组合与组合数公式及性质

组合与组合数公式及性质
组合与组合数公式及性质

10.3组合与组合数公式及性质

达标要求

1.理解组合的概念.

2.掌握组合数公式.

3.理解排列与组合的区别和联系。

4.熟练掌握组合数的计算公式;掌握组合数的两个性质,并且能够运用它解决一些简单的 应用问题.

基础回顾

1.组合的概念:一般地,从n 个不同元素中取出m (m n ≤)个元素并成一组,叫做从n 个不同元素中取出m 个元素的一个组合.

2.组合数的概念:从n 个不同元素中取出m (m n ≤)个元素的所有组合的个数,叫做

从n 个不同元素中取出m 个元素的组合数.用符号m n C 表示..

3.组合数的公式:

(1)(2)(1)!m m

n n

m m A n n n n m C A m ---+== 或()!!!

m n n C m n m =-(,n m N +∈且m n ≤) 4.组合数性质:

(1)m n m n n

C C -= (2)111m m m n n n C C C ++++=

典型例题

例题1 4名男生和6名女生选三人,组成三人实践活动小组。

(1) 共有多少种选法?

(2) 其中男生甲不能参加,有多少种选法?

(3) 若至少有1个男生,问组成方法共有多少种?

解:(1) 共有310120C =种。

(2) 共有3984C =种

(3) 解法一:(直接法)小组构成有三种情形:3男,2男1女,1男2女, 分别有34C ,2146C C ,12

46C C ,

所以一共有3211244646100C C C C C ++= 种方法.

解法二:(间接法)33106100C C -=

例题2 100件产品中有合格品90件,次品10件,现从中抽取4件检查.

(1) 都不是次品的取法有多少种?

(2) 至少有1件次品的取法有多少种?

(3) 不都是次品的取法有多少种?

解:(1)4

902555190

C=

(2)441322314 10090109010901090101366035

C C C C C C C C C

-=+++=

(3)441322314 10010109010901090903921015

C C C C C C C C C

-=+++=

组合数公式

组合数公式 目录[隐藏] 组合数公式和变换技巧 组合变换技巧举例 组合数公式和变换技巧 组合变换技巧举例 [编辑本段] 组合数公式和变换技巧 一、组合数定义。 从n个不同元素中,任取m(m≤n)个元素并成一组,叫做从n个不同元素中取出m个元素的一个组合;从n个不同元素中取出m(m≤n)个元素的所有组合的个数,叫做从n个不同元素中取出m个元素的组合数.用符号 c(n,m) 表示. 二、组合公式。 有时候也表示成: c(n,m)=p(n,m)/m!=n!/((n-m)!*m!) 三、组合性质。 c(n,m)=c(n,n-m); [编辑本段]

组合变换技巧举例 。有朋友给出了两道题: 1、设15000件产品中有1000件次品,从中拿出150件,求得到次品数的期望和方差? 2、设某射手对同一目标射击,直到射中R次为止,记X为使用的射击次数,已知命中率为P,求E(X)、D(X)。 这两题都要用到一些技巧。我先列出几个重要公式,证明过程中提供变换技巧,然后把这两个题目作为例题。 先定义一个符号,用S(K=1,N)F(K)表示函数F(K)从K=1到K=N求和。(我不会用求和的符号) 公式1: C(M-1,N-1)+C(M-1,N)=C(M,N) 证明:方法1、可直接利用组合数的公式证明 方法2、(更重要的思路) C(M,N)是从M个物品中任选N个的方法。 从M个物品中任意指定一个。则选出N个的方法中,包含这一个的有C(M-1,N-1)种,不包含这一个的有C(M-1,N)种。 因此,C(M-1,N-1)+C(M-1,N)=C(M,N) 公式2: S(K=N,M)C(K-1,N-1)=C(M,N)(M》=N) 证明:C(M,N)是从M个物品中任选N个的方法。 从M个物品中任意指定M-N个,并按次序编号为第1到第M-N号,而其余的还有N个。 则选出N个的方法可分类为: 包含1号的有C(M-1,N-1)种; 不包含1号,但包含2号的有C(M-2,N-1)种; 。。。。。。 不包含1到M-K号,但包含M-K+1号的有C(K-1,N-1)种 。。。。。。 不包含1到M-N-1号,但包含M-N号的有C(N,N-1)种不包含1到M-N号的有C(N,N)种,而C(N,N)=C(N-1,N-1) 由于两种思路都是从M个物品中任选N个的方法,因此 S(K=N,M)C(K-1,N-1)=C(M,N) 公式3: S(K=0,N)C(P,K)*C(Q,N-K)=C(P+Q,N)(P,Q)=N) 证明:一批产品包含P件正品和Q件次品,则从这批产品中任选N件的选法为C(P+Q,N)。而公式里面的K表示选法中正品数量,

组合数的计算公式

组合导学案 课题:组合数的计算公式 课型:新授 执笔: 审核: 使用时间: 一、学习目标 1、 掌握组合数的计算公式 2、 组合数公式的应用 二、重点难点 1、 组合数的计算公式 2、 用组合数的计算公式解决相关问题 三、学习内容 组合数的计算与选排列数的计算有紧密联系.对于n 个元素中选k 个的选排列,可以 分两步完成.第一步,在n 个元素中选出k 个构成一个组,这是一个组合问题,共可以构成 个组;第二步,对每一组中的 个元素作全排列,每一组的排列数是 个.根据分步计数法和乘法原理,选排列数 k n A =k n C k k A , 所以 k n C = , 以选排列数计算公式代入,即得组合数计算公式 k n C = 四、探究分析 1、把下面的问题归结为排列或组合问题,如果是组合问题请根据公式计算结果: (1)在人数为50人的班级中,选举正、副班长、学习委员、生活委员和文体委员各一人组成班委,求可能的组成方案数. (2)在人数为50人的班级中,选举5人组成班委,求班委可能的组成方案数. (3)由12人组成的篮球队中,需选5人作为首发阵容,求可组成多少个不同的首发阵容.又在50名啦啦队员中要挑选20人前往助阵,有几种挑选方案? (4)10份内容相同的信函,发给20个人中的10人,每人一份,有几种发信的方案? 方法总结: 2、计算: (1)26C ; (2)37C ; (3)3 100C . 方法总结:

