课题五 转速闭环转差频率控制的变压变频调速系统设计

课题五  转速闭环转差频率控制的变压变频调速系统设计
课题五  转速闭环转差频率控制的变压变频调速系统设计

课程设计任务书

电气与信息工程系自动化专业班题目转速闭环转差频率控制的变压变频调速系统设计

任务起止日期:2016 年 6 月 6 日~2016 年 6 月17日

学生姓名学号

指导教师

电力拖动考试 简答题以及计算题

KT=0.5,阻尼比=0.707,超调=4.3%,Tr=4.7T,Tp=6.2T,Wc=0.455/T h=5,超调=37.6%,t=hT 2-8、泵升电压是怎样产生的?对系统有何影响?如何抑制? 答:泵升电压是当电动机工作于回馈制动状态时,由于二极管整流器的单向导电性,使得电 动机由动能转变为的电能不能通过整流装置反馈回交流电网,而只能向滤波电容充电, 造成电容两端电压升高。泵升电压过大将导致电力电子开关器件被击穿。应合理选择滤波电容的容量,或采用泵升电压限制电路。 2-10、静差率和调速范围有何关系?静差率和机械特性硬度是一回事吗? 答:D=(nN/△n)(s/(1-s)。静差率是用来衡量调速系统在负载变化下转速的稳定度的,而机械特性硬度是用来衡量调速系统在负载变化下转速的降落的。 3-3、双闭环直流调速系统中,给定电压Un*不变,增加转速负反馈系数α,系统稳定后转速反馈电压Un 和实际转速n 是增加、减小还是不变? 答:转速反馈系数α增加,则转速反馈电压UN增加,给定电压UN*,则转速偏差电压减小,则AST 给定电压Ui*减小,则控制电压Uc减小,则转速n减小;则转速反馈电压Un减小,知道转速偏差电压为零;古稳态时转速反馈电压Un不变。且实际转速N减小。 1、V-M调速系统的电流脉动和断续是如何形成的?如何抑制电流脉动? 整流器输出电压大于反电动势时,电感储能,电流上升,整流器输出电压小于反电动势时电感放能,电流下降。整流器输出电压为脉动电压,时而大于反电动势时而小于,从而导 致了电流脉动。当电感较小或电动机轻载时,电流上升阶段电感储能不够大,从而导致当电流下降时,电感已放能完毕、电流已衰减至零,而下一个相却尚未触发,于是形成电流断续。 2、简述比例反馈控制、积分控制的规律及其不同。 答:比例控制的反馈控制系统是(被调量有静差)的控制系统;反馈控制系统的作用是(抵抗前向通道的扰动,服从给定)反馈系统的精度依赖于(给定和反馈检测的精度);积分控制可以使系统在无静差的情况下保持恒速运行,实现无静差调速比例调节器的输出只取决于(输入偏差的现状),而积分调节器的输出则包含了(输入偏差量的全部历史) 3、简述ASR的退饱和条件。 答:当ASR处于饱和状态时,若实际转速大于给定转速,则反馈电压大于给定电压,使偏差电压小于零,则ASR反向积分,从而退饱和,返回线性调节状态。 4、简述双闭环直流调速系统中转速调节器的作用。 答:作为主导调节器,在转速动态过程中,使转速快速跟随给定电压变化,稳态时减小转速误差,采用PI调节器可实现无静差;对负载变化其抗扰作用;其输出限幅值决定电动机允许最大电流。 5、简述双闭环直流调速系统中电流调节器的作用。 答:作为内环调节器,在转速调节过程中,使电流紧紧跟随给定电流变化;对电网电压波动起及时抗扰作用;在转速动态过程中,保证获得电动机最大允许电流,从而加快动态过程;当电动机过载或堵转时,限制电枢电流最大值,起快速的自动保护作用。一旦故障消失,系统立即自动恢复正常。 6、V—M系统需要快速的回馈制动时,为什么必须采用可逆线路。 答:当电动机需要回馈制动时,由于反电动势的极性未变,要回馈电能必须产生反向电流, 而反向电流是不可能通过VF流通的,这时,可以通过控制电路切换到反组晶闸管装置VR, 并使它工作在逆变状态,产生逆变电压,电机输出电能实现回馈制动。 7、晶闸管可逆系统中环流产生的原因是什么?有哪些抑制的办法? 答:两组晶闸管整流装置同时工作时,便会产生不流过负载而直接在两组晶闸管之间流通的短路电流。抑制的方法:1. 消除直流平均环流可采用α=β配合控制,采用α≥β能更可靠地消除直流平均环流。2. 抑制瞬时脉动环流可在环流回路中串入电抗器(叫做环流电抗器,或称均衡电抗器

转差频率控制的异步电动机

转差频率控制的异步电 动机 Revised as of 23 November 2020

转差频率控制的异步电动机 矢量控制系统仿真实训报告 二级学院 专业电气工程及其自动化 班级 指导教师 2014年6月 摘要 矢量变换控制技术的诞生和发展奠定了现代交流调速系统高性能化的基础。交流电动机是个多变量、非线性、强耦合的被控对象,采用参数重构和状态重构的现代控制理论概念可以实现交流电动机定子电流的励磁分量和转矩分量之间的解耦,实现了将交流电动机的控制过程等效为直流电动机的控制过程,使交流调速系统的动态性能得到了显着的改善和提高,从而使交流调速取代直流调速成为可能。目前对调速性能要求较高的生产工艺已较多地采用了矢量控制型的变频调速装置。实践证明,采用矢量控制的交流调速系统的优越性高于直流调速系统。 本文基于MATLAB?对异步电动机转差频率控制调速系统进行仿真研究。首先分析了异步电动机转差频率控制技术的主要控制方

