BaTiO3的晶型转变和烧结温度的控制

BaTiO3的晶型转变和烧结温度的控制
BaTiO3的晶型转变和烧结温度的控制

§2.3 BaTiO 3的晶型转变和烧结温度的控制

最早的压电陶瓷是BaTiO 3,后来以它为基础衍生出一系列重要的压电材料。BaTiO 3在不同温度下的晶型转变如式(2–4)所示[7~9]

三方单斜278K 四方393K 立方 1 733K

六方。

(2–4) §2.4 SiO 2的晶型转变和应用

晶态SiO 2有多种变体,它们可分为3个系列,即石英、鳞石英和方石英系列。在同系列中从高温到低温的不同变体通常分别用α、β和γ表示。它们之间的转化关系如图2–6所示。习惯上,把该图中的横向转变,即石英、鳞石英与方石英间的转变,称为一级变体间的转变[5];把图中的纵向转变,即同系列的α、β和γ变体间的转变,称为二级变体间的转变[5],也叫做高低温型转变。进一步分析可知,SiO 2一级变体间的转变属重构式转变,而它的二级变体间的转变是位移式转变中的一种。

图2–6 SiO2的晶型转变(本书作者对此图作了编辑)[2] SiO2系统相图如图2–7所示。

图2–7 SiO 2系统相图(Fenner, 1913;本书作者修订了此图)[5]

从SiO 2相图可看出,当温度达到846 K 时,β–石英应转变为α–石英。若将α–石英继续加热,到1 143 K 时应转变为α–鳞石英,但是,这一转变速度较慢。当加热速度较快时,α–石英可能过热,直到1 873 K 时熔融。如果加热速度较慢,使其在平衡条件下转变,α–石英就可能转变为α–鳞石英,后者可稳定到 1 743 K 。同样,在平衡条件下,α–鳞石英在1 743 K 会转变为α–方石英,否则也将过热,在1 943 K 下熔融。不论是α–鳞石英还是α–方石英,当冷却速度不够慢时,都会在不平衡条件下转化为它们自身的低温形态。这些低温形态(β–鳞石英、γ–鳞石英和β–方石英)虽处于介稳状态,但由于它们转变为稳定状态的速度极慢,实际上可长期保持不变。例如在耐火材料硅砖中,就存在着β–鳞石英和γ–鳞石英[2]。

联系到图2–4,由于发生位移式转变[(a )→(b )或(c )],所形成的结构间隙变小;再根据图2–5,可以想像到,若发生石英由α型向β型[图2–5(c )]的转变,结构中多面体间的间隙越来越小,即结构越来越紧凑。所以,对于硅酸盐晶体来说,通常都具有如下的规律:高温稳定型的结构较开阔,体积较大,低温稳定型的情况正好与此相反。所以硅酸盐从低温稳定型向高温稳定型过渡时,通常都会发生体积膨胀。

相图上固相之间的界线斜率可由下述克劳修斯(Clausius)–克拉珀龙(Clapeyron)方程决定[2]。对于任意平衡的两相,其蒸气压p 与温度T 的关系为

'd d p H T T V

?=? (2–5)

式中H ?是物质的量熔化热、物质的量蒸发热或物质的量晶型转变热,V ?是物质的量体积变化,T 是绝对温度。由于从低温变体向高温变体转变时,H ?总是正的,并且对于SiO 2来说,V ?也

总是正的,所以这些曲线的斜率通常是正值。

相图中的规律是从热力学角度来推导和思考的,它只考虑到转变过程的方向和限度,而不顾及过程动力学的速度问题;而且纯粹的平衡态相图也不会考虑过程的机理问题。

表2–1列出SiO2晶型转变时体积变化的理论值,“+”号表表2–1 SiO2晶型转变时的体积变化[5]

重构式转变计算采

取的温

度/K

在该温度下

转变时的体

积效应/%

位移式转变

计算采

取的温

度/K

在该温度

下转变时

的体积效

应/%

α–石英→α–鳞石英 1 273 +16.0 β–石英→α–石英846 +0.82

α–石英→α–方石英 1 273 +15.4 γ–鳞石英→β–鳞石英390 +0.2

α–石英→石英玻璃 1 273 +15.5 β–鳞石英→α–鳞石英436 +0.2

石英玻璃→α–方石英 1 273 +0.9 β–方石英→α–方石英423 +2.8

示膨胀,“–”号表示收缩。从表中可见,一级变体间转变时的体积变化比二级变体间转变时大得多。必须指出,重构式转变的体积变化虽较大,但由于转变速度较慢,体积效应表现得并不明显,因而对于硅砖的生产和使用影响不大;而位移式转变的体积变化虽较小,但由于转变速度较快,而且无法阻止[2],影响反而较大。从表中还可看出,在SiO2各变体的高低温型转变中,方石英变体之间的体积变化最为剧烈,石英变体次之,鳞石英最弱。

因此,为了获得稳定致密的硅砖制品,就希望硅砖中含有尽可能多的鳞石英[2]和尽可能少的方石英,这就是硅砖烧制过程的实质所在。通常是加入少量矿化剂,如铁的氧化物等,使之在1 273 K左右先产生一定量的液相,以促进α–石英转变为α–鳞石英。铁的氧化物之所以能促进这一转变,是因为方石英在易熔的铁硅酸盐中的溶解度比鳞石英大,所以在硅砖的烧制过程中,石英和方石英不断溶解,鳞石英不断从液相中析出[5]。这就是前述“溶

解–沉淀”完成重构式转变的机理。

从相图上看,显然硅砖在1 143~1 743 K(α–鳞石英稳定的温度范围)使用较为合适,所以硅砖常被用做传统的玻璃熔窑碹顶及胸墙的砌筑材料。硅砖若在1 743 K以上使用则会方石英化。此外,在制作过程中也会有少量的方石英残存于硅砖中,在窑炉大修时,由于温度降到室温左右,方石英的多晶转变,常会引起窑砌砖的炸裂[10]。因此,新窑在点火时,应根据SiO2相图来制订烤窑升温制度,实际上是在可能发生位移式相变的几个温度下长期保温,使此类相变充分进行,防止它们在其他温度下再发生。

