高考数学一轮复习专题:等差数列及其前n项和(教案及同步练习)

高考数学一轮复习专题:等差数列及其前n项和(教案及同步练习)
高考数学一轮复习专题:等差数列及其前n项和(教案及同步练习)

1.等差数列的定义

一般地,如果一个数列从第2项起,每一项与它的前一项的差等于同一个常数,那么这个数列就叫做等差数列,这个常数叫做等差数列的公差,通常用字母d 表示. 2.等差数列的通项公式

如果等差数列{a n }的首项为a 1,公差为d ,那么它的通项公式是a n =a 1+(n -1)d . 3.等差中项

由三个数a ,A ,b 组成的等差数列可以看成最简单的等差数列.这时,A 叫做a 与b 的等差中项. 4.等差数列的常用性质

(1)通项公式的推广:a n =a m +(n -m )d (n ,m ∈N *).

(2)若{a n }为等差数列,且k +l =m +n (k ,l ,m ,n ∈N *),则a k +a l =a m +a n . (3)若{a n }是等差数列,公差为d ,则{a 2n }也是等差数列,公差为2d . (4)若{a n },{b n }是等差数列,则{pa n +qb n }也是等差数列.

(5)若{a n }是等差数列,公差为d ,则a k ,a k +m ,a k +2m ,…(k ,m ∈N *)是公差为md 的等差数列. (6)数列S m ,S 2m -S m ,S 3m -S 2m ,…构成等差数列. 5.等差数列的前n 项和公式

设等差数列{a n }的公差为d ,其前n 项和S n =n (a 1+a n )2或S n =na 1+n (n -1)

2d .

6.等差数列的前n 项和公式与函数的关系 S n =d

2

n 2+????a 1-d 2n . 数列{a n }是等差数列?S n =An 2+Bn (A ,B 为常数). 7.等差数列的前n 项和的最值

在等差数列{a n }中,a 1>0,d <0,则S n 存在最大值;若a 1<0,d >0,则S n 存在最小值. 【知识拓展】

等差数列的四种判断方法

(1)定义法:a n +1-a n =d (d 是常数)?{a n }是等差数列. (2)等差中项法:2a n +1=a n +a n +2 (n ∈N *)?{a n }是等差数列. (3)通项公式:a n =pn +q (p ,q 为常数)?{a n }是等差数列. (4)前n 项和公式:S n =An 2+Bn (A ,B 为常数)?{a n }是等差数列. 【思考辨析】

判断下列结论是否正确(请在括号中打“√”或“×”)

(1)若一个数列从第二项起每一项与它的前一项的差都是常数,则这个数列是等差数列.( × ) (2)等差数列{a n }的单调性是由公差d 决定的.( √ )

(3)等差数列的前n 项和公式是常数项为0的二次函数.( × ) (4)已知等差数列{a n }的通项公式a n =3-2n ,则它的公差为-2.( √ )

1.在等差数列{a n }中,若a 2=4,a 4=2,则a 6等于( ) A .-1 B .0 C .1 D .6 答案 B

解析 由等差数列的性质,得a 6=2a 4-a 2=2×2-4=0,故选B.

2.(教材改编)设数列{a n }是等差数列,其前n 项和为S n ,若a 6=2且S 5=30,则S 8等于( ) A .31 B .32 C .33 D .34

答案 B

解析 由已知可得?

??

??

a 1+5d =2,

5a 1+10d =30,解得???

a 1

=26

3,

d =-4

3,

∴S 8=8a 1+8×7

2

d =32.

3.(2016·全国乙卷)已知等差数列{a n }前9项的和为27,a 10=8,则a 100等于( ) A .100 B .99 C .98 D .97 答案 C

解析 由等差数列性质,知S 9=9(a 1+a 9)2=9×2a 52=9a 5=27,得a 5=3,而a 10=8,因此公差d =a 10-a 5

10-5=1,

∴a 100=a 10+90d =98,故选C.

4.设数列{a n }是等差数列,若a 3+a 4+a 5=12,则a 1+a 2+…+a 7等于( ) A .14 B .21 C .28 D .35 答案 C

∴a 1+a 2+…+a 7=7a 4=28.

5.若等差数列{a n }满足a 7+a 8+a 9>0,a 7+a 10<0,则当n =________时,{a n }的前n 项和最大. 答案 8

解析 因为数列{a n }是等差数列,且a 7+a 8+a 9=3a 8>0,所以a 8>0.又a 7+a 10=a 8+a 9<0,所以a 9<0.故当n =8时,其前n 项和最大.

