炉排炉和循环流化床锅炉生物质发电技术比较(初稿)

炉排炉和循环流化床锅炉生物质发电技术比较(初稿)
炉排炉和循环流化床锅炉生物质发电技术比较(初稿)

生物质发电锅炉技术比较

1.技术比较

生物质锅炉主要有水冷振动炉排炉和循环流化床锅炉,现将它们的部分性能对比如下:

1)应用情况:

水冷振动炉排炉在国内外均有成熟的长期运行经验,使用数量最多,市场占有率高,生产、安装、调试、运营的经验均较其它炉型丰富。中国第一座生物质发电厂-单县生物质发电厂即采用我公司的源自丹麦的水冷振动炉排炉技术。

而循环流化床锅炉最早是为解决燃煤机组烟气炉内脱硫的问题而在中国采用,虽然近年开始尝试用于生物质发电,但基于未解决的技术问题较多,且CDM指标难申请等因素,还未能广泛应用。

2)燃料适应性:

DPCT水冷振动炉排炉,较好的结合了国外先进技术和中国燃料的实际状况,可以适应多达60多种的农林废弃物,既可纯烧某种燃料,也可掺烧多种燃料。在燃料水分高达40%时亦可稳定燃烧。

循环流化床仅适用于燃料粒径和密度差别不大的燃料,对燃料的要求较为苛刻。

3)燃料预处理:

DPCT水冷振动炉排炉基本无需燃料预处理系统。

而循环流化床燃烧炉对燃料预处理要求较高,对燃料粒径具有较严格

要求,需要将秸秆进行一系列破碎、筛分等处理,使其尺寸、状况均一化,入炉秸秆尺寸一般要求为150到200mm,该部分投资费用较高。

4)磨损情况:

炉排炉中由于秸秆燃烧过程均发生在炉排表面上,炉排相对较长,炉型较大,磨损较轻;

循环流化床炉的布风板、周围水冷壁及后面尾部受热面和炉墙的磨损严重。

5)安装方案:

焊口比较少:水冷振动炉排锅炉,以德普新源公司的产品为例,省煤器和烟冷器都是模块化的,三四级过热器都是直接跟小集箱焊接在一起的。

水冷振动炉排锅炉,以德普新源公司的产品为例,安装方式是底部支撑的,从下往上安装的。CFB锅炉是吊装的,从上往下安装的,难度较大。

表一:

优缺点比较

表二:因素比较

2.经济性:

水冷振动炉排炉的经济指标明显优于循环流化床锅炉。

水冷振动炉排炉与循环流化床炉相比,虽然设备初期投资较大,但考虑到燃烧效率高使得单位发电量燃料耗量低、设备运行稳定使得年发电小时数多,设备磨损较流化床轻使得日常维修、部件更换费用低,设备厂用电率低使得同等装机容量的电厂上网电量多等因素,从锅炉设备的整个生命周期综合考虑,水冷振动炉排炉的经济指标明显优于循环流化床锅炉。

发电数据统计图:详见附件excel 表格。

电厂经济模型工具:详见附件excel 表格。

循环流化床锅炉设计《毕业设计》

目录 1 绪论 (3) 1.1循环流化床锅炉的概念 (3) 1.2 循环流化床锅炉的优点 (3) 2 燃料与脱硫剂 (6) 2.1 燃料 (6) 2.2 脱硫剂 (6) 3 无脱硫工况计算 (7) 3. 1无脱硫工况下燃烧计算 (7) 3. 2无脱硫工况下烟气体积计算 (7) 4 灰平衡与灰循环倍率 (8) 4.1 循环灰量 (8) 4.2 灰平衡计算 (8) 4.2.1 灰循环倍率 (8) 4.2.2 a n与a f和ηf的关系 (9) 5 脱硫工况计算 (10) 5.1 脱硫原理 (10) 5.2 NO X的排放 (10) 5.3 脱硫计算 (11) 6 燃烧产物热平衡计算 (14) 6.1 炉膛燃烧产物热平衡方程式 (14) 6.2 燃烧产物热平衡计算 (14) 7 传热系数计算 (17) 7.1 炉膛传热系数 (17) 7.2 汽冷屏传热系数 (17) 7.3 传热系数的计算 (17) 8 炉膛结构设计与热力计算 (20) 8.1 炉膛结构 (20) 8.1.1 炉膛结构设计 (20) 8.1.2 炉膛受热面积计算 (20) 8.2 炉膛热力计算 (21)

9 汽冷旋风分离器结构设计与热力计算 (24) 9.1 汽冷旋风分离器结构设计 (24) 9.2 汽冷旋风分离器热力计算 (24) 10 计算汇总 (27) 10.1 基本数据 (27) 10.1.1设计煤种 (27) 10.1.2 石灰石 (28) 10.2 燃烧脱硫计算 (28) 10.2.1 无脱硫工况时的燃烧工况 (28) 10.2.2 无脱硫工况时的烟气体积计算 (28) 10.2.3 脱硫计算 (29) 10.2.4 脱硫工况时受热面中燃烧产物的平均特性 (32) 10.2.5 脱硫工况时燃烧产物焓温表 (32) 10.3 锅炉热力计算 (34) 10.3.1 锅炉设计参数 (34) 10.3.2 锅炉热平衡及燃料和石灰石消耗量 (34) 10.3.3 炉膛膜式水冷壁传热系数计算 (36) 10.3.4 炉膛汽冷屏传热系数计算 (38) 10.4 结构计算 (41) 10.4.1 炉膛膜式水冷壁计算受热面积 (41) 10.4.2 炉膛汽冷屏计算受热面积 (43) 10.4.3 汽冷旋风分离器计算受热面积 (44) 10.5 热力计算 (46) 10.5.1 炉膛热力计算 (46) 10.5.2 汽冷旋风分离器热力计算 (49) 设计总结 (53) 谢辞 (54) 参考文献 (55)

生物质发电各项优惠政策落实情况及实行难点

政策引导及税赋专题汇报材料 生态文明是人类文明发展的高级阶段,加强资源节约和环境保护,是现阶段建设生态文明必须着力抓好的两项战略任务。目前,由于人均能源资源紧缺,环境承载能力较弱,沿袭高投入、高能耗、高排放、低效率的粗放型增长方式发展下去,资源难以为继,环境难以承受,付出的代价过高。生物质发电可以变废为宝,化害为利,有效增加能源供应,治理环境污染;同时,还可以有效延长农业产业链,增加农民收入和就业机会,是功在当代,利在千秋的伟大事业。因此,大力发展生物质发电,对促进资源节约型、环境友好型社会建设,实现全面建设小康社会的目标具有重要作用,是生态文明建设的重要途径和措施。然而,在现有的政策环境下,生物质发电的社会效益和环境效益无法在经济上充分得到体现,与燃煤发电处于不公平竞争的状态,加之生物质发电是一个新兴产业,设备价格和生产成本较高,难以形成较强的市场竞争力,必须实行更为优惠的政策,才能解决生物质发电企业的生存问题,才能保证生物质发电企业健康有序的发展,才能使生物质发电企业更好地为改善社会环境、可再生资源综合利用、增加农民收入和创造社会效益等方面作出更大的贡献。 一、目前生物质发电企业享受的各项优惠政策 1、常规电价补贴。根据《可再生能源发电价格和费用分摊管理试行办法》(发改价格[2006]7号)第三条和第七条的规定,生物质发电上网电价实行政府定价的,由国务院价格主管部门分地区制定标杆