课堂训练 1.把下面的问题能归结为排列或组合问题吗?如果能,请写出排列数或组合数的记号,如果不能,请说明理由,组合问题请计算结果: (1)在人数为60人的班级中,分成各30名学生的两个助残公益活动小组,可以有多少种分 法? (2)有一个由6人组成的全能乐队,每人都能演奏6种乐器.要挑选5名队员参加某次演出, 可以组建多少种不同的演出阵容? (3)6个朋友互相握手道别,共握手多少次? (4)5道习题任意选做3题,有多少不同的选法? (5)10支球队进行循环赛,共需安排多少场比赛? (6)某种饮料是混合四种原料配制而成.现在每种原料都有9种不同品牌可供选择,共有几 种选择原料的方案? (7)正16边形有几条对角线?课后作业 1、把下列问题归结为排列或组合问题并计算结果 (1)某次文艺汇演欲从20个节目中选出15个节目参加正式演出,则不同的节目单共有多少种?(2)10份相同的纪念品送给12个人中的10个人,每人一份,有几种分配方案? 2、某小组有男生3人,女生5人,现从中选出3人,要求男、女生都有,则共的选法有多少种?教学后记

排列组合公式_排列组合计算公式

排列组合公式/排列组合计算公式 排列P------和顺序有关 组合C -------不牵涉到顺序的问题 排列分顺序,组合不分 例如把5本不同的书分给3个人,有几种分法. "排列" 把5本书分给3个人,有几种分法"组合" 1.排列及计算公式 从n个不同元素中,任取m(m≤n)个元素按照一定的顺序排成一列,叫做从n个不同元素中取出m个元素的一个排列;从n个不同元素中取出m(m≤n)个元素的所有排列的个数,叫做从n个不同元素中取出m个元素的排列数,用符号p(n,m)表示. p(n,m)=n(n-1)(n-2)……(n-m+1)= n!/(n-m)!(规定0!=1). 2.组合及计算公式 从n个不同元素中,任取m(m≤n)个元素并成一组,叫做从n个不同元素中取出m个元素的一个组合;从n个不同元素中取出m(m≤n)个元素的所有组合的个数,叫做从n个不同元素中取出m个元素的组合数.用符号 c(n,m) 表示. c(n,m)=p(n,m)/m!=n!/((n-m)!*m!);c(n,m)=c(n,n-m); 3.其他排列与组合公式 从n个元素中取出r个元素的循环排列数=p(n,r)/r=n!/r(n-r)!. n个元素被分成k类,每类的个数分别是n1,n2,...nk这n个元素的全排列数为 n!/(n1!*n2!*...*nk!).

k类元素,每类的个数无限,从中取出m个元素的组合数为c(m+k-1,m). 排列(Pnm(n为下标,m为上标)) Pnm=n×(n-1)....(n-m+1);Pnm=n!/(n-m)!(注:!是阶乘符号);Pnn(两个n 分别为上标和下标)=n!;0!=1;Pn1(n为下标1为上标)=n 组合(Cnm(n为下标,m为上标)) Cnm=Pnm/Pmm ;Cnm=n!/m!(n-m)!;Cnn(两个n分别为上标和下标)=1 ;Cn1(n为下标1为上标)=n;Cnm=Cnn-m 2008-07-08 13:30 公式P是指排列,从N个元素取R个进行排列。 公式C是指组合,从N个元素取R个,不进行排列。 N-元素的总个数 R参与选择的元素个数 !-阶乘,如 9!=9*8*7*6*5*4*3*2*1 从N倒数r个,表达式应该为n*(n-1)*(n-2)..(n-r+1); 因为从n到(n-r+1)个数为n-(n-r+1)=r 举例: Q1:有从1到9共计9个号码球,请问,可以组成多少个三位数? A1: 123和213是两个不同的排列数。即对排列顺序有要求的,既属于“排列P”计算范畴。 上问题中,任何一个号码只能用一次,显然不会出现988,997之类的组合,我们可以这么看,百位数有9种可能,十位数则应该有9-1种可能,个位数则应该只有9-1-1种可能,最终共有9*8*7个三位数。计算公式=P(3,9)=9*8*7,(从9倒数3个的乘积) Q2: 有从1到9共计9个号码球,请问,如果三个一组,代表“三国联盟”,可以组合成多少个“三国联盟”? A2: 213组合和312组合,代表同一个组合,只要有三个号码球在一起即可。即不要求顺序的,属于“组合C”计算范畴。 上问题中,将所有的包括排列数的个数去除掉属于重复的个数即为最终组合数C(3,9)=9*8*7/3*2*1 排列、组合的概念和公式典型例题分析 例1设有3名学生和4个课外小组.(1)每名学生都只参加一个课外小组;(2)每名学生都只参加一个课外小组,而且每个小组至多有一名学生参加.各有多少种不同方法? 解(1)由于每名学生都可以参加4个课外小组中的任何一个,而不限制每个课外小组的人数,因此共有种不同方法.

