同步电动机经常出现的故障及原因分析4664

同步电动机经常出现的故障及原因分析4664
同步电动机经常出现的故障及原因分析4664

同步电动机经常出现的故障及原因分析

经常发现的故障现象有:①定子铁芯松动,运行中噪声大。②定子绕阻端部绑线崩断,绝缘蹭坏,连接处开焊,导线在槽口处端点断裂引起短路。③转子励磁绕组接头处产生裂纹、开焊绝缘局部烧焦。④转子线圈绝缘损伤,起动绕组笼条断裂。⑤转子磁极的燕尾楔松动、退出。⑥电刷滑环松动,风叶断裂等故障。

以上故障现象有的出现在同步电动机仅运行2—3年内,甚至半年内。一般认为是电动机制造质量问题。但许多电机制造厂,虽对制造工艺中的关键部位加强措施,但没有明显效果,故障现象仍然屡屡发生。

通过对同步电动机及励磁装置运行数据进行数理统计分析,对电动机起动,投励运行中的各种典型状态波形摄片,研究分析表明,同步电动机出现上述故障,不是制造问题,而是传统励磁技术存在缺陷。

2 传统励磁技术存在的缺陷

2.1 励磁装置起动回路及环节设计不合理

同步电动机励磁装置主回路中的主桥分为:全控桥式和半控桥式,下面分别以这两种方式分析。

①半控桥式励磁装置:由三只大功率晶闸管和一只大功率二极管组成,如图1所示。电动机在起动过程中,存在滑差,在转子线圈内将感应-交变电势,其正半波通过ZQ形成回路,产生+if,其负半波则通过KQ,RF形成回路,产生-if,

如图2所示,由于回路不对称,则形成的-if与+if也不对称,致使定子电流强烈脉动,波形如图3所示。使电动机因此而强烈振动,直到起动结束才消失。

②全控桥工励磁装置:由6只大功率晶闸管组成,如图4所示。

在起动过程中,随着滑差减小,当转速达到50%以上时,励磁感应电流负半波通路时通时断,同样形成+if与-if电流不对称从而形成脉振转矩,造成电动机强烈振动。

③投励时“转子位置角”不合理。无论是全控桥还是半控桥,电动机起动过程投励时,都产生

沉闷的冲击,这种冲击,同样会造成电机损害,这是“转子位置角”不合理所致。

以上所出现的脉振、投励时的冲击,并不一定一次性使电机损坏,但每次起动都会使电机产生疲劳,造成电机内部损害,积而久之,必然造成电机内部故障。

2.2 将GL型反时限继电器兼做失步保护

传流动磁装置将GL型继电器兼做失步保护,当电机失步时,它不能动作(如带风机类负载)或不及时动作(如带往复式压缩机类负载),使电动机或励磁装置损坏。

①失励失步:是指同步电动机励磁绕组失去直流励磁或严重欠励磁,使同步电动机失去静态稳定,滑出同步,此时丢转不明显,负载基本不变,定子电流过流

不大,电机无异常声音,GL型继电器往往拒动或动作时限加长,且失励失步值班人员-不易发现,待电动机冒烟时,已失步较长时间,已造成了电机或励磁装置损害。但不一定当场损坏电机,而是造成电机内部暗伤,经常出现电机冒烟后,停机检查又查不出毛病,电机还可以再投入运行。

失励失步往往造成:起动绕组(阻尼条)过热,变形、开焊、甚至波及定子绕组端部。在转子回路还会产生高电压,造成励磁装置主回路元件损坏,引起灭磁电阻发热,严重时甚至造成整台励磁装置损坏。

②带励失步:周围大负荷起动,相邻母线短路等原因引起母线电压大幅度波动;或负载突增(如压缩机弊压、轧钢机咬冷钢);以上原因引起电动机短时间欠励磁或失励磁(如插接件接触不良),引起失励失步,又过渡到带励失步,或在起动过程中过早投励等原因引起。

电动机带励失步,励磁系统虽仍有直流励磁,但励磁电流及定子电流强烈脉振,脉振频率随电机滑差而变化,使电动机遭受强烈脉振,有时产生电气共振和机械共振。定子电流脉振包络线的高峰值一般为电机额定电流Ie幅值的2~3倍,但其低谷值小于Ie,甚至可能接近为零,使GL型继电器“启动”又马上“返回”,如此反复,最终GL虽能动作,但长达几十秒,起不到保护作用。

带励失步造成:定子绕组绑线崩断,导线变酥,线圈表面绝缘层被振伤,继而过热,烧焦、烧环,甚至引起短路。转子励磁绕组接头处产生裂纹,出现过热、开焊、绝缘层烤焦:鼠笼条(直动绕组)断裂,与端环连接部位开焊变形,转子磁极

的燕尾楔松动,退出;电刷滑环松动,定子铁芯松动噪声大,严重时出现断轴事故。

③断电失步:是由于供电系统的自动重合闸ZCH装置,备用电源自动投入B ZT装置动作或人工切换电源,使电动机暂时失去电源而导致的。它对电动机的危害是非同期冲击(包括非同期电流和转矩冲击)。这种冲击的大小与系统容量、线路阻抗、电源中断时间、负载性质,特别是与电源瞬停后又重新恢复瞬间的投入分离角θT密切相关。非同期冲击电流的最大值出现在θT=180+2nq时,一般高达电机出口三相短路冲击电流的1.4~1.8倍。非同期冲击转矩的最大值对于凸极式同步电动机,将出现在θT=(1300~1350)+2nπ时,对隐极式高速高步电动机,则出现在θT=(1200~1250)+2nπ时,一般可高达电机出口三相短路时量大瞬时短路冲击转矩的3倍左右,即为电机额定转矩的20-30倍左右。它将引起电机定子,转子绕组崩裂、绝缘、挤坏;大轴、轴销和连轴器扭坏,进而引起电机内部短路,起火等事故。但当θT=2nπ+△θ时,非同期冲击小于电机出口三相短路冲击,不会引起电机损坏。

对于380V低压同步电动机,所在电网一般容量不大,加上变压器及线路阴抗相对较大。断电失步对电机冲击有限,一般不加断电失步保护。

④励磁装置的控制部分存在设计不合理环节。

控制部分经常出现晶闸管误导通、脉冲丢失、三相电流丢波缺相、不平衡、励磁不稳定,引起电机失励。同时插接件接触不良。

3 同步电动机采用的励磁新技术

对同步电动机传流励磁装置进行技术改进,采用电脑、数字技术研制成综合控制器,代替原

控制插件,面板采用薄膜按键。性能稳定、信号显示直观,便于值班人员监控。综合控制器采用了下列新技术。

3.1 主电路的改进

改进后的励磁主电路采用无续流二极管新型半控桥式整流电路,如图5所示。合理选配灭磁电阻RF,分极稳定KQ的开通电压,当电动机在异步驱动状态时,使KQ在较低电压下便开通,电动机具有良好的异步驱动状态,有效消除了传统励磁装置在电动机异步暂态过程中所存在脉振,满足带载起动及再整步的要求;而当电动机在同步运行状态时,KQ在通过电压情况下才开通。既保护元器件,又在正常同步运行时,KQ不误导通。

3.2 电机在起动及再整步过程中

按照“准角强励磁整步”的原则设计。准角强励磁系指电机转速进入临界滑差,按照电动机投励瞬间在转子回路中产生的磁场与定子绕组产生的磁场互相吸引力最大(即定子磁场的N、S极分别与转子绕组产生的S、N极相吸)。在准角时投入强励,使吸引力进一步加大,这样电机进入同步便轻松、快速、平滑、无冲击。投励时的滑差大小,可通过数字式功能开关设定,改造后的电动机起动及投励过程的波形见图6 所示。

