水文、气象实时监测系统(浮标)

水文、气象实时监测系统(浮标)
水文、气象实时监测系统(浮标)

水文、气象实时监测系统设计方案

(浮标安装)

目录

一、前言

二、港口海域建立海洋气象环境实时监测系统的意义

三、港区海洋气象环境实时监测系统的结构组成及工作原理

a)结构组成

b)主要技术指标

c)系统集成

i系统集成图

ii系统集成工作原理

1.系统组成组建

2.组件连接和系统工作流程

3.电源

四、附件

阔龙相关工作原理介绍

GPRS数据通讯模块介绍

浮标体相关介绍

一、前言

水质环境实时监测(传输)系统是一个用于监测港域海洋环境因素(如水温、潮流、流向、水位等)、气象环境因素(温湿度、风速风向、气压、雨量、能见度等),并为船舶进出港、离靠泊提供安全保障的监测服务信息网络。其核心是及时将海洋气象环境要素观测值予以传输和显示。

港区海洋气象环境实时监测(传输)系统最早建成于美国的一些港口和海湾,如美国的纽约港、新西泽港、西雅图港等,近年台湾和日本的一些港口亦已建有该系统。然而我国大陆港区至今尚未建立与开展此项工作。

本海流气象实时监测系统旨在提供有效可靠的海流的流速、流向、气象的温湿度、风速风向、能见度等实时数据,为港口海域的船只航行安全等提供实时水文和气象监测数据。系统采用世界上最先进的声学多普勒法测量海流和流速剖面,最为稳定的温湿度、风速风向、能见度等气象传感器,使用GPRS无线数据传输完成实时系统监控和数据传输。可实现远程现场数据查看、数据分析。

二、港域建立海洋气象环境实时监测系统的意义

随着航运市场的进一步开放,各种运输方式,各港口之间的竞争日趋激烈,因此立足本港,不断提高港口的管理水平,己成为顺应复杂竞争态势的关建之举,其中现代化的信息技术则是实现此目的的强力支撑和后盾,亦是衡量现代化港口的一个重要标志。

本系统投入业务运行后,其实时信息可有效地保障船舶的进出港和离靠泊的安全,降低船舶的在港时间,规避船只对码头设施的碰撞和破坏,切实获取港口的最佳经济效益,同时大大地提升基地的著名度和竞争力,填补我国港口在海洋气象环境实时监测系统方面的空白。

此外,我们亦关注到海洋气象环境实时监测系统运行对港口海域的现实需要和意义。

泊前沿的特殊流况_迴流现象,是靠泊船只多次发生碰撞码头设施事故的主要原因。因此,在码头前沿设置可以测量剖面流速、流向的自动测流系统,及时向靠泊船只提供泊位前沿水域的实际流况特征,乃是减少或避免船舶碰撞码事故发生的现实和有效的举措。

据此可知,“海洋气象环境实时监测系统”运行对基地营运管理的现实需要和意义。

三、港区海洋气象环境实时监测系统的结构组成及工作原理:

A、结构组成:

B、主要技术指标:

●海流:采用挪威Nortek公司生产的“阔龙”600Khz多普勒流速剖面仪(观测要素:流速、流向、水温、水位)。

相关测量参数:

序号名称测量范围准确度

1流速:0~10m/s测量值的±0.5﹪2流向:0~360°测量值的±1°3温度:-4℃到40℃-0.1℃

4姿态:30°以内2°

5压力:0~200米取样值的0.25%●气象:采用美国RM Young公司的气象测量设施,包括HMP45C 温湿度、05106风速风向、SVS1能见度传感器,

序号名称测量范围准确度

1温度:-39.2°to+60°C<±0.5℃

2湿度:0.8to100%RH,非冷凝状

±1%RH

3风向:

360°±3度

4风速:0-100m/s(224mph)±0.3m/s(0.6mph)or1%

of reading

5能见度:标准:30m-16km±10%RMSE

6气压:1100-600mbar

至~12,000英尺

±0.35(20度)

7雨量可测量0.1mm的降水增量±1%(≤10mm/小时)

±3%(10-20mm/小时)

±5%(20-30mm/小时)●GPRS无线通讯方式

C、系统集成i系统集成图a)流程图

b)现场示意图

ii系统集成工作原理

1.系统组成

a.阔龙剖面流速仪组件

包括:阔龙剖面流速仪

b.气象参数采集组件:

RM Young公司的气象测量设施,包括HMP45C温湿度、05103风速风向、SVS1能见度传感器

c.数据采集器:包括一个CR800数据采集器和传感器接口

d.数据传输终端组件及浮标体

包括:GPRS数据终端、太阳能电池板、警示灯、蓄电池等

e.采集中心控制组件及客户端控制组件

包括:预报中心采集服务器、调制解调器和客户终端机和调制解调器。2.组件连接和系统工作流程

a.组件连接:

气象参数:各传感器直接与CR800数据采集器连接,然后再与浮标体上的GPRS 数据传输终端之间直接连接,GSM数据传输终端与采集服务器之间通过GPRS网络连接,GPRS数据传输终端与采集服务器之间的连接通过GSM网络无线连接。

水文参数:声学多普勒流速剖面仪阔龙与浮标体上的GPRS数据传输终端之间直接连接,GSM数据传输终端与采集服务器之间通过GPRS网络连接,GPRS数据

传输终端与采集服务器之间的连接通过GSM网络无线连接。

b.组件功能:

●阔龙剖面流速仪采集剖面流速数据

流速测量范围:+/-10米

测量流层层宽:0.5-2米可选择

测量水深范围:0-50米

最大数据输出更新率:1Hz

原始数据都会被储存于水中阔龙内存中,然后通过GSM调制解调器传送回采集服务器

●气象传感器采集相关的气温、湿度、风速、风向和能见度数据,并将采集数

据数传输至CR800数据采集器,再通过GSM调制解调器传送回采集服务器。

●GPRS数据传输终端用于完成阔龙与数据采集器之间的无线连接,实现和气

象数据和阔龙采集水文数据的实时在线传输。

●数据采集服务器用于实时接收、数据显视、数据分析、数据处理。

控制机通过GPRS调制解调器经GSM网络接受阔龙采集的所有资料,对每次流速测量,当资料搜集的行程完成后仪器会搜集将的资料数据存储至器内存中。当控制中心呼叫时,自动将数据发送出去。数据会存储于流速仪中直到接收到呼叫的讯号为止。假如主动的传输失败了,流速仪应该自动回到量测状态。1)预报中心主机图像显示界面:

显示界面由目录列(Menu Bar)、工具列(Tool Bar)、状态列(Status Bar)以及各别分开的统计数据画面所组成。

包括以下画面显示:

1)通讯状态(活动式卷帘,联机讯息等…)。

2)最近一次取得的数据(表列式raw data)。

3)最后的统计参数数据,包括流速、水温、姿态等

5)流速流向及波高波向数据的逐时变化图。

6)流速数据时间序列剖面图、水温变化、压力(水位)变化、水中仪器目前位置变化数据(heading、pitch、roll等)。

(2)远程数据传输

由于使用GSM网络传输数据,只要网络支持,可在任意地点拨叫GSM数据终端获取数据。

也可预报中心获取数据后,使用本地网络,将所接收的阔龙测量的数据再传输至别处。

3.电源

(1)阔龙备用电力

碱性电池装在一个电池筒内。

使用期间:每隔1小时取样一次资料可持续3个月。

电池筒:接碱性电池,含水下可拆接头。

(2)预报采集服务器和采集服务器

交流220伏50Hz

(3)浮标体上的电源:

太阳能供电系统是由太阳电池产生的电能经控制器贮存在蓄电池中,夜晚经控制器、逆变器为负载提供可靠的电能。

本系统采用环保无污染的太阳能供电系统,太阳能电池板为最为可靠的产品,系统配置:光伏组件、列阵接线箱、控制器、逆变器、蓄电池、系统状态监测接口

技术指标:整个光伏系统采用全自动控制,无需人工操作。系统具有防过充、过放、限流等多重保护功能,可以为负载同时提供直流和交流供电电源。

五、附件

1、阔龙相关原理介绍

阔龙声学多普勒海流波浪测量仪

2M/1M/600KHz Aquadopp Profiler“阔龙”图片

A:1MHz“阔龙”性能指标

a.声波探头数:3个声学换能器,三个波束与轴线夹角25°。

b.系统工作模式:自容式、在线式两种工作方式。

c.最大测量深度(范围):25米。

d.剖面分层厚度:0.3~4米(软件可调)。

e.剖面分层数量:一般为20~50个,最多128个。

f.最快数据输出频率:1秒

g.仪器内采样频率:4~6Hz

h.流速测量范围:最大±10m/s

附带传感器:

A.温度传感器:热敏电阻内置。

操作环境:-4℃到40℃。

精度/分辨率:-0.1℃/0.01℃。

响应时间:一般10分钟以内。

B.罗盘:液态Flux-gate。

最大倾角:30°以内。

精度/分辨率:2°/0.1°以内。

C.倾斜仪:液态水平仪。

精度/分辨率:0.2°/0.1°以内。

向上/向下:自动识别。

D.压力计:压力阻抗式(Poezoresistive)。

量测范围:0~100m

精度/分辨率:测量值的0.25%/0.005%以内。

B:“阔龙”工作原理

如上图所示声波信号沿着相同的波束被发送及接收,根据多普勒原理将水中的悬浮粒子的流速流向计算出来,量测的流速为该水层的平均流速。因其声波束相当窄小所以没有旁波效应(sidelobe即当声波束接近不同介质接口时所产生的偏折现象)。

多普勒偏移及测量方式

“阔龙”是利用著名的多普勒频移的物理原理测量水流速度。如果视声源相对于接收器而移动,则其相对的声波传输频率会有所偏移。在阔龙中,这现象系以下列公式表示:所以当我们得知FDoppler、FSource、C即可计算出v。

V=F Doppler/F Source*(C/2)其中FDoppler=所接收到频率的变化量,即所谓的多普勒偏移

FSource=“阔龙”所送出声波的频率

V=水流速度

C=音速(如在水中则为水中声速)

在“阔龙”中,同一声波探头系同时作为发声器及接收器。传出的声波会被水里的物体所反射,然后由同一声波探头所接收。此时探头所接收到回传的多普勒位移实际上为水中微细颗粒的两倍移动速度(相对于声波探头)所造成。这是因为阔龙上之声波探头既是发声源也是接收器,而当水中颗粒接收由探头传来的入射声波时因颗粒与探头的相对速度V产生了第一次的多普勒频移;然后当探头接收到此移动颗粒反射回来的声波时(此时的声波频率已经有多普勒频移)又因为颗粒与探头的相对速度V而产生了第二次的多普勒频移。阔龙声波探头传送出一个已知频率的声波脉冲,当此脉冲在水中行进时,会被水里的物体所反射。此种反射也就是散射,而此散射的强弱(即反射的强度,是一个水中颗粒数量及大小的函数)即称为讯号强度(strength)或讯号振幅(Amplitude)。回传的讯号由声波探头所接收,阔龙经由计算频率的改变,来算出水中颗粒相对于探头的速度。

“阔龙”声波探头会将大部分的声波能量集中在一条狭窄的波束中发送。水中颗粒经过各波束而测得的多普勒偏移,与颗粒本身的速度成一定的比例关系。而水流的速度可视为其所带动颗粒的速度;所有垂直于波束的颗粒移动都不会造成多普勒偏移。综合数个声波探头所得的速度,并且知道这些颗粒与探头的相对方向后,三度空间的速度即可算出。

测量层(depth cells)的位置:

在测量多普勒频移时,“阔龙”会发送一个脉冲。

此脉冲沿着声波束传递,并在从阔龙离开时产生

回音。这个回音被接收后会先放大,再分割成小的

段落,每一个段落都对应一个量测到的速度层。在

决定速度层的确实位置时,有三项原则必须遵守:

1.速度层的大小与位置,系由传输脉冲长度与所回

收到的回音段落大小所决定。就数学而言,速度层

是传输脉冲长度与回音段落的矩阵转换。

2.速度层并非将该层内所有点都付予同样比重,而

是以向中心点靠近者逐渐增加其比重。当传输脉冲

与接收脉冲在阔龙中相符合时,比重函数会类似一

个三角形(如右图所示)。3.由于速度层所显示的速度是以该层向中心点靠近者

逐渐增加比重,因此我们以速度层三角比重中心线的

位置定义为该速度层的位置。因此如右图所示因不感区为30cm(54-14);而第一个速

度层的位置为第一个三角比重中心线的位置(104CM)。

C:“阔龙”测量剖面流速的优势

优于传统的流速测量技术:a)无活动部件(如螺旋桨等),不易磨损;b)不需作定期校正

优于其它声学剖面流速测量的技术:

a)电路集成化程度高,只有一块主板+罗盘。b)体积小、重量轻,便于携带安装。(尤其适合在浮标上安装使用!)c)杜帮工程塑料外壳,抗腐蚀,耐老化。

D:数据处理软件

“阔龙”资料后处理软件ExploreP 适用于Windows 98TM /NT/Me/2000/XP。显示以时间序列为基准的频谱分析图及垂直剖面速度分析图形。独立窗口显示其它参数如压力(水位)温度及电力大小等将资料以ASCII 文件的格式转换储存。

2.GPRS

数据终端

基于ARM 平台、8M 数据缓存,内置工业级无线模块

?嵌入式Linux 系统,包含TCP/IP 协议栈及ETCP TM 协议,保证传输数据不丢失?提供标准RS232/485数据接口及独立RS-232配置串口

?符合电工电子产品低温GB/T2423.1、高温GB/T2423.2的要求,适于在气候条件

恶劣的地区及户外使用

?MD-600可以快速连接RTU 、PLC 、工控机等设备,实现数据透明传输,广泛应用

于电力抄表、配电自动化、路灯监控、道路交通、环保气象、水文水利、石油煤矿、工业控制等领域

产品特点与优势

1.工业级设计

?工业级标准设计,适合在恶劣环境下使用?+5V -36V 宽范围电压输入,多种电源接口,适用于多种场合

?铝合金外壳,表面抗氧化处理,利于散热及静电保护

2.支持多种标准接口

?支持RS-232、RS-485、RS-422标准数据接口

?数据接口参数灵活配置?独立RS-232配置串口3.易于扩展集成

?功能强大的32位ARM 处理器,16M SDRAM 硬件平台

?嵌入式Linux操作系统

?mDev嵌入式开发平台,可在设备中嵌入用户程序

?模块化设计,易于用户集成

4.数据传输过程可靠

?自主研发的ETCP TM协议,保证传输数据不丢失

?双数据中心动态切换

?无线网络休眠检测与激活

?心跳间隔设置,维护通讯链路稳定通畅5.数据传送方式灵活

?数据传输协议UDP/TCP/ETCP TM灵活配置?双条件控制发送,用户可以控制数据发送?永远在线、按需在线、按时在线、唤醒在线?嵌入式数据中心,便捷实现点(多点)到点连接

?Address-IMEI Mapping技术节省无线通讯流量

?智能尝试间隔设置,防止“费用爆炸”?支持短信及震铃唤醒

?支持远程短信配置

6.数据中心功能强大,易于集成

?提供完整的数据中心程序mServer,用户无需重新开发数据中心程序

?远程配置和更新以及链路的测试、维护?实现终端与终端、终端与中心串口、终端与中心TCP端口之间的直接映射

?中心提供DCC数据接口,用户方便地进行二次开发,易于系统集成

技术参数

3.气象:RM Young公司的气象传感器:

1)05106风速风向传感器:

风向传感器是一个牢固且重量轻的的风向标,具有足够低的纵横

比以保证在摇动有风条件下有较好的保真度。通过一密封的精密电位

计来感知叶轮角。一个已知的激励电压作用于电位计,输出电压直接

与叶轮角成比例。当设备移除维修时,一安装的方向环保证正确对准

风向。该设备由带有不锈钢和电镀铝的UV稳定材料制成,使用精密

等级不锈钢钢珠轴承。瞬时保护和电缆终端放在一个便利的连接盒中,

设备安装在标准的1英寸管上。05106型号专用于海上和航海使用,

-MA风传感器有专门的防水轴承润滑剂,一个密封重型电缆尾取代了

标准连接盒。提供单独的电压或电流输出信号调节。风传感器有两个

输出信号选项。05103V型号提供校准的0-5VDC输出,适用于多种

数据记录器。05103L为每个通道提供一个校准的4-20mA电流信

号,适用于高噪声区域或长达几千米的电缆。信号调节电子集成到传

感器连接盒中。

技术参数:

测量范围:风速:0-100m/s(224mph)

风向:360°机械式,355°电子式(5°开角)

测量精度:风速:±0.3m/s(0.6mph)或者测量值的1%

风向:±3°

阀值:螺旋桨:1.0m/s(2.2mph)

风向标:1.1m/s(2.4mph)at10°displacement

动力特性:螺旋桨恒定距离(63%recovery)2.7m(8.9ft)

风向标延迟距离(50%recovery)1.3m(4.3ft)

阻尼比率0.3

阻尼自然波长7.4m(24.3ft)

无阻尼自让波长7.2m(23.6ft)

输出:风速交流电磁感应,每转3个脉冲,每分钟1800转,1800rpm(90Hz)=9.2 m/s(20.6mph)

方位模拟直流电压

电位计电阻10KΩ,线性0.25%

平均寿命50,000,000转

电源:激励电压15VDC maximum

尺寸:高X长38cm(15.0in)X65cm(25.6in)

螺旋桨20cm(7.9in)diameter

安装34mm(1.34in)diameter(standard1inch pipe)

重量:传感器重量0.7kg(1.5lbs)

2)HMP45C温湿度传感器:

HMP45C是一款由Vaisala

Inc(维萨拉公司)生产的,坚固的、

精确的温度/RH湿度传感器,对于

长期使用、无人值守的测量。探头采用电容聚合材料H芯片来测量RH湿度和RPT来测量温度。在测量过程中,由DC电源一直供电HMP45C,可以减少了测量的漏电流和信号衰减。传感器探头可直接连接到Campbell Scientific公司数据采集器,比如CR10X,CR800,CR23X,或CR5000都具有开关量12伏输出终端。

技术参数:

工作温度:-40——60℃

储藏温度:-40——+80℃

探头长度:25.4cm(10in.)