晶型转变的影响因素

影响晶型转变的因素 众所周知,结构决定性质,而对于晶体来说,当外界条件变化时,晶体结构形式发生改变,碳、硅、金属的单质、硫化锌、氧化铁、二氧化硅以及其他很多物质都具有这一现象,所以本文通过查阅文献举例说明影响晶型的一些因素,主要有温度、压力、粒度和组成。 一、温度 温度对晶型影响比较复杂,当温度升高时,晶体中的分子或某些离子团自由旋转,取得较高的对称性,而改变晶体的结构。下面举例说明: (1) BaO·Al2O3·SiO2(BAS)系微晶玻璃的主晶相为钡长石。钡长石主要的晶型有单斜钡长石(monoclinic celsian)、六方钡长石( hexa celsian)和正交钡长石(orthorhombic celsian),三者的关系如图1所示: Fig. 1 The phase transformation of celsian 由图中我们可以看到:六方钡长石膨胀系数高,为8. 0×10-6/℃,而且在300℃左右会发生其向正交钡长石的可逆转变,转变过程中伴随着3-4%的体积变化。 (2)当预热温度小于400℃时,反应所得到的产物氧化铝为非晶态的A12O3。非晶A12O3。在热力学上是一种亚稳状态,所以它有向晶态转化的趋势。当温度不够高时,非晶A12O3中的原子的运动幅度较小,同时晶化所必不可少的晶核的形成和生长都比较困难,因此非晶态向晶态的转化就不易。为研究所制备的非晶A12O3。向晶态Al2O3转变的规律,我们把在300℃时点火得到的非晶A12O3 进行了锻烧处理,结果见表2:

Fig.1 XRD Patterns of Produets kept for 1.5h at 700一900℃

TiO2光催化原理及应用

TiO2光催化原理及应用 一.前言 在世界人口持续增加以及广泛工业化的过程中,饮用水源的污染问题日趋严重。根据世界卫生组织的估计,地球上22% 的居民日常生活中的饮用水不符合世界卫生组织建议的饮用水标准。长期摄入不干净饮用水将会对人的身体健康造成严重危害, 世界围每年大概有200 万人由于水传播疾病死亡。水中的污染物呈现出多样化的趋势,常见的污染物包括有毒重金属、自然毒素、药物、有机污染物等。常规的饮用水净化技术有氯气、臭氧和紫外线消毒以及过滤、吸附、静置等,但是这些方法对新生的污物往往不是非常有效,并且可能导致二次污染。包括我国在世界围广泛应用的氯气消毒法,可能在水中生成对人类健康有害的高氯酸盐。臭氧消毒是比较安全的消毒方法,但是所需设备昂贵;而紫外线消毒法需要能源支持,并且日常的维护都需要专业的技术人员;吸附法一般需要消耗大量的吸附剂,使用过的吸附剂一般需要额外的处理。这些缺点限制了它们的应用围,迫切需要发展一种高效、绿色、简单的净化水技术。 自然界中,植物、藻类和某些细菌能在太的照射下,利用光合色素将二氧化碳(或硫化氧)和水转化为有机物,并释放出氧气(或氢气)。这种光合作用是一系列复杂代反应的总和,是生物界赖以生存的基础,也是地球碳氧循环的重要媒介。光化学反应的过程与植物的光合作用很相似。光化学反应一般可以分为直接光解和间接光解两类。直接光解为物质吸收能量达到激发态,吸收的能量使反应物的电子在轨道间的转移,当强度够大时,可造成化学键的断裂,产生其它物质。直接光解是光化学反应中最简单的形式,但这类反应产率一般较低。间接光解则为反应系统中某一物质吸收光能后,再诱使另一种物质发生化学反应。 半导体在光的照射下,能将光能转化为化学能,促使化合物的合成或使化合物(有机物、无机物)分解的过程称之为半导体光催化。半导体光催化是光化学反应的一个前沿研究领域,它能使许多通常情况下难以实现或不可能进行的反应在比较温和的条件下顺利进行。与传统技术相比,光催化技术具有两个最显著的特征:第一,光催化是低温深度反应技术。光催化氧化可在室温下将水、空气和土壤中有机污染物等完全氧化二氧化碳和水等产物。第二,光催化可利用紫外光或太作为光源来活化光催化剂,驱动氧化-还原反应,达到净化目的,对净化受无机重金属离子污染的废水及回收贵金属亦有显著效果。 二.TiO2的性质及光催化原理 许多半导体材料(如TiO2,ZnO,Fe2O3,ZnS,CdS等)具有合适的能带结构可以作为光催化剂。但是,由于某些化合物本身具有一定的毒性,而且有的半导体在光照下不稳定,存在不同程度的光腐蚀现象。在众多半导体光催化材料中,TiO2以其化学性质稳定、氧化-还原性强、抗腐蚀、无毒及成本低而成为目前最为广泛使用的半导体光催化剂。 TiO2属于一种n型半导体材料,它有三种晶型——锐钛矿相、金红石相和板钛矿相,板

BaTiO3的晶型转变和烧结温度的控制

§2.3 BaTiO 3的晶型转变和烧结温度的控制 最早的压电陶瓷是BaTiO 3,后来以它为基础衍生出一系列重要的压电材料。BaTiO 3在不同温度下的晶型转变如式(2–4)所示[7~9] 三方单斜278K 四方393K 立方 1 733K 六方。 (2–4) §2.4 SiO 2的晶型转变和应用 晶态SiO 2有多种变体,它们可分为3个系列,即石英、鳞石英和方石英系列。在同系列中从高温到低温的不同变体通常分别用α、β和γ表示。它们之间的转化关系如图2–6所示。习惯上,把该图中的横向转变,即石英、鳞石英与方石英间的转变,称为一级变体间的转变[5];把图中的纵向转变,即同系列的α、β和γ变体间的转变,称为二级变体间的转变[5],也叫做高低温型转变。进一步分析可知,SiO 2一级变体间的转变属重构式转变,而它的二级变体间的转变是位移式转变中的一种。

图2–6 SiO2的晶型转变(本书作者对此图作了编辑)[2] SiO2系统相图如图2–7所示。

图2–7 SiO 2系统相图(Fenner, 1913;本书作者修订了此图)[5] 从SiO 2相图可看出,当温度达到846 K 时,β–石英应转变为α–石英。若将α–石英继续加热,到1 143 K 时应转变为α–鳞石英,但是,这一转变速度较慢。当加热速度较快时,α–石英可能过热,直到1 873 K 时熔融。如果加热速度较慢,使其在平衡条件下转变,α–石英就可能转变为α–鳞石英,后者可稳定到 1 743 K 。同样,在平衡条件下,α–鳞石英在1 743 K 会转变为α–方石英,否则也将过热,在1 943 K 下熔融。不论是α–鳞石英还是α–方石英,当冷却速度不够慢时,都会在不平衡条件下转化为它们自身的低温形态。这些低温形态(β–鳞石英、γ–鳞石英和β–方石英)虽处于介稳状态,但由于它们转变为稳定状态的速度极慢,实际上可长期保持不变。例如在耐火材料硅砖中,就存在着β–鳞石英和γ–鳞石英[2]。 联系到图2–4,由于发生位移式转变[(a )→(b )或(c )],所形成的结构间隙变小;再根据图2–5,可以想像到,若发生石英由α型向β型[图2–5(c )]的转变,结构中多面体间的间隙越来越小,即结构越来越紧凑。所以,对于硅酸盐晶体来说,通常都具有如下的规律:高温稳定型的结构较开阔,体积较大,低温稳定型的情况正好与此相反。所以硅酸盐从低温稳定型向高温稳定型过渡时,通常都会发生体积膨胀。 相图上固相之间的界线斜率可由下述克劳修斯(Clausius)–克拉珀龙(Clapeyron)方程决定[2]。对于任意平衡的两相,其蒸气压p 与温度T 的关系为 'd d p H T T V ?=? (2–5) 式中H ?是物质的量熔化热、物质的量蒸发热或物质的量晶型转变热,V ?是物质的量体积变化,T 是绝对温度。由于从低温变体向高温变体转变时,H ?总是正的,并且对于SiO 2来说,V ?也