题型一 等差数列基本量的运算

例1 (1)在数列{a n }中,若a 1=-2,且对任意的n ∈N *有2a n +1=1+2a n ,则数列{a n }前10项的和为( ) A .2 B .10 C.52 D.5

4

(2)(2016·北京)已知{a n }为等差数列,S n 为其前n 项和.若a 1=6,a 3+a 5=0,则S 6=________. 答案 (1)C (2)6

解析 (1)由2a n +1=1+2a n 得a n +1-a n =1

2,

所以数列{a n }是首项为-2,公差为1

2的等差数列,

所以S 10=10×(-2)+10×(10-1)2×12=5

2.

(2)∵a 3+a 5=2a 4=0,∴a 4=0. 又a 1=6,∴a 4=a 1+3d =0,∴d =-2. ∴S 6=6×6+6×(6-1)

2×(-2)=6.

思维升华 等差数列运算问题的通性通法

(1)等差数列运算问题的一般求法是设出首项a 1和公差d ,然后由通项公式或前n 项和公式转化为方程(组)求解.(2)等差数列的通项公式及前n 项和公式,共涉及五个量a 1,a n ,d ,n ,S n ,知其中三个就能求另外两个,体现了用方程的思想解决问题.

(1)设S n 是等差数列{a n }的前n 项和,已知a 2=3,a 6=11,则S 7等于( )

A .13

B .35

C .49

D .63

(2)(2016·江苏)已知{a n }是等差数列,S n 是其前n 项和.若a 1+a 22=-3,S 5=10,则a 9的值是________. 答案 (1)C (2)20

∴S 7=7(a 1+a 7)2

=49.

(2)设等差数列{a n }的公差为d ,由题意可得 ?????

a 1+(a 1+d )2=-3,5a 1+5×4

2d =10,

解得????

?

a 1=-4,d =3, 则a 9=a 1+8d =-4+8×3=20. 题型二 等差数列的判定与证明

例2 已知数列{a n }中,a 1=35,a n =2-1a n -1(n ≥2,n ∈N *),数列{b n }满足b n =1

a n -1(n ∈N *).

(1)求证:数列{b n }是等差数列;

(2)求数列{a n }中的最大项和最小项,并说明理由. (1)证明 因为a n =2-1

a n -1(n ≥2,n ∈N *),

b n =1a n -1

(n ∈N *),

所以b n +1-b n =1a n +1-1-1

a n -1

1(2-1a n

)-1

-1a n -1=a n a n -1-1

a n -1=1. 又

b 1=1a 1-1

=-5

2.

所以数列{b n }是以-5

2为首项,1为公差的等差数列.

(2)解 由(1)知b n =n -7

2,

则a n =1+1b n =1+2

2n -7.

设f (x )=1+2

2x -7

则f (x )在区间(-∞,72)和(7

2

,+∞)上为减函数.

所以当n =3时,a n 取得最小值-1,当n =4时,a n 取得最大值3. 引申探究

本例中,若将条件变为a 1=3

5,na n +1=(n +1)a n +n (n +1),试求数列{a n }的通项公式.

解 由已知可得a n +1n +1=a n

n

+1,

a n +1n +1-a n n

=1,又a 1=3

5,

∴????

??a n n 是以a 11=3

5为首项,1为公差的等差数列,

∴a n n =35+(n -1)·1=n -2

5, ∴a n =n 2-25

n .

思维升华 等差数列的四个判定方法

(1)定义法:证明对任意正整数n 都有a n +1-a n 等于同一个常数.

(2)等差中项法:证明对任意正整数n 都有2a n +1=a n +a n +2后,可递推得出a n +2-a n +1=a n +1-a n =a n -a n -1=a n -1-a n -2=…=a 2-a 1,根据定义得出数列{a n }为等差数列.

(3)通项公式法:得出a n =pn +q 后,得a n +1-a n =p 对任意正整数n 恒成立,根据定义判定数列{a n }为等差数列.

(4)前n 项和公式法:得出S n =An 2+Bn 后,根据S n ,a n 的关系,得出a n ,再使用定义法证明数列{a n }为等差数列.

(1)在数列{a n }中,若a 1=1,a 2=12,2a n +1=1a n +1

a n +2

(n ∈N *),则该数列的通项为( )

A .a n =1

n

B .a n =2

n +1

C .a n =2

n +2

D .a n =3

n

答案 A

解析 由已知式2a n +1=1a n +1

a n +2

可得

1

a n +1-1a n =1a n +2-1a n +1

,知{1a n }是首项为1a 1=1,公差为1a 2-1a 1=2-1=1的等差数列,所以1a n =n ,即a n =1n .

(2)数列{a n }满足a 1=1,a 2=2,a n +2=2a n +1-a n +2. ①设b n =a n +1-a n ,证明{b n }是等差数列; ②求{a n }的通项公式.

①证明 由a n +2=2a n +1-a n +2, 得a n +2-a n +1=a n +1-a n +2, 即b n +1=b n +2. 又b 1=a 2-a 1=1,

所以{b n }是首项为1,公差为2的等差数列. ②解 由①得b n =1+2(n -1)=2n -1, 即a n +1-a n =2n -1.