法、基本组成与工作原理。之后对异步电机的动态模型做了分析,进一步介绍了异步电机的坐标变换,对异步电机转差频率矢量控制系统的基本原理进行了阐述,通过仿真工作,证明了其可行性。最后,通过对仿真结果进行分析,归纳出如下结论:单纯的转差频率控制带载能力差,应用转差频率矢量控制可增强电机对转矩的调节能力且无需电压补偿。 关键词:异步电动机矢量控制转差角频率 MATLAB 目录

一、转差频率控制的异步电动机矢量控制调速系统 1.矢量控制概述 矢量控制实现的基本原理是通过测量和控制异步电动机定子电流矢量,根据磁场定向原理分别对异步电动机的励磁电流和转矩电流进行控制,从而达到控制异步电动机转矩的目的。具体是将异步电动机的定子电流矢量分解为产生磁场的电流分量(励磁电流)和产生转矩的电流分量(转矩电流)分别加以控制,并同时控制两分量间的幅值和相位,即控制定子电流矢量,所以称这种控制方式称为矢量控制方式。 矢量控制(VC)方式:矢量控制变频调速的做法是将异步电动机在三相坐标系下的定子电流Ia、Ib、Ic、通过三相-二相变换,等效成两相静止坐标系下的交流电流Ia1和Ib1,再通过按转子磁场定向旋转变换,等效成同步旋转坐标系下的直流电流Im1、It1(Im1相当于直流电动机的励磁电流;It1相当于与转矩成正比的电枢电流),然后模仿直流电动机的控制方法,求得直流电动机的控制量,经过相应的坐标反变换,实现对异步电动机的控制。其实质是将交流电动机等效为直流电动机,分别对速度,磁场两个分量进行独立控制。通过控制转子磁链,然后分解定子电流而获得转矩和磁场两个分量,经坐标变换,实现正交或解耦控制。

交直交变频器详细说明书

交直交变频器 一变频器开发基础 三相交流异步电动机发明于1881年,一经问世,便以起结构简单,坚固,价格低廉二迅速的在电力拖动领域成为拖动系统中"骄子"。但正式由于其结构,在调速性能上使其失去欢颜。从异步电动机的转速公式n=60f/p(1-s) ,可知。除变频{f}调速以外,异步电机调速基本途径有:1改变极对数{p}。2改变转差率{s}。显然其调速缺点为调速范围低,工作效率下降,负载能力不一致,消耗电能多,机械特性较软,控制电路较复杂。科技的进步,社会的发展,要求生产机械对电动机进行无级调速满足工艺要求是多么的迫切。 随着20世纪60年代功率晶闸管{SCR},70年代功率晶体管{GTR},可关断晶闸管{GTO},80年代绝缘栅双极晶体管{IGBT}的相继开发,把变频器由希望,推广,发展到今天的普及阶段。 二变频器基本结构 目前应用的最广泛的是交直交变频器,其基本结构如图所示: 其工作过程是先将三相{或单相}不可调工频电源经过整流桥整流成直流电,再经过逆变桥把直流电逆变成频率任意可调的交流电,以实现无级调速。 逆变器的原理框图 三功率部分 交直交变频器的主电路如图所示,变频器调速过程中出现的许多现象都应通过主电路来进行分析,因此,熟悉主电路的结构,透彻了解各部分的原理,具有十分重要的意义。 1 交-直变换电路 ⑴图I(VD1-VD6)为交直变换全波整流电路,在中小容量变频器中,整流器件采用不可控整流二极管或二极管模块。(2)图中(CF1 CF2)为滤波电容器,由于交流电被整流出的直流电中会有交流含量,为了获取平稳的直流电而设置滤波电容。(3)因为电解电容器的电容量有较大的离散性,故电容器组CF1 和CF2的电容量常不能完全相等,这将导致各自压降不相等。为了使其压降相等,在CF1 CF2旁各并联一个阻值相等的均压电阻RC1和RC2。(4)(RH HL)为电源指示电路,除此之外HL也具有提示保护的作用,当变频器

带电流截至负反馈的转速单闭环直流调速系统

班级:10电气工程及其自动化三班 姓名: 学号: 题目: 带电流截至负反馈的转速单闭环直流调速系统 要求: 1.利用所学知识设计带电流截至负反馈的转速单闭环直流 调速系统;(10%) 2.设计过程中详细说明系统组成,单闭环直流调速系统的调 试方法和电流截至负反馈的整定;(10%) 3.使用MATLAB软件编写调试程序,分析调速系统的机械特性和转速单闭环调速系统的静特性;(30%) 4.要有详细原理说明和设计过程,方案以WORD文档的形式给出(30%) 5.课程总结,总结该课程的主要内容与相关实际应用。(20%) 作业成绩:

摘要 带电流截止负反馈的闭环直流调速系统的在对调速精度要求不高的,大功率容量的电机中的应用是非常广泛的,它具有控制简单方便,调速性能较好,设备成本低等的优点。本次设计主要介绍了单闭环不可逆直流调速系统的方案比较及其确定,主电路设计;控制电路设计;绘制原系统的动态结构图;绘制校正后系统的动态结构图;应用MATLAB软件对带电流截至负反馈的转速单闭环直流调速系统进行仿真,完善系统。 关键词:直流电机电流截止负反馈主电路控制电路

摘要 (1) 一、设计方案目的和意义 (3) 1.1设计的确定 (3) 1.2课程设计的目的和意义 (3) 二、课程设计内容 (4) 2.1设计要求 (4) 2.2设计主要内容 (4) 三、主电路设计 (4) 四、控制电路的设计 (6) 五、Matlab仿真及分析 (9) 5.1、matlab仿真图 (9) 5.2、仿真图分析 (14) 六、总结 (15)

