龙格库塔方法的Miline-Hamming预测-校正算法实验报告知识讲解

龙格库塔方法的Miline-Hamming预测-校正算法实验报告知识讲解
龙格库塔方法的Miline-Hamming预测-校正算法实验报告知识讲解

龙格库塔方法的

M i l i n e-H a m m i n g预测-校正算法实验报告

2011-2012学年第2学期实验报告

实验名称:微分方程数值解实验学院:******

专业:**************

班级:**********

班内序号:**

学号:********

姓名:******

任课教师:******

北京邮电大学

时间:****年**月**日

实验目标

用多环节Miline-Hamming 预测-校正算法求下列方程的解

{y‘=y ?2x

y ,y (0)=1, 0≤x ≤4 其中解析解为 y (x )=√1+2x

实验原理

计算龙格库塔显示公式计算预测值,然后用隐式公式进行校正。Miline-Hamming 预测-校正公式为

{

p n+1=u n?3+4

3

h(2f n ?f n?1+f n?2)

m n+1=p n+1+112

121(c n

?p n )

c n+1=18

(9u n ?u n?2)+38h[f (t n+1,m n+1)+2f n ?f n?1]

u n+1=c n+1?9(c n+1

?p n+1)

其对应的算法流程为

1) 输入a ,b ,f(t,u),N ,u 0 2) 置h=(b-a)/N ,t 0=a ,n=1 3) 计算f n-1=f(t n-1,u n-1)

K 1=hf n-1

K 2=hf(t n-1+h/2, u n-1+K 1/2) K 3=hf(t n-1+h/2, u n-1+K 2/2) K 4=hf(t n-1+h, u n-1+K 3)

u n = u n-1+1/6(K 1 +2K 2 +2K 3 +K 4) t n =a+nh

4) 输出(t n ,u n )

5) 若n<3,置n+1→n ,返回3;

否则,置n+1→n ,0→p 0,0→c 0,转6.

6) 计算

f 3=f(t 3,u 3) t= t 3+h

p=u 0+4/3(2 f 3 –f 2 +2f 1) m=p+112/121(c 0-p 0)

c=1/8(9u 3- u 1)+3/8h[f(t,m)+ 2 f 3 –f 2] u=c-9/121(c-p)

输出(t,u)

7)如n

否则停止。

实验过程

我们不妨设步长h=0.2,编程实现如下:

clear

clf

clc

%直接求解微分方程

y=dsolve('Dy=y-2*t/y','y(0)=1','t');

%Miline-Hamming预测-校正法

h=0.2;

t=0:h:4;

n=length(t);

u=zeros(1,n);

u(1)=1;

zbu(1,1)=t(1);

zbu(2,1)=u(1);

f=zeros(1,n);

p=zeros(1,n);

c=zeros(1,n);

m=zeros(1,n);

for i=2:n

if i-1<=3

f(i-1)=u(i-1)-2*t(i-1)/u(i-1);

k1=h*f(i-1);

k2=h*((u(i-1)+k1/2)-2*(t(i-1)+h/2)/(u(i-1)+k1/2)); k3=h*((u(i-1)+k2/2)-2*(t(i-1)+h/2)/(u(i-1)+k2/2)); k4=h*((u(i-1)+k3)-2*(t(i-1)+h)/(u(i-1)+k3));

u(i)=u(i-1)+1/6*(k1+2*k2+2*k3+k4);

zbu(1,i)=t(i);

zbu(2,i)=u(i);

else

f(i-1)=u(i-1)-2*t(i-1)/u(i-1);

p(i)=u(i-4)+4/3*h*(2*f(i-1)-f(i-2)+2*f(i-3));

m(i)=p(i)+112/121*(c(i-1)-p(i-1));

c(i)=1/8*(9*u(i-1)-u(i-3))+3/8*h*(m(i)-2*t(i)/m(i)+2*f(i-1)-f(i-2));

u(i)=c(i)-9/121*(c(i)-p(i));

zbu(1,i)=t(i);

zbu(2,i)=u(i);

end

end

zbu

%作图

plot(t,u,'r*','markersize',10)

hold on,

ezplot(y,[0,4])

hold on,

title('Miline-Hamming?¤2a-D£?y??·¨')

grid on

legend('Miline-Hamming?¤2a-D£?y??·¨','?a???a')

%解真值

h=0.2;

t=0:h:4;

n=length(t);

for i=1:n

y(i)=(1+2*t(i))^(1/2);

zby(1,i)=t(i);

zby(2,i)=y(i);

end

zby

我们可以得到计算后的结果图像如图1所示

图1 Miline-Hamming预测-校正法与解析解比较(h=0.2)同时我们可以得到Miline-Hamming预测-校正法和解析解在各点处的数值分别如下表1所示:

表1 Miline-Hamming预测-校正法与解析解在各点数值比较(h=0.1)

为了评判Miline-Hamming预测-校正法的算法精度,在这里我们利用相对误差的概念进行评判。对于Miline-Hamming预测-校正法的每个的估计值有:

相对误差=|估计值-真值|

真值

从而我们可以通过计算得到如下的相对误差表:

t坐00.20000.40000.60000.8000 1.0000 1.2000 1.4000 1.6000

t坐 1.8000 2.0000 2.2000 2.4000 2.6000 2.8000 3.0000 3.2000 3.4000

很明显,当我们对各点处的相对误差取平均后,该平均值小于0.01。因

此,我们可以认为Miline-Hamming预测-校正法的在h=0.2时的算法精度相对较高,所得到的结果与真值较为接近。

接下来我们在对h=0.5和h=0.1的情况进行计算,可以得到结果如下表3和表4所示

00.5000 1.0000 1.5000 2.0000 2.5000 3.0000 3.5000 4.0000 t坐

H=.5 1.0000 1.4155 1.7355 2.0084 2.2517 2.4886 2.7454 3.0750 3.5964 真 1.0000 1.4142 1.7321 2.0000 2.2361 2.4495 2.6458 2.8284 3.0000

t坐00.10000.20000.30000.40000.50000.60000.70000.8000

表4 Miline-Hamming预测-校正法在各点值及相对误差比较(h=0.1)

