1-09-1000kV特高压交流输电线路绝缘子片数选择

1-09-1000kV特高压交流输电线路绝缘子片数选择
1-09-1000kV特高压交流输电线路绝缘子片数选择

1000kV特高压交流输电线路绝缘子片数选择

纪新元

[摘要]

根据近几年科研试验成果,文中列出了各型绝缘子的运行性能比较及其污耐压试验数据及曲线,综合归纳了按污秽条件选择绝缘子片数的方法,并在此基础上,对当前1000kV线路绝缘配置进行了说明。

[关键词]1000kV特高压输电线路污秽试验绝缘子片数选择

1 引言

1000kV交流特高压输电线路是当前国际上交流最高电压级的输电线路。早在1985年,前苏联就建成一条1150kV单回路输电线路,总长达1900km,其中约900km按1150kV电压运行,至1991年由于前苏联解体和经济衰退,导致该段线路降压至500kV运行。日本于1988年开始建设1000kV线路。共建成两段全长238km的1000kV双回路特高压线路,建成后降压为500kV运行。其它如美国、意大利和加拿大均建有该电压级的试验线路。

我国从2005年着手研究。并于2007年开始建设1000kV晋东南—南阳—荆州单回路特高压输电线路,全长约654km。现正设计1000淮南—上海双回路特高压输电线路,全长约640km。

1000kV交流特高压单、双回输电线路的建设,塔头绝缘设计是关键技术之一,而绝缘子片数选择则是塔头绝缘设计中的重要环节,为此,我国科研及设计单位进行了大量的调查研究及科学试验,取得了一定的成果,为我国特高压线路的设计提供了有力的科学依据。

本文综合了近几年来我国科研、制造及设计单位的研究成果,对1000kV线路绝缘片数的选择进行了论述,供广大读者参考。

2 绝缘子型式选择

目前我国输电线路大量使用的绝缘子主要有盘型悬式瓷绝缘子、盘型悬式玻璃绝缘子及复合绝缘子三大类。现将其运行情况及污闪性能简介如下。

2.1 我国绝缘子运行情况浅述

2.1.1 盘型悬式瓷绝缘子

盘型悬式瓷绝缘子具有良好的绝缘性能、耐气侯性能及耐热性能。当然,随着运行时间的增长,其机电性能会有所下降。此外,零值(老化)绝缘子的存在可导致绝缘水平降低,并可能因雷击及污闪等事故而导致绝缘子串断裂,这就要求应经常检除不良绝缘子。目前国产瓷绝缘子的平均年老化率低于5/100000。

瓷绝缘子的一大优点是当需要采用防污产品时,可设计成伞盘下表面光滑的双伞型或三伞型,这种形式由于其良好的空气动力学特性,十分有利于刮风条件下的自洁,积污率低,有效地提高了防污能力,特别适合于干旱、少雨和风沙多的污秽场合。

2.1.2 盘型悬式玻璃绝缘子

玻璃绝缘子在我国经过40多年的挂网运行,已逐渐占有了一定的市场。玻璃绝缘子具有长期稳定的机电性能,以及良好的耐振动疲劳、耐电弧烧伤和耐冷热冲击的性能,此外,还具有零值自爆的特点,当然,尤其是投产初期的零值自爆率高是其不足之处。近几年来,南京电瓷厂生产的玻璃绝缘子年自爆率可达万分之一。

2.1.3 复合绝缘子

复合绝缘子具有机电强度高、重量轻、无零值、耐污性能好等优点,在相同爬距及污秽条件下,合成绝缘子的污耐受电压明显高于瓷绝缘子和玻璃绝缘子,而且复合绝缘子价格较瓷或玻璃绝缘子便宜,不易破损,不需零值检测,不需清扫维护。

复合绝缘子在国际上已有30多年的运行经验,经过长期的发展,材料配方不断改善,产品设计逐渐完善,生产工艺趋于成熟,据2000年国际大电网会议公布的调查报告表明,合成绝缘子的损坏率为0.035%.

国家电网公司建设运行部和生产技术部于2005年8月提出的《棒形悬式复合绝缘子运行情况调研报告》中对我国复合绝缘在使用中与产品质量有关的事故情况统计见表2-1所示。

与产品质量有关的复合绝缘子事故率

2.2 各型绝缘子污闪性能比较

现将中国电力科学研究院《1000kV级交流输变电工程绝缘子选型研究》中所列各型绝缘子污闪性能比较示于图2-1。由图2-1可以看出,复合绝缘子耐污闪性能最好,其次则是三伞型瓷绝缘子。

由以上所述可以看出,盘型悬式瓷绝缘子、盘型悬式玻璃绝缘子及复合绝缘子,其运行经验及污闪性能虽各有差异,但均可满足1000kV 工程的需要。 3 按污秽条件选择绝缘子片数

从我国当前的运行情况来看,绝缘子片数选择主要决定于工频污秽条件。 按工频污秽条件选择绝缘子片数通常有两种方法,即:泄漏比距法及污耐压法。1000kV 线路绝缘子片数选择亦按此选择。 3.1 按泄漏比距法选择绝缘子片数

由爬电距离来决定绝缘子的串长,在工程设计中被广泛采用。由工频电压爬电距离要求的线路每串绝缘子片数应符合下式要求:

o

e m

L K U m l 3

(3-1)

式中:

m ——每串绝缘子片数; U m ——系统额定电压,kV ; λ——爬电比距,cm/kV ;

L o ——每片悬式绝缘子的几何爬电距离,cm;

K e ——绝缘子爬电距离的有效系数,主要由各种绝缘子爬电距离在试验和运

行中提高污秽耐压的有效性确定。

鉴于1000kV线路所选绝缘子片数较多,因此,合理选择有效系数(Ke)值是至关重要的。

武汉高压研究所在《1000kV交流输电线路绝缘子长串污秽特性及污秽外绝缘设计的研究》报告中列出了常压下各型绝缘子单片U50%值及有效系数(K e)值见表3-1所示。

有效系数K e的计算

根据表3-1所列试验数据,在1000kV绝缘子片数选择时推荐:

轻污区(0、1级污区):双伞和三伞型绝缘子的有效K e取值为1.0普通型绝缘子的K e取值为0.95;钟罩防污型绝缘子的K e取值为0.9。

中等及以上污区(II经及以上污区),双伞和三伞型绝缘子的有效系数K e取值为0.95;普通型绝缘子的K e取值为0.9;钟罩防污型绝缘子的Ke值为0.85。

3.2 按污耐压法选择绝缘子片数

3.2.1 现场污秽度对附盐密度的修正

用污耐压法选择绝缘子片数需采用绝缘子串的污耐压试验数据。鉴于在自然条件下难以取得有代表性的数据,因此,一般均采用实验室的人工污秽试验数据。实际上,试验室的人工污秽试验用的是纯盐(NaCl),而NGK公司经测试后认为。我国自然污秽成分主要是石膏盐(CaSO4·2H2O)等成份。武高所等单位也曾对我国的炼钢(铁)厂、化肥厂、火电厂、水泥厂、炼焦厂等单位排出物的化

学成分进行过测试,结果表明,排出物中Ca +、-24SO 离子含量远大于Na +、K +、

Mg 2+、-3NO 、Cl -的离子含量。实验证明,在自然污秽中硫酸钙(CaSO 4)的大量存在,可使绝缘子污闪电压显著提高。因此,在设计时直接采用绝缘子串的人工污秽实验数据是偏于保守的,特别对1000kV 线路,其影响更为明显,必须予以修正。

CaSO 4的存在对ESDD (附盐密度)的修正可用式(3-2)来表示:

a +-=ca c w w w (3-2)

式中:W c ——SDD (试验盐密),mg/cm 2; W ——ESDD (附盐密度),mg/cm 2; W ca ——ESDD 中CaSO 4的密度; α——校正系数,可取为0.01mg/cm 2

由有关文献得知,若CaSO 4在污秽物中的含量占20%时,则当ESDD 在0.05mg/cm 2及以下时,可不需要修正。这就是说,在工程设计中,对II 级及以上污区则应进行ESDD 的修正。为安全计现取CaSO 4含量较小值(20~30%)来进行ESDD 的修正,见表3-2所示。