探头直径:2.5cm(1in.)

滤膜:0.2mm聚四氟乙烯膜

滤膜直径:1.9cm(0.75in.)

电能消耗:<4mA

供电电压(通过CSI开关电路):7—35VDC

稳定时间:0.15秒

温度传感器

传感器:1000WPTR,IEC7511/3B类

温度量程:-40——60℃

温度输出电压信号量程:0.008——1.0V

温度误差:<0.5℃

相对湿度传感器

传感器:HUMICAP180

相对湿度量程:0——100%无凝结

相对湿度输出电压信号量程:0.008—1VDC

精度(在20℃):±2%RH(0—90%相对湿度);±3%RH(90—100%相对湿度)

相对湿度温度相关:±0.05%RH/℃

典型长期稳定性:RH变化<1%/年

反映时间(20℃,90%):15秒(带聚四氟乙烯膜)

3)SVS1Sentry能见度传感器:

通过测量空气中经过采样室的离散粒子(烟雾、尘土、雾、降雨和降雪)的总数来测量大气能见度(气象光学距离),一个42度的前向散射角用于确认超范围的粒子尺寸。用户通过转换接收信号强度(消光系数,σ),使用Koschmeider方程来计算MOR,MOR(Km)=3/σ。传感器设计为可以在所有天气条件下使用,一个完整的、上下一体的结构设计可以保持传感器所有的内部电缆得到很好的保护。传感器的机构由阳极电镀铝和耐用的外部维护组成,抗紫外的玻璃纤维可以使仪器的防护等级达到IP66。

技术性能参数:

测量范围:标准30米-16千米的能见度范围,可选择10米-10千米

测量精度:±10%RMSE

AC版本:100-240VAC,24VA,75VA W/加热器

DC版本:10-36VDC,6VA,18VA W/加热器

工作环境温度:-40—60度

工作环境湿度:0-100%

时间常数:60秒

散射角度:42度

光源:880纳米LED

输出:标准0-10VDC模拟,可选0-5V模拟

可选择控制输出板:4-20mA,4-20光电隔离,控制继电器,诊断继电器

重量:8公斤

尺寸:L x W x H889X292X305mm

4)CR800数据采集器:

CR800数据采集器是一个耐用的、电池供电的精密测量仪器。两种采集器的测量电子封装于塑料壳体和一体化的接线面板下。

CR800使用的是

一个外部的键盘显示器

CR1000KD。

CR1000KD通过CS

I/O端口连接到CR800上。

●4M带后备电池的SRAM内存

●程序执行速率可达到100Hz

●CS I/O和RS-232串口通讯

●13位数模转换

●16微处理器具32位内部CPU建构

●实时温度补偿时钟

●后台时间和温变系统标定,实现精确测量

●单独DAC用于激发和测量配比桥式测量

●气体放电管(GDT)输入保护

●具时间和记录号的表格存储数据

●后备电池SRAM和时钟,确保数采器在断电情况下的数据、程序和时间的保持。

●一个程序状态显示LED

4.浮标体:

技术说明:

1、本浮标适用水深3-100米,最大风速45米/秒,最大流速6节,配套28-38毫米浮标锚链和5.0吨沉石。标体干舷约0.75米,灯高2900毫米,标体自摇周期约2.0秒,稳心高约3500毫米。浮标稳性满足4人上标维护操作。

2、本浮标浮体采用聚脲材料制作,浮体内部填充弹性闭孔泡沫,并采用金属材料做增强骨架,整个浮体整体性强,抗撞击能力强,耐腐蚀性好,储备浮力大,在意外破损情况下仍能保持浮力。

3、本浮标浮体预设仪器安装孔和固定支座等,可安装流速仪、水质分析仪等各种监测仪器,标体支架上可按照自动气象站、辐射传感器等仪器,采用太阳能电池板和免维护蓄电池为仪器供电。水中的监测仪器可以由维护人员用人力或简单工具提起,不需整个浮标起吊。浮标的数据采集仪器箱和太阳能电池板都高位安装,浮标能很好的适应北方冬季上浪结冰情况。浮标安装太阳能一体化LED航标灯一个,可以选装雷达应答器或角反射器。

4、浮标各部件可以拆开,可很方便的运输和组装,浮标整体重量轻,总

重量约1500公斤,方便布

设维护操作。

青岛海森特科技有限公司

2009-04-13

综合气象观测与技术保障试卷汇总

湘潭市气象系统2015年综合业务竞赛 综合气象观测与技术保障试卷 总分:100分时间:120分钟 一、填空题:(每空0.5分,共40空,计20分) 1. 本站投入业务应用的自动站有( )和( )型号。 2. 全国实时-历史地面气象资料一体化业务自( )起转入正式运行。全国所有( )站和()站资料纳入资料一体化业务管理。 3. 地面气象资料一体化业务台站工作任务有以下4个方面的内容: (1)();(2)();(3)();(4)()。 4.台站对疑误信息的反馈包括( )反馈、( )反馈和( )反馈。 5. 新型自动气象站基于()技术和()技术构建,采用了国际标准并遵循标准、开放的技术路线进行设计。 6.新型自动气象站按照“()+外部总线+()+()+外围设备”的结构设计。 7.前向散射能见度仪通过测量( ),可以得出散射系数,从而估算出气象光学视程。 8.EL15-2C型风向传感器输出的信号为( )信号。

9.新型自动气象站的供电电源为( )V蓄电池。 10.守班期间,因硬件故障导致整套自动站无法正常工作,经排查在( )小时内无法恢复时,及时启用备份自动站或便携式自动站。 11.新型自动站硬件包括()、()、()、()四部分。 12.《中国气象局县级综合气象业务改革发展意见》指出:发展县级综合气象业务,就是要实现县级气象机构()、()、()和()等各项业务综合化、集约化。 13.为便于疑误数据处理,将疑误数据分为显性错误数据、()和缺测数据3类。 14.《地面气象观测业务调整技术规定》中取消13种天气现象观测,出现雪暴、霰、米雪、冰粒时,记为(),这4种天气现象与雨同时出现时,记为()。 15.已实现自动观测的气温、相对湿度、风向、风速、气压、地温、草温记录异常时,正点时次的记录按照()、()、()、内插记录(瞬时风向、瞬时风速缺测处理,风向、风速不做内插)的顺序代替。 16.因设备故障、雨量空翻等造成降水类和视程障碍类天气现象自动观测记录与实际情况不一致时,仅对()时次记录进行处理。 17.自动站中的雨量传感器通过计数翻斗所带的磁铁扫()来测量雨量,计数翻斗每翻转一次,发出一个计数(),表示下了()毫米的雨。 18.传感器是指能感受规定的被测量并按照一定的规律转换成可用输出信号的器件或装置,通常由()元件和()元件组成。 二、单选题:(每题1分,共30题计30分) 1.当用万用表测量雨量传感器上干簧管是否故障,应该使用万用表的

基于北斗卫星导航定位系统的气象水文信息系统

基于北斗卫星导航定位系统的气象水文信息系统 【摘要】气象水文信息与工农业生产、百姓生活、军事活动、科学试验息息相关,构建一个科学合理、运行高效的气象水文信息系统,提高气象水文信息传输的实时性、信息处理的准确性、决策参考的科学性,从而使气象水文信息保障优质、高效。本文构建一个基于北斗卫星导航定位系统的气象水文信息系统,主要介绍系统组成、主要功能和应用情况。 【关键词】北斗卫星导航系统;气象水文信息系统;信息采集 气象水文信息与工农业生产、百姓生活、军事活动、科学试验息息相关,构建一个科学合理、运行高效的气象水文信息系统,提高气象水文信息传输的实时性、信息处理的准确性、决策参考的科学性,为优质、高效的气象水文信息保障提供有力的支持。北斗卫星导航定位系统是我国自主研发的卫星导航定位系统,集定位、短报文通信和授时三大功能于一体,基于北斗卫星导航定位系统的气象水文信息系统能较好地担当气象水文信息保障职责。 一、系统组成 气象水文信息系统主要由气象水文信息自动采集系统、信息传输系统、信息综合应用系统组成。 1.气象水文信息自动采集系统 气象水文信息自动采集系统由气象水文监测室及其所辖自动气象水文监测站、卫星遥测站、移动式气象水文数据采集终端、固定式气象水文数据采集终端和测量船等自动气象要素终端采集设备组成。 2.信息传输系统 数据传输系统由北斗卫星及定位总站组成。北斗卫星接收到采集终端发来的数据后,将其发送给定位总站。总站进行分拣后将数据通过北斗卫星发送到相应气象水文监测室的指挥型用户机;同时将所有数据通过地面链路发送到指控中心。定位总站通过逆向流程将指控中心发出的远程终端配置指令通过卫星发送到相应普通型用户机,由普通型用户机发送数据采集终端,进行系统识别码、采集频率等参数的修改。 3.信息综合应用系统 信息综合应用系统由信息分析处理机、信息显示设备、信息存储设备、信息应用工作站、网络互联设备、网络安全设备、信息交换处理机等组成。 二、系统功能