其中表3中相对误差的平均值为0.0393。而表4中的误差值小于是10的-3次方,在此不列出。

可以的到结果图像如下图2和图3所示:

图1 Miline-Hamming预测-校正法与解析解比较(h=0.5)

图1 Miline-Hamming预测-校正法与解析解比较(h=0.1)

实验结果

通过以上计算,我们可以得到如下的结论:

1.Miline-Hamming预测-校正法的计算精度相对较高,,当步长h=0.2时平均相对误差已小于0.01,因此可以认为这种方法可以得到和解析解较为接近的数值解。

2.伴随着步长的增加,我们可以发现相对误差的平均值随之减小。因此我们认为当步长h越小时计算精度越高。因此在计算能力允许的范围内,选取步长越小可以得到更加精确的结果。

3.在利用Miline-Hamming预测-校正法的过程中,前4次迭代的结果会对第五轮求得的数值产生影响。因此,一旦前四轮轮迭代所得的结果有偏差,下一轮结果的偏差将大于之前的偏差。因此会导致伴随迭代次数的增加而产生更大的偏差。

龙格库塔方法matlab实现

龙格库塔方法matlab实现~ function ff=rk(yy,x0,y0,h,a,b)%yy为y的导函数,x0,y0,为初值,h为步长,a,b为区间 c=(b-a)/h+1;i1=1; %c为迭代步数;i1为迭代步数累加值 y=y0;z=zeros(c,6); %z生成c行,5列的零矩阵存放结果; %每行存放c次迭代结果,每列分别存放k1~k4及y的结果 for x=a:h:b if i1<=c k1=feval(yy,x,y); k2=feval(yy,x+h/2,y+(h*k1)/2); k3=feval(yy,x+h/2,y+(h*k2)/2); k4=feval(yy,x+h,y+h*k3); y=y+(h/6)*(k1+2*k2+2*k3+k4); z(i1,1)=x;z(i1,2)=k1;z(i1,3)=k2;z(i1,4)=k3;z(i1,5)=k4;z(i1,6)=y; i1=i1+1; end end fprintf(‘结果矩阵,第一列为x(n),第二列~第五列为k1~k4,第六列为y(n+1)的结果') z %在命令框输入下列语句 %yy=inline('x+y'); %>> rk(yy,0,1,0.2,0,1) %将得到结果 %结果矩阵,第一列为x(n),第二列~第五列为k1~k4第六列为y(n+1)的结果 %z = % 0 1.0000 1.2000 1.2200 1.4440 1.2428 % 0.2000 1.4428 1.6871 1.7115 1.9851 1.5836 % 0.4000 1.9836 2.2820 2.3118 2.6460 2.0442 % 0.6000 2.6442 3.0086 3.0451 3.4532 2.6510 % 0.8000 3.4510 3.8961 3.9407 4.4392 3.4365 % 1.0000 4.4365 4.9802 5.0345 5.6434 4.4401

数值分析实验报告(0002)

数值分析实验报告

数值分析实验报告 姓名:张献鹏 学号:173511038 专业:冶金工程 班级:重冶二班

目录 1拉格朗日插值 (1) 1.1问题背景 (1) 1.2数学模型 (1) 1.3计算方法 (1) 1.4数值分析 (2) 2复化辛普森求积公式 (2) 2.1问题背景 (2) 2.2数学模型 (3) 2.3计算方法 (3) 2.4数值分析 (5) 3矩阵的LU分解 (6) 3.1问题背景 (6) 3.2数学模型 (6) 3.2.1理论基础 (6) 3.2.2实例 (7) 3.3计算方法 (7) 3.4小组元的误差 (8) 4二分法求方程的根 (9) 4.1问题背景 (9) 4.2数学模型 (9) 4.3计算方法 (9) 4.4二分法的收敛性 (11) 5雅可比迭代求解方程组 (11) 5.1问题背景 (11) 5.2数学模型 (11) 5.2.1理论基础 (11) 5.2.2实例 (12)

5.3计算方法 (12) 5.4收敛性分析 (13) 6Romberg求积法 (14) 6.1问题背景 (14) 6.2数学模型: (14) 6.2.1理论基础 (14) 6.2.2实例 (14) 6.3计算方法 (15) 6.4误差分析 (16) 7幂法 (16) 7.1问题背景 (16) 7.2数学模型 (16) 7.2.1理论基础 (16) 7.2.2实例 (17) 7.3计算方法 (17) 7.4误差分析 (18) 8改进欧拉法 (18) 8.1问题背景 (18) 8.2数学模型 (19) 8.2.1理论基础 (19) 8.2.2实例 (19) 8.3数学模型 (19) 8.4误差分析 (21)

龙格库塔积分算法

龙格库塔法 龙格库塔法是常用于模拟常微分方程的解的重要的一类隐式或显式迭代法。这些技术由数学家C. Runge和M.W. Kutta于1900年左右发明。由于此算法精度高,采取措施对误差进行抑制,所以其实现原理也较复杂。 龙格库塔法是一种在工程上应用广泛的高精度单步算法,可以应用在物理、工程、控制、动力学中,如模糊控制、弹道分析以及分析光纤特性等,在系统仿真中得到广泛应用。 龙格库塔法源自于相应的泰勒级数方法,在每一插值节点用泰勒级数展开,其截断误差阶数也是,根据可省略更高阶的导数计算, 这种方法可构造任意阶数的龙格库塔法。其中4 阶龙格库塔法是最常用的一种方法。因为它相当精确、稳定、容易编程。在计算中一般不必使用高阶方法, 因为附加的计算误差可由增加精度来弥补。如果需要较高的精度, 可采取减小步长的方法即可。4 阶龙格库塔法的精度类似4 阶泰勒级数法的精度。 1、初值问题 对于一阶常微分方程的初值问题 根据常微分方程的理论可知,此初值问题的解在区间[a,b]上存在,且唯一。 2、离散化