GB/T16434-1996中ESDD 经CaSO 4修正后的SDD 值

由表3-2可以看出,按修正后的SDD 值来选择绝缘子片数(仍查绝缘子人工污秽试验曲线),可使所选绝缘子片数有所减少,而且,污秽越严重,效果越明显。

3.2.2 绝缘子串的人工污秽耐压试验数据

为进行1000kV 线路绝缘子片数选择,电科院,武高所等单位均进行了部分绝缘子的长串人工污秽试验,NGK 制造厂也提出了各型绝缘子的人工污秽试验

数据分别见表3-3及图3-1、图3-2所示。

长串双层伞型XWP2—160绝缘子人工污秽试验结果

(电科院)

注:T/B-上表面盐密T对下表盐密B之比;U’i50%和U’i50%—分别为绝缘子每串和每片由升降法确定的50%闪络电压。

NSDD为0.5mg/cm2 c.u.R 1:1

图3-1不同绝缘子污闪电压曲线(48片串数据,武高所)

图3-2 NGK唐山电瓷有限公司交流绝缘子污秽耐压曲线

3.2.3 按污耐压选择瓷(玻璃)绝缘子片数的方法和步骤

电科院、武高所及NGK等均提出了按污耐压选择绝缘子片数的方法,大同小异,现综合归纳如下:

(1)确定现场污秽度(即确定污秽等级及ESDD/NSDD),并按CaSO4含量进行校正(如本文表3-2所示);

(2)确定单片绝缘子的污闪耐受电压(U N):

U N=(1-Kσ)U50(3-3)式中:U50——单片绝缘子人工污秽试验50%闪络电压,kV;

σ——绝缘子人工污秽闪络电压的标准编差系数,一般取0.07~0.08;

K——与可靠性有关的系数,一般取 2.05~3.0(对应的可靠性概率为98%~99.99%)

(3)进行灰密(NSDD)修正

灰密修正与绝缘子人工污秽试验时所用的灰密大小及绝缘子型式有关。

电科院根据表3-3试验,提出灰密修正公式为:

K N=1.0(NSDD)-0.09(3-4) 武高所结合FC-400/205污秽试验(48片串),提出其灰密修正公式为:

K N=1.0(NSDD)-0.1341(3-5) NGK针对图3-2提出的灰密修正公式为:

K N=1.0(NSDD/1.0)-0.12(3-6) 在灰密(ESDD)常用范围内,以上三式相差最大仅3%左右。

(4)进行绝缘子上、下表面不均匀积污比(c.u.R)修正。

绝缘子串人工污秽试验一般均按绝缘子上、下表面积污相同(即1:1)进行,但在实际运行中,绝缘子上、下表面积污是不相同的,因此,必须进行绝缘子人工污耐压值的修正。

武高所、电科院提出的修正公式为:

Kd=1-N/n(T/D)(3-7)式中:T/D——上、下表面积污比(c.u.R);

N——常数。

常数N的取值与绝缘子型式有关,对双伞和三伞型绝缘子电科院建议N值取0.17。对普通型绝缘子,武高所结合FC-400/205绝缘子试验,建议N值取0.055。

NGK公司提出的修正公式为:

钟罩型绝缘子:Kd=1.0 (3-8) 外伞型绝缘子:Kd=1-0.55log(c.u.R)

在常用积污比范围内,按NGK公式修正要比按电科院、武高所公式修正约大6~12%。

(5)经修正后的耐受电压值(U N′)为:

U N′=K N K d U N(3-9)

(6)确定污秽设计目标电压值U′

φmax

U′φmax=KUφmax (3-10)——系统最高运行相电压

式中:U

φmax

K——按系统的重要性考虑的修正系数一般可取1.0~1.3。

(7)按绝缘子污耐压选择绝缘子片数:

N=U′φmax/ U N′(3-11)

3.3 按污秽条件选择瓷(玻璃)绝缘子片数小结

现将按泄漏比距法及污耐压法选择的瓷(或玻璃)绝缘子片数列于表3-4。表中一并列出我国设计的1000kV线路拟采用的瓷(或玻璃)绝缘子片数以供对照。

1000kV线路按污秽条件选择的绝缘子片数(片)

(海拔1000m及以下)

11

表3.4中各级污区所选绝缘子片数均可用于悬垂及耐张绝缘子串。 3.4 按污秽条件选择复合绝缘子技术参数

《110kV~750kV 架空输电线路设计技术导则》(报批稿)简称《技术导则》第7.0.6条规定:在轻、中污区(II 级及以下),复合绝缘子的爬电距离不宜小于盘型绝缘子;在重污区(III 级及以上),其爬电距离不应小于盘型绝缘子最小要求值的3/4且不小于2.8cm/kV 。

电科院《1000kV 交流特高压输电工程的绝缘配合》中参照美国EPRI 的设计,合成绝缘子的爬电比距取传统瓷绝缘的4/5。按双层伞型(XWP2-160高度155mm ,爬距450mm )绝缘子串在污秽最重状态时需使用78片,串长达12.09m 。据目前国内500kV 合成绝缘子(4450mm 结构高度,180mm 伞径,13750爬电距离)尺寸,可以计算出合成绝缘子结构长度:

H=[(78×0.45×

5

4

÷13.75]×4.45=9.1m 在淮南~上海1000kV 同塔双回线路设计中,为控制塔头尺寸不致过大并能满足绝缘要求,各污秽区的复合绝缘子结构长度统一取9750mm ,但各污区的爬电距离则可有所不同,如III 级污区可取30000mm ,IV 级污区可取32000mm 。

4 按操作过电压选择绝缘子片数

根据《交流电气装置的过电压保护和绝缘配合》(DL/T620-1997)规定:“按操作过电压要求的线路绝缘子串正极性操作冲击电压波50%放电电压U 50%应符合式(5-1)的要求”:

U 50%=K 1U S (4-1)

式中:U S ——相对地统计操作过电压

K 1——线路绝缘子串操作过电压统计配合系数,取1.25。

在当前工程设计中,1000kV 线路统计操作过电压倍数取1.7倍,系统最高运行电压取1100kV ,则正级性操作冲击波50%放电电压为:

U 50%=1.25×1.7×2×1100/3=1908kV

根据电力科学研究院“500kV 交流和直流输电线路杆塔绝缘强度和作用电压”(1991年6月),在临界波头长度下绝缘子串50%闪络电压与串长的关系:

对于边相:

U 50cr =

l

6.714460

+

(4-2) 式中:U 50cr ——临界波头长度下绝缘子串50%闪络电压,kV ; l ——绝缘子串长,m 。

经按式(4-2)计算可知,操作过电压所需绝缘子串长度仅为5.68m ,远低于表3.4所示绝缘子串长度,也低于复合绝缘子(9750mm )的长度,因此可以认为,操作过电压对1000kV 线路绝缘子片数选择不起控制作用。

5 雷电过电压对绝缘子片数选择的影响

如前所述,即使采用复合绝缘子,结构高度已达9750m ,经计算,其耐雷水平可达200kV 及以上,具有较高的耐雷水平,因而可以认为雷电过电压对绝缘子片数选择不起控制作用。

6 结束语

(1)盘型且悬式瓷(玻璃)绝缘子及复合绝缘子,其运行经验及污闪性能虽各有差异,但均可用于1000kV 特高压线路工程;

(2)由图2-1可以看出,复合绝缘子具有良好的耐污闪性能,这已为大量的运行经验所证实;

(3)1000kV 线路绝缘子片数选择仍由工频电压下的污秽条件控制,操作及雷电过电压不起控制作用;

(4)当前1000kV 线路的绝缘配置按以下原则处理。

悬垂串:II 级及以下污区可采用瓷(玻璃)绝缘子,亦可采用复合绝缘子,III 、IV 级污区则全部采用复合绝缘子;

耐张串:各污区均采用瓷(玻璃)绝缘子。

参考文献:

(1)中国电力科学研究院:《1000kV级交流输变电工程过电压与绝缘配合的研究》2005.11

(2)武汉高压研究所:《1000kV交流输电线路绝缘子长串污秽特性及污秽外绝缘设计的研究》2006.6

作者简介:纪新元,高级工程师,高电压技术及设备专业,东北电力设计院送电电气室主任、主任工程师。

±800kV特高压直流输电线路节能导线选择研究

±800kV特高压直流输电线路节能导线选择研究 发表时间:2015-12-03T16:52:06.117Z 来源:《电力设备》2015年4期供稿作者:郭瀚 [导读] 中国能源建设集团广东省电力设计研究院有限公司根据我国经济发展和能源分布格局,按照电力中长期发展规划,需要将西南水电、西北火电、西部光伏发电、风力发电等各类形式的电能输送到中东部负荷中心。 郭瀚 (中国能源建设集团广东省电力设计研究院有限公司广州 510663) 摘要:本文首先介绍了节能导线的分类,并以假设±800kV线路模型为例,对各种节能导线与普通钢芯铝绞线进行技术经济比较,分析利用节能导线后的经济效益和社会效益,提出推广及节能导线的合理建议。 关键词:节能导线;特高压直流输电;型线;年费用法 0引言 进入21世纪,国家大力提倡节能减排和使用新能源。我国政府正在以科学发展观为指导,加快发展现代能源产业,坚持节约资源和保护环境的基本国策,把建设资源节约型、环境友好型社会放在工业化、现代化发展战略的突出位置。根据我国经济发展和能源分布格局,按照电力中长期发展规划,需要将西南水电、西北火电、西部光伏发电、风力发电等各类形式的电能输送到中东部负荷中心。预计未来15年内我国需要建设的直流输电工程超过30 项,输送总容量超过1.5 亿千瓦[1-4]。因此,非常有必要研究特高压直流输电线路的节能导线的选择。 本文以±800kV直流输电线路模型为例,对各种节能导线与普通钢芯铝绞线进行技术经济比较,提出推广及节能导线的合理建议。 1节能导线选择. 目前国内节能导线主要分为软铝类节能导线、高导电率钢芯铝绞线、中强度铝合金绞线、高导电率硬铝类节能导线等。 碳纤维复合材料芯软铝绞线更适宜在老、旧线路改造中应用,以充分发挥其高运行温度的优势。在施工条件较好的新建线路中,经过技术经济比较,特强钢芯软铝绞线也勉强可以采用。但总体来说,软铝类节能导线更适合解决增容问题,并不适宜在新建的输电线路工程中推广应用。 铝合金芯铝绞线(圆铝和型铝)、中强度全铝合金绞线、钢芯高导电率硬铝绞线从全寿命周期经济性、施工和运行方便性、通用设计匹配性三个方面都有良好的表现,目前国内产能和制造水平也可满足工程招标要求,因此适合在新建线路中全面推广。 2导线型式选择 根据系统方案的要求,综合考虑电流密度以及电磁环境等因素,选用的截面为6×630。根据截面,选择了前文所述3种类型节能导线与钢芯铝绞线进行比较,分别为:高导电率钢芯铝绞线、铝合金芯铝绞线、中强度铝合金绞线。其中铝合金芯铝绞线分别考虑圆线结构和型线结构。鉴于目前国内硬铝单线生产水平,高导电率硬铝分别选取可大规模化工业生产的61.5%IACS(L1)硬铝和可已具备规模化生产的62.5%IACS(L3)硬铝,所选参比的节能导线型式详见表2.1所示。

广东电网有限责任集团公司输电线路悬式绝缘子选型导则

广电生〔2016〕114号附件 广东电网有限责任公司 输电线路悬式绝缘子选型导则 广东电网有限责任公司 2016年12月

目录 前言 (1) 修编说明 (2) 1 范围 (4) 2 规范性引用文件 (4) 3 定义和术语 (5) 3.1 电弧距离 (5) 3.2 爬电距离 (5) 3.3 统一爬电比距 (5) 3.4 现场污秽度 (5) 3.5 现场污秽度等级 (5) 3.6 爬电距离有效系数 (5) 3.7 爬电系数 (6) 3.8 沿海强风区 (6) 3.9 重要交叉跨越 (6) 4 外绝缘配置原则 (6) 4.1 一般规定 (6) 4.2 统一爬电比距配置要求 (6) 4.3 不同污区统一爬电比距配置要求 (7) 4.4 不同类型绝缘子爬电距离有效系数K (7) 5 绝缘子使用原则 (7) 5.1 一般规定 (7) 5.2 悬垂串绝缘子选择 (8) 5.3 耐张串绝缘子选择 (8) 5.4 双联串绝缘子选择 (8) 5.5 特殊区段绝缘子选择 (8) 5.6 绝缘子伞型选择 (9) 6 绝缘子入网条件 (9) 6.1 玻璃绝缘子 (9) 6.2 复合绝缘子 (9)

前言 本导则根据国内输电线路悬式绝缘子的生产制造技术水平、应用情况、运行经验,国家、行业及南方电网公司相关制度、标准,以及南方电网公司、广东电网有限责任公司对输电线路悬式绝缘子管理的要求,对输电线路外绝缘配置、悬式绝缘子选型使用原则以及入网条件进行了规范。 本导则主要起草人:陈剑光、张英、黄振、彭向阳、周华敏、朱文卫。 本导则由广东电网有限责任公司生产设备管理部部提出、归口并解释。 本导则自发布之日起实施。执行中的问题和意见,请及时反馈至公司生产设备管理部。

1-09-1000kV特高压交流输电线路绝缘子片数选择

1000kV特高压交流输电线路绝缘子片数选择 纪新元 [摘要] 根据近几年科研试验成果,文中列出了各型绝缘子的运行性能比较及其污耐压试验数据及曲线,综合归纳了按污秽条件选择绝缘子片数的方法,并在此基础上,对当前1000kV线路绝缘配置进行了说明。 [关键词]1000kV特高压输电线路污秽试验绝缘子片数选择 1 引言 1000kV交流特高压输电线路是当前国际上交流最高电压级的输电线路。早在1985年,前苏联就建成一条1150kV单回路输电线路,总长达1900km,其中约900km按1150kV电压运行,至1991年由于前苏联解体和经济衰退,导致该段线路降压至500kV运行。日本于1988年开始建设1000kV线路。共建成两段全长238km的1000kV双回路特高压线路,建成后降压为500kV运行。其它如美国、意大利和加拿大均建有该电压级的试验线路。 我国从2005年着手研究。并于2007年开始建设1000kV晋东南—南阳—荆州单回路特高压输电线路,全长约654km。现正设计1000淮南—上海双回路特高压输电线路,全长约640km。 1000kV交流特高压单、双回输电线路的建设,塔头绝缘设计是关键技术之一,而绝缘子片数选择则是塔头绝缘设计中的重要环节,为此,我国科研及设计单位进行了大量的调查研究及科学试验,取得了一定的成果,为我国特高压线路的设计提供了有力的科学依据。 本文综合了近几年来我国科研、制造及设计单位的研究成果,对1000kV线路绝缘片数的选择进行了论述,供广大读者参考。 2 绝缘子型式选择 目前我国输电线路大量使用的绝缘子主要有盘型悬式瓷绝缘子、盘型悬式玻璃绝缘子及复合绝缘子三大类。现将其运行情况及污闪性能简介如下。 2.1 我国绝缘子运行情况浅述 2.1.1 盘型悬式瓷绝缘子