题目: 带电流截至负反馈的转速单闭环直流调速系统 一、设计方案目的和意义 1.1设计的确定 控制电路采用转速单闭环调速系统控制,采用闭环系统可以比开环系统获得更硬的机械特性,而且静差率比开环是小得多,并且在静差率一定时,则闭环系统可以大大提高调速范围。但在闭环式必选设置放大器。如果只采用比例放大器的反馈控制系统,其被调量仍然是有静差的,这样的系统叫做有静差调速系统,它依赖于被调量的偏差进行控制,而反馈控制系统的作用是:抵抗扰动,服从给定,但反馈控制系统所能抑制的知识被反馈环包围的前向通道上的扰动。普通闭环直流调速系统及其存在的起动的冲击电流---直流电动机全电压起动时,如果没有限流措施,会产生很大的冲击电流,这不仅对电机换向不利的问题。电流截止负反馈的作用是在电动机发生超载或堵转的时候电流截止负反馈和给定信号相比较抵消。使电动机处于停止运行状态,以保护电机 1.2课程设计的目的和意义 通过本次课程设计了解单闭环不可逆直流调速系统的原理,组成及其各主要单元部件的原理。掌握晶闸管直流调速系统的一般调速过程。认识闭环反馈控制系统的基本特性。掌握交、直流电机的基本结构、原理、运行特性。掌握交、直流电动机的机械特性及起动、调速、制

运动控制—期末复习部分简答题

●1.简述异步电动机双馈调速的五种工况。 答:①电机在次同步转速下作电动运行。从定子侧输入功率,轴上输出机械功率,而转速功率在扣除转子消耗后从转子侧馈送到电网,由于电机在低于同步转速下工作,故称为次同步转速的电动运行;②电机在反转时作倒拉制动运行。在反相附加电动势与位能负载外力的作用下,可以使电机进入倒拉制动运行状态;③电机在超同步转速下作回馈制动运行。进入这种运行状态的必要条件是有位能性机械外力作用在电机轴上,并使电机能在超过其同步转速n1的情况下运行;④电机在超同步转速下作电动运行。绕线转子异步电机在转子中串入附加电动势后可以再超同步转速下作电动运行,并可使输出超过其额定功率,这一特殊工况正是有定,转子双馈的条件形成的;⑤电机在次同步转速下作回馈制动运行。为了提高生产率,很多工作机械希望其电力拖动装置能缩短加速和停车的时间,因此必须是运行在低于同步转速电动状态的电机切换到制动状态下工作。 ●2.简述转速反馈闭环调速系统的三个基本特征 答:①只用比例放大器的反馈控制系统,其被调量仍是有静差的;②反馈控制系统的作用是:抵抗扰动,服从给定,扰动性能是反馈控制系统最突出特征之一;③系统的精度依赖于给定和反馈检测的精度。 ●3.简述双闭环直流调速系统启动过程的三个阶段和三个特点: 答:⑴三个阶段:第一阶段(0~t1)是电流上升阶段;第二阶段(t1~t2)是横流升速阶段; 第三阶段(t2以后)是转速调节阶段。 ⑵三个特点:①饱和非线性控制。随着ASR的饱和与不饱和,整个系统处于完全 不同的两种状态,在不同情况下表现未不同结构的线性系统,只能采用分段线性化得方法来分析,不能简单的用线性控制理论来分析整个起动过程,也不能简单的用线性控制理论来笼统的设计这样的控制系统;②转速超调。当转速调节器ASR采用PI调节器时,转速必然有超调;③准时间最优控制。 ●4.简述双闭环直流调速系统中转速调节器和电流调节器的作用。 答:⑴转速调节器的作用 ①转速调节器是调速系统的主导调节器,它使转速n很快的跟随给定电压Un*变化,稳 态时可减小转速误差,如果采用PI调节器,则可实现无静差;②对负载变化起抗扰作用;③其输出限幅值决定电动机允许的最大电流。 ⑵电流调节器的作用 ①作为内环的调节器,在转速外环的调节过程中,它的作用是使电流紧跟随其给定电压 Ui*(即外环调节器的输出量)的变化;②对电网电压的波动起及时抗扰作用;③在转速动态过程中,保证获得电动机允许的最大电流,从而加快动态过程;④当电动机过载甚至堵转时,限制电枢电流的最大值,起快速的自动保护作用。一旦故障消失,系统立即自动恢复正常,这个作用对系统的可靠运行来说是十分重要的。 ●5.矢量控制系统的特点与存在的问题? 答:⑴矢量控制系统特点。 ①按转子磁链定向,实现了定子电流历次分量和转矩分量的解耦,需要电流闭环控 制;②转子磁链系统的控制对象是稳定的惯性环节,可以闭环控制,也可以开环控制; ③采用连续的PI控制,转矩与磁链变换平稳,电流闭环控制可有效的限制起动电流。 ⑵矢量控制系统存在的问题。 ①转子磁链计算精度受易于变化的转子电阻的影响,转子磁链的精度影响定向的准 确性;②需要进行矢量变换,系统结构复杂,运算量大。 ●6.试比较转子磁链的电压模型和电流模型的运算方法及其优缺点。 答:㈠电流模型,根据描述磁链与电流关系的磁链方程来计算转子磁链,所得出的模型

转速闭环控制调速系统.