组合及组合数公式作业

组合与组合数公式 一、选择题 1.若C x 6=C 26,则x 的值为( ) A .2 B .4 C .4或2 D .3 2.某新农村社区共包括8个自然村,且这些村庄分布零散没有任何三个村庄在一条直线上,现要在该社区内建“村村通”工程,共需建公路的条数为 ( ) A .4 B .8 C .28 D .64 3.已知C 7n +1-C 7n =C 8n ,则n 等于( ) A .14 B .12 C .13 D .15 4.从5名志愿者中选派4人在星期六和星期日参加公益活动,每人一天,每天两人,则不同的选派方法共有( ) A .60种 B .48种 C .30种 D .10种 5.平面直角坐标系中有五个点,分别为O (0,0),A (1,2),B (2,4),C (-1,2),D (-2,4).则这五个点可以确定不同的三角形个数为( ) 6.若从1,2,3,…,9这9个整数中同时取4个不同的数,其和为偶数,则不同的取法共有( ) A .60种 B .63种 C .65种 D .66种 二、填空题 7.若已知集合P ={1,2,3,4,5,6},则集合P 的子集中含有3个元素的子集数为________. 8.不等式C 2n -n <5的解集为________. 9.若对任意的x ∈A ,则1x ∈A ,就称A 是“具有伙伴关系”的集合.集合M =???? ??-1,0,13,12,1,2,3,4的所有非空子集中,具有伙伴关系的集合的个数为________. 10.计算:(1)C 58+C 98100·C 77; (2)C 05+C 15+C 25+C 35+C 45+C 55; (3)C n n +1·C n -1n . 11.某区有7条南北向街道,5条东西向街道.(如图)

组合与组合数公式及性质

10.3组合与组合数公式及性质 达标要求 1.理解组合的概念. 2.掌握组合数公式. 3.理解排列与组合的区别和联系。 4.熟练掌握组合数的计算公式;掌握组合数的两个性质,并且能够运用它解决一些简单的 应用问题. 基础回顾 1.组合的概念:一般地,从n 个不同元素中取出m (m n ≤)个元素并成一组,叫做从n 个不同元素中取出m 个元素的一个组合. 2.组合数的概念:从n 个不同元素中取出m (m n ≤)个元素的所有组合的个数,叫做 从n 个不同元素中取出m 个元素的组合数.用符号m n C 表示.. 3.组合数的公式: (1)(2)(1)!m m n n m m A n n n n m C A m ---+== 或()!!! m n n C m n m =-(,n m N +∈且m n ≤) 4.组合数性质: (1)m n m n n C C -= (2)111m m m n n n C C C ++++= 典型例题 例题1 4名男生和6名女生选三人,组成三人实践活动小组。 (1) 共有多少种选法? (2) 其中男生甲不能参加,有多少种选法? (3) 若至少有1个男生,问组成方法共有多少种? 解:(1) 共有310120C =种。 (2) 共有3984C =种 (3) 解法一:(直接法)小组构成有三种情形:3男,2男1女,1男2女, 分别有34C ,2146C C ,12 46C C , 所以一共有3211244646100C C C C C ++= 种方法. 解法二:(间接法)33106100C C -= 例题2 100件产品中有合格品90件,次品10件,现从中抽取4件检查. (1) 都不是次品的取法有多少种? (2) 至少有1件次品的取法有多少种?

排列组合计算公式及经典例题汇总

排列组合公式/排列组合计算公式 排列A------和顺序有关 组合 C -------不牵涉到顺序的问题 排列分顺序,组合不分 例如把5本不同的书分给3个人,有几种分法. "排列" 把5本书分给3个人,有几种分法"组合" 1.排列及计算公式 从n个不同元素中,任取m(m≤n)个元素按照一定的顺序排成一列,叫做从n个不同元素中取出m个元素的一个排列;从n个不同元素中取出m(m≤n)个元素的所有排列的个数,叫做从n个不同元素中取出m个元素的排列数,用符号A(n,m)表示. A(n,m)=n(n-1)(n-2)……(n-m+1)= n!/(n-m)!(规定0!=1). 2.组合及计算公式 从n个不同元素中,任取m(m≤n)个元素并成一组,叫做从n 个不同元素中取出m个元素的一个组合;从n个不同元素中取出m(m≤n)个元素的所有组合的个数,叫做从n个不同元素中取出m个元素的组合数.用符号

c(n,m) 表示. c(n,m)=A(n,m)/m!=n!/((n-m)!*m!);c(n,m)=c(n,n-m); 3.其他排列与组合公式 从n个元素中取出r个元素的循环排列数=A(n,r)/r=n!/r(n-r)!. n个元素被分成k类,每类的个数分别是n1,n2,...nk这n个元素的全排列数为 n!/(n1!*n2!*...*nk!). k类元素,每类的个数无限,从中取出m个元素的组合数为 c(m+k-1,m). 排列(Anm(n为下标,m为上标)) Anm=n×(n-1)....(n-m+1);Anm=n!/(n-m)!(注:!是阶乘符号);Ann(两个n分别为上标和下标)=n!;0!=1;An1(n为下标1为上标)=n

