷轻的相就有富裕容量,从而使配电变压器出力降低。例如100kVA配电变压器,二次额定电流为144A,若Ia为144A,Ib、Ic分别为72A,配电变压器的出力只有67%。 (3)三相不平衡可能造成烧毁变压器的严重后果 上述不平衡时重负荷相电流过大(增为3倍),超载过多,可能造成绕组和变压器油的过热。绕组过热,绝缘老化加快;变压器油过热,引起油质劣化,迅速降低变压器的绝缘性能,减少变压器的寿命。(温度每增加8度,使用年限将减少一半,甚至烧毁绕组。 (4)三相负荷不平衡运行会造成变压器零序电流过大,局部金属件温升增高 在三相负荷不平衡运行下的变压器,必然会产生零序电流,而变压器内部零序电流的存在,会在铁芯中产生零序通磁,这些零序通磁就会在变压器的油箱壁或其它金属构件中构成回路。但配电变压器设计时不考虑这些金属构件为导磁部件,则由此引起的磁滞和涡流损耗使这些部件发热,致使变压器局部金属件温度异常升高,严重使将导致变压器运行事故。 三、影响变压器三相负荷不平衡的原因 三相负荷不平衡发生的原因主要是管理上存在薄弱环节,由于在对配电变压器三相负荷的分配上存在盲目性、工作随意性,以及运行维护人员对配电变压器三相负荷管理的责任心不到位,农村用电动力、照明的混用,尤其是居民用电单相负荷发展时无序延伸,用户用电情况不好掌握等客观因素,而在管理中又由于缺乏有效的监测、调整和考核机制,导致目前农村综合变压器三相负荷处于不平衡状态下运行。 四、防止变压器负荷不平衡运行采取的措施 (1)加强配电变压器负荷不平衡运行管理。运维班安排专人负责利用用电采集系统定期进行三相不平衡电流测试,并结合台区责任人的现场测量情况,按季度考核变压器三相负荷不平衡度的情况,把它列入考核项目,以提高农电管理人员搞好三相负荷平衡的自觉性和积极性。负荷每月至少进行一次测量,特殊情况下(如高峰负荷期间,负荷变化较大时等)可增加测量次数,对配电变压器负荷状况做到心中有数,并完善相关记录台帐,为调整配电变压器负荷提供准确可靠的数据。 管理人员应熟悉台区的每个用户用电情况、设备安装地点、用电能量变化情况,特别是注意大功率用电设备数量和容量等,看其分布在那相上。然后根据情况及时调整负荷。 (2)改造配电网,加强对三相负荷分布控制。在改造台区供电方案前,要了解所改造台区的负荷变化规律和负荷分配情况,对所改造的台区进行现场勘察,掌握负荷分布情况,同时绘制台区负荷分配接线图,并严格按三相负荷平衡的原则进行布线,尽量使三相四线深入到各重要负荷中心。配电变压器设置于负荷中心,供电半径不大于500m,主干线、分支干线均采用三相四线制供电,5户以上居民尽量不采用单相供电,中性线导线截面与其它相线截面一致,以减少损耗,消除断线的事故隐患。同时制定台区负荷分配接线图,做到任何一