电价,电价标准由各省(自治区、直辖市)2005年脱硫燃煤机组标杆上网电价加补贴电价组成。补贴电价标准为每千瓦时0.25元。发电项目自投产之日起,15年内享受补贴电价;运行满15年后取消补贴电价。2006年之后经国家有关主管部门批准或核准的生物质发电项目享受补贴电价。 2、临时电价补贴。根据国家发展改革委、国家电监会关于2007年1-9月可再生能源电价附加补贴和配额交易方案的通知([2008] 640号),对纳入补贴范围内的秸秆直燃发电亏损项目按上网电量给予临时电价补贴,补贴标准为每千瓦时0.1元。 3、接网费补贴。根据《可再生能源电价附加收入调配暂行办法》(发改价格[2007]44号),可再生能源发电项目接网费用是指专为可再生能源发电项目上网而发生的输变电投资和运行维护费。接网费用标准按线路长度制定:50公里以内为每千瓦时1分钱,50-100公里为每千瓦时2分钱,100公里及以上为每千瓦时3分钱。 4、电网公司全额接受生物质发电企业上网电量。根据《可再生能源电价附加收入调配暂行办法》(发改价格[2007]44号),电网企业应当与依法取得行政许可或者报送备案的可再生能源发电企业签订并网协议,全额收购其电网覆盖范围内可再生能源并网发电项目的上网电量,并为可再生能源发电提供上网服务。 5、税收优惠。根据《中华人民共和国企业所得税法实施条例》,生物质发电企业享受企业所得税减免。根据条例,企业从事前款规定的符合条件的环境保护、节能节水项目的所得,自项目取得第一笔生

故障电网下双馈风电系统运行技术研究综述_年珩

第35卷第16期中国电机工程学报V ol.35 No.16 Aug. 20, 2015 4184 2015年8月20日Proceedings of the CSEE ?2015 Chin.Soc.for Elec.Eng. DOI:10.13334/j.0258-8013.pcsee.2015.16.022 文章编号:0258-8013 (2015) 16-4184-14 中图分类号:TM 315 故障电网下双馈风电系统运行技术研究综述 年珩,程鹏,贺益康 (浙江大学电气工程学院,浙江省杭州市 310027) Review on Operation Techniques for DFIG-based Wind Energy Conversion Systems Under Network Faults NIAN Heng, CHENG Peng, HE Yikang (College of Electrical Engineering, Zhejiang University, Hangzhou 310027, Zhejiang Province, China) ABSTRACT: Recently, grid-connected operations of doubly fed induction generators (DFIG) based wind energy conversion systems (WECS) under fault grids, especially the conditions of voltage dips and swells, negative sequence disturbances and harmonic distortions, have been the hot spot issues. From the viewpoint of grid codes and reliable operations, focused on the uninterrupted operation, the network support and the friendly connection, the key operation techniques of DFIG system were discussed under severe faults for a short time and light ones for a long time. Besides, the current investigation situation on the DFIG system was introduced, and then, the research tendency of DFIG system control considering the grid faults and disturbances was presented. KEY WORDS: doubly fed induction generator (DFIG); fault grid; abrupt voltage changes; negative sequence voltage disturbance; harmonic distortion; grid code 摘要:近年来,双馈感应风力发电系统在故障电网特别是电压骤变、负序扰动、谐波畸变下的运行控制技术,已成为风力发电系统中的研究热点。该文从各国风电并网规范、风机高效并网运行角度出发,列举了双馈风电机组在不脱网运行技术、电网支撑能力和友好并网技术等领域的关注焦点,探讨了电网短时严重故障和长期轻微故障中双馈风电机组运行的关键问题与核心技术,比较了现有双馈风电系统的控制方案,并预测了其发展趋势,给出了潜在的研究方向。 关键词:双馈感应风力发电机;故障电网;电压骤变;负序扰动;谐波畸变;并网规范 0 引言 随着风力发电技术及风电装备制造水平的快速发展,风能已经成为最具规模化应用前景和商业化开发潜力的可再生能源。根据我国于2012年发 基金项目:国家自然科学基金项目(51277159)。 Project Supported by National Natural Science Foundation of China (51277159).布的《可再生能源“十二五”规划》的总体目标,到2015年,各类可再生能源在能源消费中的比重要达到9.5%以上,其中累计并网运行风电容量达1亿kW,海上风电为500万kW[1]。因此,促进风电产业科学发展、实现风电场的合理布局已成为我国保障能源安全和优化能源结构的重要抉择。然而,受限于可再生能源开发密集区与用电负荷中心区域的逆向分布特点,导致了处于电网末端大型风电场的电能需通过高压远距离输电走廊才能送达负荷中心[2],这种风电能量的大规模集中输送方式易造成风电机组并网运行安全故障。近年来,甘肃玉门风电场、宁夏贺兰山风电场等大规模风电场脱网事故,暴露了大型风电场的集中接入方式给电力系统安全、稳定、高效运行带来的冲击与挑战[3-4]。 为提升电网对风电的接纳能力、规范风电机组并网运行方式,世界各国纷纷制定出台了相应的风电并网接入导则,对风电机组运行的安全性、稳定性提出了严格要求[5-8],主要体现在以下方面:1)风电系统应能有效抵御电压骤变、负序扰动、谐波畸变等各类短时及长期电网故障;2)风电机组应为电网提供必要的电压、频率支持,增强电网稳定性。我国立足于本国电网结构、可再生能源配比等实际情况,在广泛征求风电设备制造商、风电场运营商等各方面意见的基础上,于2012年颁布实施了《风电场接入电力系统技术规定》,要求风电机组在20%的机端电压条件下实现不脱网连续运行至少625ms,同时能承受长期2%的电压不平衡度、短时4%的电压不平衡度以及4%的并网电压谐波畸变率,并为故障电网提供无功电流支持[5]。可以预见,在不久的将来,风电机组将由原来单纯自身保护的受端系统,逐渐转变为含有辅助服务功