排列组合的基本理论和公式

排列组合的基本理论和公式 排列与元素的顺序有关,组合与顺序无关.如231与213是两个排列,2+3+1的和与2+1+3的和是一个组合. (一)两个基本原理是排列和组合的基础 (1)加法原理:做一件事,完成它可以有n类办法,在第一类办法中有m1种不同的方法,在第二类办法中有m2种不同的方法,……,在第n类办法中有mn种不同的方法,那么完成这件事共有N=m1+m2+m3+…+mn种不同方法. (2)乘法原理:做一件事,完成它需要分成n个步骤,做第一步有m1 种不同的方法,做第二步有m2种不同的方法,……,做第n步有mn种不同的方法,那么完成这件事共有N=m1×m2×m3×…×mn种不同的方法.这里要注意区分两个原理,要做一件事,完成它若是有n类办法,是分类问题,第一类中的方法都是独立的,因此用加法原理;做一件事,需要分n个步骤,步与步之间是连续的,只有将分成的若干个互相联系的步骤,依次相继完成,这件事才算完成,因此用乘法原理. 这样完成一件事的分“类”和“步”是有本质区别的,因此也将两个原理区分开来. (二)排列和排列数 (1)排列:从n个不同元素中,任取m(m≤n)个元素,按照一定的顺序排成一列,叫做从n个不同元素中取出m个元素的一个排列.从排列的意义可知,如果两个排列相同,不仅这两个排列的元素必须完全相同,而且排列的顺序必须完全相同,这就告诉了我们如何判断两个排列是否相同的方法. (2)排列数公式:从n个不同元素中取出m(m≤n)个元素的所有排列 当m=n时,为全排列Pnn=n(n-1)(n-2)…3·2·1=n! (三)组合和组合数 (1)组合:从n个不同元素中,任取m(m≤n)个元素并成一组,叫做从n 个不同元素中取出m个元素的一个组合. 从组合的定义知,如果两个组合中的元素完全相同,不管元素的顺序如何,都是相同的组合;只有当两个组合中的元素不完全相同时,才是不同的组合. (2)组合数:从n个不同元素中取出m(m≤n)个元素的所有组合的个

排列数、组合数公式与二项式定理的应用

排列数、组合数及二项式定理整理 慈济中学全椒 1、排列数公式 m n A =)1()1(+--m n n n Λ=!! )(m n n -.(n ,m ∈N*,且m n ≤). 2、排列恒等式 (1) 1(1)m m n n A n m A -=-+;(2) 1m m n n n A A n m -= -;(3)11m m n n A nA --=; (4)11n n n n n n nA A A ++=-; (5) 1 1m m m n n n A A mA -+=+.(6) 1!22!33!!(1)!1n n n +?+?++?=+-L . 3、组合数公式 m n C =m n m m A A =m m n n n ???+--ΛΛ21)1()1(=!!!)(m n m n -?(n ∈N*,m N ∈,且m n ≤). 4、组合数的两个性质 (1) m n C =m n n C - ; (2) m n C +1 -m n C =m n C 1 +. 5、排列数与组合数的关系 m m n n A m C =?! . 6、二项式定理: 011()()n n n r n r r n n n n n n a b C a C a b C a b C b n N --*+=+++++∈L L 【注】: 1.基本概念: ①二项式展开式:右边的多项式叫做()n a b +的二项展开式。 ②二项式系数:展开式中各项的系数r n C (0,1,2,,)r n =???. ③项数:共(1)r +项,是关于a 与b 的齐次多项式 ④通项:展开式中的第1r +项r n r r n C a b -叫做二项式展开式的通项。用1r n r r r n T C a b -+=表示。 2.注意关键点: ①项数:展开式中总共有(1)n +项。 ②顺序:注意正确选择a ,b ,其顺序不能更改。()n a b +与()n b a +是不同的。 ③指数:a 的指数从n 逐项减到0,是降幂排列。b 的指数从0逐项减到n ,是升幂排列。

几个常用组合数公式.资料

几个常用组合数公式.

⑸①几个常用组合数公式 ②常用的证明组合等式方法例. i. 裂项求和法. 如:(利用) ii. 导数法. iii. 数学归纳法. iv. 倒序求和法. v. 递推法(即用递推)如:. vi. 构造二项式. 如: 证明:这里构造二项式其中的系数,左边为 ,而右边 四、排列、组合综合. 1. I. 排列、组合问题几大解题方法及题型: ①直接法. ②排除法. ③捆绑法:在特定要求的条件下,将几个相关元素当作一个元素来考虑,待整体排好之后再考虑它们“局部”的排列.它主要用于解决“元素相邻问题”,例如,一般地,n个不同元素排成一列,要求其中某个元素必相邻的排列有个.其中是一个“整体排列”,而则是“局部排列”. 又例如①有n个不同座位,A、B两个不能相邻,则有排列法种数为.

②有n件不同商品,若其中A、B排在一起有. ③有n件不同商品,若其中有二件要排在一起有. 注:①③区别在于①是确定的座位,有种;而③的商品地位相同,是从n件不同商品任取的2个,有不确定性. ④插空法:先把一般元素排列好,然后把待定元素插排在它们之间或两端的空档中,此法主要解决“元素不相邻问题”. 例如:n个元素全排列,其中m个元素互不相邻,不同的排法种数为多少?(插空法),当n –m+1≥m, 即m≤时有意义. ⑤占位法:从元素的特殊性上讲,对问题中的特殊元素应优先排列,然后再排其他一般元素;从位置的特殊性上讲,对问题中的特殊位置应优先考虑,然后再排其他剩余位置.即采用“先特殊后一般”的解题原则. ⑥调序法:当某些元素次序一定时,可用此法.解题方法是:先将n个元素进行全 排列有种,个元素的全排列有种,由于要求m个元素次序一定,因此只能取其中的某一种排法,可以利用除法起到去调序的作用,即若n个元素排 成一列,其中m个元素次序一定,共有种排列方法. 例如:n个元素全排列,其中m个元素顺序不变,共有多少种不同的排法? 解法一:(逐步插空法)(m+1)(m+2)…n = n!/ m!;解法二:(比例分配法). ⑦平均法:若把kn个不同元素平均分成k组,每组n个,共有. 例如:从1,2,3,4中任取2个元素将其平均分成2组有几种分法?有 (平均分组就用不着管组与组之间的顺序问题了)又例如将200名运动员平均分成两组,其中两名种子选手必在一组的概率是多少? () 注意:分组与插空综合. 例如:n个元素全排列,其中某m个元素互不相邻且顺序 不变,共有多少种排法?有,当n –m+1 ≥m, 即m≤时有意义.