区域气象自动监测系统设计及建设

区域气象自动监测系统设计及建设 近年来,气象综合观测系统建设快速发展,全国地面气象观测站已全部完成自动气象站的建设,区域自动气象站作为综合观测体系的重要组成部分具有量大面广特点,并且由省级保障部门进行技术指导,市、县两级保障。随着对气象观测数据的精度要求越来越高,根据新一代气象观测网络建设的规划,已建成1657个新型区域自动气象观测站,实现了区域自动气象站全省乡镇全覆盖和618 个山洪地质灾害点气象监测,加上土壤水分观测自动气象站、交通气象自动气象站的建设,共同为气象预报预测、决策气象服务、公共气象服务、气象防灾减灾发挥了极其重要的作用。 区域气象自动监测系统是针对区域范围内,可能会对人的生产生活造成影响的气象要素,进行长时间区域范围内不间断的准确监测而设计开发的一款标准区域气象监测站。主要应用于城市降水网络、山洪预警、森林生态、核电厂环境监测等应用。主要监测要素是雨量、风向、风速、太阳辐射、气压、温度、湿度等气象参数。 一、系统内容 该区域气象监测系统是方大天云设计的支持站点参数、实时数据、历史数据、加密间隔、运行状态等信息的远程维护,极大地方便了用户使用和日常维护工作。此外自动站可实现自动电源管理,数据自动

采集、存储、通讯、分析等功能,能够满足灾害性天气监测、降水过程加密观测及多种形式气象保障和气象服务的需求。 二、系统指标 风速 0~60m/s;精度:3%(0-35m/s);5%(>35m/s) 风向 0~359.9°;精度:±3° 降水强度 0~200mm/h;精度:5% 降水类型雨/雪 大气压力 300~1200 hPa;精度:±1.5hPa 空气温度 -50~60°C;精度:±0.2°C(-20~+50°C)‘±0.5°C(>-30°C 空气湿度 0~100%RH;精度:±2%RH 通讯接口 RS232/RS485,板载GPRS 供电方式交流220V/太阳能+蓄电池 工作环境温度 -50~+50℃ 工作相对湿度 0~100%RH 防护等级 IP65 可靠性免维护,防盐雾,防尘 功耗 3-30W 三、功能特点 具有极强针对性的区域范围气象监测设备

昆山水文气象资料

昆山地处江苏省东南部,属北亚热带南部季风气候区,四季分明,冬冷夏热,光照充足,雨水充沛,雨热同期,无霜期长,气候资源丰富。但也因各年冬、夏季风进退早迟,强度不一,温度和降水的年际变化较大,分布不均,旱涝、高温、大风、霜冻等气象灾害时有发生。 根据近三十年(1980~2009年,下同)气象资料统计,年平均气温为16.1℃,极端最高气温38.7℃,极端最低气温-8.0℃。年平均降水量1133.3毫米,最多年降水量1522.4毫米,最少年降水量826.1毫米,年平均降水日数124天,最多年降水日数144天,最少年降水日数99天。年平均日照时数1974.8小时,最多年日照时数2307.4小时,最少年日照时数1643.4小时,年平均日照百分率45%。年平均相对湿度79%。年平均初霜日11月13日,终霜日3月26日,年平均无霜日230天。年平均风速3.1米/秒,冬季盛行东北风~西北风,夏季盛行东南风,年最多风向为东南风。 一、四季特征 春季(3~5月)气温逐步回升,雨水逐渐增多。春季平均气温14.7℃,平均降水量264.2毫米,占全年总降水量23.3%,平均日照时数503.1小时,占全年总日照时数的25.5%,春季有时有“倒春寒”和连阴雨天气发生。 夏季(6~8月)是一年中最热的季节,平均气温26.6℃,夏季日最高气温≥35℃的天数历年平均有8.1天。夏季降水量平均为508.7毫米,比春季增加近一倍,占全年总降水量的44.9%。初夏有一段集中降水时段,称为“梅雨期”,一般在6月中旬入梅,7月上旬末出梅。“梅雨期”过后受副热带高压控制,进入盛夏高温天气,日照强烈,总日照为585.8小时,占全年总日照的29.7%。8-9月台风季节,热带风暴(台风)造成大风、暴雨危害。 秋季(9-11月)气温开始逐渐下降,雨水减少,秋季平均气温为18.0℃,近五年来秋季气温持续偏高,平均值均在19.0℃以上。秋季总降水量平均207.6毫米,占全年总降水量的18.3%,个别年份有秋旱发生。前期由于副热带高压势仍较强,有时出现“秋老虎”天气,但高温持续时间不长。后期由于冷空气开始活跃,气温明显下降。秋季总日照时数500.1小时,占全年总日照时数的25.3%。 冬季(12月-次年2月)主要受大陆冷高压控制,寒冷少雨。冬季平均气温为5.0℃,各年差异较大,最高冬季平均气温达7.1℃,最低2.6℃。近年来随全球气候变暖,冬季出现暖冬机率增加,近十年来,冬季平均气温有8年高于历史平均值。冬季少雨,平均降水量148.8毫米,占全年总降水量的13.1%。冬季总日照时数为400.7小时,占全年总日照时数的20.3%。 二、气温 昆山近三十年平均气温为16.1℃,最高年平均气温17.8℃,出现在2007年,最低年平均气温14.6℃,出现在1980年,年际变幅达3.2℃。四季中最热7月平均气温为28..2℃,最冷1月平均气温为3.7℃。由于气候变暖,统计最近十年的平均气温比上世纪九十年代升高了1.0℃,比八十年代则升高达2.0℃。夏季最高气温≥35℃的高温天数,上世纪八十年代平均仅2.7天,九十年代为6.9天,最近十年达14.8天,并多次出现极端最高气温38℃以上的酷热天气。如2007年7月24日-8月3日间连续11天的高温天气。相反,冬季常出现暖冬天气,冬季平均气温近十年比八十年代升高了2.0℃。 三、降水、湿度 历年平均降水量为1133.3毫米,年际差异较大,最多年降水量达1522.4毫米(1991年),最少年降水量为826.1毫米(1992年),统计年降水量大于1200毫米的有十年,占三分之一,有五年的年降水量在900毫米以下。一日最大降水量为204.9毫米,出现在1985年8月1日。统计全年暴雨日数(日降水量≥50 毫米)平均为2.9天,以6-8月出现次数最多。 统计全年总降水日数,历年平均为124天,最高年份1980年达144天,最少1995年仅99天。月降水日数最多的为6月份,1月为最少。 历年平均相对湿度79%,各年变化差异不大,最大84%(1984年),最小69%(2005年),日最小相对湿度极值为6%(1986年3月5日)。相对湿度的日变化正好与温度相反,一天中清晨气温出现最低时,往往是相对湿度最大时,反之亦然。 四、日照

水文、气象实时监测系统(浮标)

水文、气象实时监测系统设计方案 (浮标安装) 目录

一、前言 二、港口海域建立海洋气象环境实时监测系统的意义 三、港区海洋气象环境实时监测系统的结构组成及工作原理 a)结构组成 b)主要技术指标 c)系统集成 i系统集成图 ii系统集成工作原理 1.系统组成组建 2.组件连接和系统工作流程 3.电源 四、附件 阔龙相关工作原理介绍 GPRS数据通讯模块介绍 浮标体相关介绍

一、前言 水质环境实时监测(传输)系统是一个用于监测港域海洋环境因素(如水温、潮流、流向、水位等)、气象环境因素(温湿度、风速风向、气压、雨量、能见度等),并为船舶进出港、离靠泊提供安全保障的监测服务信息网络。其核心是及时将海洋气象环境要素观测值予以传输和显示。 港区海洋气象环境实时监测(传输)系统最早建成于美国的一些港口和海湾,如美国的纽约港、新西泽港、西雅图港等,近年台湾和日本的一些港口亦已建有该系统。然而我国大陆港区至今尚未建立与开展此项工作。 本海流气象实时监测系统旨在提供有效可靠的海流的流速、流向、气象的温湿度、风速风向、能见度等实时数据,为港口海域的船只航行安全等提供实时水文和气象监测数据。系统采用世界上最先进的声学多普勒法测量海流和流速剖面,最为稳定的温湿度、风速风向、能见度等气象传感器,使用GPRS无线数据传输完成实时系统监控和数据传输。可实现远程现场数据查看、数据分析。