变压器差动保护的平衡系数

变压器微机差动保护平衡系数说明 1、影响变压器差动保护差流计算的因素 1)、变压器高低压侧电流幅值不同造成的不平衡。由于变压器高低压侧电压等级不同,所以变压器高低压侧的电流幅值不同。 2)、变压器高低压侧电流相位不同造成的不平衡。由于变压器接线方式导致高低压侧电压的相位不同,所以变压器高低压侧的电流相位也不同。 3)、变压器高低压侧电流互感器的不匹配造成的不平衡。由于电流互感器的变比是一个标准的数值,而变压器虽然容量是一个标准值,但其额定电流是一个不规则的数,所以,电流互感器的选择并不考虑其对差流的影响。 2、消除电流不平衡的方法 1)、通过引入平衡系数消除高低压侧电流幅值不同及高低压侧电流互感器不匹配造成的不平衡。 2)、根据变压器高低压侧电流的相位关系,通过数学公式的计算,消除变压器高低压侧电流相位不同造成的不平衡。 3、平衡系数概念和计算方法 1)、概念:两个不同单位或相同单位而基准不同的物量归算到同一单位或同一基准时所用到的比例系数就是平衡系数。举例如下: a、一斤大米3元,一斤白面2元,归算到大米侧,白面的平衡系数为2/3。 b、一斤大米3元,一斤白面2元,归算到白面侧,大米的平衡系数为3/2。 c、一斤大米3元,一斤白面2元,一斤鸡蛋4元,归算到鸡蛋侧,大米的平衡系数为3/4,白面的平衡系数为1/2。 2)、计算方法 主变的型号为100000kVA-110kV/35kV,高压侧一次额定电流:Ieg1=524.9A,低压侧一次额定电流:Ie d1=1649.6A,高压侧电流互感器变比:800/5,低压侧电流互感器变比:2000/1。 a、以高压侧电流互感器为基准,把高压侧电流互感器折算到低压侧。 I12=800*110/35=2514.3A,K ph2=2000/ I12=2000/2514.3=0.80。 b、以低压侧电流互感器为基准,把低压侧电流互感器折算到高压侧。 I21=2000*35/110=636.4A,K ph1=800/ I21=800/636.4=1.26。 c、以变压器额定电流为基准,把高低压侧电流互感器折算到额定电流侧。