排列组合公式 全

排列组合公式 排列定义??? 从n个不同的元素中,取r个不重复的元素,按次序排列,称为从n个中取r个的无重排列。排列的全体组成的集合用 P(n,r)表示。排列的个数用P(n,r)表示。当r=n时称为全排列。一般不说可重即无重。可重排列的相应记号为 P(n,r),P(n,r)。 组合定义从n个不同元素中取r个不重复的元素组成一个子集,而不考虑其元素的顺序,称为从n个中取r个的无重组合。 组合的全体组成的集合用C(n,r)表示,组合的个数用C(n,r)表示,对应于可重组合 有记号C(n,r),C(n,r)。 一、排列组合部分是中学数学中的难点之一,原因在于 (1)从千差万别的实际问题中抽象出几种特定的数学模型,需要较强的抽象思维能力; (2)限制条件有时比较隐晦,需要我们对问题中的关键性词(特别是逻辑关联词和量词)准确理解; (3)计算手段简单,与旧知识联系少,但选择正确合理的计算方案时需要的思维量较大; (4)计算方案是否正确,往往不可用直观方法来检验,要求我们搞清概念、原理,并具有较强的分析能力。 二、两个基本计数原理及应用 (1)加法原理和分类计数法 1.加法原理 2.加法原理的集合形式

3.分类的要求 每一类中的每一种方法都可以独立地完成此任务;两类不同办法中的具体方法,互不相同(即分类不重);完成此任务的任何一种方法,都属于某一类(即分类不漏) (2)乘法原理和分步计数法 1.乘法原理 2.合理分步的要求 任何一步的一种方法都不能完成此任务,必须且只须连续完成这n步才能完成此任务;各步计数相互独立;只要有一步中所采取的方法不同,则对应的完成此事的方法也不同 例1:用1、2、3、4、5、6、7、8、9组成数字不重复的六位数 集合A为数字不重复的九位数的集合,S(A)=9! 集合B为数字不重复的六位数的集合。 把集合A分为子集的集合,规则为前6位数相同的元素构成一个子集。显然各子集没有共同元素。每个子集元素的个数,等于剩余的3个数的全排列,即3! 这时集合B的元素与A的子集存在一一对应关系,则 S(A)=S(B)*3! S(B)=9!/3! 这就是我们用以前的方法求出的P(9,6) 例2:从编号为1-9的队员中选6人组成一个队,问有多少种选法? 设不同选法构成的集合为C,集合B为数字不重复的六位数的集合。把集合B分为子集的

高中数学排列组合相关公式

排列组合 排列定义:从n 个不同的元素中,取r 个不重复的元素,按次序排列,称为从n 个中取r 个的无重排列。排列的全体组成的集合用 P(n,r)表示。 组合定义:从n 个不同元素中取r 个不重复的元素组成一个子集,而不考虑其元素的顺序,称为从n 个中取r 个的无重组合。组合的个数用C(n,r)表示。 一、排列组合部分是中学数学中的难点之一,原因在于 (1)从千差万别的实际问题中抽象出几种特定的数学模型,需要 较强的抽象思维能力; (2)限制条件有时比较隐晦,需要我们对问题中的关键性词(特别是逻辑关联词和量词)准确理解; (3)计算手段简单,与旧知识联系少,但选择正确合理的计算方案时需要的思维量较大; (4)计算方案是否正确,往往不可用直观方法来检验,要求我们搞清概念、原理,并具有较强的分析能力。 二、两个基本计数原理及应用 1.分类计数原理(加法原理) 完成一件事,有n 类办法,在第1类办法中有1m 种不同的方法,在 第2类办法中有2m 种不同的方法,…,在第n 类办法中有n m 种不同12n N m m m =+++L 种不同的方法. 2.分步计数原理(乘法原理) 完成一件事,需要分成n 个步骤,做第1步有1m 种不同的方法,做

第2步有2m 种不同的方法,…,做第n 步有n m 种不同的方法,那么完成这件事共有: 种不同的方法. 3.分类计数原理分步计数原理区别 分类计数原理方法相互独立,任何一种方法都可以独立地完成这件事。 分步计数原理各步相互依存,每步中的方法完成事件的一个阶段,不能完成整个事件. 解决排列组合综合性问题的一般过程如下: 1.认真审题弄清要做什么事 2.怎样做才能完成所要做的事,即采取分步还是分类,或是分步与分类同时进行,确定分多少步及多少类。 3.确定每一步或每一类是排列问题(有序)还是组合(无序)问题,元素总数是多少及取出多少个元素. 4.解决排列组合综合性问题,往往类与步交叉,因此必须掌握一些常用的解题策略 具体情况分析 一.特殊元素和特殊位置优先策略 例1.由0,1,2,3,4,5可以组成多少个没有重复数字五位奇数. 解:由于末位和首位有特殊要求,应该优先安排, 占了这两个位置 . 先排末位共有1 3C 然后排首位共有1 4C 最后排其它位置共有34A 由分步计数原理得113 4 34288C C A = 练习题:7种不同的花种在排成一列的花盆里,若两种葵花不种在中 间,也不种在两端的花盆里,问有多少不同的种法? 二.相邻元素捆绑策略 例2. 7人站成一排 ,其中甲乙相邻且丙丁相邻, 共有多少种不同的排法. 443