输电线路绝缘子及其连接金具的选择

输电线路绝缘子及其连接金具计算 河北兴源工程建设监理有限公司许荣生 最大使用应力=计算拉断力×新线系数×40%÷导线截面积 年平均使用应力=计算拉断力×新线系数×年平均系数÷导线截面积 实际使用应力=计算拉断力×新线系数÷安全系数÷导线截面积 一、已知条件见下图 该图为JL/G1A-240/30导线35kV输电线路的双联耐复合绝缘子串组装图。根据GB/T 1170-2008国家标准《圆线同心绞架空导线》,JL/G1A-240/30的额定拉断力为75.19kN,由于线路导线上有接续管、耐张管、补修管,而使得导线的计算拉断力降低,故设计使用的导线保证计算拉断力为其实际额定拉断力95%;根据2009年5月编制的“河北省南部电力系统污秽区分布图”该线路处于Ⅳ级污秽区,其线路标称电压爬电比距为3.2~3.8cm/kV。试选择该线路的绝缘子及其连接金具,满足设计规范要求的机械强度及电气强度。 二、计算依据 1.《66kV及以下架空电力线路设计规范》GB50061-2010; 2. 《圆线同心绞架空导线》GB/T 1170-2008; 3.《110kV~750 kV架空输电线路设计规范》GB 50545-2010。

三、计算 1.导线最大使用张力 根据《66kV及以下架空电力线路设计规范》GB50061-2010的第5.2.3“导线或地线的最大使用张力不应大于绞线瞬时破坏张力的40%”的要求,JL/G1A-240/30的导线最大使用张力为 75.19kN×95%×40%=28.572kN。 2.绝缘子及连接金具的机械强度 根据《66kV及以下架空电力线路设计规范》GB50061-2010的第5.36.1 ”。 “绝缘子和金具的机械强度应按下式验算:kFkF U 2.1合成绝缘子的额定破坏机械强度的选择:

浅谈高压架空输电线路绝缘子的选用_姜海生

浅谈高压架空输电线路绝缘子的选用X 姜海生 (内蒙古电力勘测设计院,内蒙古,呼和浩特 010020) 摘 要:本文首先论述了绝缘子在架空输电线路中的重要作用,然后对现有的几种绝缘子优缺点进行了详细论述,最后提出了在工程中选用绝缘子的几点建议。 关键词:架空输电线路;绝缘子;选用 绝缘子是架空输电线路主要构件之一,它的正确选用直接关系到电网的安全和稳定运行。随着高压架空输电线路的大规模建设,对绝缘子的需求越来越多,要求也越来越高,并要求运行维护工作量尽量减少。随着电力系统主网架向大容量、特高压方向发展,绝缘子安全稳定的运行和减少运行维护及停电检修更显得极为重要。 绝缘子质量的优劣对确保安全供电关系极大,因其性能老化或者损坏都可能造成突然事故。架空线路运行中出现闪络、掉线、爆炸、漏电等事故,都可能造成大面积停电,给国民经济带来巨大的损失。不仅如此,绝缘子的使用寿命对于降低输电线路的运行费用进而为企业节约生产成本也有重要的意义。 绝缘子的发展主要依赖于绝缘材料的发展,目前国内外应用的绝缘子主要有盘形瓷绝缘子、钢化玻璃绝缘子、长棒形瓷绝缘子、有机复合材料制造的复合绝缘子和瓷复合绝缘子。不同材料的绝缘子不仅具有不同性能且价格各异。 悬式盘形瓷绝缘子已有100多年的历史,具有长久的运行经验。钢化玻璃制造绝缘子是上世纪三十年代以后发展起来的,五十年代开始生产和使用,具有一些瓷绝缘子所不具备的优良性能近年来受到电力部门的欢迎。长棒形瓷绝缘子是一种非击穿型绝缘子,早在1936年德国就研制开发成功并使用,已在30多个国家和地区有50年以上的良好运行记录,我国1997年开始在华东地区500kV线路上使用。有机复合绝缘子(又称合成绝缘子)是从上世纪六七十年代才开始生产的,合成绝缘子属非击穿型绝缘子,耐污型好,易维护,在污秽较重地区近年来被大量使用。瓷芯复合伞裙耐污盘形悬式绝缘子(简称瓷复合绝缘子),是在瓷盘表面以及相关界面采用特殊工艺加工,硅橡胶复合外套是采用严密包履热硫化一次成型工艺,由于硅橡胶复合外套具有良好的憎水性和憎水性的迁移性,因而抗污闪能力强,是一种新型绝缘子。 下面结合国内绝缘子现状及国内外的研究情况及发展方向,对以上五种不同类型的绝缘子性能优劣进行论述。 1 盘形瓷绝缘子 瓷是由石英砂、粘土、长石、氧化铝等原料经球磨、纸浆、练泥、成型、上釉和烧结成瓷件。它的烧结与固相反应是在低于固态物质的熔点或熔融温度下进行的(高硅瓷的成瓷温度是1300℃)。成瓷后的显微结构由多晶体、玻璃相和气孔组成,属于一种多晶体的非均质材料,晶相的数量和特性决定了瓷具有高的机械性能和较好的绝缘性能,这种材料的优良性能,使得该种绝缘材料得以长久使用,经久不衰。其主要优缺点如下: 优点 具有长久丰富的运行经验和稳定性能,具有良好的绝缘性能、耐气候性、耐热性,组装灵活,且有多种造型,其中双伞型及三伞型产品爬距大,具有自洁性能好、自清洗能力强的特点,适合干旱、少雨、风沙大等气候条件的地区。 缺点 属可击穿型,随运行时间的延长,其绝缘性能会逐渐降低,机电性能下降,即“老化”现象,且不易发现,为发现并剔除这些绝缘子,线路运行部门每年要花大量的人力和物力,必须登杆定期逐片检测零值,而且由于测试仪器及测试人员的技术水平或者个别绝缘子误检、漏检,都会给线路留下隐患,若线路正常运行条件尚不至造成危害,但当遇有污闪或雷击等突发情况,则易导致绝缘子掉线事故发生。其老化率属于后期暴露,随运行时间延长,老化率呈上升趋势,当老化率高达不能承受时,只好采取更换,在线路日后运行中需要增加更换绝缘子的费用(绝缘子本体、施工、线路停电等),需要定期清扫。2 玻璃绝缘子 玻璃由石英砂、白云石、长石和化工原料(碳酸钾、钠)等高温熔融(硅酸盐玻璃溶制约1500℃)成液 120内蒙古石油化工 2007年第3期 X收稿日期:2007-01-07

输电线路绝缘子选择及计算

1 绝缘子选型 1.1 绝缘子材质 我国主要生产的绝缘子主要有盘形瓷绝缘子、盘形玻璃绝缘子及复合绝缘子 1.2 各类绝缘子特性 绝缘子的性能比较 表1-1 不同类型线路绝缘子的性能比较 3 污区划分

3.1 沿线污秽调查 3.1.1 走廊沿线污源分布情况 本次对待建1000kV特高压中线工程线路走廊沿线进行了污染情况调查。湖北省境内绝大部分地区为自然污秽,包括生活污染、公路扬尘、农村施用农药、化肥以及烧山积肥的灰尘;工业污秽主要集中在宜城市板桥镇,分布有石灰厂、水泥厂、采石场等重点污源。河南省境内线路附近分布较多乡镇,主要的自然污秽来自居民区的生活污染和农田施用的化肥等,线路跨越铁路、高速公路、土路若干,加上风沙扬尘等也会对线路造成一定的污染;工业污源主要有采石场、石灰厂、水泥厂、铝铁厂、炼钢厂、火电厂等。山西省境内沿线分布储煤厂、炼焦厂、炼铁厂、火电厂、砖厂等,小型煤矿区和炼铁高炉更是星罗棋布,大气污染十分严重。另外1000kV特高压中线工程线路平行或跨越的500kV线路有:斗樊线、双玉Ⅰ、Ⅱ回、樊白Ⅰ、Ⅱ回、姚白线、白郑线、牡嵩线、沁获线、榆临线;跨越铁路七条、已建成高速公路六条、国道和省道若干。 (1) 化工污秽 该线路走廊附近的化工污源主要集中在河南省和山西省,主要有沁阳市碳素有限公司(1500万kg/a)、孟县化肥厂(6000万kg/a)、偃师市山化县化工厂、南阳石蜡精细化工厂(12000万kg/a)、南阳市金马石化有限公司(600万kg/a)、长治化工有限公司、钟祥市华毅化工有限公司(18000万kg/a)等。另外晋城市规划中的野川、马村化工园区,工厂十分集中,规模现在大约为30000万kg/a,随着发展,其规模将进一步扩大。 (2) 冶金污秽 冶金污秽主要包括铝厂、炼铁厂、炼钢厂等。根据调研情况,主要