固体制剂工艺对药物晶型的影响的最新进展

固体制剂工艺对药物晶型地影响地最新进展自从开始研究药物晶型至今,晶型与固体制剂地关系愈发密切,一方面,药物地晶型变化会改变制剂地性能和质量,结晶度、晶态会影响药物地松密度性质,进而影响一些制剂过程,如混合、填充、粉碎;另一方面,研究固体制剂是涉及到晶型问题,一些工艺过程会改变多晶型地分子结构、点阵排列,进而影响疗效,所以说,药物晶型和固体制剂相互影响.固体制剂 常用地固体剂型有散剂、颗粒剂、片剂、胶囊剂、滴丸剂、膜剂等,在药物制剂中约占 .固体制剂地共同特点是与液体制剂相比,物理、化学稳定性好,生产制造成本较低,服用与携带方便;制备过程地前处理经历相同地单元操作,以保证药物地均匀混合与准确剂量,而且剂型之间有着密切地联系;药物在体内首先溶解后才能透过生理膜、被吸收入血液循环中. 在固体剂型地制备过程中,首先将药物进行粉碎与过筛后才能加工成各种剂型.如与其他组分均匀混合后直接分装,可获得散剂;如将混合均匀地物料进行造粒、干燥后分装,即可得到颗粒剂;如将制备地颗粒压缩成形,可制备成片剂;如将混合地粉末或颗粒分装入胶囊中,可制备成胶囊剂等. 药物晶型 物质在结晶时由于受各种因素影响,使分子内或分子间键合方式发生改变,致使分子或原子在晶格空间排列不同,形成不同地晶体结构.同一物质具有两种或两种以上地空间排列和晶胞参数,形成多种晶型地现象称为多晶现象().虽然在一定地温度和压力下,只有一种晶型在热力学上是稳定地,但由于从亚稳态转变为稳态地过程通常非常缓慢,因此许多结晶药物都存在多晶现象.固体多晶型包括构象型多晶型、构型型多晶型、色多晶型和假多晶型. 同一药物地不同晶型在外观、溶解度、熔点、溶出度、生物有效性等方面可能会有显著不同,从而影响了药物地稳定性、生物利用度及疗效,该种现象在口服固体制剂方面表现得尤为明显.药物多晶型现象是影响药品质量与临床疗效地重要因素之一,因此对存在多晶型地药物进行研发以及审评时,应对其晶型分析予以特别地关注. 固体制剂工艺对药物晶型地影响 从药物原料到固体制剂成品, 需要经历多步加工过程, 如精制、粉碎、制粒、干燥和压片, 这些加工工艺都可能使药物晶型发生改变.药物晶型地改变一方面将引起药物粉末地堆密度、静电含量、休止角、流动性、变形比等粉粒性质发生变化, 另一方面,由于同一药物不同晶型地特性溶出速率、溶解度甚至药理作用存在差异, 会导致固体药物制剂地溶出度或体内吸收发生改变, 从而影响生物利用度或治疗地有效性.因此熟悉固体制剂工艺对药物晶型地影响, 对于控制药品质量、保证疗效有着重要意义. 重结晶

第二章 晶型转变及其控制方法

第六章位错和面缺陷 习题 1 试分析一般陶瓷材料脆性较高的原因。 2 图6–21是张晶体点阵结构的二维图形,内含一根正刃位错和一根负刃位错。试回答:(1)若围绕着这两根位错作柏氏回路,最后所得的柏氏矢量如何?(2)若围绕着每根位错作柏氏回路,其结果又分别是怎样? 图6–20 同一晶体中不同平面上符号相反的两根刃位错的二维模型 3 试分析NaCl晶体在什么方向上最容易发生滑移? 4 请判断在下述情况下位错的类型:(1)柏氏矢量平行于剪切方向并垂直于位错;(2)柏氏矢量垂直于剪切方向并平行于位错[3]。 5 试证明柏氏矢量守恒定律:指向某节点位错的柏氏矢量之和等于离开该点位错的柏氏矢量之和。 6 请简述螺位错可能的运动方式及其特点。 7 试从位错与晶体的几何关系、位错的形成原因、引起位错的外加剪切应力分力与柏氏矢量方向的关系、柏氏矢量与位错和滑移面的关系、滑移面与密排面方向的关系等方面,分析刃位错与螺位错的异同点。 8 设晶体中有一根单位长度的位错,两端被钉扎住,在外加应力作用下,从直线段变为半径为r 的圆弧段。试求此过程中外力所做功的大小[19]。 9 试从与位错有关的一般原理出发,分析导致它产生和存在的可能原因。

10 试分析下述两种位错定义的不足之处:(1)滑移面上已滑移和未滑移部分的分界线;(2)位错是柏氏矢量不为零的线缺陷。 11 试分析在拉制单晶的过程中,在工艺上至少要控制哪两个参数,以尽可能地消除晶体中的位错? 12 试回答:(1)对结晶固体而言,哪种几何形状的缺陷最常见?为什么?(2)非化学计量缺陷可能以哪种几何形状的缺陷出现?为什么? 13 试解释纳米晶粒结构陶瓷高温蠕变性能较差的原因。 14 设某物质在其熔点时结晶,形成边长为10-6m的立方体晶粒。试回答下述两个问题:(1)若晶体在高温时所形成的空位,降温到室温时,聚集在一个晶面上,形成一个空位圆片,以致引起晶体内部的崩塌[2, 19],结果将转变为何种形式的晶格缺陷? (2)若晶粒为边长为10-6 m 的立方体,求此时每个晶粒中的位错密度。 15 试分析下述两种表面上看来似乎是相反的效应的成因和条件:(1)位错的存在对材料的延展性有利;(2)位错的存在大大地提高材料的强度和硬度。 16 无机非金属材料往往具有氧原子密堆积结构。在这些氧化物系统中,通常观察到滑移是沿着一个原子密排面的方向进行。试从位错的能量和柏氏矢量模的大小来解释上述现象。 17 对于(6–6)式,若θ>3.49×10–1 rad (20°),该式还能成立吗?为什么? 18 设有晶胞参数为3.61×10–10 m的面心立方晶体,试计算3.49×10–2 rad (2°)的小角度对称倾斜晶界中的位错间距[21]。