生物质能发电技术与装备

生物质能发电技术与装备 序言 能源是国民经济重要的基础产业,是人类生产和生活必需的基本物质保障。目前,能源供应主要依靠煤炭、石油和天然气等化石能源,化石能源资源的有限性和化石能源开发利用过程中引起的环境问题,对经济和社会的可持续发展产生了严重的制约。我国已成为能源生产和消费大国,在全国建设小康社会的进程中,如何改善能源结构,保障能源安全,减少环境污染,促进经济和社会的可持续发展,是我国面临的一个重大战略问题。 生物质是由植物的光合作用固定于地球上的太阳能,每年净光合作用产生的生物质约1700亿吨,其能量约相当于世界主要燃料消耗的10倍,而作为能源的利用量还不到其总量的1%。这些未加以利用的生物质,为完成自然界的碳循环,其绝大部分由自然腐节将能量和碳素释放,放回自然界中。另一方面,由于过度消费化石燃料,过快、过早地消耗了这些有限的资源,释放出大量的多余能量和碳素,打破了自然界的能量和碳平衡,更加剧了环境和全球气候恶化。 通过生物质能转换技术可以高效地利用生物质能源,生产各种清洁燃料,替代煤炭、石油和天然气等燃料生产电力,从而减少对矿物能源的依赖,保护国家能源资源,减轻能源消费给环境造成的污染。目前,世界各国,尤其是发达国家,都在致力于开发高效、无污染的生物智能利用技术,以达到保护矿产资源,保障国家能源安全,实现CO2减排,保持国家经济可持续发展的目的。 一、生物质 生物质是指通过光合作用而形成的各种有机体,包括所有的动植物和微生物。 二、生物质能 生物质能(biomass energy ),就是太阳能以化学能形式贮存在生物质中的能量形式,即以生物质为载体的能量。它直接或间接地来源于绿色植物的光合作用,可转化为常规的固态、液态和气态燃料,取之不尽、用之不竭,是一种可再生能源,同时也是唯一一种可再生的碳源。生物质能的原始能量来源于太阳,所以从广义上讲,生物质能是太阳能的一种表现形式。目前,很多国家都在积极研究和开发利用生物质能。生物质能蕴藏在植物、

哈锅循环流化床锅炉技术情况介绍

哈锅循环流化床锅炉技术情况介绍 哈锅的循环流化床锅炉技术主要源于与国外公司的技术合作,技术引进以及国内科研院所的合作。结合国内的市场情况以及用户的特殊要求,哈锅将合作、引进的技术进行有机的结合,并进行多方面的优化设计,推出具有哈锅特色、符合中国国情的循环流化床锅炉技术,为哈锅打开并占领国内循环流化床锅炉市场创造了技术上的优势。多年来,哈锅在原有的基础上,总结多台投运锅炉的运行经验,不断改革创新,推出新技术新产品,大大丰富了自己的设计思路和设计方案,从而满足了不同用户的各种要求。到目前为止,哈锅设计的燃料包括烟煤,贫煤、褐煤,无烟煤,煤矸石,煤泥以及煤+气混烧等,涉及燃料覆盖面很广;采用的回料阀包括单路回料阀和双路回料阀;采用的风帽包括大直径的钟罩式风帽和猪尾巴管式风帽;使用的冷渣器包括风水联合冷渣器、滚筒冷渣器和螺旋冷渣器;采用的点火启动方式包括床上点火、床下点火以及床上+床下联合点火启动;给煤方式包括前墙给煤、后墙给煤和前墙+后墙联合给煤。 下面详细介绍一下哈锅循环硫化床锅炉技术改进情况: 1、分离器 哈锅利用引进技术对分离器设计进行了优化,以提高分离器的分离效率,这些优化措施主要有: a、分离器入口烟道向下倾斜,使进入分离器的烟气带有向下倾角,给烟气中的固体颗粒一个向下的动能,有助于气固分离。 b、偏置分离器中心筒,即可减轻中心筒的磨损,又可改善中心筒周围的流场提高分离效率。 c、独有的导涡器(中心筒)设计,有效控制上升气流的流速,减少漩涡气流对颗粒的裹带,提高分离效率。 d、分离器入口烟道设置成加速段,提高分离器的入口烟速,有利于气固分离。 经过优化后分离器分离效率可达到99.5%以上,切割粒径d50=10-30um、d99=70-80um。高效分离器是降低飞灰可燃物的有效措施,同时也是实现高循环倍率的重要保证。

循环流化床锅炉的设计与实现毕业设计

循环流化床锅炉的设计与实现毕业设计 目录 目录 (1) 摘要 (1) Abstract (2) 第一章概述 (3) (3) 1.2循环流化床特点 (4) 1.2.1循环流化床优点 (4) 1.2.2循环流化床缺点 (5) 第二章燃料与脱硫剂 (6) 2.1 燃料 (6) 2.2 脱硫剂 (6) 第三章脱硫与排烟有害物质的形成 (7) 3.1循环流化床锅炉在环保上的必要性 (7) 3.2影响循环流化床锅炉SO2的排放控制 (7) 3.2 影响脱硫效率的一些主要因素 (8) 3.3 无脱硫工况燃烧计算 (9) 3.3.1无脱硫工况下燃烧计算 (9) 3.3.2无脱硫工况下烟气体积计算 (9)

第四章物料循环倍率 (10) 4.1循环灰量 (10) 4.2物料循环倍率的选择 (10) 第五章脱硫工况计算 (12) 5.1燃烧和脱硫化学反应式 (12) 5.2脱硫计算 (12) 第六章锅炉燃烧产物热平衡 (17) 6.1脱硫对循环流化床锅炉热效率的影响 (17) 6.1.1脱硫对入炉可支配热量的影响 (17) 6.1.2脱硫对q4的影响 (17) 6.1.3脱硫对q2的影响 (18) 6.1.4脱硫对q6的影响 (18) 6.2锅炉热平衡计算 (18) 第七章传热系数计算 (21) 7.1炉膛膜式水冷壁传热系数计算 (21) 7.2炉膛汽冷屛传热系数计算 (22) 第八章锅炉结构设计 (24) 8.1炉膛设计 (24) 8.1.1炉膛介绍 (24) 8.1.2炉膛床温选择 (24) 8.1.3炉膛高度的选择 (25) 8.2炉膛汽冷屛设计 (25)

8.3汽冷旋风分离器设计 (26) 8.4回料器的设计 (27) 第九章热力计算 (29) 9.1炉膛热力计算 (29) 9.2汽冷旋风分离器热力计算 (31) 第十章尾部受热面 (34) 10.1 过热器 (34) 10.2 省煤器 (34) 10.3 空气预热器 (36) 第十一章计算结果 (38) 11.1 基本数据 (38) 11.1.1 设计煤种 (39) 11.1.2 石灰石 (39) 11.2 燃烧脱硫计算 (39) 11.2.1 无脱硫计算时的燃烧计算 (39) 11.2.2 无脱硫工况时的烟气体积计算 (40) 11.2.3 脱硫计算 (40) 11.2.4 脱硫工况时受热面中燃烧产物的平均特性 (43) 11.2.5 脱硫工况时燃烧产物焓温表 (43) 11.3 240t/h CFB 锅炉热力计算 (45) 11.3.1 锅炉设计参数 (45) 循环硫化床燃烧 (45)