中国特高压交流输电线路的现状及发展(自撰)

中国特高压交流输电线路的现状及发展 我国电力的建设当中。特高压输电能同时满足电能大容量、远距离、高效率、低损耗、低成本输送的基本要求,而且能有效解决目前500kV 超高压电网存在的输电能力低、安全稳定性差、经济效益欠佳等方面的问题,所以,建设特高压电网已经成为我国电力发展的必然趋势。 电力系统。电力系统中输送和分配电能的部分称为电力网,电网是电 电网是电能传输的载体,在发电厂发出电能后,如何将电能高效地传送给用户,就成为电网的主要功能。在对电力系统以及电网的基本概念及要求全面的了解的基础上,通过查阅资料了解我国特高压输电线路的发展现状以及我国引入特高压的必要性。特高压的英文缩写为UHV。在我国,特高压是指交流1000千伏及以上和直流正负600千伏以上的电压等级。特高压能大大提升我国电网的输送能力。 不同电压等级的输电能力 理论上,输电线路的输电能力与输电电压的平方成正比,与输电线路的阻抗成反比。输电线路的输送能力可以近似估计认为,电压升高1倍,功率输送能力将提高4倍。考虑到不同电压等级输电线路的

阻抗变化,电压升高了1倍,功率输送能力将大于4倍。表1—1给 出了以220kV输电线路自然功率输电能力为基准,不同电压等级,从高压、超高压到特高压但回输电线路自然功率输电能力的比较值。 注:以220kV线路输送自然功率132MW为基准同样,输电线路的输送功率与线路阻抗成反比,而输电线路的阻抗随线路距离的增加而增加,即输电线路越长,输电能力越小。要大幅提高线路的输电能力,特别是远距离输电电路的功率输送能力,就必须提高电网的电压等级。电网的发展表明,各国在选择更高一级电压时,通常使相邻两个输电电压之比等于2。特大容量发电厂的建设和大型、特大型发电机组的采用,可以产生更大规模的效益。他们可以通过输电网实现区域电网互联,可在更大范围内实现电力资源优化配置,进行电力的经济调度。 1 、特高压电网的发展目标 发展特高压输电有三个主要目标:(1)大容量、远距离从发电中心(送端)向负荷中心(受端)输送电能。(2)超高压电网之间的强互联,形成坚强的互联电网,目的是更有效地利用整个电网内各种可以利用的发电资源,提高互联的各个电网的可靠性和稳定性。(3)在已有的、强大的超高压电网之上覆盖一个特高压输电网目的是把送端和受端之间大容量输电的主要任务从原来超高压输电转到特高压输电上来,

特高压交流输电线路的绝缘子如何选型

特高压交流输电线路绝缘子选型 绝缘子的选型是特高压输电线路绝缘配合最为重要的内容之一。合理确定绝缘子的型式对于在保证电力系统运行的可靠性的同时,控制设备制造成本有着重要意义。 特高压线路绝缘子主要有玻璃绝缘子、复合绝缘子以及瓷绝缘子,在我国特高压线路中均得到实际应用。我们就三种绝缘子分别从预期寿命、失效率和检出率以及电气性能等方面进行讨论,给出特高压绝缘子的选型建议。 1、预期寿命 瓷绝缘子的绝缘部件由无机材料氧化铝陶瓷制成,该材料具有优良的抗老化能力和化学稳定性。玻璃绝缘子是以钢化玻璃为绝缘体,通过水泥胶合剂与其他金属吊挂件装配而成,并采用“热钢化”工艺,赋予了玻璃表层高达100~250MPa的永久预应力,使钢化玻璃的强度增大,热稳定性提高,抗老化性加强,寿命延长。 根据我国对已运行5~30年的玻璃和瓷绝缘子进行的机电性能跟踪对比试验,玻璃绝缘子的使用寿命取决于金属附件,瓷绝缘子的使用寿命取决于绝缘件;运行经验表明,玻璃绝缘子运行40a,机电性能变化不大,而瓷绝缘子平均寿命周期为15~25a。 复合绝缘子外绝缘采用有机材料硅橡胶,在电晕放电、紫外线辐射、潮湿环境、温度变化以及化学腐蚀等因素用下比较容易老化,对其使用寿命研究需长时间的跟踪观察,目前复合绝缘子只有20多年的运行经验,尚无足够数据支撑。从国内外运行经验来看,只要复合绝缘子能够保证出厂质量,使用寿命达到10a是没有问题的。 2、失效率和检出率 瓷绝缘子的失效表现形式为经过长时间运行后,材料老化,绝缘性能降到很低甚至为零。这种低值或者零值绝缘子无法从外表看出来,需要通过试验检测查出。 玻璃绝缘子失效表现为零值自破,即玻璃绝缘子在绝缘性能失去时,玻璃伞盘会爆裂破损。玻璃绝缘子在自破后,维修人员可以直接用肉眼观察到破碎的玻璃伞盘,所以玻璃绝缘子的失效检出率比瓷绝缘子高很多,通常认为玻璃绝缘子是不需要进行零值检测的,其维护检测工作量也比瓷绝缘子小得多。另有统计表明,国产玻璃绝缘子在其寿命周期内平均失效率为比瓷绝缘子低1~2个数量级。 复合绝缘子内绝缘距离和外绝缘距离几乎相等。结构上属于不可击穿型绝缘子,不存在零值绝缘子的问题,也就不需要零值检测。但是复合绝缘子的失效表现形式为伞裙硅橡胶蚀损以及隐蔽的“界面击穿”,无法直接观察,必须使用仪器逐只检测及更换,导致维护工作量及费用增加。 3、电气性能

电气知识总结-绝缘子选取

绝缘配合设计 爬电比距法其实是泄露比距法: n≥γU e01 注:n-海拔1000m时每联绝缘子所需片数; γ-爬电比距(cm/kV); 参照:《110kV-750kV架空输电线路设计规范》GB 50545-2010 P55 附录B 高压架空线路污秽分级标准例:三级:(2.50-3.20),四级:(3.20-3.80) U-系统标称电压(kV); 参照:《标准电压》GB/T 156-2007 P1 3.3 系统标称电压:用以标志或识别系统电压的给定值(及额定电压):例:110kV Le-单片悬式绝缘子的几何爬电距离(cm); 参照:1.《污秽条件下使用的高压绝缘子的选择和尺寸确定第1部分:定义、信息和一般原则》GBT 26218.1-2010 P2 绝缘子正常承载运行电压的两部件间沿绝缘件表面的最短距离或最短距离的和。 2.参照招标物料U70B/146(玻璃)=320mm U70B/146D(瓷质双伞)=450mm Ke-绝缘子爬电距离的有效系数,主要由各种绝缘子几何爬电距离在实验和运行中污秽耐压的有效性来确定;并以XP-70、XP-160型绝 缘子为基础,其中: 1.普通型、草帽型Ke值取为1; 2.双层伞型、大小伞型Ke值取为1; 3.钟罩防污型、深棱伞≤C级时Ke 值取为0.9;≥C级时Ke值取为0.8

统一爬电比距法:爬电距离与绝缘子两端最高运行电压之比。 n≥KγU 3K e L01 K-系数110-220kV系统K为1.15, 330-500kV系统K=1.1。 相电压为线电压/3 参照: 1.k值参考《标准电压》GB 156-2007 P.3/4 2.对于三相交流系统,相关标准的爬电比距系指线电压为计算技术的值,而统一爬电比距系指绝缘子两端的电压。因此,对于交流系统,应按相对电压为计算基础。 :