对于某些转速较低、凸极转矩较强的电机空载或特轻载起动时,往往在尚未投励的情况下便进入同步,装置内具有凸极投励回路,在电机进入同步后1~2秒内自动投磁电机进入同步后,电脑系统自动控制励磁电压由强磁恢复到正常励磁。

3.3 选用数字触发器,提高触发脉冲的精度

选用数字触发器8253,提高了触发脉冲信号的精确度。当同步信号回路出现上升过零时,采用延时结束立即由硬件输出脉冲的方式,当满足投励条件后,电脑发出触发脉冲指令,经专用集成块功放由脉冲变压器输出——宽脉冲,触发可控硅。

在同步信号及主回路处于正常的情况下,电脑系统能保证主电路三相电压波形平衡,具有自动平衡系统。

为使电动机中励磁电压不致过高、过低或失控,在控制电路中设有1K、2K、3K功能开关,其中:1K用来设定励磁电压的上限;2K用来设定电机正常运行时的励磁电压;3K用来设定励磁电压的下限。投励时,首先按1K强励设定值运行1秒,然后自动移至正常励磁所设定的位置上。

采用数字化薄膜面板开关,按动上升键或下降键,可在1K及3K所设定的范围内调整励磁电压大小。采用电脑控制及数字开关,使装置性能稳定,完全消除了电位器调节所带来的温漂、跳跃、卡死及易受干扰的弊端。

3.4 电脑系统智能分析失步信号,准确可靠地动作

当同步电动机失步时,在其转子回路产生不衰减的交变电流分量,通过测取转子励磁回路分流器上的交变电流毫伏信号,经放大变换后输入电脑系统,对其波形进行智能分析,准确、快速地判断电动机是否同步,对于各类失步,不论其滑差大小、装置均能准确动作。根据其具体情况动作于灭磁一再整步,或启动后备保护环节动作跳闸。如电机未失步,则不论其如何振荡,装置均不动作。图7是同步电动机转子回路的几种典型波形,图中(a)、(b)、(c)为电动机已失步,励磁回路出现了不衰减不交变电流信号,失步保护快速准确动作,(d)是同步振荡,电动机未失步,失步保护应不误动作。对旧电机或已受暗伤的电动机,有时会出现转子回路开路,此时励磁回路电流突然下降为零。失步保护也快速动作。

3.5 失步自动再整步

电动机失步后,立即停发触发脉冲,励磁控制继电器LCJ吸合(如图8所示),断开励磁接触器控制回路及励磁主回路,待整流主桥路晶闸管关断后,LCJ释放,电机进入异步驱动状态,装置自动使KQJ继电器入于释放状态,通过KQJ的常闭接点,使晶闸管KQ在很低电压下便开通,以改善电动机异步驱动特性。

合理选择灭磁电阻RF,使电动机异步驱动特性得到改善,电机转速上升,电机转速上升,待进入临界差后,装置自动励磁系统,按准角强励磁对电动机实施整步,使其恢复到同步状态。

当时电动机短时失去电源,在恢复电源的瞬间可能造成非同期冲击,由防冲击检测环节送给综合控制器一对FCJ接点,电脑接收到FCJ接点传递来的信号后,将同样动作于灭磁—异步驱动—再整步。

3.6 失控检测

如触发脉冲回路断线或接触不良,造成脉冲丢失,控制回路同步电源缺相,主回路元件损坏(如熔断器熔断),造成主回路三相不平衡,缺相运行,但未造成电机失步,装置能及时检测到,若10秒后故障仍未消除,装置就控制报警继电器BXJ闭合,通过其接点,接通报警回路,并使面板上“失控”信号指示灯亮,发出声光报警信号。

失控及缺相测,是利用电动机进入同步后的直流励磁电压波形,通过对其智能分析,图9是几种典型的励磁电压波形,(a)、(b)均为正常运行,图(c)为缺相运行,图(d)为失控运行。

3.7 晶闸管KQ误导通检测

综合控制器设计时,采取对FQ的开通电压实行分级整定,即电动机在起动过程及失步后的异步驱动暂态过程中,为改善电机的异步驱动特性,使KQ在很低电压下开通;在电机进入同步后,KQ开通电压设定值较高,处于阻断状态,R F无电流通过,是为了保护电机、晶闸管、二极管、防上过电压,只有在过电压情况下方可开通。

为避免KQ因过压设定值太低,或开通后关不断,造成灭磁电阻RF长时间通过电流而过热,装置内设有KQ误导通检测装置。若KQ未导通,在KQ与R F回路,直流励磁电压全部降在KQ上,在灭磁电阻RF上无电压,处于冷态;一旦KQ导通,直流电压降落在RF上,装置内继电器RFJ线圈吸合(见图8),其接点信号输入电脑系统,电脑接收到KQ导通信号(即RFJ接点信号)后,对于因

过压引起的导通,电脑会指令其过压消失后自动关断。对因电压设定值太低造成的KQ误导通,或导通后关不断,电脑会指令报警继电器BXJ闭合,通过其接点接通报警回路,并控制面板上“KQ误导通”信号灯亮,发出声光信号提请操作人员检查处理。

3.8 后备保护环节

在同步电动机或励磁装置出现下列故障,使电机无法正常运行,为保证电机及励磁装置安全,特设后备保护环节,动作于跳闸停机,控制面板上显示“后备保护动作信号,便于分析和记录。”

①电机起动后或失步长时间不投励。②起动时间过长。③再整步不成功。④电动机在投励后拉不进同步。⑤励磁装置存在直接影响电机正常运行的永久性故障。如:熔断器,晶闸管、整流变压器、二极管等元件击穿或损坏。

经过上述技术改进后的励磁装置综合控制器原理见图10。

4 结论

同步电动机励磁装置采用了上述数字化控制技术及半导体可控整流技术,综合运用了同步电动机过渡过程理论、(下转47页)稳态运行理论,通过对同步电动机的运行参数,运行曲线及特性曲线进行优化处理,使同步电动机在异步起动,脉冲形成、脉冲放大、自动投励、自动灭磁、失步保护、过电压保护、抗干扰等方面具有先进而可靠的技术处理方法,达到了对同步电动机的运行智能化控制,

即可对传统励磁装置改造,也可直接采用综合控制器。该技术的推广与应用,必定会带来巨大的社会效益。

同步电动机经常出现的故障及原因分析通用版

解决方案编号:YTO-FS-PD944 同步电动机经常出现的故障及原因分 析通用版 The Problems, Defects, Requirements, Etc. That Have Been Reflected Or Can Be Expected, And A Solution Proposed T o Solve The Overall Problem Can Ensure The Rapid And Effective Implementation. 标准/ 权威/ 规范/ 实用 Authoritative And Practical Standards

同步电动机经常出现的故障及原因 分析通用版 使用提示:本解决方案文件可用于已经体现出的,或者可以预期的问题、不足、缺陷、需求等等,所提出的一个解决整体问题的方案(建议书、计划表),同时能够确保加以快速有效的执行。文件下载后可定制修改,请根据实际需要进行调整和使用。 经常发现的故障现象有: ①定子铁芯松动,运行中噪声大。 ②定子绕阻端部绑线崩断,绝缘蹭坏,连接处开焊,导线在槽口处端点断裂引起短路。 ③转子励磁绕组接头处产生裂纹、开焊绝缘局部烧焦。 ④转子线圈绝缘损伤,起动绕组笼条断裂。 ⑤转子磁极的燕尾楔松动、退出。 ⑥电刷滑环松动,风叶断裂等故障。 以上故障现象有的出现在同步电动机仅运行2—3年内,甚至半年内。一般认为是电动机制造质量问题。但许多电机制造厂,虽对制造工艺中的关键部位加强措施,但没有明显效果,故障现象仍然屡屡发生。 通过对同步电动机及励磁装置运行数据进行数理统计分析,对电动机起动,投励运行中的各种典型状态波形摄