炉排炉和循环流化床锅炉生物质发电技术比较(初稿)

生物质发电锅炉技术比较 1.技术比较 生物质锅炉主要有水冷振动炉排炉和循环流化床锅炉,现将它们的部分性能对比如下: 1)应用情况: 水冷振动炉排炉在国内外均有成熟的长期运行经验,使用数量最多,市场占有率高,生产、安装、调试、运营的经验均较其它炉型丰富。中国第一座生物质发电厂-单县生物质发电厂即采用我公司的源自丹麦的水冷振动炉排炉技术。 而循环流化床锅炉最早是为解决燃煤机组烟气炉内脱硫的问题而在中国采用,虽然近年开始尝试用于生物质发电,但基于未解决的技术问题较多,且CDM指标难申请等因素,还未能广泛应用。 2)燃料适应性: DPCT水冷振动炉排炉,较好的结合了国外先进技术和中国燃料的实际状况,可以适应多达60多种的农林废弃物,既可纯烧某种燃料,也可掺烧多种燃料。在燃料水分高达40%时亦可稳定燃烧。 循环流化床仅适用于燃料粒径和密度差别不大的燃料,对燃料的要求较为苛刻。 3)燃料预处理: DPCT水冷振动炉排炉基本无需燃料预处理系统。 而循环流化床燃烧炉对燃料预处理要求较高,对燃料粒径具有较严格

要求,需要将秸秆进行一系列破碎、筛分等处理,使其尺寸、状况均一化,入炉秸秆尺寸一般要求为150到200mm,该部分投资费用较高。 4)磨损情况: 炉排炉中由于秸秆燃烧过程均发生在炉排表面上,炉排相对较长,炉型较大,磨损较轻; 循环流化床炉的布风板、周围水冷壁及后面尾部受热面和炉墙的磨损严重。 5)安装方案: 焊口比较少:水冷振动炉排锅炉,以德普新源公司的产品为例,省煤器和烟冷器都是模块化的,三四级过热器都是直接跟小集箱焊接在一起的。 水冷振动炉排锅炉,以德普新源公司的产品为例,安装方式是底部支撑的,从下往上安装的。CFB锅炉是吊装的,从上往下安装的,难度较大。 表一: 优缺点比较

生物质循环流化床锅炉技术介绍

生物质循环流化床锅炉技术介绍 发表时间:2019-09-21T22:55:42.280Z 来源:《基层建设》2019年第19期作者:刘曼 [导读] 摘要:生物质能是重要的可再生能源,具有资源来源广泛、利用方式多样化、能源产品多元化、综合效益显著的特点。 中国能源建设集团山西电力建设有限公司山西太原 030012 摘要:生物质能是重要的可再生能源,具有资源来源广泛、利用方式多样化、能源产品多元化、综合效益显著的特点。生物质锅炉供热具有清洁环保经济适用的特点,一是技术比较成熟,工艺简单;二是大气污染物排放较少,生物质燃料锅炉燃烧排放SO2浓度较低,安装除尘设施后锅炉烟尘、氮氧化物排放可达到轻油排放标准,以林业剩余物为主的生物质燃料锅炉大气污染物排放可达到天然气标准;三是经济可行,生物质燃料价格较低,生物质锅炉供热有着较为明显的成本优势;四是分布式供热,直接在终端消费侧替代燃煤供热,分散布局,运行灵活,适应性强,满足多元化用热需求。目前国内生物质燃烧的锅炉有往复式炉排炉、水冷振动式炉排炉、循环流化床锅炉、联合炉排锅、链条炉等等。其中链条炉和循环流化床运行较为广泛。本文对循环流化床锅炉和链条炉进行分析比较,为生物质锅炉选型提供依据。 关键词:生物质;循环流化床锅炉;链条炉;技术性能比较;经济性比较 引言 生物质是清洁、稳定、分布广泛的可再生资源,生物质的利用符合能源转型、碳减排、清洁环保及治理雾霾的能源发展战略。随着国家对环境保护的要求不断提高,生物质等可再生能源的重要性逐渐增加,国家先后发布多个文件,大力支持生物质发电技术应用推广。生物质发电技术包括生物质直接燃烧发电、生物质混合燃烧发电、生物质气化发电等。生物质直接燃烧技术生产过程比较简单,设备和运行的成本相对较低,是现行的可以大规模推广利用的技术。而循环流化床燃烧方式因其强烈的传热、传质、低温燃烧、燃料适应性广,负荷调整范围宽、燃烧效率高等特点,被广泛的应用于生物质发电。本文从生物质燃料的特点出发,介绍生物质直燃流化床锅炉的技术特点及相关技术问题。 1生物质燃料特性 1.1几种典型的生物质燃料 固体生物质燃料取材广泛,主要包括木本原料,即树木和各种采伐、加工的残余物质;草本原料,如农作物秸杆、草类及加工残余物;果壳类原料,如花生壳、板栗壳等;其他混杂燃料,如生活垃圾、造纸污泥等。 1.2生物质燃料灰分特性 生物质灰中含有丰富的无机矿物质成分,如:硅酸盐、碳酸盐、硫酸盐与磷酸盐等,灰的组成对生物质的热解特性有着重要的影响,且硅酸盐、碱金属及碱土金属的存在易引起管路系统的结渣、堵塞。为了安全、高效地运行,需对生物质灰的主要矿物质及微量元素的组成进行全面的分析。 2生物质CFB锅炉技术开发 2.1国内外生物质发电技术应用 我国生物质能目前主要以农林废弃物为主,农业废弃物主要是农作物秸秆。生物质发电产业通常包括生物质直燃发电、生物质混燃发电和生物质气化发电。国外烧秸秆及其它生物质的新建机组一般都采用了炉排燃烧的小型锅炉。秸秆通常被打成标准尺寸的大捆,应用专用设备打捆、装卸和运输。秸秆通过螺旋送料机,送进炉膛,在炉排上燃烧。 2.2生物质CFB锅炉技术介绍 CFB锅炉的燃烧方式、高温床料、特殊的物料循环系统,低温燃烧、燃料的适应性广等特性,使其更适合生物质燃料的复杂多变及低氮排放要求。锅炉采用单汽包、自然循环、单段蒸发系统,炉膛蒸发受热面采用膜式壁,炉膛内内置屏式三级过热器和水冷屏,以提高整个过热器系统的辐射传热特性,使锅炉过热汽温具有良好的调节特性。旋风分离器采用汽冷结构,回料阀为非机械型,回料为自平衡式。炉膛、分离器、回料阀组成了物料的热循环回路,分离后的烟气进入尾部烟道。尾部烟道采用三烟道型式,下行的一烟道内布置低温过热器、上行的二烟道内布置中温过热器和高温省煤器,下行的三烟道内布置低温省煤器和空气预热器。一、二烟道为膜式壁的包墙过热器,三烟道采用护板结构。低NOx燃烧技术和炉内脱硫,可有效控制NOx和SOx的排放,满足环保要求。同时为进一步超低排放,在分离器入口烟道预留SNCR.接口。 2.3相关配套设备 由于生物质燃料堆积密度小、比重轻,自密封性差,给料设备的选型尤为重要。可以采用两级螺旋给料系统或两级挡板给料系统。生物质锅炉沾污问题较重,一整套性能良好、质量可靠、数量足够的吹灰设备能在锅炉运行时保持尾部烟道内的过热器、再热器、省煤器和空气预热器受热面的清洁。由于生物质燃料灰分低、成灰特性差,可以考虑增加在线加料系统,以补充循环灰量的不足并能稀释碱金属浓度,降低结焦的风险,提高运行的安全性。 3流化床锅炉尾部排放NOx生成原理 3.1热力型和快速型 通过资料得知,1500℃是热力型NOx生成临界点。当温度<1500℃时,NOx不易生成;当温度>1500℃时,NOx生成量猛增。由于实际生产中本厂炉膛温度处于600-850℃,因此热力型不是本厂NOx的生成原因。另外快速型NOx由于其产生特点,实际生产中通常也不作为控制方向。 3.2燃料型 燃料型NOx是由燃料中的氮元素在燃烧时形成的。炉膛温度约为600℃-800℃时,燃料型NOx就能生成。研究发现空气系数是最重要的原因,转化率随空气系数增加而增大。结合本厂的实际情况得知,燃料型NOx是主要元凶,也是最主要的控制方向。在曲线中可以清晰的看到,当两侧空气系数升高时,NOx的生成量快速升高;当两侧空气系数降低时,NOx的生成量快速下降。因此控制合适的空气系数是重中之重。 4生物质锅炉生产中 NOx的控制方法(1)加强上配料精细化管理,燃运分部制定好当天的上配料方案,并按上配料方案提前做好干湿燃料的混合工作。上