组合及组合数公式作业

组合及组合数公式作业-标准化文件发布号:(9456-EUATWK-MWUB-WUNN-INNUL-DDQTY-KII

组合与组合数公式 一、选择题 1.若C x 6=C 26,则x 的值为( ) A .2 B .4 C .4或2 D .3 2.某新农村社区共包括8个自然村,且这些村庄分布零散没有任何三个村庄在一条直线上,现 要在该社区内建“村村通”工程,共需建公路的条数为 ( ) A .4 B .8 C .28 D .64 3.已知C 7n +1-C 7n =C 8n ,则n 等于( ) A .14 B .12 C .13 D .15 4.从5名志愿者中选派4人在星期六和星期日参加公益活动,每人一天,每天两人,则不同的选派方法共有( ) A .60种 B .48种 C .30种 D .10种 5.平面直角坐标系中有五个点,分别为O (0,0),A (1,2),B (2,4),C (-1,2),D (-2,4).则这五个点可以确定不同的三角形个数为( ) 6.若从1,2,3,…,9这9个整数中同时取4个不同的数,其和为偶数,则不同的取法共有( ) A .60种 B .63种 C .65种 D .66种 二、填空题 7.若已知集合P ={1,2,3,4,5,6},则集合P 的子集中含有3个元素的子集数为________. 8.不等式C 2n -n <5的解集为________. 9.若对任意的x ∈A ,则1x ∈A ,就称A 是“具有伙伴关系”的集合.集合M = ?????? ????-1,0,13,12,1,2,3,4的所有非空子集中,具有伙伴关系的集合的个数为________. 10.计算:(1)C 58+C 98100·C 77 ; (2)C 05+C 15+C 25+C 35+C 45+C 55; (3)C n n +1·C n -1n . 11.某区有7条南北向街道,5条东西向街道.(如图) (1)图中有多少个矩形? (2)从A 点走向B 点最短的走法有多少种? 12.假设在100件产品中有3件是次品,从中任意抽取5件,求下列抽取方法各有多少种? (1)没有次品;(2)恰有两件是次品;(3)至少有2件次品.

组合与组合数公式及性质

组合与组合数公式及性质 达标要求 1.理解组合的概念. 2.掌握组合数公式. 3.理解排列与组合的区别和联系。 4.熟练掌握组合数的计算公式;掌握组合数的两个性质,并且能够运用它解决一些简单的 应用问题. 基础回顾 1.组合的概念:一般地,从n 个不同元素中取出m (m n ≤)个元素并成一组,叫做从n 个不同元素中取出m 个元素的一个组合. 2.组合数的概念:从n 个不同元素中取出m (m n ≤)个元素的所有组合的个数,叫做 从n 个不同元素中取出m 个元素的组合数.用符号m n C 表示.. 3.组合数的公式: (1)(2)(1)!m m n n m m A n n n n m C A m ---+== 或()!!! m n n C m n m =-(,n m N +∈且m n ≤) 4.组合数性质: (1)m n m n n C C -= (2)111m m m n n n C C C ++++= 典型例题 例题1 4名男生和6名女生选三人,组成三人实践活动小组。 (1) 共有多少种选法 (2) 其中男生甲不能参加,有多少种选法 (3) 若至少有1个男生,问组成方法共有多少种 解:(1) 共有310120C =种。 (2) 共有3984C =种 (3) 解法一:(直接法)小组构成有三种情形:3男,2男1女,1男2女, 分别有34C ,2146C C ,1246C C , 所以一共有3211244646100C C C C C ++=种方法. 解法二:(间接法)33106100C C -= 例题2 100件产品中有合格品90件,次品10件,现从中抽取4件检查. (1) 都不是次品的取法有多少种 (2) 至少有1件次品的取法有多少种

奥数:排列组合的基本理论和公式

一、排列组合的基本理论和公式,排列与元素的顺序有关,组合与顺序无关。如231与213是两个排列,2+3+1的和与2+1+3的和是一个组合。 (一)两个基本原理是排列和组合的基础: (1)加法原理:做一件事,完成它可以有n类办法,在第一类办法中有m1种不同的方法,在第二类办法中有m2种不同的方法,……,在第n类办法中有m n种不同的方法,那么完成这件事共有N=m1+m2+m3+…+m n种不同方法。 (2)乘法原理:做一件事,完成它需要分成n个步骤,做第一步有m1种不同的方法,做第二步有m2种不同的方法,……,做第n步有m n种不同的方法,那么完成这件事共有N=m1×m2×m3×…×m n种不同的方法。 这里要注意区分两个原理,要做一件事,完成它若是有n类办法,是分类问题,第一类中的方法都是独立的,因此用加法原理;做一件事,需要分n个步骤,步与步之间是连续的,只有将分成的若干个互相联系的步骤,依次相继完成,这件事才算完成,因此用乘法原理。 这样完成一件事的分“类”和“步”是有本质区别的,因此也将两个原理区分开来。

3 C表示从5个元素中取出3个,总共有多少种不同的取5 法。这是组合的运算。例如:从5个人中任选三个人去参加比赛,共有几种选法?这就是从5个元素中取出3个的组合运算。可表示为3 C。其计算过程是35C=5!/[3!×(5-3)!] 5 叹号代表阶乘,5!=5×4×3×2×1=120,3!=3×2×1=6,(5-3)!=2!=2×1=2,所以3 C=5!/[3!×(5-3)!]=120/(6×2)=10 5 针对上面例子,就是从5个人中任选三个人去参加比赛,共有10几种选法。 排列组合公式: 公式P是指排列,从N个元素取R个进行排列。 公式C是指组合,从N个元素取R个,不进行排列。n—元素的总个数;r—参与选择的元素个数。 !—阶乘,如 9!=9×8×7×6×5×4×3×2×1。 举例: Q1:有从1到9共计9个号码球,请问,可以组成多 少个三位数? A1: 123和213是两个不同的排列数。即对排列顺序 有要求的,既属于“排列P”计算范畴。