二、港域建立海洋气象环境实时监测系统的意义 随着航运市场的进一步开放,各种运输方式,各港口之间的竞争日趋激烈,因此立足本港,不断提高港口的管理水平,己成为顺应复杂竞争态势的关建之举,其中现代化的信息技术则是实现此目的的强力支撑和后盾,亦是衡量现代化港口的一个重要标志。 本系统投入业务运行后,其实时信息可有效地保障船舶的进出港和离靠泊的安全,降低船舶的在港时间,规避船只对码头设施的碰撞和破坏,切实获取港口的最佳经济效益,同时大大地提升基地的著名度和竞争力,填补我国港口在海洋气象环境实时监测系统方面的空白。 此外,我们亦关注到海洋气象环境实时监测系统运行对港口海域的现实需要和意义。 泊前沿的特殊流况_迴流现象,是靠泊船只多次发生碰撞码头设施事故的主要原因。因此,在码头前沿设置可以测量剖面流速、流向的自动测流系统,及时向靠泊船只提供泊位前沿水域的实际流况特征,乃是减少或避免船舶碰撞码事故发生的现实和有效的举措。 据此可知,“海洋气象环境实时监测系统”运行对基地营运管理的现实需要和意义。

国家气象水文部门的作用及运行-WMO

国家气象水文部门的作用及运行 供决策者参考的 世界气象组织的声明 世界气象组织 天气 ? 气候 ? 水

国家气象水文部门的作用及运行 供决策者参考的世界气象组织的声明 1. 世界气象组织(WMO)编写这份声明的目的是敦促决策者加强对国家气象水文部门的支持, 以便于其履行职责和提供服务,从而为满足社会需求和国家发展目标做出贡献。 关键的社会经济动力 2. 民众的安全与保障、水和粮食安全、经济增长和可持续发展、社会日益繁荣、加强抵御灾 害和气候变化的能力,以及改善公众健康都是每个政府关注的最重要问题。为了应对这些问题,各 国政府必须制订和落实考虑了气候变率和变化所带来挑战的各项行之有效的政策,并提倡社会和环 境管理的基本原则。然而,关于社会民生和经济增长,众所周知,我们正面临着自然环境变化的挑战,气候变化使之恶化,反过来又威胁着人类社会的可持续发展,灾害性天气和气候极端事件频发 引发了各种灾害,危害粮食安全,造成清洁的淡水量减少,人口被迫迁移,疾病增加和肆虐等等。 由于日益加快的城市化使这一形势更加复杂化,人类居住扩大到以前荒芜人烟的高风险地区,如: 干旱地区、山坡、泛洪平原和易遭受内涝的沿海地区,使人口暴露在粮食无保障、空气和水传播疾病、炎热天气、干旱、山体滑坡、洪水、风暴潮和海啸的环境之中。 3. 在过去的十年中,人们为自然灾害引发的灾害付出了沉重的代价。在全球范围内,灾害造 成了严重的后果,超过70万人丧生,超过180万人受伤,还有超过2400万人无家可归。总体而言,将近17亿人口从多种方面受到了灾害的影响。总经济损失超过1.4万亿美元。此外,2008年到 2012年期间,1.44亿人因灾害而流离失所。只有清楚地了解这些与灾害性天气和极端气候事件相关 的风险、建设多灾种早期预警、将天气和气候信息与决策结合、以及充分地减少灾害风险和采取防 灾措施,我们才能发展抗灾型社会并促进经济的持续增长。 为NMHS布的早期预警投资一美元,就 可以挽救至少七美元的损失。 4. 并非所有会员的NMHS具备开展监测、预测和发布灾害性天气和极端气候事件预警所需的科 技和人力资源能力。NMHS是否能够提供高质量的天气、气候、水文和相关环境服务取决于:(a) 是 否具备收集、加工、存储以及交换资料和产品的现代基础设施和训练有素的人员;(b) 是否有能力 维持高标准的观测和资料;(c) 是否参与科研工作,并是否获取科研成果,从而改进监测、预测和 认识所有时空尺度的天气、气候、水和相关环境条件;(d) 是否有能力准备和提供高质量天气、气 候和与水相关灾害的早期预警和基于影响的预报;(e) 以及是否能够理解包括紧急响应当局在内的 各类用户界的需求,并且将此类需求融入到预报和预警计划中。 国家气象水文部门的作用 5. 为天气、水文和气候服务投资将极大地推进拯救生命和财产、最大限度地减少经济损失和 维持自然环境等各项工作。世界气象组织公约重申“国家气象、水文气象和水文部门在观测和认识 天气与气候以及提供气象、水文和相关服务以支持相关的国家需求方面的使命至关重要,该使命应 包括以下领域:(a) 保护生命与财产;(b) 保护环境;(c) 为可持续发展做出贡献;(d)促进长期观 测和气象、水文和气候资料的收集,包括相关环境资料;(e) 促进内生能力建设;(f) 履行国际义务;(g) 为国际合作做出贡献。” 6. 自从人类社会和环境管理进入新纪元以来始终如此,有关天气、水文和气候过程的知识关 系到人类活动的方方面面,已对文化、传统和社会的发展路径产生了影响。正是在这个框架下,各 国的NMHS有能力针对多种与天气、气候、水相关的事件开展监测、预报和发布预警,这类事件可影 响人民生命和社会经济发展。例如,在自然灾害方面,NMHS赋有义不容辞的使命,来监测和预警单 个事件,以帮助人们提前察觉灾害影响,保护生命,加强社会的抗御力,维持生产率和经济增长, 并减少财产损失。

地面气象观测业务技术规定2016版

地面气象观测业务技术规定(2016版) 一.观测业务要求 1.1观测时次 1、国家级地面气象观测站自动观测项目每天24次定时观测。(摘自气发〔2008〕475号) 2、基准站、基本站人工定时观测次数为每日5次(08、11、14、17、20时),一般站人工定时观测次数为每日3次(08、14、20时)。(摘自气测函〔2013〕321号) 1.2观测项目 1、各台站均须观测的项目:能见度、天气现象、气压、气温、湿度、风向、风速、降水、日照、地温(含草温)、雪深。 2、由国务院气象主管机构指定台站观测的项目:云、浅层与深层地温、蒸发、冻土、电线积冰、辐射、地面状态。 3、由省级气象主管机构指定台站观测的项目:雪压、根据服务需要增加的观测项目。(1-3条摘自《地面气象观测规范》、气测函〔2013〕321号) 4、有两套自动站(包括便携式自动站)的观测站,撤除气温、相对湿度、气压、风速风向、蒸发专用雨量筒、地温等人工观测设备;仅有一套自动站的观测站,仍保留现有人工观测设备。(摘自气测函〔2013〕321号) 5、云高、能见度、雪深、视程障碍类天气现象、降水类天气现象等自动观测设备已正式投入业务运行的观测站,取消相应的人工观

测。 6、为了保持观测方法与观测手段的延续性,张北、长春、寿县、电白、贵阳、格尔木、银川与阿勒泰8个长期保留人工观测任务的基准站,保留08、14、20时人工观测任务(含自记仪器记录整理)。(摘自气测函〔2012〕36号、气测函〔2013〕321号) 定时人工观测项目表 1.3观测任务与流程 1、每日观测任务 (1)每日日出后与日落前巡视观测场与仪器设备,确保仪器设备工作状态良好、采集器与计算机运行正常、网络传输畅通。具体时间各站自定,站内统一。 (2)每日定时观测后,登录MDOS、ASOM平台查瞧本站数据完整性,根据系统提示疑误信息,及时处理与反馈疑误数据;按要求填报元数据信息、维护信息、系统日志等。

南通海洋环境监测中心站海洋水文气象台站自动观测系统配件

南通海洋环境监测中心站海洋水文气象台站自动观测系统配件 序号名称数量备注 1 气象数据采集器主板4件 2 温湿传感器封装帽(敏感件外帽)4件 3 潮位仪主板4件 4 压力式潮位仪主板4件 5 不锈钢AWAC水下支架2件 6 小型铠装电缆100米 7 信号电缆100米 注:投标方竞价所提供的海洋水文气象自动观测系统的所有配件应该和南通海洋环境监测中心站目前正在应用的SXZ2-2型海洋水文气象自动观测系统相兼容和匹配。 技术参数 一、气象数据采集器主板 1. 技术要求: 1.1功能及设计要求: ①可实现气象各观测参数数据的自动观测,并可通过有线或无线方式进行远程数据传输;数据采集、记录及传输格式符合GB/T14914—2006《海滨观测规范》的规定;仪器设备自动化技术设计符合HY/T 059-2002《海洋站自动化观测通用技术要求》的规定;环境性能符合海洋行业标准《海洋仪器基本环境试验方法》(HY016—92); ②采集器的数据采集、计算、处理、数据传输等符合海洋站业务