于是∑n k =1 (a k +1-a k )=∑n

k =1 (2k -1), 所以a n +1-a 1=n 2,即a n +1=n 2+a 1.

又a 1=1,所以{a n }的通项公式为a n =n 2-2n +2. 题型三 等差数列性质的应用 命题点1 等差数列项的性质

例3 (1)(2015·广东)在等差数列{a n }中,若a 3+a 4+a 5+a 6+a 7=25,则a 2+a 8=________. (2)已知{a n },{b n }都是等差数列,若a 1+b 10=9,a 3+b 8=15,则a 5+b 6=________. 答案 (1)10 (2)21

解析 (1)因为{a n }是等差数列,所以a 3+a 7=a 4+a 6=a 2+a 8=2a 5,a 3+a 4+a 5+a 6+a 7=5a 5=25,所以a 5=5,故a 2+a 8=2a 5=10.

(2)因为{a n },{b n }都是等差数列,所以2a 3=a 1+a 5,2b 8=b 10+b 6,所以2(a 3+b 8)=(a 1+b 10)+(a 5+b 6),即2×15=9+(a 5+b 6),解得a 5+b 6=21. 命题点2 等差数列前n 项和的性质

例4 (1)设等差数列{a n }的前n 项和为S n ,且S 3=-12,S 9=45,则S 12=________.

(2)在等差数列{a n }中,a 1=-2 018,其前n 项和为S n ,若S 1212-S 10

10=2,则S 2 018的值等于( )

A .-2 018

B .-2 016

C .-2 019

D .-2 017

答案 (1)114 (2)A

解析 (1)因为{a n }是等差数列,所以S 3,S 6-S 3,S 9-S 6,S 12-S 9成等差数列,所以2(S 6-S 3)=S 3+(S 9-S 6),即2(S 6+12)=-12+(45-S 6),解得S 6=3. 又2(S 9-S 6)=(S 6-S 3)+(S 12-S 9),

即2×(45-3)=(3+12)+(S 12-45),解得S 12=114. (2)由题意知,数列{S n

n }为等差数列,其公差为1,

S 2 0182 018=S 1

1

+(2 018-1)×1 =-2 018+2 017=-1. ∴S 2 018=-2 018.

思维升华 等差数列的性质

(1)项的性质:在等差数列{a n }中,a m -a n =(m -n )d ?a m -a n

m -n

=d (m ≠n ),其几何意义是点(n ,a n ),(m ,a m )所在直线的斜率等于等差数列的公差.

(2)和的性质:在等差数列{a n }中,S n 为其前n 项和,则 ①S 2n =n (a 1+a 2n )=…=n (a n +a n +1);

②S 2n -1=(2n -1)a n .

(1)在等差数列{a n }中,已知a 4+a 8=16,则该数列前11项和S 11等于( )

A .58

B .88

C .143

D .176

(2)等差数列{a n }与{b n }的前n 项和分别为S n 和T n ,若S n T n =3n -22n +1,则a 7

b 7等于( )

A.37

27 B.3828 C.3929

D.4030

答案 (1)B (2)A

解析 (1)S 11=11(a 1+a 11)2=11(a 4+a 8)

2

11×16

2

=88. (2)a 7b 7=2a 72b 7=a 1+a 13b 1+b 13=a 1+a 13

2×13b 1+b 132×13=S 13

T 13

=3×13-22×13+1=37

27

.

6.等差数列的前n 项和及其最值

考点分析 公差不为0的等差数列,求其前n 项和与最值在高考中时常出现.题型有小题,也有大题,难度不大.

典例1 (1)在等差数列{a n }中,2(a 1+a 3+a 5)+3(a 7+a 9)=54,则此数列前10项的和S 10等于( ) A .45 B .60 C .75

D .90

(2)在等差数列{a n }中,S 10=100,S 100=10,则S 110=________. 解析 (1)由题意得a 3+a 8=9,

所以S 10=10(a 1+a 10)2=10(a 3+a 8)2=10×9

2=45.

(2)方法一 设数列{a n }的首项为a 1,公差为d ,

则???

10a 1+10×92

d =100,

100a 1

+100×99

2

d =10,解得???

a 1=1 099100

d =-11

50.

所以S 110=110a 1+110×109

2

d =-110.

方法二 因为S 100-S 10=(a 11+a 100)×90

2=-90,

所以a 11+a 100=-2, 所以S 110=(a 1+a 110)×110

2

(a 11+a 100)×110

2

=-110.

答案 (1)A (2)-110

典例2 在等差数列{a n }中,已知a 1=20,前n 项和为S n ,且S 10=S 15,求当n 取何值时,S n 取得最大值,并求出它的最大值. 规范解答

解 ∵a 1=20,S 10=S 15,

∴10×20+10×92d =15×20+15×14

2d ,

∴d =-5

3

.