长春建筑学院电气信息学院 课程设计 课程名称:电子系统仿真实习 设计题目:转速闭环控制直流调速系统仿真 姓名: 学号: 专业班级: 指导教师: 起止日期:

设计鉴定 学生姓名班级学号设 计 期 间 表 现 总评 指导 教师 综合 评语 成绩指导教师

目录 目录 (2) 第一章设计内容 (3) 1.1设计背景: (3) 1.2主要内容 (4) 1.3双闭环调速系统 (4) 第二章方案实施 (6) 2.1转速给定电路设计 (6) 2.2转速检测电路设计 (6) 2.3电流检测电路设计 (7) 第三章主电路保护电路设计 (8) 3.1过电压保护设计 (8) 3.2过电流保护设计 (9) 3.3 驱动电路的设计 (11) 3.4 控制电路设计 (12) 3.5电流环与转速环的设计 (13) 3.6 电流调节器的设计 (14) 3.7 转速调节器的设计 (14) 第四章结论体会 (15) 参考文献: (18)

第一章设计内容 1.1设计背景 直流调速是现代电力拖动自动控制系统中发展较早的技术。在20世纪60年代,随着晶闸管的出现,现代电力电子和控制理论、计算机的结合促进了电力传动控制技术研究和应用的繁荣。晶闸管-直流电动机调速系统为现代工业提供了高效、高性能的动力。尽管目前交流调速的迅速发展,交流调速技术越趋成熟,以及交流电动机的经济性和易维护性,使交流调速广泛受到用户的欢迎。但是直流电动机调速系统以其优良的调速性能仍有广阔的市场,并且建立在反馈控制理论基础上的直流调速原理也是交流调速控制的基础。现在的直流和交流调速装置都是数字化的,使用的芯片和软件各有特点,但基本控制原理有其共性。 对于那些在实际调试过程中存在很大风险或实验费用昂贵的系统,一般不允许对设计好的系统直接进行实验。然而没有经过实验研究是不能将设计好的系统直接放到生产实际中去的。因此就必须对其进行模拟实验研究。当然有些情况下可以构造一套物理装置进行实验,但这种方法十分费时而且费用又高,而且在有的情况下物理模拟几乎是不可能的。近年来随着计算机的迅速发展,采用计算机对控制系统进行数学仿真的方法已被人们采纳。 但是长期以来,仿真领域的研究重点是仿真模型的建立这一环节上,即在系统模型建立以后要设计一种算法。以使系统模型等为计算机所接受,然后再编制成计算机程序,并在计算机上运行。因此产生了各种仿真算法和仿真软件。

基于稳态模型的转差频率控制的交流调速系统的仿真与设计

运动控制系统课程设计 题目: 基于稳态模型的转差频率控制的交流调速系统 的仿真与设计 信息与电气工程学院 08级电气三班

一设计目的: 应用所学的交、直流调速系统的基本知识与工程设计方法,结合生产实际,确定系统的性能指标与实现方案,进行运动控制系统的初步设计。 应用计算机仿真技术,通过在MATLAB软件上建立运动控制系统的数学模型,对控制系统进行性能仿真研究,掌握系统参数对系统性能的影响。 在原理设计与仿真研究的基础上,应用PROTEL进行控制系统的印制板的设计,为毕业设计的综合运用奠定坚实的基础 二设计参数: 额定输出功率17KW; 定子绕组额定线电压380V; 定子绕组额定相电流25A; 定子绕组每相电阻0.1欧姆; 定子绕组接线形式Y; 转子额定转速1430rpm; 转子形式:鼠笼式; 转子每相折算电阻:1欧姆; 转子折算后额定电流50A; 额定功率因数:0.75; 电机机电时间常数1S; 电枢允许过载系数1.5; 环境条件: 电网额定电压:380/220V; 电网电压波动10%; 环境温度:-40~+40摄氏度; 环境相对湿度:10~90%.

控制系统性能指标: 转差率:3%; 调速范围:D =20; 电流超调量小于等于5%; 空载起动到额定转速时的转速超调量小于等于30%; 稳速精度:0.03. 三 设计原理: 1 转差频率控制的基本概念 本文主要介绍异步电动机的转差频率控制方式,在该基础上进一步介绍转差频率间接矢量控制方式。 由电力拖动的基本方程式: e L p J d T T n dt ω-= (1-1) 根据基本运动方程式,控制电磁转矩e T 就能控制d dt ω 。因此,归根结底,控制调速系统的动态性能就是控制转矩的能力。 图1.1异步电动机稳态等效电路和感应电动势 电磁转矩关系式:

过程控制期末复习题

2-11简述积分控制规律 答:积分控制可以使系统在无静差的情况下保持恒速运行,实现无静差调速。2-12比例调节器和积分调节器有何不同 答:比例调节器的输出只取决于(输入偏差的现状),而积分调节器的输出则包含了(输入偏差量的全部历史) 2-13简述比例积分控制规律。答:比例部分能(迅速响应控制作用),积分部分则(最终消除稳态偏差)。 2-14微机控制的调速系统有什么特点答:(信号离散化,信息数字化)。 2-15旋转编码器分为哪几种各有什么特点答:绝对式编码器:常用语检测转角信号,若需要转速信号,应对转角微分。增量式编码器:可直接检测转速信号。2-16数字测速方法有哪些精度指标答:(分辨率,测速误差率)。 2-17采用旋转编码器的数字测速方法有(M,T,M/T)。高低全 2-18为什么积分需限幅答:若没有积分限幅,积分项可能很大,将产生较大的退饱和超调。 2-19简述带电流截止负反馈环节转速反馈调速系统机械特性的特点。 答:电流负反馈的作用相当于在主电路中串入一个大电阻KpKsR,导致当Id=Idcr 时,机械特性急剧下垂;比较电压Ucom与给定电压Un*作用一致,相当于把理想空载转速提高到n0`=(KpKs(Un*+Ucom))/(Ce(1+K))。 3-2由于机械原因,造成转轴堵死,分析双闭环直流调速系统的工作状态。(未验证) 答:电动机堵转则转速恒为零,在一定的给定下,偏差电压相当大,从而使ASR 迅速达到饱和,又电动机转速由于转轴堵死无法提升,故ACR无法退饱和,因此系统处于ASR饱和状态。 3-3双闭环直流调速系统中,给定电压Un*不变,增加转速负反馈系数α,系统稳定后转速反馈电压Un和实际转速n是增加、减小还是不变(已验证)答:转速反馈系数α增加,则转速反馈电压Un增加,给定电压Un*,则转速偏差电压减小,则ASR给定电压Ui*减小,则控制电压Uc减小,则转速n减小;转速n 减小,则转速反馈电压Un减小,直到转速偏差电压为零;故稳态时转速反馈电压Un不变,且实际转速n减小。 3-4双闭环直流调速系统调试时,遇到下列情况会出现什么现象(未通过验证,求姐)(1)电流反馈极性接反。(2)转速极性接反。 答:(1)由于电流环的正反馈作用,电枢电流将持续上升,转速上升飞快,电动机飞车。(2)由于转速环的正反馈作用,ACR无法退饱和,电动机转速持续恒流上升。 3-5某双闭环调速系统,ASR、均采用PI调节器,ACR调试中怎样才能做到Uim*=6V 时,Idm=20A;如欲使Un*=10V时,n=1000rpm,应调什么参数答:(1)调节电流反馈系数β=;(2)调节转速反馈系数α=。 3-6在转速、电流双闭环直流调速系统中,若要改变电动机的转速,应调节什么参数改变转速调节器的放大倍数Kn行不行(==|||)改变电力电子变换器的放大倍数Ks行不行改变转速反馈系数α行不行若要改变电动机的堵转电流,应调节系统中的什么参数 答:通常可以调节给定电压。改变Kn和Ks都不行,因为转速电流双闭环直流调速系统对前向通道内的阶跃扰动均有能力克服。也可以改变α,但目的通常是为了获得更理想的机械特性。若要改变堵转电流,应调节电流反馈系数β。

变频技术第二章

第二章变频器的分类与特点 2.1 变频器的分类 1 按变换环节分类 变频器的功能就是将频率、电压都固定的交流电源变成频率、电压都连续可调的三相交流电源。按照变换环节有无直流环节可以分为交-交变频器和交-直-交变频器。 (1)交-直-交变频器的各种结构 交-直-交变频器的主电路可以分为以下几部分: 1、整流电路——交-直部分

整流电路通常由二极管或可控硅构成的桥式电路组成。根据输入电源的不同,分为单相桥式整流电路和三相桥式整流电路。我国常用的小功率的变频器多数为单相220V 输入,较大功率的变频器多数为三相380V (线电压)输入。 2、中间环节——滤波电路 根据贮能元件不同,可分为电容滤波和电感滤波两种。由于电容两端的电压不能突变,流过电感的电流不能突变,所以用电容滤波就构成电压源型变频器,用电感滤波就构成电流源型变频器。 3、逆变电路——直-交部分 逆变电路是交-直-交变频器的核心部分,其中6个三极管按其导通顺序分别用 VT1~VT6表示,与三极管反向并联的二极管起续流作用。 逆变电路的输出电压为阶梯波,虽然不是正弦波,却是彼此相差120°的交流电压,即实现了从直流电到交流电的逆变。输出电压的频率取决于逆变器开关器件的切换频率,达到了变频的目的。 实际逆变电路除了基本元件三极管和续流二极管外,还有保护半导体元件的缓冲电路,三极管也可以用门极可关断晶闸管代替。 (2)交-交变频器 单相输出交-交变频电路的原理框图,电路由P (正)组和N (负)组反并联的晶闸管变流电路构成,两组变流电路接在同一个交流电源,Z 为负载。 变频器的主电路 三 相电

交-交变频器结构图 交-交变频器的特点为: 1) 因为是直接变换,没有中间环节,所以比一般的变频器效率要高。 2) 由于其交流输出电压是直接由交流输入电压波的某些部分包络所构成,因而其输出频率比输入交流电源的频率低得多,输出波形较好。 3) 由于输出上限频率不高于电网频率的1/3~1/2,因受电网频率限制,通常输出电压的频率较低。 4)交-交变频电路采用的是相位控制方式,因此其输入电流的相位总是滞后于输入电压,需要电网提供无功功率。功率因数较低,特别是在低速运行时更低,需要适当补偿。 2. 按直流电源的性质分类 (1)电流型 优点:当电动机处于再生发电状态时,回馈到直流侧的再生电能可以方便地回馈到交流电网,不需在主电路内附加任何设备,只要利用网侧的不可逆变流器改变其输出电压极性(控制角α>90°)即可。 (2)电压型 特点:中间直流环节的储能元件采用大电容,负载的无功功率将由它来缓冲。由于大电容的作用,主电路直流电压UD比较平稳,电动机端的电压为方波或阶梯波。直流电源内阻比较小,相当于电压源,故称为电压源型变频器或电压型变频器。

转速单闭环调速系统设计

目录 第1章概述 (1) 转速单闭环调速系统设计意义 (1) 转速单闭环调速系统的设计要求 (1) 第2章原系统的动态结构图及稳定性的分析 (2) 原系统的工作原理 (2) 原系统的动态结构图 (3) 闭环系统的开环放大系数的判断 (3) 相角稳定裕度γ的判断 (4) 第3章调节器的设计及仿真 (5) 调节器的选择 (5) PI调节器的设计 (5) 校正后系统的动态结构图 (8) 系统的仿真结构图及测试结果 (8) 第4章课程设计总结 (9) 参考文献 (1)