同步电动机原理

同步电动机的原理 同步电动机是属于交流电机,定子绕组与异步电动机相同。它的转子旋转速度与定子绕组所产生的旋转磁场的速度是一样的,所以称为同步电动机。正由于这样,同步电动机的电流在相位上是超前于电压的,即同步电动机是一个容性负载。为此,在很多时候,同步电动机是用以改进供电系统的功率因素的。 同步电动机在结构上大致有两种: 1、转子用直流电进行励磁。这种电动机的转子做成显极式的,安装在磁极铁芯上面的磁场线圈是相互串联的,接成具有交替相反的极性,并有两根引线连接到装在轴上的两只滑环上面。磁场线圈是由一只小型直流发电机或蓄电池来激励,在大多数同步电动机中,直流发电机是装在电动机轴上的,用以供应转子磁极线圈的励磁电流。 由于这种同步电动机不能自动启动,所以在转子上还装有鼠笼式绕组而作为电动机启动之用。鼠笼绕组放在转子的周围,结构与异步电动机相似。 当在定子绕组通上三相交流电源时,电动机内就产生了一个旋转磁场,鼠笼绕组切割磁力线而产生感应电流,从而使电动机旋转起来。电动机旋转之后,其速度慢慢增高到稍低于旋转磁场的转速,此时转子磁场线圈经由直流电来激励,使转子上面形成一定的磁极,这些磁极就企图跟踪定子上的旋转磁极,这样就增加电动机转子的速率直至与旋转磁场同步旋转为止。 2、转子不需要励磁的同步电机 转子不励磁的同步电动机能够运用于单相电源上,也能运用于多相电源上。这种电动机中,有一种的定子绕组与分相电动机或多相电动机的定子相似,同时有一个鼠笼转子,而转子的表面切成平面。所以是属于显极转子,转子磁极是由一种磁化钢做成的,而且能够经常保持磁性。鼠笼绕组是用来产生启动转矩的,而当电动机旋转到一定的转速时,转子显极就跟住定子线圈的电流频率而达到同步。显极的极性是由定子感应出来的,因此它的数目应和定子上极数相等,当电动机转到它应有的速度时,鼠笼绕组就失去了作用,维持旋转是靠着转子与磁极跟住定子磁极,使之同步。

同步电动机经常出现的故障及原因分析

同步电动机经常出现的故障及原因分析 经常发现的故障现象有:①定子铁芯松动,运行中噪声大。②定子绕阻端部绑线崩断,绝缘蹭坏,连接处开焊,导线在槽口处端点断裂引起短路。③转子励磁绕组接头处产生裂纹、开焊绝缘局部烧焦。④转子线圈绝缘损伤,起动绕组笼条断裂。⑤转子磁极的燕尾楔松动、退出。⑥电刷滑环松动,风叶断裂等故障。 以上故障现象有的出现在同步电动机仅运行2—3年内,甚至半年内。一般认为是电动机制造质量问题。但许多电机制造厂,虽对制造工艺中的关键部位加强措施,但没有明显效果,故障现象仍然屡屡发生。 通过对同步电动机及励磁装置运行数据进行数理统计分析,对电动机起动,投励运行中的各种典型状态波形摄片,研究分析表明,同步电动机出现上述故障,不是制造问题,而是传统励磁技术存在缺陷。 2 传统励磁技术存在的缺陷 2.1 励磁装置起动回路及环节设计不合理 同步电动机励磁装置主回路中的主桥分为:全控桥式和半控桥式,下面分别以这两种方式分析。 ①半控桥式励磁装置:由三只大功率晶闸管和一只大功率二极管组成,如图1所示。电动机在起动过程中,存在滑差,在转子线圈内将感应-交变电势,其正半波通过ZQ形成回路,产生+if,其负半波则通过KQ,RF形成回路,产生-if,如图2所示,由于回路不对称,则形成的-if与+if也不对称,致使定子电流强烈脉动,波形如图3所示。使电动机因此而强烈振动,直到起动结束才消失。 ②全控桥工励磁装置:由6只大功率晶闸管组成,如图4所示。

在起动过程中,随着滑差减小,当转速达到50%以上时,励磁感应电流负半波通路时通时断,同样形成+if与-if电流不对称从而形成脉振转矩,造成电动机强烈振动。 ③投励时“转子位置角”不合理。无论是全控桥还是半控桥,电动机起动过程投励时,都产生 沉闷的冲击,这种冲击,同样会造成电机损害,这是“转子位置角”不合理所致。 以上所出现的脉振、投励时的冲击,并不一定一次性使电机损坏,但每次起动都会使电机产生疲劳,造成电机内部损害,积而久之,必然造成电机内部故障。 2.2 将GL型反时限继电器兼做失步保护 传流动磁装置将GL型继电器兼做失步保护,当电机失步时,它不能动作(如带风机类负载)或不及时动作(如带往复式压缩机类负载),使电动机或励磁装置损坏。 ①失励失步:是指同步电动机励磁绕组失去直流励磁或严重欠励磁,使同步电动机失去静态稳定,滑出同步,此时丢转不明显,负载基本不变,定子电流过流不大,电机无异常声音,GL型继电器往往拒动或动作时限加长,且失励失步值班人员-不易发现,待电动机冒烟时,已失步较长时间,已造成了电机或励磁装置损害。但不一定当场损坏电机,而是造成电机内部暗伤,经常出现电机冒烟后,停机检查又查不出毛病,电机还可以再投入运行。

同步电机的基本工作原理和结构

同步电机的基本工作原理和结构 第一节精编资料 本章主要介绍同步电机的结构和基本工作原理,同步电机的电动势和磁动势,异步电动...二,同步电机的工作原理1磁场:三相同步电机运行时存在两个旋转磁场: 定子旋转磁场... 原理,结构 同步电机的基本工作原理和结构 本章主要介绍同步电机的结构和基本工作原理、同步电机的电动势和磁动势、异步电动机的电势平衡,磁势平衡、等值电路及相量图、功率转矩、同步发电机运行原理等内容。本章共有10节课,内容和时间分配如下: 1.掌握同步电机的结构特点及工作原理。(2节) 2.掌握同步电机绕组有关的结构、额定参数(1节) 3.掌握同步电机机绕组的磁动势、等效电路,一般掌握相量图。(3节) 4.掌握同步电机功率、转矩和同步电机启动特性。(2节) 5.了解同步发电机的运行原理。(2节) 一、简介 交流电机,根据用途,可以分为同步发电机、同步电动机和同步补偿机三类。 (交流电能几乎全部是由同步发电机提供的。目前电力系统中运行的发电机都 是三相同步发电机。 同步电动机可以通过调节其励磁电流来改善电网的功率因数,因而在不需要调速的低速大功率机械中也得到较广泛的应用。随着变频技术的不断发展,同步电动机的起动和调速问题都得到了解决,从而进一步扩大了其应用范围。