取步长h=(b-a)/n,将区间[a , b]分成n个子区间: a=<=b 在其中任意两点的曲线段上,根据积分中值定理,一段光滑曲 线上至少有一点,它的斜率与整段曲线的平均斜率相同, 得=y’() (0<<1) 其中,= 可以将上式改写成y()=y()+h*K (2.1) 其中K为平均斜率,K=f() 公式(2.1)表明,如果能够确定平均斜率K,就可以根据(2.1)式得到y()的值。 欧拉法和龙格库塔法就是用不同方法确定不同精度的平均斜率K,从而求得y()的近似值。 3、Euler法 欧拉法虽然精度低,但它是最简单的一种显式单步法,也是龙 格库塔法的基础。 首先,令、为y() 及y()的近似值,并且令平均斜 率K=f(),即以点的斜率作为平均斜率K,便得到欧拉公式=+h* f() (3.1) 4、改进的欧拉法 此种方法是取、两点的斜率的平均值作为平均斜率K, 即K= ,其中、均为y()以及y()的近似值,就得到 改进后的欧拉公式(4.1)

数值分析实验报告2

实验报告 实验项目名称函数逼近与快速傅里叶变换实验室数学实验室 所属课程名称数值逼近 实验类型算法设计 实验日期 班级 学号 姓名 成绩

512*x^10 - 1280*x^8 + 1120*x^6 - 400*x^4 + 50*x^2 - 1 并得到Figure,图像如下: 实验二:编写程序实现[-1,1]上n阶勒让德多项式,并作画(n=0,1,…,10 在一个figure中)。要求:输入Legendre(-1,1,n),输出如a n x n+a n-1x n-1+…多项式。 在MATLAB的Editor中建立一个M-文件,输入程序代码,实现勒让德多项式的程序代码如下: function Pn=Legendre(n,x) syms x; if n==0 Pn=1; else if n==1 Pn=x; else Pn=expand((2*n-1)*x*Legendre(n-1)-(n-1)*Legendre(n-2))/(n); end x=[-1:0.1:1]; A=sym2poly(Pn); yn=polyval(A,x); plot (x,yn,'-o'); hold on

end 在command Windows中输入命令:Legendre(10),得出的结果为: Legendre(10) ans = (46189*x^10)/256 - (109395*x^8)/256 + (45045*x^6)/128 - (15015*x^4)/128 + (3465*x^2)/256 - 63/256 并得到Figure,图像如下: 实验三:利用切比雪夫零点做拉格朗日插值,并与以前拉格朗日插值结果比较。 在MATLAB的Editor中建立一个M-文件,输入程序代码,实现拉格朗日插值多项式的程序代码如下: function [C,D]=lagr1(X,Y) n=length(X); D=zeros(n,n); D(:,1)=Y'; for j=2:n for k=j:n D(k,j)=(D(k,j-1)- D(k-1,j-1))/(X(k)-X(k-j+1)); end end C=D(n,n); for k=(n-1):-1:1

Matlab中龙格-库塔(Runge-Kutta)方法原理及实现

函数功能编辑本段回目录 ode是专门用于解微分方程的功能函数,他有ode23,ode45,ode23s等等,采用的是Runge-Kutta算法。ode45表示采用四阶,五阶runge-kutta单步算法,截断误差为(Δx)3。解决的是Nonstiff(非刚性)的常微分方程.是解决数值解问题的首选方法,若长时间没结果,应该就是刚性的,换用ode23来解. 使用方法编辑本段回目录 [T,Y] = ode45(odefun,tspan,y0) odefun 是函数句柄,可以是函数文件名,匿名函数句柄或内联函数名 tspan 是区间[t0 tf] 或者一系列散点[t0,t1,...,tf] y0 是初始值向量 T 返回列向量的时间点 Y 返回对应T的求解列向量 [T,Y] = ode45(odefun,tspan,y0,options) options 是求解参数设置,可以用odeset在计算前设定误差,输出参数,事件等 [T,Y,TE,YE,IE] =ode45(odefun,tspan,y0,options) 在设置了事件参数后的对应输出 TE 事件发生时间 YE 事件解决时间 IE 事件消失时间 sol =ode45(odefun,[t0 tf],y0...) sol 结构体输出结果 应用举例编辑本段回目录 1 求解一阶常微分方程

程序: 一阶常微分方程 odefun=@(t,y) (y+3*t)/t^2; %定义函数 tspan=[1 4]; %求解区间 y0=-2; %初值 [t,y]=ode45(odefun,tspan,y0); plot(t,y) %作图 title('t^2y''=y+3t,y(1)=-2,1

实验二 拉格朗日插值龙格现象

汕 头 大 学 实 验 报 告 学院: 工学院系: 计算机系专业: 计算机科学与技术年级:2010 姓名: 林金正学号:2010101032完成实验时间: 5月24日 一.实验名称:拉格朗日插值的龙格现象 二.实验目的: 通过matlab 处理,观察拉格朗日插值的龙格现象. 三.实验内容: (1)学习matlab 的使用 (2)以实验的方式,理解高阶插值的病态性,观察拉格朗日插值的龙格现象。 四.实验时间、地点,设备: 实验时间:5月24日 实验地点:宿舍 实验设备:笔记本电脑 五,实验任务 在区间[-5,5]上取节点数n=11,等距离h=1的节点为插值点,对于函数2 5()1f x x =+进行拉格朗日插值,把f(x)与插值多项式的曲线花在同一张图上。 六.实验过程 拉格朗日插值函数定义: 对某个多项式函数,已知有给定的k + 1个取值点: 其中对应著自变数的位置,而对应著函数在这个位置的取值。 假设任意两个不同的xj 都互不相同,那麼应用拉格朗日插值公式所得到的拉格朗日插值多项式为: 其中每个为拉格朗日基本多项式(或称插值基函数),其表达式为: [3] 拉格朗日基本多项式 的特点是在上取值为1,在其它的点上取值为0。