水合二氧化钛(偏钛酸)煅烧

水合二氧化钛(偏钛酸)煅烧 煅烧是水合二氧化钛转变成二氧化钛的过程,这一步操作过程的要求是:(a)通过脱水脱硫使物料达到中性;(b)最好使希望的晶型得到100%的转化;(c)粒子成长大小均匀整齐,对颜料级钛白粉要求在0.2~0.3μm之间;(d)粒子的形状最好近似球型;(e)要求煅烧后生成的二氧化钛没有晶格缺陷,物理化学性质稳定。 水合二氧化钛的煅烧是一个强烈的吸热反应,工业上一般在回转窑内进行,采用直接内加热,其化学反应式如下: 但是水合二氧化钛的煅烧绝非是上述反应中的加热脱水和脱硫的过程,它还涉及到TiO2粒子的成长、聚集和晶型转化等过程,因此随着煅烧温度的提高,二氧化钛的各种物性也随之发生变化。 一般水合二氧化钛在150~300℃之间是脱去游离水和结晶水的过程,650℃左右为脱硫过程,700~950℃期间开始锐钛型向金红石型转化,在碱金属催化剂(盐处理剂)的存在下,转化温度可降低,转化速率可加快。 在煅烧过程中二氧化钛的相对密度,随着晶型结构的改变而变化,从600℃的3.92(锐钛型)到1000~1200℃金红石型的4.25,加入促进剂后金红石型的转化温度可降低至 850~900℃。 折射率也随煅烧温度的改变而改变,通过煅烧可以使无定晶型的水合二氧化钛1.8的折射率,转化成锐钛型时的2.55和金红石型的2.71。 在煅烧过程中二氧化钛的粒径也不断发生变化,水合二氧化钛通常是0.6~0.7μm的微晶胶体的聚集体,它们是由3~10mμm的微晶组成,在煅烧时不断增大,至750℃时这些微晶体一般都长大到0.2~0.4μm,同时粒子的表面积减少到1/10~1/20,在转化成一定晶型后这些颜料粒子的大小基本上不发生太大的变化,但是继续升高温度长时间的煅烧,粒子会进一步聚集在一起成为大颗粒。 煅烧的结果使二氧化钛获得必要的颜料性能(消色力、遮盖力等),同时二氧化钛的光化学活性减弱,在酸中的溶解度降低,化学性质趋于稳定。上图是水合二氧化钛和石英对比的差热分析,从图中可以看出由于脱水所产生的吸热过程发生在150℃,脱硫的吸热过程发生

金红石型纳米二氧化钛制备中的若干影响因素

第31卷第4期 2004年北京化工大学学报 JOURNAL OF BEI J IN G UN IV ERSIT Y OF CHEMICAL TECHNOLO GY Vol.31,No.4 2004 金红石型纳米二氧化钛制备中的若干影响因素 侯 强 郭 奋 (北京化工大学教育部超重力工程研究中心,北京 100029) 摘 要:实验以TiCl 4为原料,采用液相沉积法在低温条件下直接制备了金红石型纳米二氧化钛。重点研究了反应物浓度、温度、p H 值、添加剂和煅烧等条件对产物形貌和尺寸的影响。经透射电子显微镜(TEM )、X 2射线衍射 (XRD )和比表面分析(BET ),得到的样品为金红石型,其粒子近似呈球形,通过控制反应条件可以得到不同粒径的 分散均匀的纳米二氧化钛粉体。关键词:液相沉积法;二氧化钛;金红石型中图分类号:TM201 收稿日期:2003212223 第一作者:男,1978年生,硕士生3通讯联系人 E 2mail :guof @https://www.360docs.net/doc/1011648902.html, 金红石型纳米二氧化钛在精细陶瓷,高档涂料,防晒化妆品等许多领域有极广泛的用途[124]。金红石型是最稳定的晶型,结构致密,与锐钛型相比有较高的硬度、密度、介电常数与折光率。但是,传统金红石型二氧化钛的制备需经高温固相反应,经历由无定形→锐钛矿→金红石的转化过程。通常情况下,锐钛型到金红石型TiO 2的相转变温度为400~1000℃,转变温度与反应条件及前驱物结构密切相 关。通常认为钛盐(TiCl 4和Ti (SO 4)2)溶液室温水解产物如不经热处理为不稳定形物。以TiCl 4为前驱体制备TiO 2超微粉的方法有气相水解法、火焰水解法和激光热解法,均系高温反应过程,对设备的耐腐蚀材质要求很高,技术难度较大[527]。通过查阅相关文献[5],发现一定浓度的TiCl 4溶液在低温下可以获得结晶完好的纳米金红石型TiO 2颗粒,避免了实现晶型转化的煅烧过程,具有流程短、能耗少、成本低的优势,使得低成本低温液相一步合成纳米金红石型二氧化钛成为可能。本文重点研究了在 金红石型纳米二氧化钛制备中的若干影响因素:反应物浓度、温度、p H 值、添加剂和煅烧。 1 实验方法 将装有一定量去离子水的四口烧瓶置于冰水浴中,加入一定量六偏磷酸钠作为分散剂,将浓盐酸加 入水中,调节水溶液的p H 值为015~310,缓慢滴加浓度一定的四氯化钛溶液,滴加氨水调节p H 值为一恒定值,加热至70℃水解3h ,陈化12h ,过滤、水洗、醇洗、干燥,即可得到TiO 2样品。 利用日立H 2800型电子显微镜观测粒子的形 貌和尺寸,X 射线衍射仪(X ’Pert Philiphs )来确定纳米二氧化钛的晶型,比表面分析仪测定颗粒的比表面积,从而推算出纳米TiO 2粒径大小。 2 结果和分析 211 水解机理分析 TiCl 4和水之间的反应剧烈且复杂,这与温度和 其它条件有关。其反应产物通常为TiCl 4?5H 2O (水 量充足)或TiCl 4?2H 2O (水量不足或低温),然后该化合物继续发生如下水解反应 TiCl 4+5H 2O TiCl 4?5H 2O (1)TiCl 4?5H 2O TiCl 3(OH )?4H 2O +HCl (2)TiCl 3(OH )?4H 2O TiCl 2(OH )2?3H 2O + HCl (3) TiCl 2(OH )2?3H 2O TiCl (OH )3?2H 2O + HCl (4) TiCl (OH )3?2H 2O Ti (OH )4?H 2O +HCl (5) Ti OH —HO —Ti Ti O —Ti +H 2O (6) 水解产物Ti (OH )4?H 2O 在静置、洗涤或加热过程中会逐渐失去水而变成(H 2TiO 3),以上反应是可逆、分步水解反应过程,同时水解产物Ti (OH )4?