方法一 由a n =20+(n -1)×????-53=-53n +653, 得a 13=0.

即当n ≤12时,a n >0,当n ≥14时,a n <0. ∴当n =12或n =13时,S n 取得最大值, 且最大值为S 12=S 13=12×20+12×112×????

-53

=130.

方法二 S n =20n +n (n -1)2·????

-53

=-56n 2+1256n

=-56????n -2522+3 12524

. ∵n ∈N *,∴当n =12或n =13时,S n 有最大值,且最大值为S 12=S 13=130. 方法三 由S 10=S 15,得a 11+a 12+a 13+a 14+a 15=0. ∴5a 13=0,即a 13=0.

∴当n =12或n =13时,S n 有最大值,且最大值为S 12=S 13=130.

1.(2016·重庆一诊)在数列{a n }中,a n +1-a n =2,a 2=5,则{a n }的前4项和为( ) A .9 B .22 C .24 D .32

答案 C

解析 由a n +1-a n =2,知{a n }为等差数列且公差d =2,∴由a 2=5,得a 1=3,a 3=7,a 4=9,∴前4项和为3+5+7+9=24,故选C.

2.《九章算术》是我国古代的数学名著,书中有如下问题:“今有五人分五钱,令上二人所得与下三人等.问各得几何?”其意思为:“已知甲、乙、丙、丁、戊五人分5钱,甲、乙两人所得与丙、丁、戊三人所得相同,且甲、乙、丙、丁、戊所得依次成等差数列.问五人各得多少钱?”(“钱”是古代的一种重量单位)这个问题中,甲所得为( )

A.54钱

B.53钱

C.32钱

D.43钱 答案 D

解析 设等差数列{a n }的首项为a 1,公差为d , 依题意有?????

2a 1+d =3a 1+9d ,2a 1

+d =5

2,???

a 1

=4

3,

d =-16,

故选D.

3.(2017·佛山调研)已知等差数列{a n }满足a 2=3,S n -S n -3=51(n >3),S n =100,则n 的值为( ) A .8 B .9 C .10 D .11

答案 C

解析 由S n -S n -3=51,得a n -2+a n -1+a n =51, 所以a n -1=17,又a 2=3, S n =n (a 2+a n -1)2

=100,解得n =10.

4.在等差数列{a n }中,a 9=1

2a 12+6,则数列{a n }的前11项和S 11等于( )

A .24

B .48

C .66

D .132 答案 D

解析 方法一 由a 1+8d =1

2

(a 1+11d )+6,

得a 1+5d =12,∴a 1=12-5d . 又S 11=11a 1+11×10

2d =11a 1+55d

=11(12-5d )+55d =132.

方法二 由a 9=1

2

a 12+6,得2a 9-a 12=12.

由等差数列的性质得,a 6+a 12-a 12=12,a 6=12,S 11=

11(a 1+a 11)2=11×2a 6

2

=132,故选D. 5.已知数列{a n }满足a n +1=a n -5

7,且a 1=5,设{a n }的前n 项和为S n ,则使得S n 取得最大值的序号n 的值

为( ) A .7 B .8 C .7或8 D .8或9

答案 C

解析 由题意可知数列{a n }是首项为5,公差为-57的等差数列,所以a n =5-5

7(n -1)=40-5n 7,该数列前7

项是正数项,第8项是0,从第9项开始是负数项,所以S n 取得最大值时,n =7或n =8,故选C. *6.设等差数列{a n }满足a 1=1,a n >0(n ∈N *),其前n 项和为S n ,若数列{S n }也为等差数列,则S n +10

a 2n 的最大

值是( ) A .310 B .212 C .180 D .121 答案 D

解析 设数列{a n }的公差为d , 依题意得2S 2=S 1+S 3,

因为a 1=1,所以22a 1+d =a 1+3a 1+3d , 化简可得d =2a 1=2,

所以a n =1+(n -1)×2=2n -1, S n =n +n (n -1)

2×2=n 2,

所以S n +10a 2n =(n +10)2(2n -1)2=(n +102n -1

)2

=?????

???

12

(2n -1)+2122n -12 =1

4????1+212n -12≤121, 故选D.

7.(2015·安徽)已知数列{a n }中,a 1=1,a n =a n -1+1

2(n ≥2),则数列{a n }的前9项和等于________.

答案 27

解析 由题意知数列{a n }是以1为首项,以1

2为公差的等差数列,∴S 9=9×1+9×82×12=9+18=27.

8.已知数列{a n }中,a 1=1且1

a n +1=1a n +1

3(n ∈N *),则a 10=________. 答案 1

4

解析 由已知得1a 10=1a 1+(10-1)×1

3=1+3=4,

故a 10=1

4

.