转速单闭环调速系统设计 1、概述 转速单闭环调速系统设计意义 为了提高直流调速系统的动静态性能指标,通常采用闭环控制系统(包括单闭环系统和多闭环系统)。对调速指标要求不高的场合,采用单闭环系统,而对调速指标较高的则采用多闭环系统。按反馈的方式不同可分为转速反馈,电流反馈,电压反馈等。在单闭环系统中,转速单闭环使用较多。在对调速性能有较高要求的领域常利用直流电动机作动力,但直流电动机开环系统稳态性能不能满足要求,可利用速度负反馈提高稳态精度,而采用比例调节器的负反馈调速系统仍是有静差的,为了消除系统的静差,可用积分调节器代替比例调节器. 反馈控制系统的规律是要想维持系统中的某个物理量基本不变,就引用该 量的负反馈信号去与恒值给定相比较,构成闭环系统。对调速系统来说,若想 提高静态指标,就得提高静特性硬度,也就是希望转速在负载电流变化时或受 到扰动时基本不变。要想维持转速这一物理量不变,最直接和有效的方发就是 采用转速负反馈构成转速闭环调节系统。 转速单闭环调速系统的设计要求 电动机参数:PN=3KW, n=1500rpm,UN=220V,IN=,Ra=Ω。主回路总电阻R=Ω, N 电磁时间常数Tl=,机电时间常数Tm=。三相桥式整流电路,Ks=40。测速反馈系数α=。调速指标:D=30,S=10%。 设计要求: (1)闭环系统稳定

第六章 交流异步电动机变压变频调速系统精讲

第六章 交流异步电动机变压变频调速系统 本章主要问题: 1. 在变频调速中变频时为什么要保持压频比恒定? 2. 交-直-交电压源型变频器调压、调频的有哪几种电路结构,并说明各种电压结构的优缺点。 3. SPWM 控制的思想是什么? 4. 什么是1800导通型变频器?什么是1200导通型变频器? 5. 电压、频率协调控制有几种控制方式,各有哪些特点? 6. 在转速开环恒压频比控制系统中,绝对值单元GAB 的作用?函数发生器GFC 的作用?如 何控制转速正反转。 7. 总结恒11 ωU 、恒1ωg E 、恒1ωr E 三种控制方式的特点。 ———————————————————————————————————————— §6-1 交流调速的基本类型 要求:掌握交流调速哪几种基本类型有以及各种调速方法的特点。 目的:能根据不同应用场合选择出相应的调速方式。 重点、难点:变频调速时基频以下和基频以上调速的特点 主要内容(交流调速的基本类型、变频调速的基本要求) 思考: 1. 交流异步电动机调速的方式有哪几种?并写出各方式的优缺点? 2. 在变频调速中变频时为什么要保持压频比恒定? 教学设计:交流调速的基本类型采用多媒体课件讲授,用大量的实例,说明几种类型的应用场合。 复习感应电动机转速表达式: )1(60)1(1 0s n f s n n p -= -= 异步电动机调速方法:?? ?? ??? ?????? ? ??型变频调速:绕线式、笼:绕线式串级调速(转差电压)电磁转差离合器调转子电阻:绕线式、调压(定子电压)变转差率调速变极调速:笼型异步机异步电动机 §6-2 变频调速的构成及基本要求 目的、教学要求:掌握变频调速时基频以下和基频以上调速的特点 重点、难点:变频调速时基频以下和基频以上调速的特点 主要内容(变频调速的基本要求)

转速闭环控制的直流调速系统仿真

内蒙古科技大学课程设计任务书

目录 课程设计任务书 (1) 题目 (4) 引言 (4) 第1章转速闭环控制的直流调速系统仿真模型的建立 (4) 1.1、仿真任务 (4) 1.2、仿真模型参考参数 (4) 第2章转速闭环控制的直流调速系统的仿真 (5) 2.1、带转速负反馈的有静差直流调速系统仿真 (5) 2.1.1、带转速负反馈的有静差直流调速系统仿真模型的建立 (6) 2.1.2、带转速负反馈的有静差直流调速系统仿真波形及分析 (7) 2.2、带电流截止负反馈的转速单闭环调速系统仿真 (10) 2.2.1、带电流截止负反馈的转速单闭环调速系统仿真模型建立 11 2.2.2、带电流截止负反馈的转速单闭环调速系统仿真波形分析 11 第3章心得体会 (13) 参考文献 (14)

转速闭环控制的直流调速系统仿真 引言 直流电动机具有良好的起、制动性能,宜于在大范围内平滑调速,并且直流调速系统在理论和实践上都比较成熟,是研究其它调速系统的基础。而且MATLAB软件对直流调速系统进行虚拟环境下的仿真研究,不仅使用方便,也大大降低了研究成本。 晶闸管-直流电动机系统可以通过调节晶闸管控制角改变电动机电枢电压实现调速,但是存在两个问题,①全电压起动时起动电流大;②转速随负载变化而变化,负载越大,转速降落越大,难于在负载变动时保持转速的稳定而满足生产工艺的要求。为了减小负载波动对电动机转速的影响,可以采取带转速负反馈的闭环调速系统,根据转速的偏差来自动调节整流器的输出电压,从而保持转速的稳定。 第1章转速闭环控制的直流调速系统仿真模型的建立 1.1、仿真任务 已知直流电动机额定参数为Unom=220V,Inom=136A,nnom=1460r/min 四级,Ra=0.21Ω,GD 2=22.5N·m 2。励磁电压Uf=220V,励磁电流If=1.5A。采用三相桥式整流电路,设整流器内阻Rrec=0.5Ω。平波电抗器Ld=20mH。 1.2、仿真模型参考参数 表1.1直流电动机闭环调速系统模型参数