3MW循环流化床锅炉设计特点及运行情况分析.doc

3MW循环流化床锅炉设计特点及运行情况分析

135MW循环流化床锅炉设计特点及运行情况分析 1.概述 徐州彭城电力有限责任公司位于江苏省徐州市,根据国家环保及节约能源要求,扩建两台440t/h超高压中间再热循环流化床锅炉及135MW汽轮发电机组。 工程设计单位是中南电力设计院,锅炉由武汉锅炉股份公司供货,汽轮机和发电机由哈尔滨汽轮机有限公司供货。山东电力建设第三工程公司负责电厂主机的安装施工,机组调试由山东电力研究院负责。江苏兴源电力建设监理有限公司负责整个工程的监理工作。 机组于2004年2月28日开工建设,两台机组分别于2005年7月11日和9月16日顺利完成168小时满负荷试运行,移交电厂转入商业运行。 2.锅炉整体布置特点 2.1 锅炉本体设计参数及布置特点 锅炉是武汉锅炉股份有限公司采用引进的ALSTOM公司技术设计制造的首台440t/h超高压中间再热、高温绝热旋风分离器、返料器给煤、平衡通风、半露天布置的锅炉。 锅炉的主要设计参数如下表所示: 名称单位B-MCR B-ECR 过热蒸汽流量t/h 440 411.88 过热蒸汽出口压力MPa(g> 13.7 13.7 过热蒸汽出口温度℃540 540 再热蒸汽流量t/h 353.29 330.43 再热蒸汽进口压力MPa(g> 2.755 2.56 再热蒸汽进/出口温度℃318/540 313/540

锅炉启动点火和低负荷稳燃。炉膛前墙布置流化床风水冷冷渣器,把渣冷却至150℃以下。 第二部分为炉膛与尾部烟道之间布置有两台高温绝热旋风分离器,每个旋风分离器下部布置一台非机械型分路回料装置。回料装置将气固分离装置捕集下来的固体颗粒返送回炉膛,从而实现循环燃烧。 第三部分为尾部烟道及受热面。尾部烟道中从上到下依次布置有过热器、再热器、省煤器和空气预热器。过热器系统及再热器系统中设有喷水减温器。管式空气预热器采用光管卧式布置。 锅炉整体呈左右对称布置,支吊在锅炉钢架上。 2.2 锅炉岛系统布置特点 输煤系统:原煤经两级破碎机破碎后,由皮带输送机送入炉前煤斗,合格的原煤从煤斗经二级给煤机,由锅炉返料斜腿进入炉膛燃烧。床料加入系统:启动床料经斗式提升机送入启动料斗,再通过输煤系统的给煤机,由锅炉返料斜腿进入炉膛。 一次风系统:一次风经空预器加热成热风后分成两路,第一路直接进入炉膛底部水冷风室,第二路进入床下启动燃烧器。 二次风系统:二次风共分四路,第一路未经预热的冷风作为给煤机密封用风,第二路经空预器加热成热风后分上、下行风箱进入炉膛,第三路热风作为落煤管输送风,第四路作为床上启动燃烧器用风。 返料器用风系统:返料器输送风由单独的高压流化风机<罗茨风机)供应,配置为2x100%容量<一运一备)。

风力发电的发展现状与关键技术综述

12 用资源,建立统一的中小企业外部诚信信息发布平台;配合银行部门加大对中小企业进行信用评级,评价结果作为中小企业贷款时商业银行认可的信用标准和必备条件,以期降低融资成本,缩短放贷时间。 3.6 打造良好金融环境 营造“守信光荣、失信可耻”的道德氛围,大力宣传一批诚实守信的中小企业典型,同时强化公正执法环境,执法部门应加大对逃、赖、废金融债务行为的惩罚力度,为金融环境提供强大的法治保障。参考文献 [1] 白金花.中小企业融资渠道拓展探析[J].中国高新技术企业,2010,(34). [2] 宋德荣.我国中小企业融资问题研究[D].中国海洋大学, 2010. [3] 姚益龙.中小企业融资问题研究[M].北京:经济管理出 版社,2012. 作者简介:殷慧琴(1974-),女,江西吉水人,供职于江西省吉水县统计局。 (责任编辑:王书柏) 随着世界经济的不断发展和科学技术水平的不断提高,人类的生活水平也随之提高。经济发展、科学进步、人们生活水平的提高,都需要能源的大力支持,这也导致全球能源消耗的快速增长。根据相关数据显示,到2020年全球的能源消耗将再增长50%~100%。由此可以看出,能源的消耗造成的气体对地球的温室效应的影响也在不断扩大,为人类带来严重后果。 针对这一现象,人们也陷入了深思:如何才能建立一个可持续发展的社会环境?因此,节约能源也成为了各国关注的话题。人们逐步将眼光转向了清洁发电的方法。 在清洁发电的方法中,风力发电无论从技术层面,还是实际操作方面,都是最成熟的发电方法之一。相对于消耗煤炭和石油的老旧方式,风力发电既不消耗任何能源,又能减排二氧化碳等污染物,净化空气。同时,风力发电在新能源领域中,不仅可以调整电力工业结构,也是极具商业开发规模的发电方式。因此,许多国家已将风电发展作为国家可持续发展的重头戏。 1 风电发展历史与现状 第一台风力发电机的雏形形成于丹麦,虽然是电力方面的重大发展,但因技术的不完善、经济支 风力发电的发展现状与关键技术研究综述 王海峰 (广东电网公司湛江供电局,广东 湛江 524005) 摘要: 文章主要论述了国内外风电最新的发展现状和风力发电的关键技术最新研究进展,并对风电技术中的功率控制技术和风电功率预测做了重点论述。另外,在其中简要介绍了全球风电的发展概况、中国风能资源分布情况等相关内容。文章有助于对风电发展全面了解和深入掌握。关键词: 风力发电;风电技术;功率控制;风电功率预测中图分类号: TM614 文献标识码:A 文章编号:1009-2374(2012)33-0012-03 2012年第33/36期(总第240/243期)NO.33/36.2012 (CumulativetyNO.240/243)