组合与组合数公式

组合与组合数公式 1.组合的定义 一般地,从n 个不同元素中取出m (m ≤n )个元素合成一组,叫做从n 个不同元素中取出m 个元素的一个组合. 组合的概念中有两个要点:(1)取出元素,且要求n 个元素是不同的;(2)“只取不排”,即取出的m 个元素与顺序无关,无序性是组合的特征性质 2.组合数的概念、公式、性质 组合数 定义 从n 个不同元素中取出m (m ≤n )个元素的所有不同组合的个 数,叫做从n 个不同元素中取出m 个元素的组合数 表示法 C m n 组合数 公式 乘积式 C m n =A m n A m m =n (n -1)(n -2)…(n -m +1)m ! 阶乘式 C m n = n ! m !(n -m )! 性质 C m n =C n -m n ,C m n +1=C m n +C m -1 n 备注 ①n ,m ∈N * 且m ≤n ;②规定:C 0 n =1 判断正误(正确的打“√”,错误的打“×”) (1)从a 1,a 2,a 3三个不同元素中任取两个元素组成一个组合,所有组合的个数为C 2 3.( ) (2)从1,3,5,7中任取两个数相乘可得C 2 4个积.( ) (3)C 3 5=5×4×3=60.( ) (4)C 2 016 2 017=C 1 2 017=2 017.( ) 答案:(1)√ (2)√ (3)× (4)√ 若A 3 n =8C 2 n ,则n 的值为( ) A .6 B .7 C .8 D .9 答案:A 计算:(1)C 3 7=________;(2)C 18 20=________. 答案:(1)35 (2)190

高中数学排列组合及概率的基本公式概念及应用

高中数学排列组合及概率的基本公式、概念及应用 1 分类计数原理(加法原理):12n N m m m =+++. 分步计数原理(乘法原理):12n N m m m =?? ?. 2 排列数公式 :m n A =)1()1(+--m n n n =! !)(m n n -.(n ,m ∈N *,且m n ≤).规定1!0=. 3 组合数公式:m n C =m n m m A A =m m n n n ???+-- 21)1()1(=!!!)(m n m n -?(n ∈N * ,m N ∈,且m n ≤). 组合数的两个性质:(1)m n C =m n n C - ;(2) m n C +1 -m n C =m n C 1+.规定10 =n C . 4 二项式定理 n n n r r n r n n n n n n n n b C b a C b a C b a C a C b a ++++++=+--- 222110)( ; 二项展开式的通项公式r r n r n r b a C T -+=1)210(n r ,,, =. 2012()()n n n f x ax b a a x a x a x =+=++++的展开式的系数关系: 012(1)n a a a a f ++++=; 012(1)(1)n n a a a a f -++ +-=-;0(0)a f =。 5 互斥事件A ,B 分别发生的概率的和:P(A +B)=P(A)+P(B). n 个互斥事件分别发生的概率的和:P(A 1+A 2+…+A n )=P(A 1)+P(A 2)+…+P(A n ). 6 独立事件A ,B 同时发生的概率:P(A ·B)= P(A)·P(B). n 个独立事件同时发生的概率:P(A 1· A 2·…· A n )=P(A 1)· P(A 2)·…· P(A n ). 7 n 次独立重复试验中某事件恰好发生k 次的概率:()(1).k k n k n n P k C P P -=- 8 数学期望:1122n n E x P x P x P ξ=++++ 数学期望的性质 (1)()()E a b aE b ξξ+=+. (2)若ξ~(,)B n p ,则E np ξ=. (3) 若ξ服从几何分布,且1 ()(,)k P k g k p q p ξ-===,则1E p ξ= . 9方差:()()()2 2 2 1122n n D x E p x E p x E p ξξξξ=-?+-?+ +-?+ 标准差:σξ=ξD . 方差的性质: (1)()2D a b a D ξξ+=; (2)若ξ~(,)B n p ,则(1)D np p ξ=-. (3) 若ξ服从几何分布,且1()(,)k P k g k p q p ξ -===,则2 q D p ξ= . 方差与期望的关系:()2 2D E E ξξξ=-. 10正态分布密度函数:( )()()2 2 26,,x f x x μ-- = ∈-∞+∞, 式中的实数μ,σ(σ>0)是参数,分别表示个体的平均数与标准差. 对于2 (,)N μσ,取值小于x 的概率:()x F x μσ-?? =Φ ??? . ()()()12201x x P x x P x x x P <-<=<< 11 )(x f 在0x 处的导数(或变化率):

组合数公式总结

组合数公式总结 ①几个常用组合数公式 n n n n n n C C C 2210=+++ 111111 211 5314201 1112++--++++++-+=+==++=+++=+++k n k n k n k n m n m m n m m m m m m n n n n n n n n C n C k nC kC C C C C C C C C C C C ②常用的证明组合等式方法例. i. 裂项求和法. 如:)! 1(11)!1(!43!32!21+-=++++n n n (利用!1)!1(1!1n n n n --=-) ii. 导数法. iii. 数学归纳法. iv. 倒序求和法. v. 递推法(即用m n m n m n C C C 11+-=+递推)如:4 13353433+=+++n n C C C C C . vi. 构造二项式. 如:n n n n n n C C C C 222120)()()(=+++ 证明:这里构造二项式n n n x x x 2)1()1()1(+=++其中n x 的系数,左边为 22120022110)()()(n n n n n n n n n n n n n n n n C C C C C C C C C C C +++=?++?+?+?-- ,而右边n n C 2= 举例: 103020301020101011209101720310182021019201102020010C C C C C C C C C C C C C C ==++++++ 这里构造二项式()()()302010111x x x +=++其中20 x 的系数.