同步补偿机实质上是接在交流电网上空载运行的同步电动机,其作用是从电网汲取超前无功功率来补偿其它电力用户从电网汲取的滞后无功功率,以改善电网的供功率因数。) 二、同步电机的工作原理 1磁场:三相同步电机运行时存在两个旋转磁场: 定子旋转磁场和转子旋转磁场。定子旋转磁场—又常称为电枢磁势,而相应的磁场称为电枢磁场60f1n,速度:同步速度,即 1p 方向:从具有超前电流的相转向具有滞后电流的相。 形成原因:以电气方式形成。 (当对称三相电流流过定子对称三相绕组时,将在空气隙中产生旋转磁通势。它的旋转速度 60f1n,1p为同步速度,即;它的旋转方向是从具有超前电流的相转向具有滞后电流的相;当某相电流达到最大值的瞬间,旋转磁势的振幅恰好转到该相绕组轴线处。这个旋转磁通势是以电气方式形成的。同步电机不论作为发电机运行还是作为电动机运行,只要其定子三相绕 组中流通对称三相电流,都将在空气隙中产生上述旋转磁通势,建立旋转磁场。同步电机的定子绕组被称为电枢绕组,因此,上述磁势又常称为电枢磁势,而相应的磁场称为电枢磁场。转子旋转磁场—直流励磁的旋转磁场。 60f1n, 速度:同步速度,即1p 方向:与定子相同。 形成原因:机械方式形成。 (在同步电机的转子上装有由直流励磁产生的磁极,磁极与转子无相对运动。当转子旋转时, 以机械方式形成旋转磁通势,并在气隙中形成另一种旋转磁场。由于磁场随转子一同旋转,被称为直流励磁的旋转磁场。) 2 电动势—两个旋转磁场切割绕组产生。

同步电动机的起动分析

同步电动机的起动 1.同步电机的基本原理 同步发电机和其它类型的旋转电机一样,由固定的定子和可旋转的转子两大部分组成。一般分为转场式同步电机和转枢式同步电机。 图1.1给出了最常用的转场式同步发电机的结构模型,其定子铁心的内圆均匀分布着定子槽,槽内嵌放着按一定规律排列的三相对称交流绕组。这种同步电机的定子又称为电枢,定子铁心和绕组又称为电枢铁心和电枢绕组。 转子铁心上装有制成一定形状的成对磁极,磁极上绕有励磁绕组,通以直流电流时,将会在电机的气隙中形成极性相间的分布磁场,称为励磁磁场(也称主磁场、转子磁场) 气隙处于电枢内圆和转子磁极之间,气隙层的厚度和形状对电机内部磁场的分布和同步电机的性能有重大影响。 除了转场式同步电机外,还有转枢式同步电机,其磁极安装于定子上,而交流绕组分布于转子表面的槽内,这种同步电机的转子充当了电枢。图中用AX、BY、CZ三个在空间错开120 分布的线圈代表三相对称交流绕组。 图1.1同步电机结构模型 1.1工作原理 主磁场的建立:励磁绕组通以直流励磁电流,建立极性相间的励磁磁场,即建立起主

磁场。 载流导体:三相对称的电枢绕组充当功率绕组,成为感应电势或者感应电流的载体。 切割运动:原动机拖动转子旋转(给电机输入机械能),极性相间的励磁磁场随轴一起旋转并顺次切割定子各相绕组(相当于绕组的导体反向切割励磁磁场)。 交变电势的产生:由于电枢绕组与主磁场之间的相对切割运动,电枢绕组中将会感应出大小和方向按周期性变化的三相对称交变电势。通过引出线,即可提供交流电源。 感应电势有效值:每相感应电势的有效值为E0 =4.44fNψ Φ 感应电势频率:感应电势的频率决定于同步电机的转速n和极对数p ,即 f=pn/60 交变性与对称性:由于旋转磁场极性相间,使得感应电势的极性交变;由于电枢绕组的对称性,保证了感应电势的三相对称性。 1.2同步转速 同步转速从供电品质考虑,由众多同步发电机并联构成的交流电网的频率应该是一个不变的值,这就要求发电机的频率应该和电网的频率一致。我国电网的频率为50Hz ,故有: n=60f/p=3000/p 要使得发电机供给电网50Hz的工频电能,发电机的转速必须为某些固定值,这些固定值称为同步转速。例如2极电机的同步转速为3000r/min,4极电机的同步转速为1500r/min,依次类推。只有运行于同步转速,同步电机才能正常运行,这也是同步电机名称的由来。 1.3运行方式 同步电机的主要运行方式有三种,即作为发电机、电动机和补偿机运行。作为发电机运行是同步电机最主要的运行方式,作为电动机运行是同步电机的另一种重要的运行方式。同步电动机的功率因数可以调节,在不要求调速的场合,应用大型同步电动机可以提高运行效率。近年来,小型同步电动机在变频调速系统中开始得到较多地应用。同步电机还可以接于电网作为同步补偿机。这时电机不带任何机械负载,靠调节转子中的励磁电流向电网发出所需的感性或者容性无功功率,以达到改善电网功率因数或者调节电网电压的目的。 分析表明,同步电机运行于哪一种状态,主要取决于定子合成磁场与转子主极磁场之间的夹角δ,δ称为功率角。

同步电动机经常出现的故障及原因分析(通用版)

Safety is the goal, prevention is the means, and achieving or realizing the goal of safety is the basic connotation of safety prevention. (安全管理) 单位:___________________ 姓名:___________________ 日期:___________________ 同步电动机经常出现的故障及原 因分析(通用版)

同步电动机经常出现的故障及原因分析(通 用版) 导语:做好准备和保护,以应付攻击或者避免受害,从而使被保护对象处于没有危险、不受侵害、不出现事故的安全状态。显而易见,安全是目的,防范是手段,通过防范的手段达到或实现安全的目的,就是安全防范的基本内涵。 经常发现的故障现象有: ①定子铁芯松动,运行中噪声大。 ②定子绕阻端部绑线崩断,绝缘蹭坏,连接处开焊,导线在槽口处端点断裂引起短路。 ③转子励磁绕组接头处产生裂纹、开焊绝缘局部烧焦。 ④转子线圈绝缘损伤,起动绕组笼条断裂。 ⑤转子磁极的燕尾楔松动、退出。 ⑥电刷滑环松动,风叶断裂等故障。 以上故障现象有的出现在同步电动机仅运行2—3年内,甚至半年内。一般认为是电动机制造质量问题。但许多电机制造厂,虽对制造工艺中的关键部位加强措施,但没有明显效果,故障现象仍然屡屡发生。 通过对同步电动机及励磁装置运行数据进行数理统计分析,对电

动机起动,投励运行中的各种典型状态波形摄片,研究分析表明,同步电动机出现上述故障,不是制造问题,而是传统励磁技术存在缺陷。 XX设计有限公司 Your Name Design Co., Ltd.

电动机的基本结构及工作原理

电动机的基本结构及工作原理 交流电机分异步电机和同步电机两大类。异步电机一般作电动机使用,拖动各种生产机械作功。同步电机分分为同步发电机和同步电动机两类。根据使用电源不同,异步电机可分为三相和单相两种型式。 一、异步电动机的基本结构 三相异步电动机由定子和转子两部分组成。因转子结构不同又可分为三相笼型和绕线式电机。 1、三相异步电动机的定子: 定子主要由定子铁心、定子绕组和机座三部分组成。定子的作用是通入三相对称交流电后产生旋转磁场以驱动转子旋转。定子铁心是电动机磁路的一部分,为减少铁心损耗,一般由0.35~0.5mm厚的导磁性能较好的硅钢片叠成圆筒形状,安装在机座内。定子绕组是电动机的电路部分,安嵌安在定子铁心的内圆槽内。定子绕组分单层和双层两种。一般小型异步电机采用单层绕组。大中型异步电动机采用双层绕组。机座是电动机的外壳和支架,用来固定和支撑定子铁心和端盖。 电机的定子绕组一般采用漆包线绕制而成,分三组分布在定子铁心槽内(每组间隔120O),构成对称的三相绕组。三相绕组有6个出线端,其首尾分别用U1、U2;V1、V2;W1、W2表示,连接在电机机壳上的接线盒中,一般3KW以下的电机采用星形接法(Y接),3KW以上的电机采用三角形接法(△接)。当通入电机定子的三相交流电相序改变后,因定子的旋转磁场方向改变,所以电机的转子旋转方向也改变。 2、三相异步电动机的转子:

转子主要由转子铁心、转子绕组和转轴三部分组成。转子的作用是产生感应电动势和感应电流,形成电磁转矩,实现机电能量的转换,从而带动负载机械转动。转子铁心和定子、气隙一起构成电动机的磁路部分。转子铁心也用硅钢片叠压而成,压装在转轴上。气隙是电动机磁路的一部分,它是决定电动机运行质量的一个重要因素。气隙过大将会使励磁电流增大,功率因数降低,电动机的性能变坏;气隙过小,则会使运行时转子铁心和定子铁心发生碰撞。一般中小型三相异步电动机的气隙为0.2~1.0mm,大型三相异步电动机的气隙为1.0~1.5mm。 三相异步电动机的转子绕组结构型式不同,可分为笼型转子和绕线转子两种。笼型转子绕组由嵌在转子铁心槽内的裸导条(铜条或铝条)组成。导条两端分别焊接在两个短接的端环上,形成一个整体。如去掉转子铁心,整个绕组的外形就像一个笼子,由此而得名。中小型电动机的笼型转子一般都采用铸铝转子,即把熔化了的铝浇铸在转子槽内而形成笼型。大型电动机采用铜导条;绕线转子绕组与定子绕组相似,由嵌放在转子铁心槽内的三相对称绕组构成,绕组作星形形联结,三个绕组的尾端连结在一起,三个首端分别接在固定在转轴上且彼此绝缘的三个铜制集电环上,通过电刷与外电路的可变电阻相连,用于起动或调速。 3、三相异步电动机的铭牌: 每台电动机上都有一块铭牌,上面标注了电动机的额定值和基本技术数据。铭牌上的额定值与有关技术数据是正确选择、使用和检修电动机的依据。下面对铭牌中和各数据加以说明: 型号异步电动机的型号主要包括产品代号、设计序号、规格代号和特殊环境代号等。产品代号表示电动机的类型,用汉语拼音大写字母表示;设

同步电动机启动过程中环火故障及解决办法

同步电动机启动过程中环火故障及解决办法 发表时间:2018-10-16T15:51:43.973Z 来源:《基层建设》2018年第27期作者:赵勇 [导读] 摘要:通过生产实践中同步电动机起机过程中产生环火的故障,分析原因及其解决办法。 新疆钢铁雅满苏矿业有限责任公司新疆哈密 839126 摘要:通过生产实践中同步电动机起机过程中产生环火的故障,分析原因及其解决办法。 关键词:同步电动机励磁绕组环火 1 引言 选矿厂普遍采用同步电动机作为球磨机的驱动设备,具有功率因数高、转速恒定的优点。同步电动机运转的好坏直接影响球磨机的作业率。 2 同步电动机的启动工作原理 同步电动机主要用于拖动恒定转速的大型机械设备,如球磨机、空气压缩机、离心水泵等。 由于同步电动机的启动转矩为零,不能自行启动,所以采用异步启动方法帮助启动,整个启动过程分为异步启动和牵入同步两个阶段。在启动过程中转子绕组是不能投入励磁电流的,否则将增加启动的困难,即发生堵转。同时励磁绕组又不能开路,否则启动时励磁绕组上感应出较高的危险电压,使绕组绝缘击穿受损伤。但是,如果将励磁绕组短路,则会产生很大的启动电流,使励磁装置受到损坏。因此,在启动同步电动机时励磁绕组通常是通过灭磁电阻短接的,灭磁电阻约为励磁绕组电阻值的十倍左右。启动过程结束前,也就是转子转速接近同步时,在亚同步时切除灭磁电阻,并且投入励磁电流。 3 问题的产生及原因分析 选矿厂共有4台同步电动机,沈阳股份电机厂,1997年制造,使用时间已经达到21年。最近其中一台同步电动机起机过程中,产生环火现象,进入同步转速后环火消失,电机运行正常。 最初故障是偶尔出现一次,后期每次起机过程都会发生,持续时间2-3秒,停机后,拆开防护网,仔细查找故障点,发现转子励磁绕组线圈连接处开焊,局部过热绝缘烧出几个小洞。 初步分析原因师同步电动机在带励失步时,励磁系统虽仍有直流励磁,但励磁电流及定子电流强烈脉动,电机亦遭受强烈脉振,有时甚至产生电气共振和机械共振。带励失步大多引起电机产生疲劳效应,造成电机内部暗伤,并逐步积累和发展。带励失步所造成电机损伤,转子励磁绕组接头处产生裂纹,出现过热、开焊、绝缘烤焦,同步电动机起机过程中转子励磁绕组产生感应电流,在接头处打火,转子旋转形成环火。 4 解决方案 4.1 临时解决方案 转子励磁绕组接头处已经开焊,部位在两个线圈中间,比较靠里,无法在现场采用铜焊进行修复,要想彻底修复只能更换后离线修理,但更换电机需要2天时间,影响球磨机作业率。分析电气连接的方法,常用的连接方法有绞合连接、紧压连接、焊接等,我们采用压接的方式固定开焊部位,采用5mm的胶木板,制作两块平板,两块楔子板,把两块平板浸泡绝缘漆后塞入接头的两边,再用楔子板打进平板和接头之间,压紧线圈接头,经过这样处理后转子环火现象消失,运行正常。 4.2 长期解决方案 需要更换同步电动机,送到修理厂家,选用银铜焊条,采用气焊焊接,电机转子抽芯后,线圈经过预先处理后,将接头之间的缝隙全部焊满,再重新绝缘处理。 对同步电动机励磁部分进行改造,应用先进的LZK-3型同步电动机励磁装置,增强了系统的稳定性,具有如下主要功能。(1)通过合理选配灭磁电阻RF,分级整定灭磁可控硅KQ的开通电压,使电机在异步驱动状态时,KQ在较低电压下便开通,故具有良好的异步驱动消除了原励磁屏在电机异步暂态过程中所存在的脉振,满足带载起动及再整步的要求;而当电机在同步状态时,KQ在过电压情况下才开通,既起到保护器件的作用,又使电机在正常同步运行时,KQ不误导通。 (2)机组异步启动时,励磁系统能在转子滑差为0.05-0.03时“准角”投励,并有后备计时投励环节,具有强励磁整步的功能。电机可在全压或降压条件下可靠拉入同步.启动过程平滑、快速、可靠。 (3)具有完善可靠的带励失步、失励失步保护系统,保证电机在发生带励失步和失励失步时,快速动作,保护电机,使电机免受损伤. (4)具有快速可靠的灭磁系统,可使电机在遇到故障,被迫跳闸停机时,明显减少其损伤程度。(5)在电机失步后,可根据现场工况选择跳闸停机或不停机带载自动再整步。当采用不停机带载自动再整步方式时,整个过程平滑、快速(仅需数秒钟),不损伤电机,不必减负载,并设有后备保护环节,以保证电机的安全运行。 5、结论 同步电动机故障处理完成后,降低球磨机停机时间,提高设备作业率,保证了生产的稳定,确保了质量指标的稳定,为全年生产任务的完成打下了坚实的基础,同时也降低了电耗,降低了成本。 参考文献: 《电机学》(中国电力出版社) 《同步发电机励磁系统原理与运行维护》(中国水利水电出版社) 作者简介:赵勇(1976-),男,电气工程师,长期从事电气设备及自动化控制技术的维护工作