9.设数列{a n }的通项公式为a n =2n -10(n ∈N *),则|a 1|+|a 2|+…+|a 15|=________. 答案 130

解析 由a n =2n -10(n ∈N *)知{a n }是以-8为首项,2为公差的等差数列,又由a n =2n -10≥0,得n ≥5,∴当n ≤5时,a n ≤0,当n >5时,a n >0,∴|a 1|+|a 2|+…+|a 15|=-(a 1+a 2+a 3+a 4)+(a 5+a 6+…+a 15)=20+110=130.

10.设等差数列{a n },{b n }的前n 项和分别为S n ,T n ,若对任意自然数n 都有S n T n =2n -34n -3,则a 9b 5+b 7+a 3

b 8+b 4的

值为________. 答案

19

41

解析 ∵{a n },{b n }为等差数列, ∴a 9b 5+b 7+a 3b 8+b 4=a 92b 6+a 32b 6

=a 9+a 32b 6=a 6

b 6.

∵S 11T 11=a 1+a 11b 1+b 11=2a 62b 6=2×11-34×11-3=19

41, ∴

a 9

b 5+b 7+a 3b 8+b 4=19

41

. 11.在等差数列{a n }中,a 1=1,a 3=-3. (1)求数列{a n }的通项公式;

(2)若数列{a n }的前k 项和S k =-35,求k 的值. 解 (1)设等差数列{a n }的公差为d , 则a n =a 1+(n -1)d .

由a 1=1,a 3=-3,可得1+2d =-3,解得d =-2. 从而a n =1+(n -1)×(-2)=3-2n . (2)由(1)可知a n =3-2n ,

所以S n =n [1+(3-2n )]

2=2n -n 2.

由S k =-35,可得2k -k 2=-35, 即k 2-2k -35=0,解得k =7或k =-5. 又k ∈N *,故k =7.

12.若数列{a n }的前n 项和为S n ,且满足a n +2S n S n -1=0(n ≥2),a 1=1

2

.

(1)求证:数列????

??

1S n 是等差数列;

(2)求数列{a n }的通项公式.

(1)证明 当n ≥2时,由a n +2S n S n -1=0, 得S n -S n -1=-2S n S n -1,所以1S n -1

S n -1=2,

又1S 1=1

a 1

=2, 故????

??

1S n 是首项为2,公差为2的等差数列. (2)解 由(1)可得1S n =2n ,∴S n =1

2n .

当n ≥2时,

a n =S n -S n -1=12n -1

2(n -1)=n -1-n 2n (n -1)

=-1

2n (n -1)

.

当n =1时,a 1=1

2

不适合上式.

故a n

=???

1

2

,n =1,-

1

2n (n -1),n ≥2.

*13.已知数列{a n }的各项均为正数,前n 项和为S n ,且满足2S n =a 2n +n -4(n ∈N *).

(1)求证:数列{a n }为等差数列; (2)求数列{a n }的通项公式.

(1)证明 当n =1时,有2a 1=a 21+1-4, 即a 21-2a 1-3=0, 解得a 1=3(a 1=-1舍去). 当n ≥2时,有2S n -1=a 2n -1+n -5, 又2S n =a 2n +n -4,

两式相减得2a n =a 2n -a 2

n -1+1,

即a2n-2a n+1=a2n-1,也即(a n-1)2=a2n-1,

因此a n-1=a n-1或a n-1=-a n-1.

若a n-1=-a n-1,则a n+a n-1=1.

而a1=3,

所以a2=-2,这与数列{a n}的各项均为正数相矛盾,所以a n-1=a n-1,即a n-a n-1=1,

因此数列{a n}是首项为3,公差为1的等差数列.(2)解由(1)知a1=3,d=1,

所以数列{a n}的通项公式a n=3+(n-1)×1=n+2,即a n=n+2.

第2讲 等差数列及其前n 项和

一、选择题

1. {a n }为等差数列,公差d =-2,S n 为其前n 项和.若S 10=S 11,则a 1=( )

A .18

B .20

C .22

D .24

解析 由S 10=S 11得a 11=S 11-S 10=0,a 1=a 11+(1-11)d =0+(-10)×(-2)=20. 答案 B

2.设等差数列{a n }的前n 项和为S n .若a 1=-11,a 4+a 6=-6,则当S n 取最小值时,n 等于( ).