水合二氧化钛煅烧

水合二氧化钛煅烧 煅烧是水合二氧化钛转变成二氧化钛的过程,这一步操作过程的要求是:(a)通过脱水脱硫使物料达到中性;(b)最好使希望的晶型得到100%的转化;(c)粒子成长大小均匀整齐,对颜料级钛白粉要求在0.2~0.3μm之间;(d)粒子的形状最好近似球型;(e)要求煅烧后生成的二氧化钛没有晶格缺陷,物理化学性质稳定。 水合二氧化钛的煅烧是一个强烈的吸热反应,工业上一般在回转窑内进行,采用直接内加热,其化学反应式如下: 粒子的成长、聚集和晶但是水合二氧化钛的煅烧绝非是上述反应中的加热脱水和脱硫的过程,它还涉及到TiO 2 型转化等过程,因此随着煅烧温度的提高,二氧化钛的各种物性也随之发生变化。 一般水合二氧化钛在150~300℃之间是脱去游离水和结晶水的过程,650℃左右为脱硫过程,700~950℃期间开始锐钛型向金红石型转化,在碱金属催化剂(盐处理剂)的存在下,转化温度可降低,转化速率可加快。 在煅烧过程中二氧化钛的相对密度,随着晶型结构的改变而变化,从600℃的3.92(锐钛型)到1000~1200℃金红石型的4.25,加入促进剂后金红石型的转化温度可降低至850~900℃。 折射率也随煅烧温度的改变而改变,通过煅烧可以使无定晶型的水合二氧化钛1.8的折射率,转化成锐钛型时的2.55和金红石型的2.71。 在煅烧过程中二氧化钛的粒径也不断发生变化,水合二氧化钛通常是0.6~0.7μm的微晶胶体的聚集体,它们是由3~10mμm的微晶组成,在煅烧时不断增大,至750℃时这些微晶体一般都长大到0.2~0.4μm,同时粒子的表面积减少到1/10~1/20,在转化成一定晶型后这些颜料粒子的大小基本上不发生太大的变化,但是继续升高温度长时间的煅烧,粒子会进一步聚集在一起成为大颗粒。

药物多晶型研究现状及研究进展

药物多晶型研究现状及研究进展 摘要:综述近年来国内外药物多晶型的研究进展,介绍药物的多晶型现象及多 晶型的主要检测手段和多晶型对药物理化性质、药效的影响,以及在药物制备过 程中影响晶型转变的因素等。 关键词:多晶型,研究方法 固体物质按其内部原子、离子或分子的排列方式可分为晶型(包括假晶型) 和无定形。晶型形成的基础是物质微粒之间的相互作用,药物微粒间的作用方式 可以是金属键、共价键、范德华力等,以此晶体可分为金属晶体、共价键晶体、 分子晶体等。有机药物晶体大多是分子晶体,在晶格空间的排列不同而形成存在 同质异晶即多晶型现象。 不同晶型的同一药物在溶解度、熔点、密度、稳定性等方面有显著的差异, 从而不同程度地影响药物的稳定性、均一性、生物利用度、疗效和安全性。因此 在药物标准中对药物的晶型都作出规定。对于一种新药物的晶体学研究是在药物 设计初期研究的一项重要内容,确定或选择一个适宜的晶型,对新药物生物活性 有重要意义。 二、多晶型对药物理化性质的影响 2.1多晶型对药物稳定性的影响 在一定温度和压力下,多晶型中只有一种是稳定型,溶解度最小,化学稳定 性最好称之为稳定型晶体,而其他晶体则为亚稳定型晶体,稳定型结晶较亚稳定 型结晶有更高的熔点和稳定性,较小的溶解度。当不同晶型间熔点差异较大的时候,亚稳定型可较快地向稳定型转变。而通常情况下亚稳定型转变成稳定型的过 程都是比较缓慢的。多晶型药物除了不稳定型和亚稳定型晶体晶型的自身的晶型 的稳定性外,多晶现象对药物稳定性还表现在对氧化、分解、转化等化学性质的 影响和对药物的吸湿性的影响。因此在在药品的生产和储存过程中,应该严格控 制有关的工艺和储存条件中,以避免产生不良的多晶型药物,使药品降低药效甚 至失效。 2.2多晶型对药物溶出速度及生物利用度的的影响 药物的生物利用度是研究、生产药物的根本目的。生物利用度是指活性成分(药物或代谢物)进入体循环的分量和速度,固体药物由于多晶型自由能之间差 异以及分子间作用力不同,导致样品的溶解度有差异,可造成药物生物利用度不同,从而影响药物在体内的吸收,产生药效差异。从文献中可知,稳定型晶体熔 点高,化学稳定好,溶出速度慢,溶解度小所以生物利用度也较低。而不稳定型 由于其溶出速度快,溶解度大生物利用度最高。亚稳定性则介于两者之间。药物 多晶型对生物利用度的影响普遍存在,但不是所有多晶型对生物利用度有显著差异。 2.3药物多晶型的转变影响因素 药物的晶型往往影响药物的疗效,许多因素会影响到晶型转变,所以在药物 的生产制备过程中,我们要了解并掌握这些因素,做出有利于生产的合理设计处 方和工艺方案,来获取我们希望的晶型,减少了药品的副作用、提高药品的安全性、增加了药品的稳定性。 (1)溶剂的影响:采用不同溶剂或者不同比例的溶剂对药物重结晶能产生不同的多晶型或不同晶型比例的混晶。目前这已经成为药物多晶型制备的常用方法。 (2)研磨的影响:研磨是药物制剂制备过程中极为重要的一步,晶体药物由

对晶型转变的综述

对晶型转变的综述 化学组成相同的固体,在不同的热力学条件下,常会形成晶体结构不同的同质异构体(polymorph)[1, 2]或称为变体(modification),这种现象叫同质多晶或同质多相(polymorphism)[2]现象。当温度和压力条件变化时,变体之间会发生相互转变,此称为晶型转变。显然,晶型转变是相变的一种,也是最常见的一种固–固相变形式。由于晶型转变,晶体材料的力学、电学、磁学等性能会发生巨大的变化。例如,碳由石墨结构转变为金刚石结构后硬度超强,BaTiO3由立方结构转变为四方结构后具有铁电性。可见,通过相变改变结构可达到控制固体材料性质的目的。 晶型转变有可逆转变与不可逆转变之分。图1表示具有可逆晶型转变的不同 图1 具有可逆晶型转变的某物质内能U 与自由能G 的关系[2], 其中U L >U Ⅱ>U Ⅰ, S L >S Ⅱ>S Ⅰ 变体晶型Ⅰ和晶型Ⅱ以及其液相L 之间的热力学关系。对上述物质进行加热或冷却时,发生了如下的晶型转变: 晶型Ⅰ 晶型Ⅱ 液相。 当晶型Ⅰ过热(超过Ttr )而介稳存在时,其自由能G Ⅰ的变化以虚线表示,同时,当液相过冷(低于Tm Ⅱ)处于介稳态时,其自由能GL 曲线也以虚线表示;与GL 和G Ⅰ有关的两虚线交于Tm Ⅰ,Tm Ⅰ相当于晶型Ⅰ的熔点。图1的特点是晶型转变温度Ttr 低于两种变体的熔点(Tm Ⅰ和Tm Ⅱ)。 也有一些晶体的变体之间不可能发生可逆晶型转变。图2表示具有不可逆晶