我国特高压交流输电线路发展现状与前景分析

【慧聪机械工业网】我国已经进入了大电网、大机组、高电压、高自动化的发展时期。随着经济的快速发展,电力需求也在快速增长,特高压输电逐渐进入到我国电力的建设当中。特高压输电能同时满足电能大容量、远距离、高效率、低损耗、低成本输送的基本要求,而且能有效解决目前500kV超高压电网存在的输电能力低、安全稳定性差、经济效益欠佳等方面的问题,所以,建设特高压电网已经成为我国电力发展的必然趋势。发电厂、输电网、配电网和用电设备连接起来组成一个整体,称之为电力系统。电力系统中输送和分配电能的部分称为电力网,电网是电能传输的载体,它包括升、降压变压器和各种电压等级的输电线路。电网是电能传输的载体,在发电厂发出电能后,如何将电能高效地传送给用户,就成为电网的主要功能。在对电力系统以及电网的基本概念及要求全面的了解的基础上,通过查阅资料了解我国特高压输电线路的发展现状以及我国引入特高压的必要性。 特高压的英文缩写为UHV。在我国,特高压是指交流1000千伏及以上和直流正负600千伏以上的电压等级。特高压能大大提升我国电网的输送能力。 第1页:无分页标题!第2页:无分页标题!第3页:无分页标题!第4页:无分页标题! 一、电力系统组成及电网的主要功能 1、电能的基本概念 电能是现代社会中最重要、也是最方便的能源。电能具有许多优点,它可以方便的转化为别种形式的能,例如,机械能、热能、光能、化学能等;它的输送和分配易于实现;它的应用模式也很灵活。因此,电能被极其广泛的应用于农业,交通运输业,商业贸易,通信以及人民的日常生活中。以电作为动力,可以促进工农业生产的机械化和自动化,保证产品质量,大幅度提高劳动生产率。 2、电力系统的概念、特点及其运行的要求 发电厂、输电网、配电网和用电设备连接起来组成一个整体,称之为电力系统。电力系统与其它工业系统相比有着明显的特点,主要有以下几个方面:(1)结构复杂而庞大。一个现代化的大型电力系统装机容量可达千万千瓦。世界上最大的电力系统装机容量达几亿千瓦,供电距离达几千公里。电力系统中各发电厂内的发电机、个变电站中的母线和变压器、各用户的用电设备等,通过许多条不同电压等级的电力线路结成一个网状结构,不仅结构十分复杂,而且覆盖辽阔的地理区域。(2)电能不能存储,电能的生产、输送、分配和消费实际上是同时进行的。电力系统中,发电厂在任何时刻发出的功率必须等于该时刻用电设备所需的功率、输送和分配环节中的功率损失之和。(3)电力系统的暂态过程非常短促。电力系统从一种运行状态到另一种运行状态的过渡极为迅速。(4)电力系统特别重要,电力系统与国民经济的各部门及人民日常生活有着极为密切的关系,供电的突然然中断会带来严重的后果。根据电力系统的这些特点,对电力系统运行的基本要求如下。(1)保证安全可靠的供电,供电中断会使生产停顿、生活混乱甚至危及人身和设备安全,造成十分严重的后果。停电给国民经济造成的损失远超过电力系统本身的损失。因此电力系统运行的首要任务是安全可靠的向用户供电。(2)要有合乎要求的电能质量,电能质量以电压、频率以及正弦交流电的波形来衡量。电压和频率过多的偏离额定值对电力用户和电力系统本身都会造成不良影响。这些影响轻则使电能减产或产生废品,严重时可造成设备损坏或危及电力系统的安全运行。(3)

特高压直流输电线路基本情况介绍

特高压直流输电线路基本情况介绍 问:直流输电线路有哪些基本类型? 答:就其基本结构而言,直流输电线路可分为架空线路、电缆线路以及架空——电缆混合线路三种类型。直流架空线路因其结构简单、线路造价低、走廊利用率高、运行损耗小、维护便利以及满足大容量、长距离输电要求的特点,在电网建设中得到越来越多运用。因此直流输电线路通常采用直流架空线路,只有在架空线线路受到限制的场合才考虑采用电缆线路。 问:建设特高压直流输电线路需要研究哪些关键技术问题? 答:直流架空线路与交流架空线路相比,在机械结构的设计和计算方面,并没有显著差别。但在电气方面,则具有许多不同的特点,需要进行专门研究。对于特高压直流输电线路的建设,尤其需要重视以下三个方面的研究: 1. 电晕效应。直流输电线路在正常运行情况下允许导线发生一定程度的电晕放电,由此将会产生电晕损失、电场效应、无线电干扰和可听噪声等,导致直流输电的运行损耗和环境影响。特高压工程由于电压高,如果设计不当,其电晕效应可能会比超高压工程的更大。通过对特高压直流电晕特性的研究,合理选择导线型式和绝缘子串、金具组装型式,降低电晕效应,减少运行损耗和对环境的影响。 2. 绝缘配合。直流输电工程的绝缘配合对工程的投资和运行水平有极大影响。由于直流输电的“静电吸尘效应”,绝缘子的积污和污闪特性与交流的有很大不同,由此引起的污秽放电比交流的更为严重,合理选择直流线路的绝缘配合对于提高运行水平非常重要。由于特高压直流输电在世界上尚属首例,国内外现有的试验数据和研究成果十分有限,因此有必要对特高压直流输电的绝缘配合问题进行深入的研究。 3. 电磁环境影响。采用特高压直流输电,对于实现更大范围的资源优化配置,提高输电走廊的利用率和保护环境,无疑具有十分重要的意义。但与超高压工程相比,特高压直流输电工程具有电压高、导线大、铁塔高、单回线路走廊宽等特点,其电磁环境与±500千伏直流线路的有一定差别,由此带来的环境影响必然受到社会各界的关注。同时,特高压直流工程的电磁环境与导线型式、架线高度等密切相关。因此,认真研究特高压直流输电的电磁

特高压直流输电

特高压直流输电的技术 随着国民经济的持续、高速增长,电力需求日益旺盛,电力工业的发展速度加快。2004年新增发电装机容量50 5GW,全国发电总装机容量达到440GW;2005年新增发电装机容量约70GW,全国发电总装机容量突破500GW;预计到2010年、2020年,全国发电总装机容量将分别达到700GW和1200GW。 新增电力装机有很大数量在西部大水电基地和北部的火电基地。这些集中的大电站群装机容量大,距离负荷中心远。如金沙江的溪洛渡、向家坝水电厂,总装机容量达到18.6GW,计划送电到距电厂1000~2000km的华中、华东地区;云南的水电有约20GW容量要送到1500km外的广东;筹划中的陕西、山西、宁夏、内蒙古的大火电基地将送电到华北、华中和华东的负荷中心,距离近的约1000km,远的超过2000km。 在这种背景下,要求输电工程具有更高的输电能力和输电效率,实现安全可靠、经济合理的大容量、远距离送电。特高压直流输电是满足这种要求的关键技术之一。 1 特高压直流输电的技术特点 特高压直流输电的电压等级概念与交流输电不一样。对于交流输电来说,一般将220kV 及以下的电压等级称为高压,330~750kV的称为超高压,1000kV及以上的称为特高压。直流输电则稍有不同,±100kV以上的统称为高压;±500kV和±600kV仍称为高压,一般不称为超高压;而超过±600kV的则称为特高压。 对于单项直流输电工程而言,通常根据其送电容量、送电距离等因素进行技术、经济方面的综合比较,对工程进行个性化设计而确定相应的直流电压等级。我国对特高压直流输电的电压等级进行研究和论证时,考虑到我国对直流输电技术的研发水平和直流设备的研制能力,认为确定一个特高压直流电压水平是必要的,并把±800kV确定为我国特高压直流输电的标称电压。这有利于我国特高压直流输电技术和设备制造的标准化、规范化、系列化开发,有利于进行我国特高压直流输电工程的规划、设计、实施和管理。 特高压直流输电技术不仅具有高压直流输电技术的所有特点,而且能将直流输电技术的优点更加充分发挥。直流输电的优点和特点主要有[1]:①输送容量大。现在世界上已建成多项送电3GW的高压直流输电工程。②送电距离远。世界上已有输送距离达1700km的高压直流输电工程。我国的葛南(葛洲坝—上海南桥)直流输电工程输送距离为1052km,天广(天生桥—广东)、三常(三峡—常州)、三广(三峡—广东)、贵广(贵州—广东)等直流输电工程输送距离都接近1000km。③输送功率的大小和方向可以快速控制和调节。④直流输电的接入不会增加原有电力系统的短路电流容量,也不受系统稳定极限的限制。⑤直流输电可以充分利用线路走廊资源,其线路走廊宽度约为交流输电线路的一半,且送电容量大,单位走廊宽度的送电功率约为交流的4倍。如直流±500kV线路走廊宽度约为30m,送电容量达3GW;而交流500kV线路走廊宽度为55m,送电容量却只有1GW。⑥直流电缆线路不受交流电缆线路那样的电容电流困扰,没有磁感应损耗和介质损耗,基本上只有芯线电阻损耗,绝缘水平相对较低。⑦直流输电工程的一个极发生故障时,另一个极能继续运行,并通过发挥过负荷能力,可保持输送功率或减少输送功率的损失。⑧直流系统本身配有调制功能,可以根据系统的要求做出反应,对机电振荡产生阻尼,阻尼低频振荡,提高电力系统暂态稳定水平。⑨能够通过换流站配置的无功功率控制进行系统的交流电压调节。⑩大电网之间通过直流输电互联(如背靠背方式),2个电网之间不会互相干扰和影响,必要时可以迅速进行功率交换。 特高压直流输电的特点:①电压高,高达±800kV。对与电压有关的设备,如高压端(±