[同步电动机,装置]大型同步电动机的静止变频起动装置

大型同步电动机的静止变频起动装置 摘要:大型同步电动机能够输出稳定的动力,不会随着载荷的增加而减少,因此,在各行业中的大型机械中被广泛使用,工作可靠稳定,能够提供足够的动力驱动各种设备的稳定运转。由于提供的电流和功率远高于启动所需,会造成启动困难,产生较大的振动,对电动机的零部件造成不利的影响。因此,实现大型同步电动机的静止变频具有重要的意义,能够将所需频率调成与启动的额定频率相同,是电动机稳定的启动,降低产生的机械冲击,对设备的工作效率、使用年限都有利。本研究对静止变频装置进行分析,了解静止变频的工作原理,促进静止变频在同步电动机中的良好应用。 关键词:大型同步电动机;静止变频;分析 前言 同步电动机因为其与同步转速具有一定的比例关系,而且一旦确定比例因数就不会改变,始终保持相应的转动频率,所以称为同步电动机。根据同步电动机的这一特性,在我国的经济发展中起到了重要的作用,用于工、农业等大型用电机械的动力来源,能够输出固定的动力,而不随着载荷变化,与异步电动机相比,能够输出更稳定的动力来驱动设备,满足设备的工作需求,得到了广泛的应用。但是其频率是固定值,不会发生改变,也有一定的限制性,同步电动机的启动较为困难,能够提供的转速与所需频率不符,需要多次的启动才能实现,在大型同步电动机上体现的更加明显,这不仅会加大大型同步电动机零部件的磨损,减少同步电动机的使用寿命,还会浪费不必要的资源。实现同步电动机的静止变频能够有效的弥补同步电动机具有的局限性,是电动机能够更加稳定的启动,应用在大型机械中更加安全可靠。 1 大型同步电动机静止变频简介 1.1 大型同步电动机起动困难 大型同步电动机对电压的波动不敏感,自身受到的影响很低,而且,具有可调的功劳因数,适用范围广,在水泵、大型风机、抽水设备等大型的机械中都能蚪行使用,不论设备的负载多大,同步电动机始终能够提供固定的动力,具有可靠、稳定、动力大的特点,受到了广泛的应用。但是,大型同步电动机的起动十分困难,提供的电流和功率是所需的6-8倍,远远大于额定电流和额定功率,造成起动困难、起动滞后等现象。提供的起动电流过大,会使得电动机工作状况不稳定,往往需要多次起动才能成功,在这个过程中,对设备的磨损和损耗加大,造成设备的振动,可能会造成内部结构的变形、移动等,降低设备的使用寿命,也会增加设备发生事故的可能性。要实现大型同步电动机在技术上的进步,使得同步电动机的应用范围加大,对我国的经济发展和社会建设发挥更大的作用,解决大型同步电动机的起动困难是首要应该解决的问题。 1.2 静止变频在国内外的发展现状 同步电动机在国内外都得到了广泛的应用,起动困难这一缺点也受到了关注,都积极寻求可靠的解决方法。在不同的设备上使用的同步电动机特性也有所不同,要解决起动困难问题的静止变频装置也会发生变化。最初实现同步电动机的静止变频是西方发达国家在燃气轮

同步电动机常见启动故障分析及处理

同步电动机常见启动故障分析及处理 摘要:同步电动机能否顺利启动,不仅影响到同步电动机自身的安全,还影响到生产系统,为了快速、准确的发现故障、排除故障,对同步电动机常见的启动故障分析就显得非常必要。文章结合维修实践,分析了同步电动机常见启动故障,并给出了具体的处理措施,为今后同步电动机启动故障的维修提供了方法,具有一定的参考价值。 0 引言 同步电动机由于其功率因数高,运行效率高,稳定性好,转速恒定等优点广泛应用于工业生产中。熟悉同步电动机启动故障,并及时排除故障,对电 动机本身及生产系统都具有现实意义,为了能及时、准确排除故障,必须对 同步电动机常见故障进行详细的分析。 1 常见故障 1)同步电动机通电后,不能启动。 同步电动机接通电源后,不能启动和运行,一般有以下几方面的原因:(一)电源电压过低,由于同步电动机启动转矩正比于电压的平方,电源电压过低,使得电机的启动转矩大幅下降,低于负载转矩,从而无法启动,对此,应提高电源电压,以增大电机的启动转矩。(二)电动机本身的故障检查电动机定、转子绕组有无断、短路,开焊和连接不良等故障,这些故障都使电机无法建立起额定的磁场强度,从而电动机无法启动;检查电动机轴承有无损坏,端盖有无松动,如果轴承损坏或端盖松动,造成转子下沉,与定子铁心相擦,从而导致电机无法启动。对定、转子绕组故障可用低压摇表,逐步查找,视具体情况,采取相应的处理方法,对轴承和端盖松动故障,每次开车前都应盘车,看电动机转子转动是否灵活,如轴承(或轴瓦)损坏,应及时更换。(三)控制装置故障此类故障多为励磁装置的直流输出电压调整不当或无输出,造成电动机的定子电流过大,致使电机过流保护动作或引起电机的失磁运行,此时,检查励磁装置的输出电压、电流是否正常,电压、电流波形是否正常,如电压或电流波形不正常,为了节省时间,更换备用触发板。(四)机械故障如被拖动的机械卡住,

同步电机 异步电机的原理及启动

同步电机异步电机的原理及启动 同步电机 同步电机和感应电机一样是一种常用的交流电机。特点是:稳态运行时,转子的转速和电网频率之间有不变的关系n=ns=60f/p,ns称为同步转速。若电网的频率不变,则稳态时同步电机的转速恒为常数而与负载的大小无关。 同步电机分为同步发电机和同步电动机。现代发电厂中的交流机以同步电机为主。 工作原理 ◆主磁场的建立:励磁绕组通以直流励磁电流,建立极性相间的励磁磁场,即建立起主磁场。 ◆载流导体:三相对称的电枢绕组充当功率绕组,成为感应电势或者感应电流的载体。 ◆切割运动:原动机拖动转子旋转(给电机输入机械能),极性相间的励磁磁场随轴一起旋转并顺次切割定子各相绕组(相当于绕组的导体反向切割励磁磁场)。 ◆交变电势的产生:由于电枢绕组与主磁场之间的相对切割运动,电枢绕组中将会感应出大小和方向按周期性变化的三相对称交变电势。通过引出线,即可提供交流电源。 ◆交变性与对称性:由于旋转磁场极性相间,使得感应电势的极性交变;由于电枢绕组的对称性,保证了感应电势的三相对称性。 运行方式 ◆同步电机的主要运行方式有三种,即作为发电机、电动机和补偿机运行。作为发电机运行是同步电机最主要的运行方式,作为电动机运行是同步电机的另一种重要的运行方式。同步电动机的功率因数可以调节,在不要求调速的场合,应用大型同步电动机可以提高运行效率。近年来,小型同步电动机在变频调速系统中开始得到较多地应用。同步电机还可以接于电网作为同步补偿机。这时电机不带任何机械负载,靠调节转子中的励磁电流向电网发出所需的感性或者容性无功功率,以达到改善电网功率因数或者调节电网电压的目的。 同步电动机