交直交变频调速设计及仿真

摘要 近些年来,随着现代电力电子技术、计算机技术和自动控制技术的迅速发展,交流传动与控制技术成为目前发展最为迅速的技术之一,电气传动技术面临着一场历史革命,即交流调速取代直流调速和计算机数字控制技术取代模拟控制技术已成为发展趋势。变频调速技术的迅速发展被越来越多的应用于电机控制领域中,是当今节电、改善工艺流程以提高产品质量和改善环境、推动技术进步的一种主要手段。变频调速以其优异的调速和起制动性能,高效率、高功率因数和节电效果,以及广泛的适用范围和调速时因转差功率不变而无附加能量损失等优点而被国内外公认为是最有发展前途的高效调速方式。所以,对交—直—交变频调速系统的基本工作原理和特性的研究是十分有积极意义的。 本文研究了变频调速系统的基本组成部分,主回路主要有三部分组成:将工频电源变换为直流电源的“整流器”;吸收由整流器和逆变器回路产生的电压脉动的“滤波回路”,也是储能回路;将直流功率变换为交流功率的“逆变器”。以Matlab/Simulink为仿真工具,搭建交—直—交变频调速系统的仿真模型,并对仿真结果进行分析研究。通过仿真试验对该交—直—交变频调速系统的基本工作原理、工作特性及作用有更深的认识,也对谐波对于交—直—交变频调速系统的影响有了一定的了解。 第一章绪论 1.1 交流调速技术发展概况 在很长的一个历史时期内,直流调速系统以其所具有优良的静、动态性能指标垄断调速传动应用领域。但是随着生产技术的不断发展,直流电机的缺点逐步显示出来,由于机械式换向器的存在使直流电机的维护工作量增加并限制了电机容量、电压、电流和转速的上限值,加之故障率高、效率低、成本高、使用环境受限等缺点,使其在一些大容量的调速领域中无法应用。 而异步电动机特别是鼠笼异步电动机,容量、电压、电流和转速的上限,不像直流电动机那样受限制。而且异步电动机的转子绕组不需与其他电源相连,其

(完整版)试题3

1. 闭环调速系统对于闭环系统前向通道中的扰动具有抑制作用,而对于反馈通道中的扰动 则无能为力。所以,在转速单闭环调速系统中,对于电动机励磁的波动,系统有抑制作用;对于测速发电机励磁的波动系统无抑制作用。 2. 在V-M 开环调速系统中,突加负载后又进入稳定运行时,转速n 减小,电压0d U 不变; 在转速单闭环有静差调速系统中,突加负载又进入稳定运行时,转速n 减小,电压0d U 增加;在转速单闭环无静差调速系统中,突减负载又进入稳定运行时,转速n 不变,电压0d U 增加。(可用增加、减小、不变表示) 3. 转速、电流双闭环调速系统中,调节转速调节器的限幅值可以调节系统最大电流;调节电流调节器的限幅可以调节UPE 的最大输出电压。 4. 转速、电流双闭环调速系统中,转速调节器ASR 、电流调节器ACR 均为PI 调节器ASR 的输入n U ?=0,输出* i U =dN I β。电流调节器ACR 的输入i U ?=0,输出c U =* (/)/e n dN s C U I R K α+。 5. 数字测速方法有T 、M 及M/T 三种,其中T 适应于高速;M 适应于低速;M/T 具有M 和T 的优点。 6. 在对系统静态性能要求不太高的场合,为节约成本,可采用电机电枢电压反馈代替转速 反馈实现转速的控制,构成电压反馈调速系统,该系统对电机电枢电阻变化无调节作用;对电力电子装置内阻的变化有调节作用;对电压反馈系数的变化无调节作用。 二、系统的开环对数副频特性渐近线(伯德图)如下图所示,定性说明中频段、低频段、高频段和截止频率c ω(或称剪切频率)与闭环系统稳定性、稳态精度和动态响应的关系。 答:低频段的斜率陡、增益大,系统的稳态精度高;中频段以-20db/dec 的斜率穿越0db 线,而且这一斜率能够覆盖足够的频带宽度,则系统的稳定性好;高频段衰减越快,即高频特性负分贝值低,说明系统抗高频干扰的能力强;截止频率c ω越大,则系统的快速性越好。