绝缘子串数和片数的选择.doc

第1页共4页 页本工程绝缘子配合按Ⅲ级污秽区设计,泄漏比距取Ⅲ级区的 21.7 mm kv 。 一、绝缘子串数的确定: 1、悬垂绝缘子串: (1)按导线最大综合荷载计算: 按《电力工程高压送电线设计手册》 310 页 5-3-2 计算公式 n k 1 G T 。 n ——悬垂绝缘子串数 k 1——悬式绝缘子在运行情况下的机械强度的安全系数, k 1= T ——绝缘子额定机械拉伸负荷 T=100kN G ——作用在绝缘子串上的综合荷载( N ) G G n G j 本工程气象条件不考虑覆冰 2 2 G n g 4 sl h g 1sl v G n ——导线无覆冰时的综合比载

xxx计算纸 第2页共4页 g4——导线无冰时风比载 N m mm 2 页 S ——导线计算截面积mm2 l h——水平档距 m g1——导线自重比载N m mm2 l v——垂直档距 m 2 3 N 其中: S=275.96mm l h =350m g 1=32.7495 10 2 m mm g 4=45.221 103 N m mm 2 l v=650m G n g4 sl h 2 g1 sl v 2 =(N) 绝缘子串的综合荷载不计风载取自重荷载 即: G j 41.201 9.8 403.71( N ) G G n G j 7724( N ) 7724 ? n 2.0 0.15 1串。 100000 (2)按导线断线条件计算: 根据 5-3-3 计算公式 n k 2 T D T 。 n——悬垂绝缘子串数 k2——悬式绝缘子在断线情况下的机械强度的安全系数,k2=

架空输电线路绝缘子结构设计研究 梁超

架空输电线路绝缘子结构设计研究梁超 发表时间:2019-07-05T11:17:23.180Z 来源:《电力设备》2019年第4期作者:梁超 [导读] 摘要:绝缘子作为输电线路安全运行的重要设备之一,其各种技术性能应得到严格的保证。 (国网吕梁供电公司山西吕梁 033000) 摘要:绝缘子作为输电线路安全运行的重要设备之一,其各种技术性能应得到严格的保证。正确的选择和设计架空线路的绝缘子串对维护电力系统正常运作有着极其重要的作用。对架空输电线路绝缘子结构三维设计进行初步探讨研究,重点阐述绝缘串虚拟装配情况,已达到研究结果。 关键词:绝缘子;绝缘子串;结构设计 1 对绝缘子可靠性评价的五项准则 运行的可靠性是决定绝缘子生命力的关键。最好的评价是大量绝缘子在输电线路上长期运行的统计结果和可靠性试验所反映出来的性能水平。因此,评价绝缘子应遵循下述准则: 1.1绝缘子寿命周期 产品在标准规定的使用条件下,能够保持其性能不低于出厂和标准的最低使用年限为“寿命周期”,此项指标不仅反映绝缘子的安全使用期,也能反映输电线路投资的经济性。我国曾先后多次对运行5-30年的玻璃和瓷绝缘子进行机电性能跟踪对比试验。结果表明:玻璃绝缘子的使用寿命取决于金属附件,瓷绝缘子的使用寿命取决于绝缘体。玻璃绝缘子的寿命周期可达40年,而瓷绝缘子除全面采用国外先进制造技术后有可能较大幅度地延长其寿命周期外,其平均寿命周期仅为15-25年,复合绝缘子经历了“三代”的发展。但从迄今世界范围内的试验及运行结果分析来看,其平均寿命周期只有7年。 1.2绝缘子失效率 运行中年失效绝缘子件数与运行绝缘子总件数之比称为年失效率。据国家电力科学院调查统计,国产瓷质绝缘子的失效率一般在0.1%-0.3%之间,国产钢化玻璃绝缘子的失效率一般在0.01%-0.04%之间。对于复合绝缘子,由于复合材料配方和制造工艺还不能安全定型,其失效率很难预测。 1.3绝缘子失效检出率 绝缘子失效后能否检测出来的检出率对线路安全运行的影响是比失效率本身更为重要的因素,检出率取决于绝缘子失效的表现形式和失效的原因。玻璃绝缘子失效的表现形式是“自动破碎”和“零值自破”,这两种表现形式极大的方便电力线路工程线路故障点的查找检修。“自破”不是老化,而是玻璃绝缘子失效的唯一表现形式,所以只需凭借目测就可方便地检测出失效的绝缘子,其失效检出率可达百分之百,瓷绝缘子失效的表现形式为头部隐蔽“零值”或“低值”,复合绝缘子失效的主要表现形式为伞裙蚀损以及隐蔽的复合“界面击穿”,此外,瓷和复合绝缘子失效的原因是材料的老化,而老化程度是时间的函数。老化是隐蔽的,因此给线路巡检与测量故障点带来极大的困难,造成检出率极低,对于复合绝缘子,实际上根本无法检测。 1.4绝缘子事故率 年掉线次数与运行绝缘子件数之比称为年事故率。绝缘子掉串是架空输电线路最为严重的事故之一。对于EHV输电,若造成大面积、长时间停电,后果则不堪设想。 国产玻璃绝缘子30年来的运行经验证明:在220-500KV的输电线路上,从来没有因为玻璃绝缘子失效而发生过掉线事故。而国产瓷绝缘子掉线事故率则高达2×10-5。前苏联的研究指出,即使失效率相同,瓷绝缘子较玻璃绝缘子的事故率也至少高一个数量级。由于复合绝缘子为长棒式,掉线事故一般很少发生。但导致内绝缘击穿、芯棒断裂和强度下降的因素始终存在,一旦失效,事故概率会高于由多个元件组成的绝缘子串。 1.5绝缘子可靠性试验 为对绝缘子进行可靠性评价,国内外曾对玻璃绝缘子和瓷绝缘子作过各种方式的加速寿命试验和强制老化试验及耐压试验。如:陡波试验、热机试验、耐电弧强度试验、1500万次低频(18.5HZ)和200万次高频(185-200HZ)振动疲劳试验及内水压试验,都从不同角度得出结论:与玻璃绝缘子相反,绝大多数瓷绝缘子都不能通过这些试验。对于复合绝缘子,可靠性试验则还是一个有待于继续探索的课题。 2 绝缘子的特点和技术条件 绝缘子在架空输电线路中起着两个基本作用,即支撑导线和防止电流回地。在整条线路的运行寿命中,这两个作用必须得到保证,绝缘子不应该由于环境和电负荷条件发生变化导致的各种机电应力而失效。绝缘子承受的机械负荷除了导线和金属附件的重量之外,还必须承受恶劣天气情况下的风载荷、雪载荷、导线舞动以及运输安装过程中操作不当引起的冲击负荷。从电气角度来说,绝缘子不仅要使导线与地绝缘,还必须耐受雷电和开关操作引起的过电压冲击,当因电压冲击而发生闪络时引起的局部过热不应导致绝缘子绝缘性能。所有的外部因素都会对绝缘子的性能产生影响。 2.1特点 (1)瓷质绝缘子。原料丰富,制造简易,价格低廉,使用方便。国产瓷质绝缘子,存在劣化率很高,需检测零值,维护工作量大。遇到雷击及污闪容易发生掉串事故,目前已逐步被淘汰。 (2)玻璃绝缘子。是以钢化玻璃为介质而制作成的,价格比瓷质略高,使用方便。在运行中一旦发生低值和零值时能自爆,不用检测它的零值就能发现缺陷以利更换。遇到雷击及污闪不会发生掉串事故,在Ⅰ、Ⅱ级污区已普遍使用。 (3)合成绝缘子。在Ⅲ级及以上污区已普遍使用,它的主要特点如下有3点: 1)由硅橡胶为基体的高分子聚合物制成的伞盘具有良好的憎水性和憎水迁移性,因而能承受很高的污闪电压。 2)棒芯采用环氧玻璃纤维制成,具有很高的抗拉强度(一般都大于600Mpa),采用φ50mm的芯棒时机械负荷能承受100t,芯棒还具有良好的减震性、抗蠕变性、抗疲劳断裂性。 3)体积小、质量轻(其质量为瓷质串约1/7),具有弹性和抗击穿性,不需检测零值,对110kV以上的,使用时配有1~2只均压环。(4)瓷质棒型绝缘子。瓷质棒型绝缘子电气性能非常好,被称为不击穿绝缘子。它不易老化、容易清扫、结构简单、安装方便、能