同步电动机励磁系统常见故障分析

同步电动机励磁系统常见故障分析 作者:陆业志 本文结合KGLF11型励磁装置,对其在运行中的常见故障进行分析。 1 常见故障分析 (1)开机时调节6W,励磁电流电压无输出。 原因分析:励磁电流电压无输出,肯定是晶闸管无触发脉冲信号,而六组脉冲电路同时无触发脉冲很可能是移相插件接触不良,或者同步电源变压器4T损坏,造成没有移相给定电压加到六组脉冲电路的1V1基极回路上,从而六组脉冲电路无脉冲输出导致晶闸管不导通。 (2)励磁电压高而励磁电流偏低。 原因分析:这是个别触发脉冲消失或是个别晶闸管损坏的缘故。个别触发脉冲消失可能是脉冲插件接触不良。另外图1中三极管1V1、单极晶体管2VU及小晶闸管9VT损坏,或者是电容2C严重漏电或开路。如果主回路中晶闸管1VT~6VT中有某一个开路或是触发极失灵,同样会导致输出励磁电流偏低的现象。 (3)合励磁电路主开关时,励磁电流即有输出。 原因分析:这是由于图1所示脉冲电路中的三极管1V1集电极-发射极之间漏电,即使移相电路还未送来正确的控制电压,也会导致1C充电到2VU导通的程度。2VU即输出触发使小晶闸管9VT导通,2C经9VT放电而发出脉冲令1VT、3VT、6VT之一触发导通,使转子励磁电路中流过直流电流。 (4)同步电动机起动时,励磁不能自行投入。 原因分析:励磁不能自行投入。肯定是自动投励通道电路中断或工作不正常,因此可能是投励插件与插座间接触不良,或是图2所示投励电路中的三极管3V1、单结晶体管4VU工作不正常,电容5C漏电、电位器W′损坏。另外是移相插件同样有接触不良现象,或者是图3所示移相电路的小晶闸管10VT损坏等等。 (5)运行过程中励磁电流电压上下波动。 原因分析:引起励磁电流电压输出不稳的原因很多,主要有1)脉冲插件可能存在接触不良,造成个别触发脉冲时有时无。2)图1所示脉冲电路的电位器4W松动,使三极管1V1电流负反馈发生变化,造成放大器工作点不稳定,从而影响晶闸管主回路输出的稳定性。另外,如果电容2C漏电或单结晶体管2VU及三极管1V1性能不良,也会引起触发脉冲相位移动。3)图3所示移相电路的电位器6W松动或接触不良,将会使移相控制电压Ed间歇性消失,引起励磁电流电压输出大幅度波动。另外,如果稳压管7VS、8VS损坏,都会使Ey随电网电压波动而波动,使Ed输出波动,造成晶闸管主回路直流输出不稳。 (6)励磁装置输出电压调不到零位。

同步电动机经常出现的故障及原因分析正式版

In the schedule of the activity, the time and the progress of the completion of the project content are described in detail to make the progress consistent with the plan.同步电动机经常出现的故障及原因分析正式版

同步电动机经常出现的故障及原因分 析正式版 下载提示:此解决方案资料适用于工作或活动的进度安排中,详细说明各阶段的时间和项目内容完成的进度,而完成上述需要实施方案的人员对整体有全方位的认识和评估能力,尽力让实施的时间进度与方案所计划的时间吻合。文档可以直接使用,也可根据实际需要修订后使用。 经常发现的故障现象有: ①定子铁芯松动,运行中噪声大。 ②定子绕阻端部绑线崩断,绝缘蹭坏,连接处开焊,导线在槽口处端点断裂引起短路。 ③转子励磁绕组接头处产生裂纹、开焊绝缘局部烧焦。 ④转子线圈绝缘损伤,起动绕组笼条断裂。 ⑤转子磁极的燕尾楔松动、退出。 ⑥电刷滑环松动,风叶断裂等故障。 以上故障现象有的出现在同步电动机

仅运行2—3年内,甚至半年内。一般认为是电动机制造质量问题。但许多电机制造厂,虽对制造工艺中的关键部位加强措施,但没有明显效果,故障现象仍然屡屡发生。 通过对同步电动机及励磁装置运行数据进行数理统计分析,对电动机起动,投励运行中的各种典型状态波形摄片,研究分析表明,同步电动机出现上述故障,不是制造问题,而是传统励磁技术存在缺陷。 ——此位置可填写公司或团队名字——

同步电机与异步电机的区别及工作原理

同步电机与异步电机的区别? 同步与异步的最大区别就在于看他门的转子速度是不是与定子旋转的磁场速度一致,如果转子的旋转速度与定子是一样的,那就叫同步电动机,如果不一致,就叫异步电动机。 当极对数一定时,电机的转速和频率之间有严格的关系,用电机专业术语说,就是同步。异步电机也叫感应电机,主要作为电动机使用,其工作时的转子转速总是小于同步电机。 所谓“同步”就是电枢(定子)绕组流过电流后,将在气隙中形成一旋转磁场,而该磁场的旋转方向及旋转速度均与转子转向,转速相同,故为同步。异步电机的话,其旋转磁场与转子存在相对转速,即产生转距。 同步电机的转速是和频率极数恒定的满足转速=60乘以频率除以极对数(同步转速)不随负荷的改变而该改变异步电机的转速永远低于同步转速但是带额定负荷时转速很接近同步转速随着负荷的增加转速会下降。所以叫异步电机 同步电机的转子有转子线圈和鼠龙,通入励磁电流。而异步电机只有鼠龙(铜条)。同步电机转速恒定,而异步电机低于同步转速 同步电机与异步电机的区别及工作原理? 同步电机和异步电机的主要区别是:同步电机能与其定子磁场旋转达到同步转速,异步电机转速达不到定子磁场的同步转速。 电机大致分成三种,同步机,异步机(以上两种多与电网相连),还有个直流电机。 下面的内容是一个过渡,只作为对电机(同步机、异步机)原理性的知识进行形象的讲解(懂电机的可跳过)。 同步机和异步机,这两个东西都是交流电机,利用了三相交流电的比较有意思的一个特性:简单的说如果把三个线圈像搅拌器(就是家里用来打鸡蛋的那种东西)那样布置,三个线圈相互不接触,分别加上abc三相电压,于是产生三相电流,接着好玩的事情就发生了,线圈所围的空间内出现了与所加电压同频的旋转磁场(若要更深入的解释,就得说驻波的分解,叠加,比较麻烦)。所以人们把线圈按照上述所说的办法,嵌进定子,于是转子所在的那个空间就产生了旋转的磁场。 有了这个磁场就好办了,我们就可以想象定子处有一个看不见的磁铁在转,此时如果转子是个磁铁的话,那么转子不就被带动起来了么,就是电动机了,反之如果转子带动那个看不见的磁铁,就成了发电机了(首先转子带动那个虚拟磁铁,转子肯定受个阻力矩吧,虚拟磁铁受个动力矩吧,注意!力是能量转换的中介(或者说是标志),虚拟磁铁毕竟是虚拟的,定子又不动,那么定子肯定地获得电动势喽。如定子带负载的话,就会有电流,还是三相的,有电流就会有磁场,干扰转子产生的磁场,这个叫做

实验三三相同步电动机

实验报告 实验名称:三相同步电动机 小组成员:许世飞许晨光杨鹏飞王凯征 一.实验目的 1.掌握三相同步电动机的异步起动方法。 2.测取三相同步电动机的V形曲线。 3.测取三相同步电动机的工作特性。 二.预习要点 1.三相同步电动机异步起动的原理及操作步骤。 2.三相同步电动机的V形曲线是怎样的怎样作为无功发电机(调相机)3.三相同步电动机的工作特性怎样怎样测取 三.实验项目 1.三相同步电动机的异步起动。 ≈0时的V形曲线。 2.测取三相同步电动机输出功率P 2 3.测取三相同步电动机输出功率P =倍额定功率时的V 形曲线。 2 4.测取三相同步电动机的工作特性。 四.实验设备及仪器

1.实验台主控制屏; 2.电机导轨及转速测量; 3.功率、功率因数表(NMCL-001); 4.同步电机励磁电源(含在主控制屏左下方,NMEL-19); 5.直流电机仪表、电源(含在主控制屏左下方,NMEL-18); 6.三相可调电阻器900Ω(NMEL-03); 7.三相可调电阻器90Ω(NMEL-04); 8.旋转指示灯及开关板(NMEL-05A); 9.三相同步电机M08; 10.直流并励电动机M03。 五.实验方法 被试电机为凸极式三相同步电动机M08。 1.三相同步电动机的异步起动 实验线路图如图3-1。 实验开始前,MEL-13中的“转速控制”和“转矩控制”选择开关扳向“转矩控制”,“转矩设定”旋钮逆时针到底。 R的阻值选择为同步发电机励磁绕组电阻的10倍(约90欧姆),选用NMEL-04中的90Ω电阻。 开关S选用NMEL-05。