A .6

B .7

C .8

D .9

解析 由a 4+a 6=a 1+a 9=-11+a 9=-6,得a 9=5,从而d =2,所以S n =-11n +n (n -1)=n 2-12n =(n -6)2-36,因此当S n 取得最小值时,n =6. 答案 A

3.已知{a n }为等差数列,a 1+a 3+a 5=105,a 2+a 4+a 6=99,则a 20等于( ). A .-1

B .1

C .3

D .7

解析 两式相减,可得3d =-6,d =-2.由已知可得3a 3=105,a 3=35,所以a 20=a 3+17d =35+17×(-2)=1. 答案 B

4.在等差数列{a n }中,S 15>0,S 16<0,则使a n >0成立的n 的最大值为

( ). A .6

B .7

C .8

D .9

解析 依题意得S 15=15(a 1+a 15)2=15a 8>0,即a 8>0;S 16=16(a 1+a 16)2=8(a 1+a 16)=8(a 8+a 9)<0,即a 8+a 9<0,a 9<-a 8<0.因此使a n >0成立的n 的最大值是8,选C. 答案 C

5.设S n 为等差数列{a n }的前n 项和,若a 1=1,公差d =2,S k +2-S k =24,则k =( ).

A .8

B .7

C .6

D .5

解析 由a 1=1,公差d =2得通项a n =2n -1,又S k +2-S k =a k +1+a k +2,所以2k +1+2k +3=24,得k =5. 答案 D

6.已知两个等差数列{a n }和{b n }的前n 项和分别为A n 和B n ,且A n B n =7n +45n +3,则使得a n

b n

为整数

的正整数的个数是

( ). A .2

B .3

C .4

D .5

解析 由A n B n =7n +45n +3得:a n b n =A 2n -1B 2n -1=14n +382n +2=7n +19n +1,要使a n b n 为整数,则需7n +19n +1=7+

12

n +1为整数,所以n =1,2,3,5,11,共有5个. 答案 D 二、填空题

7.已知数列{a n }为等差数列,S n 为其前n 项和,a 7-a 5=4,a 11=21,S k =9,则k =________.

解析 a 7-a 5=2d =4,d =2,a 1=a 11-10d =21-20=1,

S k =k +k k -12

×2=k 2=9.又k ∈N *

,故k =3.

答案 3

8.设等差数列{a n }的前n 项和为S n ,若S 412-S 3

9=1,则公差为________.

解析 依题意得S 4=4a 1+4×32d =4a 1+6d ,S 3=3a 1+3×22d =3a 1+3d ,于是有4a 1+6d

12-3a 1+3d

9=1,由此解得d =6,即公差为6. 答案 6

9.在等差数列{a n }中,a 1=-3,11a 5=5a 8-13,则数列{a n }的前n 项和S n 的最小值为________.

解析 (直接法)设公差为d ,则11(-3+4d )=5(-3+7d )-13, 所以d =5

9

,所以数列{a n }为递增数列.

令a n ≤0,所以-3+(n -1)·59≤0,所以n ≤32

5,

又n ∈N *,前6项均为负值, 所以S n 的最小值为-293

. 答案 -

29

3

10.设项数为奇数的等差数列,奇数项之和为44,偶数项之和为33,则这个数列的中间项是

________,项数是________.

解析 设等差数列{a n }的项数为2n +1, S 奇=a 1+a 3+…+a 2n +1=

(n +1)(a 1+a 2n +1)

2

=(n +1)a n +1,

S 偶=a 2+a 4+a 6+…+a 2n =n (a 2+a 2n )

2

=na n +1,

∴S 奇S 偶=n +1n =44

33,解得n =3,∴项数2n +1=7,S 奇-S 偶=a n +1,即a 4=44-33=11为所求中间项. 答案 11 7 三、解答题

11.设a 1,d 为实数,首项为a 1,公差为d 的等差数列{a n }的前n 项和为S n ,满足S 5S 6+15=

0.

(1)若S 5=5,求S 6及a 1; (2)求d 的取值范围. 解 (1)由题意知S 6=-15

S 5=-3,a 6=S 6-S 5=-8,

所以??

?

5a 1+10d =5,a 1+5d =-8.

解得a 1=7,所以S 6=-3,a 1=7.

(2)因为S 5S 6+15=0,所以(5a 1+10d )(6a 1+15d )+15=0,即2a 21+9da 1+10d 2

+1=0,

故(4a 1+9d )2=d 2-8,所以d 2≥8. 故d 的取值范围为d ≤-22或d ≥2 2.

12.在等差数列{a n }中,公差d >0,前n 项和为S n ,a 2·a 3=45,a 1+a 5=18. (1)求数列{a n }的通项公式;

(2)令b n =S n n +c (n ∈N *),是否存在一个非零常数c ,使数列{b n }也为等差数列?若存在,求

出c 的值;若不存在,请说明理由.

解 (1)由题设,知{a n }是等差数列,且公差d >0, 则由??? a 2a 3=45,a 1+a 5=18,得???

(a 1+d )(a 1+2d )=45,a 1+(a 1+4d )=18.

解得???

a 1=1,d =4.∴a n =4n -3(n ∈N *).

(2)由b n =S n

n +c =n (1+4n -3)2n +c =2n ? ?