智能变电站变压器差动保护的不平衡电流产生原因分析

智能变电站变压器差动保护的不平衡电流产生原因分析 发表时间:2018-06-27T09:41:18.663Z 来源:《电力设备》2018年第6期作者:郭财[导读] 摘要:本文扼要分析智能变电站变压器合并单元采样差动保护的工作原理,分析导致智能变电站变压器差动保护产生不平衡电流异常的原因,并针对智能变电站变压器差动保护不平衡电流产生提出有效的防范措施,提高智能变电站变压器差动保护动作的正确性,防止保护装置误动,从而保证变压器的安全稳定运行。 (国网青海省电力公司检修公司青海西宁 810007)摘要:本文扼要分析智能变电站变压器合并单元采样差动保护的工作原理,分析导致智能变电站变压器差动保护产生不平衡电流异常的原因,并针对智能变电站变压器差动保护不平衡电流产生提出有效的防范措施,提高智能变电站变压器差动保护动作的正确性,防止保护装置误动,从而保证变压器的安全稳定运行。 关键词:智能变电站;差动保护;不平衡;合并单元前言 变压器的纵差保护作为变压器故障时的主保护,差动保护的保护范围是构成变压器差动保护的各侧电流互感器之间包围的设备,可以反映变压器的引线、内部线圈的匝间短路、大电流接地系统中线圈及引线的接地等故障。变压器的差动保护是按照循环电流原理构成的,变压器各侧装设电流互感器,当各侧电流互感器的同极性相同一般减极性设置电流从母线流向变压器,在正常运行或外部故障时,各侧的二次电流大小相等、方向相反、差动电流为零,因此差动保护不动作。 与常规变电站相比智能变电站交流采样采用合并单元,在一次设备就近将来自电压、电流互感器的交流量通过合并单元进行时间数字的组合,组合后将采样数据以数字信号发送出去供保护装置、测控装置等使用。在变压器实际运行中由于各种原因引起的不平衡电流使得差动电流增大,就可能造成保护误动。在常规变电站内,因运行时间较长对各种不平衡电流已经有较完善防范措施,所以不至导致保护误动。但智能变电站推广技术较短,相关技术不是很成熟,尤其是合并单元在处理数据采样及传输中出现问题较多,引起电流不平衡的现象较多,易引起保护误动,给电力系统稳定性带来较大隐患。 1、产生的原因 变压器正常运行的状态时,会产生不平衡电流,从而对差动保护造成影响。常规变电站变压器差动不平衡电流的产生的原因有:在变压器正常运行时产生较大的励磁涌流,比如变压器在空载合闸的状态,或在切除故障中突然产生电压时有较大的励磁涌流,通常能达到额定电流的7倍左右,通过CT以二次电流的形式全部进入到保护当中,从而产生不平衡电流;变压器两侧接线不同产生的不平衡电流,变压器两侧的电流相位是由变压器的接线方式决定的,不同的接线方式,两侧的电流有一定相位差,即CT上两侧二次电流值虽然一样,但通过参考电压折算会产生不平衡电流;由CT变比误差产生的不平衡电流;由计算变比与标准变比不同产生的不平衡电流及带负荷调整变压器分接头位置改变产生的不平衡电流。 相对于常规站,智能变电站中由于引进合并单元,且运维人员对设备原理认识欠缺验收不到位等原因导致变压器差动异常时有发生。由合并单元引起的的不平衡原因,有因各侧合并单元程序设计缺陷造成不同电流、电压量之间不同步产生不平衡电流;也有因智能变电站保护电流电压接收需要投入SV接收漏投产生不平衡电流;还有因装置虚端子额定延时错误造成不平衡电流。 2、影响和防范措施 在运维中,常规变电站中确定的几条不平衡电流在运维中已有比较完善的防范措施,下面就智能变电站变压器差动保护中的几种产生不平衡电流原因和防范措施进行阐述。 2.1 变压器合并单元程序设计缺陷的影响和防范措施 由于装置设计中的软、硬件等出现问题导致合并单元发送出数据异常导致保护误动。应增加出厂前的测试项目,对要使用的装置软件硬件都必须经过国网公司检测合格且版本硬件均与入网测试合格的产品一致。加强现场验收由于现场调试中对合并单元验收不重视在测试中部分项目未开展,应在验收细则中增加该类验收项目。并采用专用的合并单元校验仪测试合并单元的绝对延时、稳态性能检验、动态性能检验等测试项目,测试装置数据正确性。 2.2 变压器压板未正确投入的影响和防范措施 智能变电站大量减少硬压板的设置,只有检修压板为硬压板,保护装置广泛采用软压板。SV软压板(数据接收软压板)的主要功能是按MU投入状态控制本端是否接收处理采样数据。智能变电站继电保护装置模拟量输入要求一个MU设置一个SV压板,此压板作用如下:SV接收软压板投入时,该链路中的采样值才参与保护计算,否则不参与保护计算同时显示为0;SV接收软压板投入时,对该链路状态进行检测,包括断链、失步和接收不匹配;SV接收软压板投入时,对该链路所包含采样进行品质异常、检修不一致、双AD不一致、交流断线和交流反序的判别。SV接收软压板位于保护装置内部,其功能是控制保护装置是否处理SV报文中的数据。此压板相当于PT、CT的二次连线。退出间隔SV接收软压板相当于封CT,退出母线电压SV接收软压板相当于断开PT二次。退出SV接收软压板后,保护装置面板上会显示该SV报文的电流信息,但不用于保护计算以及逻辑判断。当保护装置SV软压板与实际运行状态不一致时就会造成保护误动或拒动,造成事故扩大。应加强智能变电站保护装置的“SV投入”软压板的管理,在运规编制中严格执行国网间隔检修压板投退要求进行编写,保证运规正确性,运维人员在操作过程中,应严格执行操作票制度,并与运规一致。 2.3 额定延时错误的影响和防范措施 主变保护装置采样来自不同合并单元时,各侧测样数据同步问题可能会导致保护装置采样数据异常,导致保护不正确动作。合并单元的延时主要是由合并单元自身采样到各插件数据传输延时导致。当交流电流、电压经合并单元转换为数字量输出时就会产生延时,延时主要有A/D变换时间、插件数据接收时间、CPU数据处理时间和光口插件数据发送延时。不同厂家由于软、硬件不同,合并单元的延时也不相同。为了消除保护装置接收到不同合并单元采样数据不同步的问题,通常采用额定延时来消除,即所有合并单元发出的电流电压都等待一定的时间后再将电流电压输出给保护测控装置,保护测控装置解析数据报文中的时标,并通过额定延时进行时间或相角补偿,来消除各侧采样不同步的影响。为了避免由于矢量计算导致的差流及合并单元额定延时不正确对保护同步计算产生较大影响,验收调试中运维人员必须清楚装置采样同步原理和实现方法并增加对合并单元对额定延时的测试,以避免因多个合并单元额定延时设置错误导致的保护异常。 3、结语