同步电机励磁电源(NMEL-19)固定在控制屏的右下部。 a .把功率表电流线圈短接,把交流电流表短接,先将开关S 闭合于励磁电流源端,启动励磁电流源,调节励磁电流源输出大约左右,然后将开关S 闭合于可变电阻器R (图示左端)。 b .把调压器退到零位,合上电源开关,调节调压器使升压至同步电动机额定电压220伏,观察电机旋转方向,若不符合则应调整相序使电机旋转方向符合要求。 c .当转速接近同步转速时,把开关S 迅速从左端切换闭合到右端,让同步电动机励磁绕组加直流励磁而强制拉入同步运行,异步起动同步电动机整个起动过程完毕,接通功率表、功率因数表、交流电流表。 2.测取三相同步电动机输出功率P 2≈0时的V 形曲线 a .按1方法异步起动同步电动机。使同步电动机输出功率P 2≈0。 b .调节同步电动机的励磁电流I f 并使I f 增加,这时同步电动机的定子三相电流亦随之增加,直至电流达同步电动机的额定值,记录定子三相电流和相应的励磁电流、输入功率。 c .调节同步电动机的励磁电流I f 使I f 使逐渐减小,这时定子三相电流亦随之减小,直至电流过最小值,记录这时的相应数据, 图4-5 三相同步电动机接线图(MCL-II、MEL-IIB)图3-1 三相同步电动机接线图(MCL-11、MEL-11B )

同步电机启动

同步电机启动困难的原因: 当同步电机在频率恒定的电源下启动时,定子产生旋转磁动势F 以同步转速p N n f n 601=旋转。由于机械惯性的作用,电动机转速具有较大的滞后,不能快速的跟随同步转速;由电机的转矩角特性可以知道:转矩角是以2π为周期按正弦规律变化的。当转矩角0<θ<π时,电磁转矩大于零;当转矩角π<θ<2π时电磁转矩小于零,在一个周期内,电磁转矩的平均值等于零。所以在启动时,电磁转矩对转子的作用是一种高频的振动,不能使转子加速启动以达到同步转速,造成同步电机的启动困难。 同步电机稳定运行要求: 由隐极同步电机的转矩角特性图可以知道,当同步电机稳定运行于1θ时,此 时0<1θ<2 π电磁转矩和负载转矩平衡,当负载加大时,转子速度减慢,转子的感应电动势滞后,导致θ角的增大,此时电磁转矩也会增大,电磁转矩与负载转矩在 2θ处达到了新的平衡,同步电机仍以同步转速稳定运行。 图1 在0<θ<2 π隐极同步电机的转矩角特性 图2 在2 π<θ<π隐极同步电机的转矩角特性 当同步电机运行于3θ时,2 π<3θ<π,电磁转矩和负载转矩相等,当负载转矩加大时,转子速度减慢,转子的感应电动势滞后,导致θ角的增大,此时电磁

转矩会减小,电磁转矩减小,导致转矩角的进一步增大,则电磁转矩持续减小,最终电机的转速会偏离同步转速,就会导致失步。总之,在,2 π< <π范围内,同步电机不能稳定的运行,会产生失步现象。 失步现象: 同步电动机运行时,定子磁场拖动转子磁场旋转。两个磁场之间存在着一个固定的力矩,这个力矩的存在是有条件的,必须两者的转速要相等,即同步才行, 所以这个力矩也称为同步力矩 。 一旦两者的速度不相等 , 则同步力矩就不存在了,电机就会慢慢停下来。这种转子速度与定子磁场不同步,而造成同步力矩消失 , 转子慢慢停下来的现象,称为“失步现象”。 为什么失步时,电动机就没有旋转力矩呢?因为当转子与定子磁场不同步的话 , 两者的相对位置就会起变化,即转矩角就会变化。当转子落后定子磁场角度在转矩角0 ~ 180°度时定子磁场对转子产生的是驱动力;当转矩角180° ~ 360°时,定子磁场对转子产生的是阻力,所以平均力矩为零。 引起同步电机失步的原因:欠励失步、过励失步、断电失步。 ○ 1欠励失步 欠励失步主要是因为转子的励磁回路发生断路或者是接触不良、励磁绕组发生匝间短路、励磁系统发生故障等,导致同步电机的励磁绕组欠励磁或者是失去励磁,就会导致转子磁场滞后旋转磁场很大角度导致同步电机不能稳定运行,发生失步。 ○ 2过励失步 过励失步主要是由于相邻出线端头短路故障、附近大型机组或机组群起动或自起动引起母线电压较长时间较大幅度的降低、电动机所带负载的大幅度突增以及起动过程中励磁系统过早投励等原因所引起。电机在过励失步时,励磁系统虽仍有直流励磁,但励磁电流及定子电流都很大并且产生强烈脉振,转子磁场超前旋转磁场很大角度,有时甚至产生电磁共振和机械共振。 ○ 3断电失步 断电失步主要是由于外部供电系统跳闸及人工切换电源时,使交流电机供电电源输送渠道短暂中断而导致。在电源中断又重新恢复期间,同步电动机转子转速不断降低,电源重新恢复时,转子磁场的转速低于定子磁场的同步转速。导致失步。 怎么解决同步电机的失步问题: 同步电机的失磁是导致失步很重要的原因,为了防止失磁,可以在励磁机电源回路串联EPS 专门供电,防止外部大功率设备启动引起电网电压大幅波动。

电机学第11章同步发电机的基本工作原理和结构思考题与习题参考答案

1 第11章同步发电机的基本工作原理和结构思考题与习题参考答案 11.1 同步发电机感应电动势的频率和转速有什么关系? 在频率为50H Z 时,极数和转速有什么关系? 答:频率与转速的关系为:60 pn f = 当频率为Hz 50时,30005060=?=pn 。 11.2 为什么汽轮发电机采用隐极式转子,水轮发电机采用凸极式转子? 答:汽轮发电机磁极对数少(通常p =1),转速高,为了提高转子机械强度,降低转子离心力,所以采用细而长的隐极式转子;水轮发电机磁极对数多,转速低,所以采用短而粗的凸极式转子。 11.3 试比较同步发电机与异步电动机结构上的主要异同点。 答:同步发电机和异步电动机的定子结构相同,都由定子铁心、定子三相对称绕组、机座和端盖等主要部件组成。但这两种电机的转子结构却不同,同步发电机的转子由磁极铁心和励磁绕组组成,励磁绕组外加直流电流产生恒定的转子磁场。转子铁心又分为隐极式和凸极式两种不同结构。异步电动机的转子分为笼型和绕线型两种结构形式,转子绕组中的电流及转子磁场是依靠定子磁场感应而产生的,故也称为感应电动机。 11.4 一台汽轮发电机,极数22=p ,MW 300=N P , kV 18=N U ,85.0cos =N ?,Hz 50=N f ,试求:(1)发电机的额定电流;(2)发电机额定运行时的有功功率和无功功率。 解:(1)A U P I N N N N 6.1132085.010********cos 336=????==? (2)MW P N 300= MVA P S N N N 94.35285.0/300cos /===? var 186527.094.352sin M S Q N N N =?==? 11.5一台水轮发电机,极数402=p ,MW 100=N P ,kV 813.U N =,9.0cos =N ?,Hz 50=N f ,求:(1)发电机的额定电流;(2)发电机额定运行时的有功功率和无功功率;(3)发电机的转速。 解:(1)A U P I N N N N 553.46489.0108.13310100cos 336=????==? (2)MW P N 100= MVA P S N N N 11.1119.0/100cos /===? var 44.48436.011.111sin M S Q N N N =?==? (3)min /15020 506060r p f n N =?==

相关文档
最新文档