生物质发电主要形式

生物质发电主要形式 一、直接燃烧发电 生物质直接燃烧发电是将生物质在锅炉中直接燃烧,生产蒸汽带动蒸汽轮机及发电机发电。生物质直接燃烧发电的关键技术包括生物质原料预处理、锅炉防腐、锅炉的原料适用性及燃料效率、蒸汽轮机效率等技术。生物质直接燃烧发电技术主要采用固定床或流化床燃烧,固定床燃烧对生物质原料的预处理要求较低,生物质经过简单处理甚至无需处理就可没入炉排炉内燃烧。流化床燃烧要求将大块的生物质原料预先粉碎至易于刘华的粒度,其燃烧效率和强度都比固定床高。 二、混合燃料发电 生物质还可以与煤混合作为燃料发电,称为生物质混合燃烧发电技术。混合燃烧方式主要有三种。一种是生物质直接与煤混合后投入燃烧,该方式对于燃料处理和燃烧设备要求较高,不是所有燃煤发电厂都能采用;一种是生物质气化产生的燃气与煤混合燃烧,这种混合燃烧系统中燃烧,产生的蒸汽一同送入汽轮机发电机组。混合燃烧方式对生物质原料预处理的要求都较高,在技术方面,混合燃烧发电一般是通过改造现有的燃煤电厂实现的,只需在厂内增加储存和加工生物质燃料的设备和系统,同时对原有燃煤锅炉燃烧系统进行适当改造。 三、气化发电 生物质气化发电技术是指生物质在气化炉中转化为气体燃料,经净化后直接进入燃气机中燃烧发电或者直接进入燃料电池发电。气化发电的关键技术之一是燃气净化,气化出来的燃气都含有一定的杂质,包括灰分、焦炭和焦油等,需经过净化系统把杂质除去,以保证发电设备的正常运行。 生物质气化发电可以分为内燃烧机发电、然汽轮机发电、燃气-蒸汽联合循环发电系统和燃料电池发电系统等。内燃机一般由柴油机或天然气机改造而成,以适应生物质燃气热值较低的要求;燃气轮机适用于燃烧高杂志、低热值并且规模较大的生物质燃气;燃气-蒸汽联合循环发电可以提高系统发电效率;燃料电池发电是在一定条件下使燃料和氧化剂发生化学反应,将化学能转换为电能和热能的过程,燃料电池本体的发电效率高,热电联产的总热效率可达80%以上, 四、沼气发电

海上风力发电技术综述

海上风力发电技术综述 1概况风力发电是世界上发展最快的绿色能源技术,在陆地风电场建设快速发展的同时,人们已经注意到陆地风能利用所受到的一些限制,如占地面积大、噪声污染等问题。由于海上丰富的风能资源和当今技术的可行性,海洋将成为一个迅速发展的风电市场。欧美海上风电场已处于大规模开发的前夕。我国东部沿海水深50 m以的海域面积辽阔,而且距离电力负荷中心(沿海经济发达电力紧缺区)很近,随着海上风电场技术的发展成熟,风电必将会成为我国东部沿海地区可持续发展的重要能源来源。 海上风电场的风速高于陆地风电场的风速,但海上风电场与电网联接的成本比陆地风电场要高,综合来看,海上风电场的成本和陆地风电场基本相同。 海上风电场的发电成本与经济规模有关,包括海上风机的单机容量和每个风电场机组的台数。铺设150MW海上风电场用的海底电缆与100MW的差不多,机组的大规模生产和采用钢结构基础可降低成本。目前海上风电场的最佳规模为120~150MW。在海上风电场的总投资中,风电机组占51%、基础16%、电气接入系统19%、其他14%。丹麦电力公司对海上风电场发电成本的研究表明,用国际能源局(IEA)标准方法,按目前的技术水平和20年设计寿命计算,估测的发电成本是0.36丹麦克朗(人民币0.42元或0.05美元)/kWh。如果寿命按25年计算,还可减少9%。 海上风电场的开发主要集中在欧美地区,其发展大致可分为5个不同时期: ①1977~1988年,欧洲对国家级海上风电场的资源和技术进行研究;② 1990~1998年,进行欧洲级海上风电场研究,并开始实施第1批示计划;③ 1991~1998 年,开发中型海上风电场;④ 1999~2005年,开发大型海上风电场和研制大型风力机;⑤ 2005年以后,开发大型风力机海上风电场。 2海上风环境 一般说来海上年平均风速明显大于陆地,研究表明,离岸10km的海上风速比岸上高25%以上。 2 1 风速剖面图海面的粗糙度要较陆地小的多,因此风速在海平面随高度变化增加很快,通常在安装风机所关注的高度上,风速变化梯度已经很小了。因此通过增加塔高的方法增加风能的捕获在某种程度上不如陆地有效。由于海上风边界层低,所以海面上塔高可以降低。陆地与海上风速剖面比较如图1所示。