(完整版)组合与组合数教案

7.3.1组合与组合数公式 教学目的: 1理解组合的意义,掌握组合数的计算公式; 2.能正确认识组合与排列的联系与区别 3.指导学生根据生活经验和问题的内涵领悟其中体现出来的顺序.举一反 三、融会贯通. 教学重点:组合的概念和组合数公式 教学难点:组合的概念和组合数公式 情境设置 一、问题1 (1)、从甲、乙、丙3名同学中选出2名去参加某天的一项活动,其中1名同学参加上午的活动,1名同学参加下午的活动,有多少种不同的选法? (2)从甲、乙、丙3名同学中选出2名去参加一项活动,有多少种不同的选法? 二、问题2 有6本不同的书: (1)取出3本分给三个同学每人1本,有几种不同的分法? (2)取出4本给甲,有几种不同的取法? 三、温故而知新 什么叫做排列?排列的特征是什么? 一般地说,从n 个不同元素中,取出m (m ≤n) 个元素,按照一定的顺序排成一列,叫做从 n 个不同元素中取出 m 个元素的一个排列. 新知探究 一、组合定义 1、一般地,从n 个不同元素中取出m (m ≤n )个元素,不论次序地构成一组,叫做从n 个不同元素中取出m 个元素的一个组合. 2、排列与元素的顺序有关,而组合与元素的顺序无关,这是它的根本区别. 3、排列与组合,它们有什么共同点、不同点? 共同点:都要“从n 个不同元素中任取m 个元素” 不同点:对于所取出的元素,排列要“按照一定的顺序排成一列”,而组合却是“不管怎样的顺序并成一组”. 4、什么是两个相同的排列? 5、什么是两个相同的组合? 二、组合数 1、从 n 个不同元素中取出 m ( m ≤n ))个元素的所有不同组合的个数,叫做从 n 个不同元素中取出 m 个元素的组合数. 记为 三、即时体验 判断下列问题是组合问题还是排列问题? m n C

组合数公式

组合数公式 编辑锁定 组合数公式是指从m个不同元素中,任取n(n≤m)个元素并成一组,叫做从m个不同元素中取出n个元素的一个组合;从m个不同元素中取出n(n≤m)个元素的所有组合的个数,叫做从m个不同元素中取出n个元素的组合数。用符号c(m,n) 表示。 中文名 组合数公式 公式写法 c(m,n)=p(m,n)/n! 递推公式 c(m,n)=c(m-1,n-1)+c(m-1,n) 应用领域 数学等 目录 1. 1 公式 2. 2 性质 3. 3 递推公式 4. 4 算法举例 组合数公式公式 编辑 有时候也表示成: (在旧版本里,排列数的字母写作P) 组合公式的推导是由排列公式去掉重复的部分而来的,排列公式是建立一个模型,从n 个不相同元素中取出m个排成一列(有序),第一个位置可以有n个选择,第二个位置可以有n-1个选择(已经有1个放在前一个位置),则同理可知第三个位置可以有n-2个选择,以此类推第m个位置可以有n-m+1个选择,则排列数为 ,而组合公式对应另一个模型,取出m个成为一组(无序),由于m个元素组成的一组可以有m!种不同的排列(全排列 ),组合的总数就是

组合数公式性质 编辑 组合数公式递推公式 编辑 c(m,n)=c(m-1,n-1)+c(m-1,n) 等式左边表示从m个元素中选取n个元素,而等式右边表示这一个过程的另一种实现方法:任意选择m中的某个备选元素为特殊元素,从m中选n个元素可以由此特殊元素的被包含与否分成两类情况,即n个被选择元素包含了特殊元素和n个被选择元素不包含该特殊元素。前者相当于从m-1个元素中选出n-1个元素的组合,即c(m-1,n-1);后者相当于从m-1个元素中选出n个元素的组合,即c(m-1,n)。 组合数公式算法举例 编辑 1、设15000件产品中有1000件次品,从中拿出150件,求得到次品数的期望和方差? 2、设某射手对同一目标射击,直到射中R次为止,记X为使用的射击次数,已知命中率为P,求E(X)、D(X)。 这两题都要用到一些技巧。我先列出几个重要公式,证明过程中提供变换技巧,然后把这两个题目作为例题。 先定义一个符号,用S(K=1,N)F(K)表示函数F(K)从K=1到K=N求和。 公式1: C(M-1,N-1)+C(M-1,N)=C(M,N) 公式1 证明: 方法1、可直接利用组合数的公式证明。 方法2、(更重要的思路)。 从M个元素中任意指定一个元素。则选出N个的方法中,包含这一个元素的有C(M-1,N-1)种组合,不包含这一个元素的有C(M-1,N)种组合。 因此,C(M-1,N-1)+C(M-1,N)=C(M,N) 公式2: S(K=N,M)C(K-1,N-1)=C(M,N)(M》=N) 证明:C(M,N)是从M个物品中任选N个的方法。 从M个物品中任意指定M-N个,并按次序编号为第1到第M-N号,而其余的还有N 个。 则选出N个的方法可分类为:

相关文档
最新文档