1.使用matlab,新建function.m 文件,使用老师所给代码,构建拉格朗日函数. %lagrange.m function y=lagrange(x0,y0,x) n=length(x0); m=length(x); fori=1:m z=x(i);s=0; for k=1:n L=1; for j=1:n if j~=k L=L*(z-x0(j))/(x0(k)-x0(j)); end end s=s+L*y0(k); end y(i)=s; end y; 程序解释: (x0,y0):已知点坐标 x:所求点的横坐标, y:由(x0,y0)所产生的插值函数,以x 为参数,所的到的值 2.再一次新建function.m 文件. 构建自定义函数:25()1f x x = + %f.m function y = f(x) y = 5/(1+x*x); end 3.在脚本窗口中输入: >>a = [-10:0.2:10] >>for I = 1:length(a) b(i) = f(a(i)) end ;%画出原函数(a,b) >>c = [-5:1:5] >>for i = 1:length( c) d(i) = f(c(i))

数值分析拉格朗日插值法上机实验报告

课题一:拉格朗日插值法 1.实验目的 1.学习和掌握拉格朗日插值多项式。 2.运用拉格朗日插值多项式进行计算。 2.实验过程 作出插值点(1.00,0.00),(-1.00,-3.00),(2.00,4.00)二、算法步骤 已知:某些点的坐标以及点数。 输入:条件点数以及这些点的坐标。 输出:根据给定的点求出其对应的拉格朗日插值多项式的值。 3.程序流程: (1)输入已知点的个数; (2)分别输入已知点的X坐标; (3)分别输入已知点的Y坐标; 程序如下: #include #include #include float lagrange(float *x,float *y,float xx,int n) /*拉格朗日

插值算法*/ { int i,j; float *a,yy=0.0; /*a作为临时变量,记录拉格朗日插值多项*/ a=(float*)malloc(n*sizeof(float)); for(i=0;i<=n-1;i++) { a[i]=y[i]; for(j=0;j<=n-1;j++) if(j!=i) a[i]*=(xx-x[j])/(x[i]-x[j]); yy+=a[i]; } free(a); return yy; } int main() { int i; int n; float x[20],y[20],xx,yy; printf("Input n:");

scanf("%d",&n); if(n<=0) { printf("Error! The value of n must in (0,20)."); getch();return 1; } for(i=0;i<=n-1;i++) { printf("x[%d]:",i); scanf("%f",&x[i]); } printf("\n"); for(i=0;i<=n-1;i++) { printf("y[%d]:",i);scanf("%f",&y[i]); } printf("\n"); printf("Input xx:"); scanf("%f",&xx); yy=lagrange(x,y,xx,n); printf("x=%f,y=%f\n",xx,yy); getch(); } 举例如下:已知当x=1,-1,2时f(x)=0,-3,4,求f(1.5)的值。

插值法实验报告

实验二插值法 1、实验目的: 1、掌握直接利用拉格郎日插值多项式计算函数在已知点的函数值;观察拉格郎日插值的龙格现象。 2、了解Hermite插值法、三次样条插值法原理,结合计算公式,确定函数值。 2、实验要求: 1)认真分析题目的条件和要求,复习相关的理论知识,选择适当的解决方案和算法; 2)编写上机实验程序,作好上机前的准备工作; 3)上机调试程序,并试算各种方案,记录计算的结果(包括必要的中间结果); 4)分析和解释计算结果; 5)按照要求书写实验报告; 3、实验内容: 1) 用拉格郎日插值公式确定函数值;对函数f(x)进行拉格郎日插值,并对f(x)与插值多项式的曲线作比较。 已知函数表:(0.56160,0.82741)、(0.56280,0.82659)、(0.56401,0.82577)、(0.56521,0.82495)用三次拉格朗日插值多项式求x=0.5635时函数近似值。 2) 求满足插值条件的插值多项式及余项 1) 4、题目:插值法 5、原理: 拉格郎日插值原理: n次拉格朗日插值多项式为:L n (x)=y l (x)+y 1 l 1 (x)+y 2 l 2 (x)+…+y n l n (x)

n=1时,称为线性插值, L 1(x)=y (x-x 1 )/(x -x 1 )+y 1 (x-x )/(x 1 -x )=y +(y 1 -x )(x-x )/(x 1 -x ) n=2时,称为二次插值或抛物线插值, L 2(x)=y (x-x 1 )(x-x 2 )/(x -x 1 )/(x -x 2 )+y 1 (x-x )(x-x 2 )/(x 1 -x )/(x 1 -x 2 )+y 2 (x -x 0)(x-x 1 )/(x 2 -x )/(x 2 -x 1 ) n=i时, Li= (X-X0)……(X-X i-1)(x-x i+1) ……(x-x n) (X-X0)……(X-X i-1)(x-x i+1) ……(x-x n) 6、设计思想: 拉格朗日插值法是根据n + 1个点x0, x1, ... x n(x0 < x1 < ... x n)的函数值f (x0), f (x1) , ... , f (x n)推出n次多項式p(x),然后n次多項式p (x)求出任意的点x对应的函数值f (x)的算法。 7、对应程序: 1 ) 三次拉格朗日插值多项式求x=0.5635时函数近似值 #include"stdio.h" #define n 5 void main() { int i,j; float x[n],y[n]; float x1; float a=1; float b=1; float lx=0; printf("\n请输入想要求解的X:\n x="); scanf("%f",&x1); printf("请输入所有点的横纵坐标:\n"); for(i=1;i