生物质发电技术论文

生物质发电技术论文 摘要:生物质能作为可再生的清洁能源,将其用于发电,不仅可以解决日趋增大我国的供电需求、能源缺乏及环境污染等问题,同时可以有利于解决三农问题,提高农民收入,具有广阔的应用前景。 前言 在社会经济和科学技术飞速发展的推动下,人们对能源需求量也日趋增大,而不可再生能源有限,能源衰竭和环境污染成为世界各国面临的主要生存危机[1]。探寻安全环保无污染的、可再生的替代性新型能源是当今社会研究的热门课题之一。在这些新型的清洁能源中,太阳能、风能及水能由于受到时间、季节及地理位置等自然条件的影响,其不稳定性很大程度阻碍了其发展[2]。 生物质可再生能源总量巨大;环境友好,与煤炭石油相比,生物质资源的硫、氮含量低,对环境污染小,二氧化碳即排放量近似为0;其开发利用能与传统化石燃料具有很好的兼容性。生物质能源由于具有可再生、绿色环保及良好的兼容性(煤粉炉共燃生物质技术)等特点,有望替代传统的化石燃料发电(火力发电),因此生物质发电技术的研究受到人们极大的关注。我国生物质资源丰富,人口众多耗电量大,然而我国生物质发电技术仍处于起步阶段,因此开发生物质能发电的技术对我国供电、节能减排及可持续发展都有深远的意义。 1生物质发电技术的研究现状 生物质发电技术是采用燃烧、气化及发酵等方式将生物质资源转化为电能的一种技术,作为新型的可替代型新能源,生物质发电技术引起全世界人们的关注及研究。生物质发电是分布式发电系统,能很好的解决供电的质量及安全,也可以解决传统单一供电的各种弊端。 国外发达国家生物质发电技术发展起步较早、发展较快,生物质能在这些国家的总能耗迅速增加。欧洲是生物质发电技术的发源地,而且发展迅速,新技术不断出现,并向其他国家提供了技术及生产设备上的支持。美国后来居上,目前在生物质发电技术处于世界领先地位,生物质发电站有1000多家,装机容量(2010年,13000MW)及年发量世界之最。 我国对生物质发电技术研究起步较晚,直到1987年,我国才开始尝试利用生物质(甜菜渣或蔗渣)发电。目前全国已建成投产的和在建的生物质发电厂还不到50家,大规模的生物质发电厂就更少了,装机容量约为550MW(2010年)。目前,

循环流化床锅炉详细资料

循环流化床锅炉机组控制Automation Control in CFBB Unit 徐昌荣张小辉 2000.5 北京和利时系统工程股份有限公司Beijing HollySys Co., Ltd

第一章循环流化床锅炉 一、前言 目前工业世界正在面临三个严重问题:能源(En e rg y)、环境(E nv i ro nm en t)、经济(E c on om y),即三“E”问题。流态化燃烧技术正是解决三“E”问题的有力工具。现在世界各国已认识到采用循环流化床锅炉能经济地解决能源和环境保护问题。因此各工业发达国家对循环流化床(C F B)锅炉技术的开发、研制都给予很大的重视。世界各国对环境保护的要求日趋严格,由于煤粉炉对所用燃料品质要求高(发热量和挥发分必须大于一定值,否则难以燃烧)且脱硫装置的投资和运行、费用昂贵(如尾部烟气脱硫装置的投资要占发电机组总投资的15~20%),传统煤粉燃烧锅炉受到严重挑战。应运而生的循环流化床锅炉具有两段低温燃烧、强化传热、燃料适应广以及负荷调节范围大能减少NOx(N O、N O2的总称)生成量和加入石灰石脱硫的优点,更适应目前的环保要求。 现在世界已有50多家公司提供循环流化床锅炉产品,对锅炉设计,各个公司和制造厂对循环流化床锅炉制造技术已提供大量的数据资料,而对循环流化床锅炉控制系统设计与运行方面的资料确很少。至今,国内一些循环流化床锅炉机组由于控制系统设计的缺陷和运行人员对循环流化床锅炉燃烧过程了解不够而造成一些事故和自动投入率低。另外,还存在因对循环流化床锅炉的控制不够熟悉,而造成启动延迟、水冷壁爆管等问题。实际上还有许多是由于确乏对运行人员的培训造成的。 循环流化床锅炉是在沸腾炉基础上发展起来的,它完全是一种‘反应器’,其性能与常规煤粉炉不同,其原因之一是它的燃烧室内的床料具有相当大的惰性和蓄热能力,如果采用常规煤粉炉运行经验的控制手段来控制、监视循环流化床锅炉,那就势必

生物质流化床锅炉

生物质锅炉(低倍率差速流化床)燃烧调整方法 1.生物质在锅炉主副床上的燃烧过程 生物质的燃烧通常可以分为三个阶段,即预热起燃阶段、挥发分燃烧阶段、炭燃烧阶段。生物质在锅炉主副床上的燃烧过程分为预热干燥区、燃烧区和燃尽区,这可以与差速流化床锅炉的主床密相区、稀相区相和付床相对应。根据各区的燃烧特点,各区需要的风量有差别,预热干燥区的风量少一些,燃烧区的风量要大一些。燃料颗粒在锅炉中燃烧可以分为两种类型:颗粒大的在流化床主床上密相区燃烧,在气力播撒的过程中,颗粒特别小的在流化床上部稀相区发生悬浮燃烧,未燃尽颗粒在流化床稀相区和流化床付床上燃烧。 2、生物质在流化床内完全燃烧的条件 炉内良好燃烧的标志就是在炉内不结渣的前提下,尽可能接近完全燃烧,同时保证较快的燃烧速度,得到最高的燃烧效率。 (1)供应充足而有合适的空气量 如果过量空气系数过小,即空气量供应不足,会增大固体不完全燃烧热损失q4和可燃气体不完全燃烧热损失q3,使燃烧效率降低;如果过量空气系数过大,则会降低炉膛温度,增加不完全燃烧热损失。最佳的过量空气系数使q2+q3+q4之和为最小值。 (2)适当提高炉温 根据阿累尼乌斯定律,燃烧反应速度与温度成指数关系。在保证炉膛不结渣的前提下,尽量提高炉膛温度。 (3)炉膛内良好的扰动和混合 在着火和燃烧阶段,要保证空气和燃料的充分混合,在燃尽阶段,要加强扰动混合。 (4)燃料在炉排上和炉膛中有足够的停留时间 (5)保持合理的火焰前沿位置。火焰前沿应该位于高端炉排与中部炉排的之间区域,火焰在炉排上的充满度好。 3、差速流化床锅炉燃烧调整方法: (1)、入炉燃料掺配均匀,料质相对稳定,入炉燃料安全、稳定、连续均匀供应是锅炉燃烧稳定的前提和基础,所以如果要保持燃烧稳定,必须根据料仓内燃料料位的高低及时调整取料机转速,尽量使料仓内燃料同时均匀向前推进,尽量减少蓬料次数。 (2)、尽量控制流化床床温稳定 1)、若出现床温降低时,可适当减少一次风量,增加给料量,但应注意过热器出口温度,调节减温水量,床温上升时应及时调整。 2)、若出现床温大幅度变化,在适当调节一次风量,可大量减少或增加给料量,但应注意床温的变化趋势,并根据床温的变化情况及时调节。 3)、若出现过热蒸汽温度变化时,可适当调整二次风量。 4)、当锅炉负荷变化引起床温变化时,可以通过调节一次风量,二次风量,给料量,回料量,来适应锅炉负荷的变化,其主要通过调整风、料的配比和 一、二次风的配比来调节锅炉负荷。 5)、如因缺料、料变化或其它原因导致床温下降时,在保证床层良好流化的前提下,可适当减少一次风量,并增大给料量。若床温下降幅度大,应适当