流程。主要实现气温、湿度、气压、风、降水、能见度等参数的自动观测,对数据的采集、处理、接收、存储、显示、编报、月报生成、转发等符合《海滨观测规范》(GB/T14914-2006)。既可作为单机使用,又可与浮子式自动验潮仪配套使用。 1.2供电方式: 采集器可选择交流220V、12V直流蓄电池、太阳能电池三种供电方式,为实现三种供电方式的兼容及各模块之间的电气隔离,对各模块只提供12V直流电源,各自所需电源由各自板上电路实现; 1.3观测数据接收: 具有极强的可扩展性,中央处理模块通过RS-232接口可接收气象(温湿、气压、风速风向、雨量等)、能见度等数据;预留有多种传感器备用接口,与遥测波浪仪、ADCP、水质传感器挂接后可组成海洋水文气象自动综合观测系统。可以增加测量以下参数:潮位、温盐、流速流向、波高、波周期、水质等,或按照用户的要求增加其它的测量参数。 1.4与系统各部分的兼容性: ①传感器通讯:通过RS-232接口及RS-485接口与各数据采集模块及各传感器通讯; ②显示:与SDW8060-80液晶显示器项匹配。 ③与海洋水文气象观测系统工控机通讯:无线通讯方式下,通过RS-232接口连接GPRS DTU模块与接收工控机进行通讯。 1.5通信方式灵活:

6气象报文

PART1气象报文的识读 常见飞行气象情报的种类: 机场天气报告:METAR报,SPECI报 航空天气预报:TAF报(航站预报) 重要气象情报:SIGMET报 区域预报系统产品:高层风温预告图、中层风温预告图、 高层重要天气预告图(SWH)、中层重要天气预告图(SWM) 一、机场天气报告 1、机场天气报告(METAR),又称为SA报: 机场日常天气报告,一般每半小时或1小时发布一次。 例:METAR ZBAA200000Z00000MPS3000BR FEW023SCT04012/11Q1024NOSIG= 2、特殊观测报告(SPECI),又称SP报 当机场出现危险天气或危险天气结束,要及时发布SPECI 例:SPECI ZHHH060121Z12004MPS0800R04/0800N FG SKC01/00Q1027NOSIG= 3、METAR报每项含义 METAR ZBAA(1)200000Z(2)00000MPS(3)3000(4)BR(5)FEW023SCT040(6)12/11(7)Q1024(8)NOSIG(9)= (1)四字代码,表示首都机场,其它如ZGGG白云机场,ZSSS虹桥机场 (2)表示日期(20日)和时间(03时00分钟),Z表示世界时 (3)表示风向风速,00000MPS表示静风,此外,还可以18004MPS等,31010G18MPS。MPS表示风速单位,米/秒,常见:KMH(千米/小时),KT(海里/小时)、VRB表示风向不定。 风向风速项的一些说明: 是观测前10分钟内的平均风向和平均风速。 VRB:当平均风速等于或小于2米/秒或6千米/小时时;当风向多变、风速较大时,只有在无法定风向时(例如,雷暴经过时),才编写VRB。

大数据时代的气象水文信息保障

大数据时代的气象水文信息保障 孙子兵法中讲到“知己知彼,百战不殆;知天知地,胜乃可全。”可见气象水文信息对于军事领域和国民经济领域都具有非常重要的作用,随着气象水文信息需求和技术的发展,气象水文信息保障也不仅满足于天气预报,而扩展到现有的气候预测、气候可行性论证、公共气象服务、专业专项气象服务、气象防灾减灾等,大数据时代到来,又将给气象水文信息保障带来巨大的变化。 一、气象水文信息的大数据特征气象水文信息保障离不开气象水文数据,包括对气象、水文、天文、潮汐、空间天气等观测数据以及加工处理后得到的产品数据,且是海量数据,如美国国家气象频道每天要处理20 兆兆字节的数据,这里包括有关风、雨、雪、冰雹、龙卷风、温度、气压、湿度、地震、飓风、闪电等的相关数据。目前我国每年新增的气象数据就达到PB量级,较上世纪90年代增长了数千倍,并仍在快速增长中。气象水文保障对气象水文信息的时效性要求高,比如天气预报粒度从天缩短到小时,特别是发生自然灾害时时效要求更严苛。大气运动的随机性,导致各气象水文要素无时无刻不在变化中,气象水文信息是动态变化的。大气运动的规律性,可以利用历史数据和实时动态数据,发现数据与结果之间的规律,并假设此规律会延续,捕捉到变量之后进行预测。最早得到应用天气象预报就是利用了气象信息的规律性。 二、大数据技术在气象水文信息保障中的应用(一)数据挖掘技术

数据挖掘技术在从大量数据中提取特征与规则方面具有很大的优势,能够自动发现以前未知的模式,自动预测未来趋势和行为。由于气象水文数据的数据量巨大,数据本身又具有模糊性和不确定性等因素,因此将数据挖掘技术应用于气象水文数据分析和气象水文预报决策中,利用数据挖掘技术的归纳能力,利用机器学习和数据挖掘算法,可以自动地从大量数据中发现有用的模式,具有一定的现实意义。 在气象水文信息保障中数据挖掘过程由数据准备、挖掘、表述及分析 3 个主要的阶段组成。数据准备阶段就是从历史数据和当前的操作数据中提取数据并集成,同时对数据进行数据消脏、数据选择和格式转换等预处理,为数据挖掘做准备。挖掘阶段就是综合利用分类、序列分析、关联规则等各种数据挖掘方法,分析经过预处理的数据,发现事件之间的时间和空间关系,从中提取有关特征和规则。上述过程需要不断地反复和评估,以得到一个较为理想的气象水文预报模型。表述就是将数据挖掘所获得的特征和规则以便于理解和观察的方式反映给系统。分析就是对数据挖掘所提取的异常模式或正常轮廓进行评价, 如果它能够有效地反映入侵情况,就说明它是成功的,否则,就可以重复执行上述过程,直到满意为止。 (二)云计算技术将各类计算资源融合在一个大资源池中,资源池被云计算平台管理之后,动态地在上面创立一个虚拟化资源池,使它成为新的气象水文数据处理中心。各级气象水文部门只需向云计算管理平台发送指令就可以动态添加新的资源或取走资源。 1.数值运算由于云计算具有强大的运算能力,这为气象水文数据运

气象观测专用技术装备管理办法

气象观测专用技术装备管理办法 第一章总则 第一条为加强气象观测专用技术装备的管理,规范气象观测专用技术装备的规划、技术要求、研制、定型、许可、使用、运行保障、质量监督和报废等工作,提高气象观测专用技术装备质量,根据《中华人民共和国气象法》等有关法律、法规和规章规定,制定本办法。 第二条本办法所称气象观测专用技术装备,是指专门用于气象观测业务的设备、仪器、仪表和消耗器材。 第三条气象观测专用技术装备管理应以质量管理为核心,统筹规划布局,统一技术规范、产品标准要求,严格装备管理程序,把好各环节质量关,实现气象观测专用技术装备质量可靠、运行稳定、技术性能满足业务要求。 第四条中国气象局观测业务主管部门负责全国气象观测专用技术装备的归口管理,授权中国气象局相关业务单位负责气象观测专用技术装备定型受理、技术审查和监督检查以及实施装备许可的质量检测测试等技术支撑工作。各省(区、市)气象局负责本行政区域气象观测专用技术装备管理。 第二章装备规划 第五条中国气象局观测业务主管部门根据综合气象观测系统发展规划,提出气象观测专用技术装备需求,适时组织制定气象观测专用技术装备发展专项规划,保证装备的先进性、可靠性和发展的可持续性。 第六条气象观测专用技术装备发展专项规划应当按照“列装一代、研制一代、探索一代”的原则,提出气象观测专用技术装备发展目标和重点任务,明确总体功能、技术体制和业务布局规模。第七条中国气象局应当向社会公布综合气象观测系统发展规划、气象观测专用技术装备需求或专项规划、综合气象观测研究计划及年度研发指南。 气象观测专用技术装备发展专项规划应广泛征求意见,并定期滚动修订。 第三章装备技术要求 第八条对于列入规划的气象观测技术装备,中国气象局观测业务主管部门应当组织制定相应的功能规格需求书,明确具体功能、技术规格、数据格式和传输方式等要求。 第九条气象观测专用技术装备产品标准根据气象观测专用技术装备功能规格需求书制订,纳入气象标准制修订计划统一管理。 第十条气象观测专用技术装备的设计、研制、定型、生产与验收,应严格按照气象观测专用技术装备产品标准或功能规格需求书的要求进行。 第四章装备研制 第十一条气象观测专用技术装备产品研制应按照市场机制运作,研制单位根据气象观测专用技术装备需求、专项规划和研发指南,自主立项研制或向中国气象局申报立项研发。对于重大或急需并且具备市场竞争条件的气象观测专用技术装备,中国气象局观测业务主管部门根据需要,采取招标方式确定研制单位。 第十二条对于中国气象局立项研发或招标研制的气象观测专用技术装备,研制单位应当保证研发进度和质量,按期提交研制产品。 中国气象局鼓励企业、相关气象业务及科研单位开展合作,研制系统集成度高、成套性好、系列化的气象观测专用技术装备。