Matlab中龙格-库塔(Runge-Kutta)方法原理及实现

Matlab中龙格-库塔(Runge-Kutta)方法原理及实现 龙格-库塔(Runge-Kutta)方法是一种在工程上应用广泛的高精度单步算法。由于此算法精度高,采取措施对误差进行抑制,所以其实现原理也较复杂。该算法是构建在数学支持的基础之上的。龙格库塔方法的理论基础来源于泰勒公式和使用斜率近似表达微分,它在积分区间多预计算出几个点的斜率,然后进行加权平均,用做下一点的依据,从而构造出了精度更高的数值积分计算方法。如果预先求两个点的斜率就是二阶龙格库塔法,如果预先取四个点就是四阶龙格库塔法。一阶常微分方程可以写作:y'=f(x,y),使用差分概念。 (Yn+1-Yn)/h= f(Xn,Yn)推出(近似等于,极限为Yn') Yn+1=Yn+h*f(Xn,Yn) 另外根据微分中值定理,存在0

所以,为了更好更准确地把握时间关系,应自己在理解龙格库塔原理的基础上,编写定步长的龙格库塔函数,经过学习其原理,已经完成了一维的龙格库塔函数。 仔细思考之后,发现其实如果是需要解多个微分方程组,可以想象成多个微分方程并行进行求解,时间,步长都是共同的,首先把预定的初始值给每个微分方程的第一步,然后每走一步,对多个微分方程共同求解。想通之后发现,整个过程其实很直观,只是不停的逼近计算罢了。编写的定步长的龙格库塔计算函数: function [x,y]=runge_kutta1(ufunc,y0,h,a,b)%参数表顺序依次是微分方程组的函数名称,初始值向量,步长,时间起点,时间终点(参数形式参考了ode45函数) n=floor((b-a)/h);%求步数 x(1)=a;%时间起点 y(:,1)=y0;%赋初值,可以是向量,但是要注意维数 for ii=1:n x(ii+1)=x(ii)+h; k1=ufunc(x(ii),y(:,ii)); k2=ufunc(x(ii)+h/2,y(:,ii)+h*k1/2); k3=ufunc(x(ii)+h/2,y(:,ii)+h*k2/2); k4=ufunc(x(ii)+h,y(:,ii)+h*k3); y(:,ii+1)=y(:,ii)+h*(k1+2*k2+2*k3+k4)/6; %按照龙格库塔方法进行数值求解

基于MATLAB数值分析实验报告

基于MATLAB数值分析实验报告 班级:072115 姓名:李凯 学号:20111003943

实验二:矩阵与向量运算 实验目的:在MATLAB里,会对矩阵与向量进行加、减、数乘、求逆及矩阵特征值运算,以及矩阵的LU分解。 设A是一个n×n方阵,X是一个n维向量,乘积Y=AX可以看作是n维空间变换。如果能够找到一个标量λ,使得存在一个非零向量X,满足:AX=λX (3.1)则可以认为线性变换T(X)=AX将X映射为λX,此时,称X 是对应于特征值λ的特征向量。改写式(3.1)可以得到线性方程组的标准形式:(A-λI)X=0 (3.2)式(3.2)表示矩阵(A-λI)和非零向量X的乘积是零向量,式(3.2)有非零解的充分必要条件是矩阵(A-λI)是奇异的,即:det(A-λI)=0 该行列式可以表示为如下形式: a11–λa12 (1) a21 a22 –λ…a2n =0 (3.3) ………… A n1 a n2 …a nn 将式(3.3)中的行列式展开后,可以得到一个n阶多项式,称为特征多项式: f(λ)=det(A-λI)=(-1)n(λn+c1λn-1+c2λn-2+…+c n-1λ+c n) (3.4) n阶多项式一共有n个根(可以有重根),将每个根λ带入式(3.2),可以得到一个非零解向量。

习题:求下列矩阵的特征多项式的系数和特征值λj: 3 -1 0 A= -1 2 -1 0-1 3 解:在MATLAB中输入命令: A=【3 -1 0;-1 2 -1;0 -1 3】; c=poly(A) roots(c) 得到:

实验四:Lagrange插值多项式 实验目的:理解Lagrange插值多项式的基本概念,熟悉Lagrange插值多项式的公式源代码,并能根据所给条件求出Lagrange插值多项式,理解龙格现象。 %功能:对一组数据做Lagrange插值 %调用格式:yi=Lagran_(x,y,xi) %x,y:数组形式的数据表 %xi:待计算y值的横坐标数组 %yi:用Lagrange还擦之算出y值数组 function fi=Lagran_(x,f,xi) fi=zeros(size(xi)); np1=length(f); for i=1:np1 z=ones(size(xi)); for j=i:np1 if i~=j,z=z.*(xi-x(j))/(x(i)-x(j));end end fi=fi+z*f(i); end return 习题:已知4对数据(1.6,3.3),(2.7,1.22),(3.9,5.61),(5.6,2.94)。写出这四个数据点的Lagrange插值公式,并

数值分析实验报告62338

数值分析实验报告 (第二章) 实验题目: 分别用二分法、牛顿迭代法、割线法、史蒂芬森迭代法求方程 的根,观察不同初始值下的收敛性,并给出结论。 问题分析: 题目有以下几点要求: 1.不同的迭代法计算根,并比较收敛性。 2.选定不同的初始值,比较收敛性。 实验原理: 各个迭代法简述 二分法:取有根区间的重点,确定新的有根区间的区间长度仅为区间长度的一版。对压缩了的有根区间重复以上过程,又得到新的有根区间,其区间长度为的一半,如此反复,……,可得一系列有 根区间,区间收敛到一个点即为根。 牛顿迭代法:不动点迭代法的一种特例,具有局部二次收敛的特性。迭代格式为 割线法:是牛顿法的改进,具有超线性收敛的特性,收敛阶为1.618. 迭代格式为 史蒂芬森迭代法:采用不动点迭代进行预估校正。至少是平方收敛的。迭代格式为