基于uCCOS的直流电机PID转速闭环调速控制系统Proteus仿真实现…

基于uC/COS的直流电机PID转速闭环调速控制系统Proteus仿真实现 在工业自动控制系统和各种智能产品中常常会用用电动机进行驱动、传动和控制,而现代智能控制系统中,对电机的控制要求越来越精确和迅速,对环境的适应要求越来越高。随着科技的发展,通过对电机的改造,出现了一些针对各种应用要求的电机,如伺服电机、步进电机、开关磁阻电机等非传统电机。但是在一些对位置控制要求不高的电机控制系统如传动控制系统中,传统电机如直流电机乃有很大的优势,而要对其进行精确而又迅速的控制,就需要复杂的控制系统。随着微电子和计算机的发展,数字控制系统应用越来越广泛,数字控制系统有控制精确,硬件实现简单,受环境影响小,功能复杂,系统修改简单,有很好的人机交换界面等特点。 在电机控制系统开发中,常常需要消耗各种硬件资源,系统构建时间长,而在调试时很难对硬件系统进行修改,从而延长开发周期。随着计算机仿真技术的出现和发展,可用计算机对电机控制系统进行仿真,从而减小系统开发开支和周期。计算机仿真可分为整体仿真和实时仿真。整体仿真是对系统各个时间段对各个对象进行计算和分析,从而对各个对象的变化情况有直观的整体的了解,即能对系统进行精确的预测,如Matlab就是一个典型的实时仿真软件。实时仿真是对时间点的动态仿真,即随着时间的推移它能动态仿真出当时系统的状态。Proteus是一个实时仿真软件,用来仿真各种嵌入式系统。它能对各种微控制器进行仿真,本系统即用Proteus对直流电机控制系统进行仿真。 在系统软件开发中开发中可用操作系统,也可不用操作系统。如用操作系统,程序可实现模块化,并能对系统资源进行统筹管理,最主要的是可实现多任务运行。如果需要多任务并行运行,并且需要一定的时间间隔,某些任务对时间的要求不高时,如不用操作系统则要占用定时器资源,并且对栈空间和硬件资源很难进行管理,所以在这种情况下需要操作系统。本系统用操作系统uC/COS. uC/COS是一个完整的、可移植、可固化、可剪裁的占先式实时多任务内核.uC/COS 已经有很多产品成功使用的案例且得到美国军方的认证,说明了该系统的可靠性。uC/COS 源代码公开,代码短,源代码大部分是使用ANSI C编写的,移植性和裁减性好,功能强大,能可靠应用于各种控制系统中。 系统构成

基于单片机转差频率的交流调速系统

运动控制系统 课程设计 题 目:基于单片机转差频率的交流调速系统 专业班级: 姓 名: 学 号: 指导教师:

目录 1引言 (3) 2设计方案 (4) 2.1调速系统总体方案设计 (4) 2.2转差频率控制转速的基本原理 (5) 3硬件设计 (6) 3.1硬件清单列表 (6) 3.2重要元件的功能 (7) 3.2.1单片机AT89C51 (7) 3.2.2译码器 (8) 3.2.3可编程计数/定时芯片8253 (8) 3.2.4大规模专用集成电路HEF4752 (9) 3.2.5可编程的并行I/O接口芯片8255 (10) 3.2.6 A/D转换器ADC0809 (11) 3.2.7通用可编程键盘8279 (11) 3.3系统主电路图 (12) 3.4 转差调节器的设计 (12) 3.5 PWM控制信号的产生及变换器的设计 (14) 3.6 光电隔离及驱动电路设计 (14) 3.7 电动机的转速测量电路的设计 (15) 3.8 电动机的电流、电压测量电路的设计 (16) 3.9 键盘显示电路的设计 (17) 3.10 故障检测及保护电路设计 (18) 3.11参数计算 (19) 3.11.1大功率开关管 (19) 3.11.2三相整流桥 (19) 3.11.3 LC滤波器 (20) 3.11.4 直流侧阻容吸收电路 (20) 3.11.5 大功率晶体管阻容吸收电路 (21) 4软件设计 (21) 4.1 程序框图及其介绍 (21) 4.1.1系统主程序 (21) 4.1.2 转速调节程序 (23) 4.2 部分子程序 (24) 4.2.1 0809的编程 (24) 4.2.2 8253编程 (24) 4.2.3 8255编程 (25) 心得体会 (26) 参考文献 (27)

转速开环交-直-交电流源变频调速系统

学号: 中州大学电机及拖动课程设计 题目:转速开环交-直-交电流源变频调速系统 姓名:xxx 专业:09 电气自动化(对口) 班级:电气一班 指导老师:xxx 2010年6月30日

中文摘要 20世纪后半叶,变频调速技术的出现和日益完善,成为电力拖动领域的一个重大事件。由于这门技术的发展,使结构简单牢固、价格低廉、应用普及的交流异步电动机有了性能良好的调速手段。变频调速技术的全面推广,是一个实践性工作,必然是大多数电气工程技术人员需要掌握的知识。 交-直-交变频调速系统有整流、滤波、逆变等部分组成。交流电源经整流、滤波、逆变后变成直流电源,再通过逆变器有规则的导通和截止,是输出频率可变的电源。交流电机变频调速在频率范围、动态响应、调速精度、低频转矩、输出性能、功率因数、工作效率、节电降耗、使用方便等方面是以往的交流调速方式无法比拟的。它以体积小、重量轻、通用性强、工艺先进、保护功能完善、设计思想丰富、可靠性高、操作简便等优点深受电力、冶金、矿山、石油、化工、自来水等行业的欢迎。 关键字:交-直-交电流源、变频、调速、转速开环

The English abstract 20 century, variable-frequency regulating speed technology and increasingly perfect, become a major power drag events. Due to the development of technology, simple structure, low cost, strong communication application popularize asynchronous motors have good performance of the control method. Variable-frequency regulating speed technology of comprehensive promotion, is a practical work, must be most electrical engineering and technical personnel need to master the knowledge. Pay - straight - into speed-adjusted system have rectifier, filtering, inverter, etc. The ac power rectifier, filtering, inverter, again after into dc power supply by inverter have rules of conduction and deadline, the variable frequency power output. Ac motor speed in frequency range, the dynamic response speed and accuracy, low torque output performance, and power factor, the work efficiency and saving energy, use convenient communication is ever aspects of speed way and incomparable. It with small volume, light weight, versatility, advanced technology, good protecting function, design thought rich, high reliability, simple operation advantages by electric power, metallurgy, mine, petroleum, chemical industry, water etc. Key words: straight into - into current source and frequency - speed, speed and open loop

相关文档
最新文档