雨水情监测系统

系统建设原则 (1)实用、可靠,山洪灾害水雨情监测站的运行环境条件恶劣,监测人员的技术水平参差不齐,系统选用的监测方法、技术、设备应注重实用性和可靠性,并符合山洪灾害监测预警的实际需求。 (2)突出重点,合理布设监测站网。山洪灾害分布面广,应优先考虑在对人民生命财产危害严重的山洪灾害多发区建立监测系统。在现有的气象及水文站网基础上,充分考虑地理条件、受山洪灾害威胁程度,以及暴雨分布特点,合理布设水雨情监测站网。 (3)简易监测为主,简易监测与自动监测相结合。根据山洪灾害点多面广的特点,以简易监测为主,因地制宜地建设适量的自动监测站。 (4)因地制宜地选择信息传输通信组网方式,信息传输通信组网应根据山洪灾害防御信息传输实际需求,结合山洪灾害防治区的地理环境、气候条件、现有通信资源、供电情况、居民居住分布等实际情况,因地制宜地选择和确定通信方式,以保证信息传输的可能性、实时性和可靠性。充分利用现有的通信资源,节省系统建设、管理及运行的投资。 建设依据 《水情自动化测报系统规范》(SL61-94); 《水文情报预报规范》(Sl250-2000); 《水文站、网规划技术导则》(SL34-92); 《水情自动测报系统设计规定》(DL/T5051-1996); 《水情自动测报系统设备基本技术条件》(SL/T102-1995); 《水情自动测报系统设备—遥测终端机》(SL/T180-1996); 《水情自动测报系统设备—中继机》(SL/T181-1996); 《水情自动测报系统设备—前置通信控制中心》(SL/T182-1996);

设备安装调试 1)自动雨量站的安装调试 快速安装 安装一体化支架 打开一体化支架包装箱,取出一体化支架,放置在事先预埋的混凝土基桩上,拧紧四个平垫、弹垫、螺母固定于基座上即可,如图: B B B 安装终端机 打开终端机箱,取出终端机。用十字螺丝刀拧开固定终端机箱盖四周的4个螺钉,向上提起终端机箱盖,用螺栓、垫片从终端机内部向下穿过4个底板固定孔,用螺母进行第一次固定,然后将终端机底板上边4个螺栓长出的部分插入一体化支架的法兰盘上,用螺母将终端机与法兰盘拧紧固定,在将终端机箱盖盖回原处并用4个螺钉拧紧固定。 机箱底板固定与一体化支架实际效果图:

气象报文用户手册

目录 1、报文手册使用总则 2、航空气象术语 3、机场天气报告及趋势预报 4、TAF(机场预报) 5、(ROFOR)航路预报 6、SIGMET(重要气象情报)和AIRMET(低空气象情报) 7、GAMET(低空飞行区域预报) 8、附录 一、报文手册使用总则 由于气象要素在空间和时间上的多变性、以及某些气象要素定义的局限性,机场天气报告中所给的任何要素的具体数值必须理解为观测时实际情 况的最佳近似值。航空气象预报中任何要素的具体数值应当理解为在该预报时段内(或该时刻)该要素最可能的值,预报中某一要素出现或者变化的时间应当理解为最可能的时间。 二、航空气象术语 机场天气报告:中国民航地面气象观测报告主要有机场例行天气报告(METAR )和机场特殊天气报告(SPECI ).作用:描述观测时段内风向/风速/阵风、风向转变、能见度、跑道视 [气象报文解读手册] 山西空管分局气象台 [2013年6月]

程、观测时的天气、云层、气温/露点、QNH(修正海压)、过去一小时(但非观测时)的天气(需要时)、风切变资料(需要时)。 机场例行天气报告(METAR):无论有无飞行任务都应当按照指定的时间、间隔和项目进行例行观测和报告。例行观测的时间间隔通常为1小时,也可以为0.5小时,太原机场每半小时发布一次。 机场特殊天气报告(SPECI):在两次例行观测时间之间,当地面风、能见度、跑道视程、天气现象、云(垂直能见度)和气温中的一项或者多项出现特殊变化并达到规定的标准时发布的天气报告。 趋势预报:附加在机场例行报告或者特殊报告之后的该机场气象情况预期趋势的简要说明组成。有效时间为附着的天气报告的时间起的2小时。 作用:指明地面风、能见度、天气现象、云和垂直能见度中的一个或者几个要素的在未来2小时重大变化。 机场天气预报: 目前中国民航常用的有FC、FT两种。其中FC为9小时预报,FT为24小时预报。其中FC报每3小时发布一次,FT报每6小时发布一次。 作用:描述以机场跑道为中心的视区范围内指定时间段内的天气情报,包括地面风、能见度、天气现象、云和气温以及在预报有效时段内这些要素中的一个或者几个要素预期的重大变化。 航路预报: 由本地区的民航地区空管局确定,指定的机场气象台发布。 航路预报应当包含航路上重要天气现象及与之结合的云、积冰、颠簸、高空风、高空温度,其他要素可以根据需要增加。这一情报应当覆盖有关飞行的时间、海拔高度和地理范围。作用:当低空飞行密度较小时,或者低空飞行密度较大但有关机场气象台(站)不能得到低层区域预报时为特定范围内飞行高度在3000米(含)(高原地区为4500米(含))以下的航班提供起飞机场至第一降落机场航路上的气象情报。 SIGMET: 缩写明语形式的重要气象情报,由气象监视台发布(包括台北和香港,中国现有13个气象监视台)。 作用:对中高空(FL100以上)有关航路上可能影响航空器飞行安全的天气现象,以及这些现象在时间和空间上的发展,以缩写明语作有关其发生和∕或预期发生的简要说明。AIRMET: 缩写明语形式的低空气象情报,由气象监视台发布。 作用:对低层(FL100以下)有关航路上可能影响航空器飞行安全的天气现象,以及这些现象在时间和空间上的发展,以缩写明语作有关其发生和∕或预期发生的简要说明。该情报中的天气现象未包含在为有关的飞行情报区(或其分区)的低空飞行发布的预报中。GAMET: 缩写明语形式的低空飞行区域预报,由指定的气象台制作。 作用:为支持AIRMET的发布,指定气象台使用缩写明语,为在飞行情报区(或分区)的低空飞行所作的并按有关的协议与邻近飞行情报区中的气象台进行交换的区域预报

武汉气象水文及地形地貌

武汉气象水文及地形地貌 一、气象、水文 武汉地处我国东部沿海向内陆过渡地带,地处中纬度,属亚热带湿润性东南季风气候区。具有冬寒夏暖、春湿秋旱、夏季多雨、冬季少雪、四季分明的特征。年平均气温为16.7℃,7月平均气温高达28.9℃,1月仅3.5℃。夏季气温高,35℃以上气温天数为40天左右,极端最高气温41.3℃,极端最低气温-18.1℃,武汉日均温≥10℃持续期达235天,年平均无霜期240天。一年四季分配也以夏季最长,达135天,冬季次之,为110天,具有冬夏漫长而春秋短促的显著特点。武汉地区降水充沛,多年平均降水量1284.0mm,降雨集中在4~9月,年平均蒸发量为1391.7mm,绝对湿度年平均16.4毫巴,年平均相对湿度75.7%,湿度系数Ψw=0.903,本地区大气影响深度da=3.0米,大气影响急剧深度为1.35米。 武汉市区内水系发育,长江、汉水横贯市区,将武汉“切割”成武汉三镇,两大水系支流有府河、滠水、长河、倒水等。以长江和汉水对区内地下水动态、水质影响最为突出。市区内分布有众多大小不一的湖泊,对位于湖泊四周的建筑工程应高度重视地面水体的影响。 据汉口(武汉关)水文站实测资料,长江武汉段最高洪水位为29.73m(吴淞高程),最低枯水位8.87m,水位升降幅度20.86m。长江、汉江与其两岸地下承压水有较密切的水力联系,愈靠近长江、汉江江边地段,水位互补关系愈明显。 二、地形及地貌 武汉地处江汉平原东部,地势为东高西低,南高北低,中间被长江、汉江