这里可采用牛顿迭代法的迭代函数。实验内容: 1.写出该问题的函数 代码如下: function py= f(x) syms k; y=(k^2+1)*(k-1)^5; yy=diff(y,k); py(1)=subs(y,k,x); py(2)=subs(yy,k,x); end 2.分别写出各个迭代法的迭代函数代码如下: 二分法: function y=dichotomie(a,b,e) i=2; m(1)=a; while abs(a-b)>e t=(a+b)/2; s1=f(a); s2=f(b); s3=f(t); if s1(1)*s3(1)<=0 b=t; else a=t; end m(i)=t; i=i+1; end y=[t,i+1,m]; end 牛顿迭代法: function y=NewtonIterative(x,e) i=2; en=2*e; m(1)=x; while abs(en)>=e s=f(x); t=x-s(1)/s(2); en=t-x; x=t; m(i)=t; i=i+1; end y=[x,i+1,m]; end 牛顿割线法:

龙格现象实验报告1

数值分析实验报告 实验名称:观察龙格(Runge)现象实验 班级:12级信息与计算科学(1)班 姓名: 学号:33 16 17 59 实验日期: 2014.10.11 周次: 6 实验地点: A14-504

多种插值对比 function y=fun(x); y=5./(1+x.^2); end hours=-5:5; h=-5:0.1:5; temps=fun(hours); t1=interp1(hours,temps,h,'spline'); %(?±?óê?3?êy?Y??ê?oü?àμ?) t2=interp1(hours,temps,h, 'nearest'); t3=interp1(hours,temps,h, 'linear'); t4=interp1(hours,temps,h, 'cubic'); subplot(2,2,1); plot(hours,temps, ' bo',h,t1, 'r'); title('spline '); %×÷í? subplot(2,2,2); plot(hours,temps, 'bo',h,t2, 'r'); title(' nearest'); subplot(2,2,3); plot(hours,temps, 'bo',h,t3, 'r'); title('linear'); subplot(2,2,4); plot(hours,temps, 'bo',h,t4, 'r', h,t1, 'g'); title('cubic-spline'); -5 05 spline -5 05 nearest -5 05 linear -5 05 cubic-spline

龙格现象matlab算法

课程名称:___计算方法____________指导老师:___程晓良________成绩:__________________ 实验名称:___观察龙格现象________________实验类型:________________同组学生姓名:__________ 一、实验目的和要求(必填)二、实验内容和原理(必填) 三、主要仪器设备(必填)四、操作方法和实验步骤 五、实验数据记录和处理六、实验结果与分析(必填) 七、讨论、心得 一、问题描述 在计算方法中,有利用多项式对某一函数的近似逼近,这样,利用多项式就可以计算相应的函数值。例如,在事先不知道某一函数的具体形式的情况下,只能测量得知某一些分散的函数值。例如我们不知道气温随日期变化的具体函数关系,但是我们可以测量一些孤立的日期的气温值,并假定此气温随日期变化的函数满足某一多项式。这样,利用已经测的数据,应用待定系数法便可以求得一个多项式函数f(x)。应用此函数就可以计算或者说预测其他日期的气温值。一般情况下,多项式的次数越多,需要的数据就越多,而预测也就越准确。 例外发生了:龙格在研究多项式插值的时候,发现有的情况下,并非取节点(日期数)越多多项式就越精确。著名的例子是f(x)=1/(1+25x^2).它的插值函数在两个端点处发生剧烈的波动,造成较大的误差。 二、相关公式 三、MATLAB程序 一、取等距节点,n=5,10,15,20 for n = 5:5:20 subplot(2,2,n/5) syms x;

f = 1/(1+25*x^2); x1=sym(zeros(n+1)); W=sym(ones(n+1)); L=sym(0); for i=0:n x1(i+1)=-1+2*i/n; end for i=0:n for j=0:n if j~=i w=(x-x1(j+1))/(x1(i+1)-x1(j+1)); W(i+1)=W(i+1)*w; end end L=L+W(i+1)*(1/(1+25*x1(i+1)^2)); end LL(n)=simplify(L); x=-1:0.01:1; y1=subs(f,x); y2=subs(L,x); plot(x,y1,'b');hold on; plot(x,y2,'r');hold off; title(['?-oˉêyf(x)=1/(1+25*x^2)ó?',num2str(n),'′?2??μoˉêy']); xlabel('x');ylabel('y'); legend('?-oˉêy','2??μoˉêy'); grid on end

龙格库塔法例题

四阶龙格一库塔法 通常所说的龙格一库塔法是指四阶而言的.我们可以仿二阶、三阶的情形推导出常用的标准四阶龙格一库塔公式 (9.22) 公式(9.22)的局部截断误差的阶为. 龙格一库塔法具有精度高,收敛,稳定(在一定的条件下),计算过程中可以改变步长,不需要计算高阶导数值等优点.但仍需计算在一些点上的值,如四阶龙格-库塔法每计算一步需要算四次 的值,这给实际计算带来一定的复杂性,因此,多用来计算“表头”.(即开始几点的近似值).例3.用标准龙格一库塔法求初值问题 在处的解. 解因与.若应用标准龙格一库塔方法公式(9.22)计算,对于n=0时,则有

于是得 这个值与准确解在处的值已十分接近.再对n=1,2,3,4应用式(9.22)计算,具体计算结果如表3所示:

例3写出用四阶龙格――库塔法求解初值问题 的计算公式,取步长h=0.2计算y(0.4)的近似值。至少保留四位小数。 解此处f(x,y)=8-3y,四阶龙格――库塔法公式为 其中κ1=f(x k,y k);κ2=f(x k+0.5h,y k+0.5hκ1); κ3=f(x k+0.5h,y k+0.5hκ2);κ4=f(x k+h,y k+hκ3) 本例计算公式为: 其中κ1=8-3y k;κ2=5.6-2.1y k; κ3=6.32-2.37y k;κ4=4.208-1.578y k =1.2016+0.5494y k (k=0,1,2,…) 当x0=0,y0=2, y(0.2)≈y1=1.2016+0.5494y0=1.2016+0.5494×2=2.3004 y(0.4)≈y2=1.2016+0.5494y1=1.2016+0.5494×2.3004=2.4654

龙格库塔方法及其matlab实现

龙格-库塔方法及其matlab实现 摘要:本文的目的数值求解微分方程精确解,通过龙格-库塔法,加以利用matlab为工具 达到求解目的。龙格-库塔(Runge-Kutta)方法是一种在工程上应用广泛的高精度单步算法,用于数值求解微分方程。MatLab软件是由美国Mathworks公司推出的用于数值计算和图形 处理的科学计算系统环境。MatLab是英文MATrix LABoratory(矩阵实验室)的缩写。在MratLab环境下,用户可以集成地进行程序设计、数值计算、图形绘制、输入输出、文件 管理等各项操作。 关键词:龙格-库塔 matlab 微分方程 1.前言 1.1:知识背景 龙格-库塔法(Runge-Kutta)是用于非线性常微分方程的解的重要的一类隐式或显式迭代法。这些技术由数学家卡尔·龙格和马丁·威尔海姆·库塔于1900年左右发明。通常所说的龙格库塔方法是相对四阶龙格库塔而言的,成为经典四阶龙格库塔法。该方法具有精度高,收敛,稳定,计算过程中可以改变步长不需要计算高阶导数等优点,但是仍需计算在 一些点上的值,比如四阶龙格-库塔法没计算一步需要计算四步,在实际运用中是有一定复杂性的。 Matlab是在20世纪七十年代后期的事:时任美国新墨西哥大学计算机科学系主任的Cleve Moler教授出于减轻学生编程负担的动机,为学生设计了一组调用LINPACK和EISPACK库 程序的“通俗易用”的接口,此即用FORTRAN编写的萌芽状态的MATLAB。 经几年的校际流传,在Little的推动下,由Little、Moler、Steve Bangert合作,于1984年成立了MathWorks公司,并把MATLAB正式推向市场。从这时起,MATLAB的内核 采用C语言编写,而且除原有的数值计算能力外,还新增了数据图视功能。 MATLAB以商品形式出现后,仅短短几年,就以其良好的开放性和运行的可靠性, 使原先控制领域里的封闭式软件包(如英国的UMIST,瑞典的LUND和SIMNON,德国的KEDDC)纷纷淘汰,而改以MATLAB为平台加以重建。在时间进入20世纪九十年代的时候,MATLAB已经成为国际控制界公认的标准计算软件。 到九十年代初期,在国际上30几个数学类科技应用软件中,MATLAB在数值计算方面独占 鳌头,而Mathematica和Maple则分居符号计算软件的前两名。Mathcad因其提供计算、 图形、文字处理的统一环境而深受中学生欢迎。 1.2研究的意义 精确求解数值微分方程,对龙格库塔的深入了解与正确运用,主要是在已知方程导数和初 值信息,利用计算机仿真时应用,省去求解微分方程的复杂过程。利用matlab强大的数值计算功能,省去认为计算的过程,达到快速精确求解数值微分方程。在实际生活中可以利 用龙格库塔方法和matlab的完美配合解决问题。 1.3研究的方法 对实例的研究对比,实现精度的要求,龙格库塔是并不是一个固定的公式,所以只是对典 型进行分析

二阶龙格库塔方法

2012-2013(1)专业课程实践论文二阶Runge-Kutta方法 董文峰,0818180123,R数学08-1班

由改进的Euler 方法得到: ()) ,(),(21121 211 K y h x hf K y x hf K K K y y i i i i i i ++==++=?????+ 凡满足条件式有一簇形如上式的计算格式,这些格式统称为二阶龙格—库塔格式。因此改进的欧拉格式是众多的二阶龙格—库塔法中的一种特殊格式。 若取1,0,2121212=== =c c b a ,就是另一种形式的二阶龙格 - 库塔公式。 ??????? ++==+=+)2,2() ,(12121K h y h x f K y x f K hK y y n n n n n n (1) 此计算公式称为变形的二阶龙格—库塔法。 二级龙格-库塔方法是显式单步式,每前进一步需要计算两个函数值。由上面的讨论可知,适当选择四个参数y0,a,b,n ,可使每步计算两次函数值的二阶龙格-库塔方法达到二阶精度。下面以式子(1)为依据利用VC++6.0编译程序进行问题的求解。

#include #include /*n表示几等分,n+1表示他输出的个数*/ int RungeKutta(double y0,double a,double b,int n,double *x,double *y,double (*function)(double,double)) { double h=(b-a)/n,k1,k2; int i; x[0]=a; y[0]=y0; for(i=0;i

龙格现象实验

关于龙格现象的实验报告 1. 实验目的: 观察拉格朗日插值的龙格(Runge)现象.。 2. 实验内容: 对于函数211)(x x f +=进行拉格朗日插值,取不同的节点数n ,在区间[-5,5]上取等距间隔的节点为插值点,把f (x )和插值多项式的曲线画在同一张图上进行比较。 具体步骤如下: 1)、编写拉格朗日插值函数(并将其存到当前路径的M 文件中) function y=lagrange(x0,y0,x) n=length(x0);m=length(x); for i=1:m z=x(i); L=0.0; for j=1:n T=1.0; for k=1:n if k~=j T=T*(z-x0(k))/(x0(j)-x0(k)); end end L=T*y0(j)+L; end y(i)=L; end 2)、取不同的n 值(注:当n 值不同时,间距间隔10/n 也在发生改变,程序中只需改变x0=-5:10/n:5中的n 值)。现取n 分别等于4,6,8,10时,程序分别如下 (1)取n =4, >> x0=-5:10/4:5; >> y0=1./(1+x0.^2); >> x=-5:0.1:5; >> y=lagrange(x0,y0,x); >> y1=1./(1+x.^2); >> plot(x,y1,'-k') 绘制原函数图象 >> hold on >> plot(x,y,'-.r') >>