型转变的不同变体晶型Ⅰ、晶型Ⅱ及它们的液相L之间的热力学关系。TmⅠ为晶型Ⅰ的熔点,TmⅡ相当于晶型Ⅱ的熔点。虽然在温度轴上标出了晶型转变温度Ttr,但事实上是得不到的,因为晶体不可能在超过其熔点的温度下发生晶型转变。此图的特点是,晶型转变温度Ttr高于两种变体的熔点(TmⅠ和TmⅡ)。 从图2可看出,三种晶型相互转变的过程可由下式表示. 晶型Ⅰ熔体 晶型Ⅱ 先经过中间的另一个介稳相(如晶型Ⅱ),才能最终转变成该温度下的稳定态(晶型Ⅰ)的规律,称为阶段转变定律。 可能的非平衡途径几乎总是有多种,而平衡的可能却只有1种。 从动力学过程和相结构改变的特点来看,晶型转变还可分为位移式(displacive)转变和重构式(也称重建式,reconstructive)转变两种类型。 在同系列的高低温变体中,不需要断开和重建化学键,仅发生键角的扭曲和晶格的畸变,属于位移式转变(快速转变),这种相变整体结构没有发生根本性变化。由于不需要断开和重建化学键,所以这种相变活化能较低,转变速度较快。 通过化学键的断开而重建新的结构是重构式转变(慢速转变),这种转变通常活化能较高,转变速度较慢。主要有以下三种可能的机理: (1)纯固相的晶型转变:在转变温度前后,由于热起伏,晶体的某些局部可能会有新相的核胚生成,如果生成的核胚的直径超过某一临界值,核胚将继续长大,否则将重新融入原有的晶型中,这就是所谓的“成核和生长”机理。此种相变和过冷液体结晶时的均匀成核情况相似。 (2)通过气相的晶型转变:若在相转变温度附近,新旧相间有较大的蒸汽压差,当局部出现过冷度时,高温稳定相由于其蒸汽压较高,难以凝成固相而保留较多气相;而低温稳定相的蒸汽压较低,易于冷凝,故通过“蒸发-冷凝”机理,低温稳定相不断生成和长大。当局部出现过热度时,有利于高温稳定相的生成和长大。 (3)通过液相的晶型转变:若在相变温度附近,新旧相的溶解度不同,可以通过“溶解-沉淀”过程,自液相中长出新相。

二氧化钛

二氧化钛 材料1102班,0607110203,马瑶 1.任选一陶瓷材料,给出: (1) (2)化学分子式:TiO2 化学键:Ti=O双键 晶体结构:TiO2在自然界中存在三种同素异形态,即金红石型、锐钛型和板钛型三种,它们的性质是有差异的。其中,金红石 型TiO2是三种变体中最稳定的一种,即使在高温下也不发生转 化和分解。金红石型TiO2的晶型属于四方晶系,品格的中心有 一个钛原子,其周围有6个氧原子,这些氧原子正位于八面体 的棱角处,两个TiO2分子组成一个晶胞。其品格常数为a= 0.4584nm,c=0.2953nm。锐钛型TiO2的晶型也属于四方晶 系,由四个TiO2分子组成一个晶胞,其晶格常数a=0.3776nm,c=0。9486nm。锐敏型TiO2仅在低温下稳定,在温度达到6l0℃ 时便开始缓慢转化为金红石型,730℃时这种转化已有较高速 度,915℃可完全转化为金红石型。板钛型TiO2的晶型属于斜 方晶系,六个TiO2分子组成一个晶胞,其晶格常数a=0.545nm,

b=0.918nm,c=0.515nm。板钛型TiO2是不稳定的化合物,在加温高于650℃时则转化为金红石型。 (3)阳离子与阴离子电子轨道 钛离子:1s22s22p63s23p6 氧离子:1s22s22p6 (4)阴阳离子间的杂化轨道 无杂化 2.在此基础上,阐述该陶瓷材料的 (1)力学性能:采用微弧氧化技术在钛表面得到一层纳米多孔二氧化钛陶瓷层,晶粒尺寸约为20~60nm。微弧氧化膜与基体结合强度高于30MPa,弹性模量为720GPa左右,而且具有较好的抗剪切能力,有利于种植在体内具有较稳定的力学性能。 (2)电学性能:二氧化钛具有半导体的性能,它的电导率随温度的上升而迅速增加,而且对缺氧也非常敏感。例如,金红石型二氧化钛在20℃时还是电绝缘体,但加热到420℃时,它的电导率增加了107倍。稍微减少氧含量,对它的电导率会有特殊的影响,按化学组成的二氧化钛(TiO?)电导率<10-10s/cm,而TiO1.9995的电导率则高达 10-1s/cm。金红石型二氧化钛的介电常数和半导体性质对电子工业非常重要,该工业领域利用上述特性,生产陶瓷电容器等电子元器件。(3)磁学性能:有一种思路是赋予纳米Ti02磁性,在反应完成后借助外加磁场的作用加以分离回收。即制备一种核壳型复合粒子,这种粒子包括一个赋予体系磁性的磁核和一个具有催化活性的Ti02外壳。