循环流化床锅炉设计工艺分析

循环流化床锅炉设计工艺分析 发表时间:2019-07-05T11:57:11.573Z 来源:《电力设备》2019年第4期作者:黄凯[导读] 摘要:循环流化床锅炉应用的是工业化程度较高的洁净煤燃烧技术,在我国对工业生产环保要求越来越严的背景下,循环流化床锅炉做出了巨大的贡献。(武汉锅炉股份有限公司湖北武汉 430205)摘要:循环流化床锅炉应用的是工业化程度较高的洁净煤燃烧技术,在我国对工业生产环保要求越来越严的背景下,循环流化床锅炉做出了巨大的贡献。对于煤矸石、油页岩、城市垃圾以及废弃物等难燃的固体燃料,都可以作为循环流化床锅炉的燃料,不仅具有较高的燃烧效率,而且污染较小。因为循环流化床锅炉采用流态化燃烧,在设计运行中会存在磨损、结焦、物料循环不畅等问题,经过技术的不 断改进,这些问题都得到了很好的解决,下面对此进行阐述。关键词:循环流化床;锅炉;工艺循环流化床锅炉控制系统是一类新型的锅炉控制系统,在实际的应用中发挥重要作用。在生产环节中,为了可以提升循环流化床锅炉系统的性能,应该完善控制系统的分析,提升循环流化床锅炉设计方案。 1循环流化床锅炉设计运行中的常见问题 1.1磨损问题 循环流化床锅炉是把固态的燃料进行流体化处理,让燃料具有液体的流动性质,在其中可以加入煤矸石以及石灰等物质,可以达到除硫的效果。因为燃料是以液态化的方式流动的固体,所以这些颗粒在流动的过程中,会与接触到的设备发生碰撞,从而造成一定的磨损。循环流化床锅炉在运行的过程中,床料流动的速度越快、浓度越大,对锅炉受热面和耐火材料的表面所造成的冲击就越加强烈,从而导致这些部件的磨损。在床料流动的过程中,也会伴随温度的循环流动,在耐火构件热膨胀系数不同的情况下,受到机械应力的影响会对炉内耐火构件造成磨损。 1.2结焦问题 循环流化床锅炉结焦是设计运行中的常见问题,结焦不仅降低锅炉的运行效率,同时还威胁到锅炉运行的安全性。形成结焦的原因主要是旋风分离器超温、床料结块、返料器堵塞等,如果燃烧室温度超过灰的变形温度,会导致炉内未燃碳重新燃烧,在床温上涨的情况下形成结焦。如果物料循环系统漏风,热床料中的可燃物与氧气接触重新燃烧,但由于热量不足就会形成局部超温结焦。如果在启动期间煤油混烧时间较长,在风量与燃煤颗粒匹配不佳等情况下,燃烧速度过慢就会导致未完全燃烧的油渣与床料板结成块,在流化不良的情况下,形成松散的渣块。在返料器运行过程中如果因为堵塞而突然停止工作,由于炉内循环物料不足就会导致温度升高,从而导致高温结焦。 1.3旋风分离器的问题旋风分离器的主要功能就是进行气固分离,保证循环流化床锅炉的正常运行。旋风分离器结构比较简单,其运行效率主要与形状、结构、进口气体温度、入口烟温、入口颗粒等因素有关。如果分离器的运行效率达不到设计值,就会出现未完全燃烧现象,直接影响到锅炉的燃烧效率。在飞灰量较大的情况下,就会对尾部受热面造成严重的磨损,增加除灰设备的能耗。如果进入循环回路中的灰量较少,就无法达到设计的循环量,无法有效控制床温,对锅炉满负荷运行以及炉膛传热产生一定的影响。 2循环流化床锅炉设计工艺分析 2.1循环床气固两相流动在循环床内,颗粒会聚集在一起,这些粒子团聚在一起,导致颗粒的体积和重量增大,产生非常大的自由沉降终端速度,在一定的气流速度下,粒子会顺着锅炉墙向下运动。在粒子流动的环节中,气体和固体之间会产生非常大的相对速度,粒子会在锅炉壁上沉积。在粒子团不断的聚集、下沉和上升的环节中,会形成内循环,导致锅炉内发生热量的交换。粒子团会沿着锅炉壁下沉,锅炉内的内循环非常剧烈,导致锅炉的传热效果非常好,锅炉内的热量分布也非常均匀。在850摄氏度的锅炉温度下,燃料和脱硫剂在短时间内会被加热到850摄氏度,燃烧效率非常高,而且在石灰石的作用下会产生脱硫反应,在合适的反应温度下实现燃料的二次循环。在循环床内的任何位置,都可以实现良好的传热效果。在循环过程中固体颗粒是向下运动的,但是颗粒的粒径比较大,可以降低颗粒的流动速度,防止炉壁发生严重的磨损情况。 在循环流化床锅炉悬浮段运行环节中,固体颗粒的流动不会呈现出快速流态化,此时的颗粒具有一定的浓度,并且会出现成团的现象。循环流化床悬浮段中的燃料的分布不均匀,应该在采用热态测试的基础上,确保燃料的均匀分布。 2.2物料平衡理论及其应用固体骨料在循环系统中呈现出对传热的流动特征,这对燃料的燃烧和脱硫过程都会产生一定的干扰,对整个锅炉的使用也会产生影响。采用物料平衡理论可以对固体燃料在燃烧系统内的分布规律进行合理的分析,在循环流化床的锅炉的设计中起到很好的效果。物料平衡理论主要是指燃料、焦炭等在回料装置等可以保持平衡,物料平衡建立的效果直接会影响到循环流化床锅炉的运行效果。(1)循环量的确定在循环流化床设计环节中,要确保一台锅炉可以正常的运行,在设计中应该确保热量分配的平衡。循环流化床中物料的浓度与受热面传导系数具有直接的关系,所以,要确保锅炉内具有充足的物料循环。在循环流化床物料循环中,结合不同燃料的特性,确定循环量。在具体的设计环节中,如果循环量低于设计的循环量,就会导致锅炉内的燃料过分燃烧,热量被受热面过度吸收。如果燃料的浓度过低,就会导致锅炉出力不足。(2)分离器效率的要求循环流化床锅炉在运行环节中,要确保充足的循环量,所以要合理的设计分离器。在分离器设计中,要提升分离效率。一定速度下,在确定的粒度分布中,应该确保某个粒径的分离效率非常高,粒径的范围是循环灰中的主体,其在锅炉的物料中成分非常多。如果分离器的分离效率对任意粒径的颗粒都不能达到100%,那么在循环流化床锅炉使用的环节中,分离器就不能实现物料的循环,锅炉的运行效果就不能得到保障。 (3)床压降的要求

相关文档
最新文档