(2)取n=6, >> x0=-5:10/6:5; >> y0=1./(1+x0.^2); >> x=-5:0.1:5; >> y=lagrange(x0,y0,x); >> y1=1./(1+x.^2); >> plot(x,y1,'-k') >> hold on >> plot(x,y,'--h') >> (3)取n=8, >> x0=-5:10/8:5; >> y0=1./(1+x0.^2); >> x=-5:0.1:5; >> y=lagrange(x0,y0,x); >> y1=1./(1+x.^2); >> plot(x,y1,'-k') >> hold on >> plot(x,y,'--g') >> (4)取n=10, >> x0=-5:1:5; >> y0=1./(1+x0.^2); >> x=-5:0.1:5; >> y=lagrange(x0,y0,x); >> y1=1./(1+x.^2); >> plot(x,y1,'-k') >> hold on >> plot(x,y,'--m') >> (5)依次输入上述程序,将f(x)和取不同节点数的插值多项式的曲线画在同一张图上进行比较。 3.实验结果: (1)取n=4,

拉格朗日龙格现象

实 验 报 告 一.实验名称:拉格朗日插值的龙格现象 二.实验目的: 理解高阶插值的病态性,观察拉格朗日插值的龙格现象。 三.实验内容: 在区间[-5,5]上取节点数n=11,等距离h=1的节点为插值点,对于函数25()1f x x =+ 进行拉格朗日插值,把f(x)与插值多项式的曲线花在同一张图上。 四. 实验基础知识及原理: 1)拉格朗日插值函数定义: 对某个多项式函数,已知有给定的k + 1个取值点: 其中对应著自变数的位置,而对应著函数在这个位置的取值。 假设任意两个不同的x j 都互不相同,那麼应用拉格朗日插值公式所得到的拉格朗日插值多项式为: 其中每个为拉格朗日基本多项式(或称插值基函数),其表达式为: [3] 拉格朗日基本多项式的特点是在 上取值为1,在其它的点 上取值 为0。 2)龙格现象: 在计算方法中,有利用多项式对某一函数的近似逼近,这样,利用多项式就可以计算相应的函数值。一般情况下,多项式的次数越多,需要的数据就越多,而预测也就越准确。但是在有的情况下,并非取节点(日期数)越多多项式就越精确。 3)matlab: MATLAB 是矩阵实验室(Matrix Laboratory )的简称,是美国MathWorks 公司出品的商业数学软件,用于算法开发、数据可视化、数据分析以及数值计算的高级技术计算语言和交互式环境,主要包括MATLAB 和Simulink 两大部分。该实验中可利用matlab 的绘图功能将拉格朗日函数跟原函数显示出来,通过对比得出实验结论。

五. 具体实验过程 1. 用matlab的editor将老师提供的拉格朗日插值的调用函数编辑为一个m文件 lagrange.m 2.在脚本窗口中输入以下命令: 执行上面的命令可以得到输出的曲线如下:

欧拉法与龙格库塔法比较分析

解微分方程的欧拉法,龙格-库塔法简单实例比较 欧拉方法(Euler method)用以对给定初值的常微分方程(即初值问题)求解分为前EULER 法、后退EULER 法、改进的EULER 法。 缺点: 欧拉法简单地取切线的端点作为下一步的起点进行计算,当步数增多时,误差会因积累而越来越大。因此欧拉格式一般不用于实际计算。 改进欧拉格式(向前欧拉公式): 为提高精度,需要在欧拉格式的基础上进行改进。采用区间两端的斜率的平均值作为直线方程的斜率。改进欧拉法的精度为二阶。 算法: 微分方程的本质特征是方程中含有导数项,数值解法的第一步就是设法消除其导数值。对于常微分方程: (,)dy f x y dx = [,]x a b ∈ 0()y a y = 可以将区间[,]a b 分成n 段,那么方程在第i x 点有'()(,())i i i y x f x y x =,再用向前差商近似代替导数则为: ((1)()) (,())i i i i y x y x f x y x h +-= 在这里,h 是步长,即相邻两个结点间的距离。因此可以根据i x 点和i y 的数值计算出1i y +来: 1(,)i i i i y y h f x y +=+?0,1,2,i L = 这就是向前欧拉公式。 改进的欧拉公式:

将向前欧拉公式中的导数(,)i i f x y 改为微元两端导数的平均,即上式便是梯形的欧拉公式。 可见,上式是隐式格式,需要迭代求解。为了便于求解,使用改进的欧拉公式: 数值分析中,龙格-库塔法(Runge-Kutta )是用于模拟常微分方程的解的重要的一类隐式或显式迭代法。实际上,龙格-库塔法是欧拉方法的一种推广,向前欧拉公式将导数项简单取为(,)n n f x y ,而改进的欧拉公式将导数项取为两端导数的平均。 龙格-库塔方法的基本思想: 在区间1[,]n n x x +内多取几个点,将他们的斜率加权平均,作为导数的近似。 龙格库塔法的家族中的一个成员如此常用,以至于经常被称为“RK4”或者就是“龙格库塔法”。 令初值问题表述如下。 '(,)y f t y =00()y t y = 则,对于该问题的RK4由如下方程给出: 11234(22)6 n n h y y k k k k +=++++ 其中 1(,)n n k f t y = 21(,)22 n n h h k f t y k =++ 32(,)22 n n h h k f t y k =++ 43(,)n n k f t h y hk =++

相关文档
最新文档