控制晶型

第二章晶型转变及其控制方法 系统中存在的相,可以是稳定、介稳或不稳定的。其吉布斯自由能如图2–1所示。当系统的温度、压力或对系统的平衡发生影响的电场、磁场等条件发生改变时,这种介稳或不稳定状态下的自由能会发生改变,相的结构(原子或电子分布)也相应地发生变化。此外,在一定的条件下,一种稳定相也可以转变成另一种稳定相,此即下文所说的可逆晶型转变。对某一特定系统而言,相的自由能改变所伴随的结构改变过程,叫做相转变或相变。 图2–1 稳定态、介稳态和不稳定态 化学组成相同的固体,在不同的热力学条件下,常会形成晶体结构不同的同质异构体(polymorph)[1, 2]或称为变体(modification),这种现象叫同质多晶或同质多相(polymorphism)[2]现象。当温度和压力条件变化时,变体之间会发生相互转变,此称为晶型转变。显然,晶型转变是相变的一种,也是最常见的一种固–固相变形式。由于晶型转变,晶体材料的力学、电学、磁学等性能会发生巨大的变化。例如,碳由石墨结构转变为金刚石结构后硬度超强,BaTiO3由立方结构转变为四方结构后具有铁电性。可见,通过相变改变结构可达到控制固体材料性质的目的。 相律的表达式是自由度f= C–Φ+ 2,C为独立组元(组分)数,Φ为相数,数字2代表温度和压力2个变量。对于凝聚系统来说,压力的影响可以忽略不计,于是温度成了惟一的外界条件。在这种情况下,相律可写成f * = C–Φ+ 1,f * 被称为条件自由度。对于单元(单组分)系统来说,C = 1,f * = 2–Φ。由于所讨论的系统至少有1个相,所以单元凝聚系统条件自由度数最多等于1,系统的状态仅仅由温度1个独立变量所决定。于是,在许多情况下,单元系统相变往往用流程图来表示,例如本章§2.3节对BaTiO3晶型转变所采用的表示法。在另一些场合下,考虑压力变量的影响对讨论问题是有利的。由于凝聚系统的平衡蒸气压实际上仍比大气压低得多,所以在讨论单元凝聚系统相图时,往往把压力坐标(纵标)加以夸大,画出来的相图中的曲线仅仅表示温度变化时系统中压力变化的大致趋势,这种情况如在本章§2.4~§2.6中所描述的SiO2、ZrO2和Ca2SiO4(C2S)单元系统带有晶型转变的相图。 本章在大部分场合下假定读者已具备了足够的物理化学和结晶化学的知识。 §2.1 可逆与不可逆晶型转变 对于一个单元系统,各种变体的吉布斯自由能G均服从下列关系式: G=U + pV–TS,(2–1) 式中U为该变体的内能;p是平衡蒸气压,对于凝聚体系,p-般很小;V是体积,晶型转变时,体积变化一般不大;p V项常可忽略不计[2];T是绝对温度;S是一定晶型的熵。绝对零度时,吉布斯自由能G基本由内能项决定[2]。 晶型转变有可逆转变与不可逆转变之分。图2 -2表示具有可 图2 -2 具有可逆晶型转变的某物质内能U与自由能G的关系[2], 其中U L>UⅡ>UⅠ,S L>SⅡ>SⅠ 逆晶型转变的不同变体晶型Ⅰ和晶型Ⅱ以及其液相L之间的热力学关系。对上述物质进行加热或冷却时,发生了如下的晶型转变: 晶型Ⅰ垐? 噲?晶型Ⅱ垐? 噲? 液相。(2–2)

锐钛矿TiO2转变为金红石TiO2机制和性能

锐钛矿TiO2转变为金红石TiO2机制和性能 摘要:TiO2 是多相光催化研究中使用较多的一种材料。其在自然界存有3种不同的晶型:锐钛矿、金红石、板钛矿相。锐钛矿相转变为金红石相的过程是扩散相变。金红石是热力学稳定相, 锐钛矿是亚稳相, 并且从锐钛矿相到金红石相的相变是亚稳相到稳定相的不可逆相变。而煅烧时间与煅烧温度会影响其晶型的转变。在众多影响光催化性能的因素中,晶型是较为重要的一个因素。 关键字:锐钛矿、金红石、TiO2、相变、光催化 光催化降解是一门新型的并正在迅速发展的科学技术。研究表明,在适当的条件下,许多有机物污染物经光催化降解,可生成无毒无味的CO2、H2O及一些简单的无机物。目前,在光催化降解领域所采用的光催化剂多为N型半导体材料, 如TiO2、ZnO、Fe2O3、SnO2、WO3和CdS 等, 其中TiO2以其无毒、价廉、稳定和特殊的光、电性能等优点倍受人们青睐,成为最受重视的一种光催化剂[1]。 1.二氧化钛的结构 近年来, TiO2纳米材料制备、表征及改性一直是光催化研究领域的重点。同一种半导体可能具有不同的晶型,晶型的不同实际上就是组成物质的原子不同的空间构型有序的排布。二氧化钛是白色粉末状多晶型化合物, 自然界有锐钛矿型, 金红石型和板钛型三种晶 型结构, 但板钛型二氧化钛极不稳定且无实用价值[2]。所以目前的研究一般都主要为金红石相及锐钛矿相。TiO2晶体基本结构是钛氧八面体( TiO6)。钛氧八面体连接形式不同而构成锐钛矿相、金红石相和板钛矿相。锐钛矿型和金红石型均属于四方晶系,二者均可用相互连接的Ti06八面体表示,但八面体的畸变程度和连接方式各不不同。板钛矿型属正交晶系,一般难以制备,目前研究很少。如图1所示,金红石型(a)的八面体不规则,微显斜方晶;锐钛矿(b)呈明显的斜方晶畸变,对称性低于前者。从图2[3]中可以看出锐钛矿TiO2的Ti-Ti键长比金红石大,而Ti-O键比金红石小。 TiO2晶体基本结构——钛氧八面体有两种连接方式。如图3所示,分别为共边连接与共顶角连接。从图4[4]中可以看到锐钛矿中每个八面体与周围8个八面体相联(四个共边,四个共顶角)。金红石中的每个八面体与周围10个八面体相联(其中两个共边,八个共顶角)。 图1 金红石、锐钛矿和板钛矿的TiO6八面体结构

CL-20重结晶过程中的晶型转变研究

CL-20重结晶过程中的晶型转变研究 高能量密度化合物六硝基六氮杂异伍兹烷(CL-20)是现有综合性能最好的单质炸药之一,在推进剂、配方炸药、发射药领域有广阔的应用前景。多晶型现象是炸药研究的重要方面,不同晶型晶体的存在会影响炸药的密度、感度、稳定性、爆轰性能等,需制备纯晶型晶体以满足使用要求。CL-20属于多晶型炸药,常温常压下存在α-、β-、γ-及ε-四种晶型,其中ε-晶型的密度最大、稳定性最高、爆轰性能最好,最有使用价值。结晶时CL-20易发生晶型转变,形成混合晶型晶体,影响炸药性能。 如何控制晶型转变行为,制备高晶型纯度、高品质ε-晶体是CL-20结晶技术中最关心的问题。因此,通过研究不同结晶条件对CL-20晶型转变的影响,优化结晶技术,为高晶型纯度ε-CL-20的制备以及CL-20结晶机理的探索提供指导。采用溶剂-非溶剂法重结晶CL-20,考察了非溶剂性质、溶剂滴加方式、溶剂/非溶 剂比例、溶剂化物、结晶温度等因素对CL-20晶型转变的影响,采用PXRD及FTIR 确定了CL-20的晶型,获得了CL-20的晶型转变行为,初步掌握了CL-20的晶型转变规律及控制技术,并尝试解释了晶型转变机理。主要结果如下:(1)非溶剂的偶极矩(或极性)对CL-20的结晶特性有重要影响,极性大的非溶剂倾向于先析出亚稳的β-晶体而后逐渐转变为稳定的ε-晶体,极性弱的非溶剂趋于直接得到ε- 晶体。 (2)溶剂滴加速率越快,CL-20溶液过饱和度增大越快,越有利于β-晶体析出。采用反倾方式结晶时,溶液过饱和度快速达到最大,均是首先析出β-晶体, 此时非溶剂性质的影响变小。(3)非溶剂所占比例越大,CL-20在溶液中的溶解度越小,亚稳晶型晶体转变为稳定晶型晶体所需的时间越多。(4)发现了四种新的溶剂化物晶体:CL-20·丙酮、CL-20·乙腈、CL-20·碳酸二甲酯、CL-20·硫酸二乙酯。 CL-20·丙酮晶体的稳定性差,放置在空气中即失去丙酮分子形成p-晶体,而放置在室温的母液中则能稳定存在,当将母液加热到40℃后开始转变为ε-晶体;CL-20·乙腈晶体在不同的母液中稳定性不同,干燥除去乙腈分子后形成α-晶体。 (5)α-晶体的稳定性与结合水含量有关,结合水越多,α-晶体越稳定。溶液中不含水时,不会有α-晶体析出;丙酮/苯体系中结晶时的晶型转变行为:β-→(α