特高压交流输电技术

. .. . 特高压交流输电技术

目录 一.特高压的特征 (1) 二.特高压交流输电的功能与优点 (1) 三.国外特高压交流输电的发展 (4) 3.1 国外特高压交流输电发展概 况 (4) 3.2我国特高压交流输电发展过 程 (4) 四.特高压交流输电中的若干技术问题 (5) 4.1 潜供电弧及其熄灭 (5) 4.2 特高压交流线路的防雷保护 (5) 4.3 特高压交流输电系统中的操作过电

压 (6) 4.4 特高压交流输电的环境影响问题 (7) 五.见解与认识 (7)

一.特高压的特征 交流输电电压系列被划分成几段,分段的原则应该是每一段都要有区别于其他各段的特征,从一段到另一段必须要有“质”的变化,否则分段就没有意义了。 将交流输电电压按如下格式加以分段: ●1kV以下——低压(LV); ●1kV~220kV——高压(HV); ●220kV以上~1000kV以下——超高压(EHV); ●1000kV及以上——特高压(UHV)。 “特高压”区别于“超高压”的特征。 (1)空气间隙击穿特性的饱和问题。空气间隙的长度达到一定程度时(例如 5-6m以上),它在工频电压和操作过电压的击穿特性开始呈现出“饱和 现象”,尤以电气强度最低的“棒-板”气隙在正极性操作冲击波作用下 的击穿特性最为显著。 (2)环境影响问题的尖锐化,是特高压区别于超高压的另一重要特征。随着 输电电压的提高,线路周围的电场强度也增大了,不过特高压输电线路 不仅产生强电场,而且也引发一系列别的环境影响问题,诸如 ●强电场和强磁场的生理生态影响; ●无线电干扰和电视干扰; ●可闻噪声; ●线路走廊问题; ●对周围景色和市容的影响。

华东177;1100kV特高压直流输电线路工程杆塔设计原则

华东±1100kV特高压直流输电线路工程杆塔 设计原则 -----------------------作者: -----------------------日期:

准东-华东±1100kV特高压直流 输电线路工程 杆塔设计原则 国家电网公司直流建设部 二○一五年十月

目录 1 工程概况1 2 技术标准和规程规1 3 电气条件2 3.1气象条件组合2 3.2导地线方案及参数16 3.3计算用最大风速18 3.4空气间隙18 3.5极间距取值19 3.6绝缘子串型及参数20 3.7导地线布置方式29 3.8防雷保护29 4 杆塔型式和杆塔规划30 4.1杆塔型式30 4.2杆塔规划30 5 荷载计算55 5.1导地线风荷载计算55 5.2绝缘子及金具荷载56 5.3杆塔荷载条件57 5.4电气荷载表58 5.5杆塔荷载计算58 5.6荷载组合62 6 杆塔设计64 6.1构造要求64 6.2杆塔材料的使用66 6.3特殊杆塔设计70 6.4铁塔与基础连接设计72 附录1 角钢构件轴心受力强度与稳定计算75 附录2 耐塔45度大风工况计算77 附录3 铁塔计算工况组合80 表110MM冰区悬垂直线塔计算工况汇总80 表210MM冰区悬垂转角塔计算工况汇总81 表310MM冰区耐塔计算工况汇总82 表410MM冰区加强型悬垂直线塔计算工况汇总84表515MM中冰区悬垂直线塔计算工况汇总85 表615MM中冰区悬垂转角塔计算工况汇总86 表715MM中冰区耐塔计算工况汇总88 表8单极终端塔计算工况汇总90 表9重冰区悬垂直线塔荷载组合93 表10重冰区耐塔荷载组合94

电力系统特高压输电系统及其关键技术

Beijing Jiaotong University 特高压输电系统及其关键技术 姓名:TYP 班级:电气0906 学号:09291183 指导老师:吴俊勇 完成日期:2012.5.20

一、特高压输电简介 特高压输电指的是使用1000千伏及以上的电压等级输送电能。特高压输电是在超高压输电的基础上发展的,其目的仍是继续提高输电能力,实现大功率的中、远距离输电,以及实现远距离的电力系统互联,建成联合电力系统。 特高压输电具有明显的经济效益。据估计,1条1150千伏输电线路的输电能力可代替5~6条500千伏线路,或3条750千伏线路;可减少铁塔用材三分之一,节约导线二分之一,节省包括变电所在内的电网造价10~15%。1150千伏特高压线路走廊约仅为同等输送能力的 500千伏线路所需走廊的四分之一,这对于人口稠密、土地宝贵或走廊困难的国家和地区会带来重大的经济和社会效益。特高压输送容量大、送电距离长、线路损耗低、占用土地少。100万伏交流特高压输电线路输送电能的能力(技术上叫输送容量)是50万伏超高压输电线路的5倍。所以有人这样比喻,超高压输电是省级公路,顶多就算是个国道,而特高压输电是“电力高速公路”。1000千伏电压等级的特高压输电线路均需采用多根分裂导线,如8、12、16分裂等,每根分裂导线的截面大都在6 00平方毫米以上,这样可以减少电晕放电所引起的损耗以及无线电干扰、电视干扰、可听噪声干扰等不良影响。杆塔高度约40~50米。双回并架线路杆塔高达90~97米。

二、特高压输电系统及关键技术简介 特高压输电分为特高压直流输电和特高压交流输电两种形式。 1、特高压直流输电 特高压直流输电(UHVDC)是指±800kV(±750kV)及以上电压等级的直流输电及相关技术。特高压直流输电的主要特点是输送容量大、电压高,可用于电力系统非同步联网。在我国特高压电网建设中,将以1000kV交流特高压输电为主形成特高压电网骨干网架,实现各大区电网的同步互联;±800kV特高压直流输电则主要用于远距离、中间无落点、无电压支撑的大功率输电工程。 1、特高压直流输电设备。主要包括:换流阀、换流变压器、 平波电抗器、交流滤波器、直流滤波器、直流避雷器、交流避雷器、无功补偿设备、控制保护装置和远动通信设备等。相对于传统的高压直流输电,特高压直流输电的直流侧电压更高。容量更大,因此对换流阀、换流变压器、平波电抗器、直流滤波器和避雷器等设备提出了更高的要求。 2、特高压直流输电的接线方式。UHVDC一般采用高可靠性 的双极两端中性点接线方式。 3、特高压直流输电的主要技术特点。与特高压交流输电技 术相比,UHVDC的主要技术特点为:

相关文档
最新文档