呈Y字型切割成三块,谓之武汉三镇。武汉城区南部分布有近东西走向的条带状丘陵,四周分布有比较密集的树枝状冲沟,武汉素有“水乡泽国”之称,境内大小近百个湖泊星罗棋布,形成了水系发育、山水交融的复杂地形。最高点高程150m 左右,最低陆地高程约18m。 武汉地区地貌形态主要有以下三种类型: 1)剥蚀丘陵区:主要分布在武昌、汉阳地区,丘陵呈线状或残丘状分布,如武昌的磨山、珞珈山、汉阳的扁担山等,丘顶高为80~150m,组成残丘的地层为志留系与泥盆系的砂页岩。 2)剥蚀堆积垄岗区(III级阶地):主要分布在武昌、汉阳的平原湖区与残丘之间。地形波状起伏,垅岗与坳沟相间分布,高程为28~35m。组成垅岗的地层主要为中、上更新统粘性土(老粘土)。 3)堆积平原区:分布于整个汉口市区及武昌、汉阳沿江一带,主要为由长江、汉江冲洪积物构成的I、II级阶地。 I级阶地:广泛分布于长江、汉江两岸地区,地面标高19m~21m。地层由全新统粘性土、砂性土及砂卵石层构成。区内有众多湖泊、堰塘、残存的沼泽地及暗沟、暗浜等。 II级阶地:主要分布于青山镇及汉口张公堤附近及以北东西湖与武湖一带,地面标高为22m~24m,地层由上更新统的粘性土与砂性土组成。 武汉地区无全新活动断裂,地震烈度I≤6度,属于地壳稳定区。

基于GIS气象水文预报系统设计

经济地理信息系统 结课论文 题目:基于GIS的气象水文预报系统设计 学院:水文水资源学院 专业:水文学及水资源

基于GIS气象水文预报系统设计摘要 通过探讨气象与水文预报对地理信息系统的特殊要求,提出应该将气象与水文信息相结合、气象水文信息与GIS有机结合的系统设计思路,明确了基于GIS气象水文预报系统的目标、结构和功能,设计出一套基于GIS的气象水文预报系统。 关键词:气象;水文;GIS 一引言 GIS是一种基于计算机应用的信息工具,可以对在地球上存在的事物和发生的事件进行成图和分析。GIS技术把地图独特的视觉化效果和地理分析功能与一般的数据库操作集成在一起, 使之能够支持一般管理信息系统所不能支持的空间查询和空间分析, 以便于作出水文预报。 二需求分析 近几年,我国的暴雨、山洪、泥石流、山体滑坡等气象水文地质灾害频繁发生,随着经济发展、社会进步、人民生活水平的提高,人们对灾害的预警提出了更高的要求:一是要求更加及时准确,要有很强的针对性和实用性;二是要求预报产品的时空分辨率更加精细,灾害性天气识别尽可能覆盖到自然村、山洪沟和地质灾害点;三是要求有较高的应急气象服务保障能力。 GIS气象水文预报系统适用领域特点是:该流域暴雨,山洪等极端性天气频次高,影响大,范围较广,易引起突发性灾害。GIS系统

能够迅速地整合分析卫星、雷达资料,降雨、地形、水文资料,并且GIS同样可以获得灾害风险区的工矿、企业、学校、居民定居点等地理信息,应用GIS的空间分析功能,将气象水文信息与地理信息系统中的山体、水系、居民点等属性,特别是灾害敏感区的地理属性有机结合,对已发生或将要发生灾害的地点进行较准确定位和及时报警, 能有效提高暴雨洪水灾害及地质灾害的预警与服务能力。 就空间分布而言, 虽然目前的降水观测点已经分布到乡镇,但当与能分辨到自然村、山洪沟精细的地理信息相结合时,预报员却很难将卫星、雷达所监测的暴雨信息与洪涝、泥石流、山体滑坡等灾害风险区紧密联系,导致卫星、雷达监测产品不能在气象灾害预警报与服务中得到充分应用。 三系统目标与设计原则 基于GIS设计气象水文预报系统的目标是:充分利用GIS以及数据库管理技术,建立一个集气象水文信息为一体的气象水文预报平台,为预报员提供气象水文信息的检索查询,提供卫星云图、雷达回波等监测图像的立体定位显示与跟踪,提供降水、洪峰流量与水位等信息的跟踪与报警,这能够提高对暴雨、洪涝等气象灾害及山洪、泥石流、滑坡等地质灾害的跟踪,以助于提高对暴雨、洪涝等气象灾害及山洪、泥石流、滑坡等地质灾害的跟踪监视与预警能力。 针对以上目标,确定了以下原则进行系统设计: (1)水文与气象信息相结合。气象和水文虽属于两个不同的领域,但两者联系紧密;就暴雨洪水、山洪、泥石流等灾害的防御而言,水

(完整word版)FAMEMS900机场自动气象观测系统

FAMEMS900机场自动气象观测系统 北京方大天云科技有限公司 2016.8.19

机场自动气象监测系统是针对民航各机场使用气象数据的特点,充分利用现代数据库技术和先进的网络技术实现了对自动气象观测系统(AWOS)原始数据电报的接收、处理、控制和存储,能动态实时地显示AWOS各种气象数据、观测METAR报文,提供AWOS各种传感器的监控,并在设备故障后及时自动报警;同时,利用其存储的数据,回放过去任意时间段各种气象数据的历史曲线,分析对比各种数据曲线。该系统是一款集风向传感器、风速传感器、气压传感器、气温传感器、湿度传感器、雨量传感器、云高仪、大气透射仪或前向散射仪、背景光亮度传器等仪器得综合自动监测应用系统。它为飞机的安全起飞、降落提供精确可靠的气象数据和科学依据。 北京方大天云科技有限公司,位于北京市中关村西区,致力于气象与环境监测领域的国家高新技术企业。追求“生态文明”建设“美好中国”为愿景的一家国家高新技术企业。 公司以在线式监测系统为核心,研发、销售气象与环境传感器、自动气象站、环境监测站等设备,形成了“FAMEMS”、“FANDA”、“SKY”等核心系列品牌的在线实时观测系统产品,并为众多行业退出针对性的解决方案。业务涵盖气象、环保、交通、航空、农业、林业、水文、电力及研究院所等行业。 作为气象与环境监测的行业领先者,方大天云具有深厚的硬件与软件技术示例。企业先后获得“中关村高新技术企业”、“双软企业”、“北京市国家高新技术企业”认证,并拥有多项产品专利与软件资质。 秉承“专业、创新、合作、共赢”的理念,方大天云严格遵循ISO9001质量管理体系,在气象与环境监测领域,为客户提供“一站式”的产品与解决方案服务。 一、系统内容

水文气象报告

目录 1 前言 2 沿线水文条件 3 河流跨越 3.1 颍河 3.2 泉河 4 设计气象条件选择 4.1 气象站及气候概况 4.2 设计最大风速取值 4.3 导线覆冰取值 4.4 气温及雷暴日数 5 结语 1 前言 工程,为一新建工程,该工程主要为电气化铁路配套的110kV太和牵引站供电。 本线路位于安徽省阜阳市及所属太和县境内,线路起自110kV太和牵引站,终止与在建的220kV程集变电站,线路路径走向主要向南方向,分别跨越颍河及泉河,颍河及泉河均为通航河流,线路路径长约km。 本阶段水文气象专业的主要工作是:现场踏勘、水文调查、气象调查、收资。主要进行沿线历史洪水调查、洪涝调查、大风及覆冰等气象灾害的调查,收集沿线水利工程设施及规划,附近线路运行情况,线路沿线气象站最大风速、覆冰、气温、雷暴日数等气象资料。内业工作主要是分析计算水文、气象等设计参数,并分析确定设计气象条件,编制水文气象报告。 本线路经过地区有阜阳市及太和县气象观测站,与线路相距较近,具有多年观测统计资料,是本工程气象原始资料的主要来源。 注:报告中水位及高程均为黄海高程系统。 2 沿线水文条件 本线路所经地段地貌单元主要为淮北平原区,地形略有起伏,地形总趋势为自西北向东南倾斜。 本线路位于安徽省阜阳市及所属太和县境内,线路起自110kV太和牵引站,向行走,经过新陈集西,傅庄,孙营,于龙口以东跨越颍河,继续向南行走,经李集西,后新庄,于张三湾以西跨越泉河,继续向南行走,直至220kV程集变电站。线路总长约km,跨越颍河、泉河为通航河流。 本线路经过老泉河洼地内涝积水区,主要分布小胡至泉河北岸,原为泉河,后泉河改道后,现为泉河洼地。据现场查勘及水利部门收资了解到,1954年泉河大洪水时地面淹没水深1.5~2.0m,可行小船;1975年大水期间,地面有积水,水深一般约1.0~1.5m。在一般年份,泉河洼地地段,存在内涝积水,水深0.5~1.0m,时间较长。 本线路沿线经过一些小的沟渠,如柳青沟柳河等,它们分别汇入颍河或泉河,主要起到排泄内涝积水的作用,目前无大的整治规划,其最高水位建议按现状堤顶高程确定。 本线路经过一些小的排涝及灌溉沟渠,线路立塔位置只要留有一定的距离即可。 3河流跨越

相关文档
最新文档