三相电压不平衡的区分判断方法和解决办法

三相电压不平衡的区分判断方法和解决办法 引起三相电压不平衡的原因有多种,如:单相接地、断线谐振等,运行管理人员只有将其正确区分开来,才能快速处理。 一、断线故障如果一相断线但未接地,或断路器、隔离开关一相未接通,电压互感器保险丝熔断均造成三相参数不对称。上一电压等级线路一相断线时,下一电压等级的电压表现为三个相电压都降低,其中一相较低,另两相较高但二者电压值接近。本级线路断线时,断线相电压为零,未断线相电压仍为相电压。 二、接地故障当线路一相断线并单相接地时,虽引起三相电压 不平衡,但接地后电压值不改变。单相接地分为金属性接地和非金属性接地两种。金属性接地,故障相电压为零或接近零,非故障相电压升高1.732倍,且持久不变;非金属性接地,接地相电压不为零而是降低为某一数值,其他两相升高不到1.732倍。 谐振原因随着工业的飞速发展,非线性电力负荷大量增加,某 些负荷不仅产生谐波,还引起供电电压波动与闪变,甚至引起三相电压不平衡。

谐振引起三相电压不平衡有两种: 一种是基频谐振,特征类似于单相接地,即一相电压降低,另两相电压升高,查找故障原因时不易找到故障点,此时可检查特殊用户,若不是接地原因,可能就是谐振引起的。 另一种是分频谐振或高频谐振,特征是三相电压同时升高。 另外,还要注意,空投母线切除部分线路或单相接地故障消失时,如出现接地信号,且一相、两相或三相电压超过线电压,电压表指针打到头,并同时缓慢移动,或三相电压轮流升高超过线电压,遇到这种情况,一般均属谐振引起。 三相不平衡的危害和影响:

对变压器的危害。在生产、生活用电中,三相负载不平衡时,使变压器处于不对称运行状态。造成变压器的损耗增大(包括空载损耗和负载损耗)。根据变压器运行规程规定,在运行中的变压器中性线电流不得超过变压器低压侧额定电流的25%。此外,三相负载不平衡运行会造成变压器零序电流过大,局部金属件升温增高,甚至会导致变压器烧毁。 对用电设备的影响。三相电压不平衡的发生将导致达到数倍电流不平衡的发生。诱导电动机中逆扭矩增加,从而使电动机的温度上升,效率下降,能耗增加,发生震动,输出亏耗等影响。各相之间的不平衡会导致用电设备使用寿命缩短,加速设备部件更换频率,增加设备维护的成本。断路器允许电流的余量减少,当负载变更或交替时容易发生超载、短路现象。中性线中流入过大的不平衡电流,导致中性线增粗。 对线损的影响。三相四线制结线方式,当三相负荷平衡时线损最小;当一相负荷重,两相负荷轻的情况下线损增量较小;当一相负荷重,一相负荷轻,而第三相的负荷为平均负荷的情况下线损增量较大;当一相负荷轻,两相负荷重的情况下线损增量最大。当三相负荷不平衡时,无论何种负荷分配情况,电流不平衡度越大,线损增量也越大。三相不平衡的危害及解决办法: 一、三相电压或电流不平衡等因素产生的主要危害: 1、旋转电机在不对称状态下运行,会使转子产生附加损耗及发热,从而引起电机整体或局部升温,此外反向磁场产生附加力矩会使

变压器直流电阻

变压器直流电阻 1.变压器直流电阻不平衡率标准。 当变压器容量等于或者小于1 600kVA时,要求相电阻不平衡率≤4%,线电阻不平衡率≤2%;当容量大于1 600kVA时,则相电阻不平衡率(中性点引出时)和线电阻不平衡率均为≤2%。也就是说超过上述限值,即可认为变压器存在质量问题。 2.影响变压器电阻的原因分析。 ①导线材质对直流电阻不平衡率的影响。导线材质的差异,也会导致线规一致的导线,其电阻率可能不一样,若相差较大,则会使所绕制变压器的直流电阻不平衡率超标。导线截面尺寸的窄边,宽边和圆角半径等规定了允许偏差,截面积就有大有小。 ②引线结构对直流电阻不平衡率的影响。由于变压器的高压线圈电阻相对高压引线电阻要大的多,因而高压引线电阻对高压直流电阻不平衡的影响很小。而变压器的低压线圈电阻通常较小,其低压引线电阻的大小对低压直流电阻不平衡率有很大的影响,而且在生产中所发生的直流电阻不平衡率超标也大都由其引线结构上的原因造成的,这一点在低压中性点引出的变压器中表现得尤为明显(电压≥3.3KV变压器中性点引出)。改善方法:在条件允许的情况下,为减小直流电阻的不平衡,套装器身时,将三个线圈中电阻值最大的线圈套在b