???n -12n +c ,

∵c ≠0,∴可令c =-1

2,得到b n =2n . ∵b n +1-b n =2(n +1)-2n =2(n ∈N *), ∴数列{b n }是公差为2的等差数列.

即存在一个非零常数c =-1

2,使数列{b n }也为等差数列. 13.在数列{a n }中,a 1=8,a 4=2,且满足a n +2+a n =2a n +1. (1)求数列{a n }的通项公式;

(2)设S n 是数列{|a n |}的前n 项和,求S n .

解 (1)由2a n +1=a n +2+a n 可得{a n }是等差数列, 且公差d =a 4-a 14-1=2-8

3=-2.

∴a n =a 1+(n -1)d =-2n +10. (2)令a n ≥0,得n ≤5.

即当n ≤5时,a n ≥0,n ≥6时,a n <0. ∴当n ≤5时,S n =|a 1|+|a 2|+…+|a n | =a 1+a 2+…+a n =-n 2+9n ; 当n ≥6时,S n =|a 1|+|a 2|+…+|a n | =a 1+a 2+…+a 5-(a 6+a 7+…+a n ) =-(a 1+a 2+…+a n )+2(a 1+a 2+…+a 5) =-(-n 2+9n )+2×(-52+45) =n 2-9n +40,

∴S n =???

-n 2+9n ,n ≤5,n 2-9n +40,n ≥6.

14.已知数列{a n }的前n 项和为S n ,且a 2a n =S 2+S n 对一切正整数n 都成立. (1)求a 1,a 2的值;

(2)设

a 1>0,数列?

?????

lg 10a 1a n 的前

n 项和为T n .当n 为何值时,T n 最大?并求出T n 的最大值.

解 (1)取n =1,得a 2a 1=S 2+S 1=2a 1+a 2,

① 取n =2,得a 2

2=2a 1+2a 2,

② 由②-①,得a 2(a 2-a 1)=a 2,

(i)若a 2=0,由①知a 1=0, (ii)若a 2≠0,由③知a 2-a 1=1.

由①、④解得,a 1=2+1,a 2=2+2;或a 1=1-2,a 2=2- 2.

综上可得a 1=0,a 2=0;或a 1=2+1,a 2=2+2;或a 1=1-2,a 2=2- 2. (2)当a 1>0时,由(1)知a 1=2+1,a 2=2+2.

当n ≥2时,有(2+2)a n =S 2+S n ,(2+2)a n -1=S 2+S n -1, 所以(1+2)a n =(2+2)a n -1,即a n =2a n -1(n ≥2), 所以a n =a 1(2)n -1=(2+1)·(2)n -1. 令b n =lg 10a 1a n

则b n =1-lg(2)n -1=1-12(n -1)lg 2=12lg 100

2n -1,

所以数列{b n }是单调递减的等差数列(公差为-1

2lg 2), 从而b 1>b 2>…>b 7=lg 10

8>lg 1=0, 当n ≥8时,b n ≤b 8=12lg 100128<1

2lg 1=0, 故n =7时,T n 取得最大值,且T n 的最大值为 T 7=7(b 1+b 7)2=7(1+1-3lg 2)2=7-

212lg 2.

《等差数列前n项和公式》教学设计53171

《等差数列的前n项和》教学设计 一、设计理念 让学生在具体的问题情境中经历知识的形成和发展,让学生利用自己的原有认知结构中相关的知识与经验,自主地在教师的引导下促进对新知识的建构,因为建构主义学习理论认为,学习是学生积极主动地建构知识的过程.在教学过程中,根据教学内容,从介绍高斯的算法开始,探究这种方法如何推广到一般等差数列的前n项和的求法.通过设计一些从简单到复杂,从特殊到一般的问题,层层铺垫,组织和启发学生获得公式的推导思路,并且充分引导学生展开自主、合作、探究学习,通过生生互动和师生互动等形式,让学生在问题解决中学会思考、学会学习.同时根据我校的特点,为了促进成绩优秀学生的发展,还设计了选做题和探索题,进一步培养优秀生用函数观点分析、解决问题的能力,达到了分层教学的目的. 二、背景分析 本节课教学内容是高中课程标准实验教科书必修5(北师大)中第二章的第三节内容.本节课主要研究如何应用倒序相加法求等差数列的前n项和以及该求和公式的应用.等差数列在现实生活中比较常见,因此等差数列求和就成为我们在实际生活中经常遇到的一类问题.同时,求数列前n项和也是数列研究的基本问题,通过对公式推导,可以让学生进一步掌握从特殊到一般的研究问题方法. 三、学情分析 1、学生已掌握的理论知识角度:学生已经学习了等差数列的定义及通项公式,掌握了等差数列的基本性质,有了一定的知识准备。 2、学生了解数列求和历史角度:大部分学生对高斯算法有比较清晰的认识,并且知道此算法原理,但在高斯算法中数列1,2,3,……,100只是一个特殊的等差数列,对于一般的等差数列的求和方法和公式学生还是一无所知。 3、学生的认知规律角度:本节课采取了循序渐进、层层深入的教学方式,以问题解答的形式,通过探索、讨论、分析、归纳而获得知识,为学生积极思考、自主探究搭建了理想的平台,让学生去感悟倒序相加法的和谐对称以及使用范围。 四、教学目标 1、类比高斯算法,探求等差数列前n项和公式,理解公式的推导方法; 2、能较熟练地应用等差数列前n项和公式解决相关问题; 3、经历公式的推导过程,体会层层深入的探索方式,体验从特殊到一般、具体到抽象的研究方法,学会观察、归纳、反思与逻辑推理的能力; 4、通过生动具体的现实问题,激发学生探究的兴趣和欲望,树立学生求真的勇气和自信心,增强学生学好数学的心理体验,产生热爱数学的情感,体验在学习中获得成功;五、教学重点与难点