二氧化锰晶型转变研究

二氧化锰晶型转变研究 郭学益,刘海涵,李栋,田庆华,徐刚 中南大学冶金科学与工程学院,湖南长沙 (410083) E-mail:haihanshiye@https://www.360docs.net/doc/1011648902.html, 摘要:采用热处理方式对γ-MnO2晶型转变进行了研究,考察了温度和时间对γ-MnO2晶型转变的影响。由XRD射线衍射图谱发现,MnO2开始由γ晶型向β晶型的转变温度为300℃,350℃下热处理20小时能够完全转变成β-MnO2;在450℃下热处理5-20小时可完全转化为β-MnO2;在560℃下热处理2小时出现Mn2O3,热处理20小时后,Mn2O3含量将达到75.63%。因此,MnO2晶型转变的主要影响条件是温度。 关键词:γ-MnO2;β-MnO2;晶型转变;热处理 中图分类号:TQ026.8 文献标识码:A 0. 前言 二氧化锰有着较为复杂的晶型结构,如α、β、γ等五种主晶及30余种次晶[1],而其作为电池的正极材料及电容器阴极材料又需要不同的晶型结构,因此需要深入理解二氧化锰晶型转变机制。 通常MnO2的活性随其所含结晶水的增加而增强,结晶水能促进质子在固体相中的扩散,因此γ-MnO2是各种晶型MnO2中活性最佳的。但在非水溶液中,MnO2所含的结晶水反而会使它的活性下降。如在Li-MnO2电池正极材料中,以α-Mn02性能最差,含少量水分的γ-MnO2较差,无结晶水的β-MnO2较好,γβ-MnO2(混合)最好。所以γ-MnO2在作为阴极材料之前,必须对其进行热处理,并且要除去水分,使晶型结构从γ-MnO2转变为γβ-MnO2相(混合,以β相含量为65%~80%为最优) [2-8]。再者,在固体钽电解电容器的阴极材料也是二氧化锰。由于它的电化学性能很大程度上决定于阴极,因此对二氧化锰要求很高,二氧化锰必须全部为β晶型,同时对其含量、粒度、比表面积、导电率等都有较高的要求[9-11]。 β-MnO2在电池及电容器上有着越来越广泛的应用,国内也开始对γ-MnO2和β-MnO2之间的晶型转变进行研究,但是都集中在将γ-MnO2转化成γβ-MnO2[12-14],而对于国内用量很大的固体钽电容器阴极用β-MnO2粉末的研究几乎没有。本文主要研究γ-MnO2与β-MnO2之间的晶型转变机制。 1. 样品制备与检测设备 1.1 γ-MnO2热处理样品的制备 将γ-MnO2(湘潭电化集团产品电解二氧化锰)置于真空干燥箱中于70℃,0.05MPa真空度下干燥2小时。取一小勺干燥的电解二氧化锰粉末,放入小瓷舟(30×60)内,铺满小瓷舟1~2mm,在SK—Ⅱ管式电阻炉内加热,采用WZK可控硅温度控制器控制温度,在空气℃的速度升温,升到指定温度后,调整加热电压,进行保温。热处理过程气氛下,以10/min 完成后,在室温下冷却,装样检测分析。 1.2分析表征 -1-

第二章晶型转变及其控制方法

第六章位错和面缺陷 习题 1试分析一般陶瓷材料脆性较高的原因 2图6 - 21是张晶体点阵结构的二维图形,内含一根正刃位错和一根负刃位错。试回答:(1)若围 绕着这两根位错作柏氏回路,最后所得的柏氏矢量如何?(2)若围绕着每根位错作柏氏回路,其结果又分别是怎样? 图6 - 20同一晶体中不同平面上符号相反的两根刃位错的二维模型 3试分析NaCI晶体在什么方向上最容易发生滑移? 4请判断在下述情况下位错的类型:(1)柏氏矢量平行于剪切方向并垂直于位错;(2)柏氏矢量垂直于剪切方向并平行于位错[3]。 5试证明柏氏矢量守恒定律:指向某节点位错的柏氏矢量之和等于离开该点位错的柏氏矢量之和 6请简述螺位错可能的运动方式及其特点。 7试从位错与晶体的几何关系、位错的形成原因、引起位错的外加剪切应力分力与柏氏矢量方向的关系、柏氏矢量与位错和滑移面的关系、滑移面与密排面方向的关系等方面,分析刃位错与螺位错的异同点。 8设晶体中有一根单位长度的位错,两端被钉扎住,在外加应力作用下,从直线段变为半径为 的圆弧段。试求此过程中外力所做功的大小[19]

10试分析下述两种位错定义的不足之处: ( 1) 滑移面上已滑移和未滑移部分的分界线; ( 2) 位错是柏氏矢量不为零的线缺陷。 11试分析在拉制单晶的过程中,在工艺上至少要控制哪两个参数,以尽可能地消除晶体中的位错 ? 12试回答: ( 1)对结晶固体而言,哪种几何形状的缺陷最常见?为什么 ?( 2)非化学计量缺陷可能以哪 种几何形状的缺陷出现 ?为什么 ? 13试解释纳米晶粒结构陶瓷高温蠕变性能较差的原因。 14设某物质在其熔点时结晶,形成边长为10-6 m 的立方体晶粒。试回答下述两个问题: ( 1)若晶体 在高温时所形成的空位,降温到室温时,聚集在一个晶面上,形成一个空位圆片,以致引起晶体内部的崩塌[2, 19], 结果将转变为何种形式的晶格缺陷? ( 2) 若晶粒为边长为 10-6 m 的立方体,求此时每个晶粒中的 位错密度。 15试分析下述两种表面上看来似乎是相反的效应的成因和条件: (1) 位错的存在对材料的延展性有利;(2) 位错的存在大大地提高材料的强度和硬度。 16无机非金属材料往往具有氧原子密堆积结构。在这些氧化物系统中,通常观察到滑移是沿着一个原子密排面的方向进行。试从位错的能量和柏氏矢量模的大小来解释上述现象。 17对于(6- 6)式,若9 > 3.49 X 10-1 rad (20°),该式还能成立吗?为什么? 18设有晶胞参数为3.61 X 10-10 m的面心立方晶体,试计算 3.49X 10-2 rad (2° )的小角度对称倾斜晶界中的位错间距[21]。

相关文档
最新文档