相:对于中性点引出的,在电阻偏差不大的情况下,可把中性点焊接位置往电阻值大的线包位置靠近:将封线铜排改成截面积较大的铜排,以降低引线电阻对相电阻不平衡的影响: 3.焊接质量对直流电阻不平衡率的影响。变压器线圈在绕制、装配过程中,线圈本身内部导线与导线的连接以及线圈出头与引线的连接,都是采用铜焊或气焊。当变压器电流较大时,线圈的线匝往往由数根并联导线组成,若出现“虚焊”,其中有一根甚至几根导线未能焊接牢固,或者是线圈的出线与引线的焊接处接触不良,则会引起阻值上升,造成变压器三相直流电阻不平衡过大,以至超过国家标准。 4.成品装配环节对直流电阻不平衡的影响。在进行成品装配时,有时由于人为的原因,使得引线与套管导杆间的连接不紧密发生松动, 变压器分接开关的动静触头间的接触不良,均可造成直流电阻不平衡率超标,只要使发生问题的部位保证良好接触,就可以基本解决这一问题。如果变压器分接开关的动静触头上存在一定厚度的氧化膜,而且变压器线圈的直流电阻较小,也会使直流电阻不平衡系数超标。

变压器纵差保护中不平衡电流的克服方法

变压器纵差保护中不平衡电流的克服方法 纵差保护是一切电气主设备的主保护,它灵敏度高、选择性好,在变压器保护上运用较为成功。但是变压器纵差保护一直存在励磁涌流难以鉴定的问题,虽然已经有几种较为有效的闭锁方案,又因为超高压输电线路长度的增加、静止无功补偿容量的增大以及变压器硅钢片工艺的改进、磁化特性的改善等因素,变压器纵差保护的固有原理性矛盾更加突出。 1.变压器纵差保护基本原理 纵差保护在发电机上的应用比较简单,但是作为变压器内部故障的主保护,纵差保护将有许多特点和困难。变压器具有两个或更多个电压等级,构成纵差保护所用电流互感器的额定参数各不相同,由此产生的纵差保护不平衡电流将比发电机的大得多,纵差保护是利用比较被保护元件各端电流的幅值和相位的原理构成的,根据KCL基本定理,当被保护设备无故障时恒有各流入电流之和必等于各流出电流之和。 当被保护设备内部本身发生故障时,短路点成为一个新的端子,此时电流大于0,但是实际上在外部发生短路时还存在一个不平衡电流。事实上,外部发生短路故障时,

因为外部短路电流大,非凡是暂态过程中含有非周期分量电流,使电流互感器的励磁电流急剧增大,而呈饱和状态使得变压器两侧互感器的传变特性很难保持一致,而出现较大的不平衡电流。因此采用带制动特性的原理,外部短路电流越大,制动电流也越大,继电器能够可靠制动。 另外,由于纵差保护的构成原理是基于比较变压器各侧电流的大小和相位,受变压器各侧电流互感器以及诸多因素影响,变压器在正常运行和外部故障时,其动差保护回路中有不平衡电流,使纵差保护处于不利的工作条件下。为保证变压器纵差保护的正确灵敏动作,必须对其回路中的不平衡电流进行分析,找出产生的原因,采取措施予以消除。 2.纵差保护不平衡电流分析 2.1稳态情况下的不平衡电流 变压器在正常运行时纵差保护回路中不平衡电流主要是由电流互感器、变压器接线方式及变压器带负荷调压引起。 由电流互感器计算变比与实际变比不同而产生。正常运行时变压器各侧电流的大小是不相等的。为了满足正常运行或外部短路时流入继电器差动回路的电流为零,则应使高、低压两侧流入继电器的电流相等,即高、低侧电流互感器变比的比值应等于变压器的变比。但是,实际上由于电流互感器的变比都是根据产品目录选取的标准变比,而变压器的变

相关文档
最新文档