等差数列的前n项和说课稿

等差数列的前n项和说课稿 一、教材分析 1、本节在教材中的地位和作用 “等差数列的前n项和”是对前面所学的等差数列相关知识的巩固和应用,无论在知识还是能力上,都是进一步学习其他数列知识的基础.同时,在推导等差数列的前n项和公式的过程中所采用的“倒序相加法”是今后数列求和的一种常用且重要的方法.因此,掌握等差数列的前n项公式及推导为后面将要学习的等比数列的相关知识打下坚实的基础.同时起到了承上启下的重要作用. 2、目标分析 根据上述教材结构与内容分析,考虑到学生已有的认识结构和新课程标准,我从三个方面确定了本节课的教学目标: (1)知识目标: (a)掌握等差数列的前n项和公式及推导过程; (b)会用等差数列的前n项和公式解决一些简单的与前n项和有关的问题. (2)能力目标: (a)培养学生的逻辑推理能力; (b)培养学生分析问题,解决问题的能力. (3)情感目标: (a)培养学生的辩证唯物主义思想. (b)提高学生的数学修养. 3、教学重点与难点 为了实现上述三个教学目标,我把本节课的重、难点确定为: (1)教学重点:等差数列前n项和公式的推导,理解及应用. (2)教学难点:等差数列前n项和公式的推导及应用. 为了突出重点、突破难点,在教学中我采取以下措施:从学生已有的知识出发,精心设计一个符合学生知识水平的具体问题,并通过相关的数学史,逐步引导学生观察,类比推导出等差数列的前n项公式,并能灵活应用解决相关的问题. 二、教法分析 为了更好的培养学生的自学能力,在遵循启发式教学原则的基础上,本节课我主要采用以引导发现发为主,练习法为辅的教学方法,意在通过特殊等差数列求和问题出发引导学生导出一般等差数列的求和公式,从而调动学生的积极性,同时给学生提供一个广阔的探索空间,一个充分展示创新能力的机会. 三、学法分析 在学法指导上,根据新课程标准理念,学生是学习的主体,教师只是学习的帮助者、辅导者、引导者,因此,在本节课的教学中我主要是引导学生通过观察、类比得

等差数列的前n项和学案

【学习目标】1.熟练掌握等差数列前n 项和的性质,并能灵活运用. 2.掌握等差数列前n 项和的最值问题. 3.理解a n 与S n 的关系,能根据S n 求a n . 【学法指导】1.任何一个数列{a n }与它的前n 项和S n 之间都有一个等量关系式,此公式为: a n =????? S 1 n =1,S n -S n -1 n≥2,题中已知一个数列的前n 项和,则可利用此公式求得此数列的通项公式,同时要注意此公式是一个分段的函数,所以在使用此公式求解 时,要分类讨论. 2.数列中的最值问题可以根据二次函数的最值加以求解,这也是利用函数解决数列问 题的一个重要应用. 3.等差数列的前n 项和与二次函数联系十分紧密,要辨析它们之间的关系,从更高境 界处理等差数列的前n 项和问题. 一.知识导学 1.前n 项和S n 与a n 之间的关系 对任意数列{a n },S n 是前n 项和,S n 与a n 的关系可以表示为a n =????? n =1, n≥2. 2.等差数列前n 项和公式:S n = = . 3.若等差数列{a n }的前n 项和公式为S n =An 2+Bn +C ,则A =_ __,B = ,C = . 4.已知数列{a n }的通项公式是a n =2n -48,则S n 取得最小值时,n 为________. 二.探究与发现 [问题情境] 1.如果已知数列{a n }的前n 项和S n 的公式,那么这个数列确定了吗如果确定了,那么如何求它的通项公式应注意一些什么问题 2.如果一个数列的前n 项和的公式是S n =an 2+bn +c(a ,b ,c 为常数),那么这个数列一定是等差数列吗 3.如果{a n }是一个等差数列,那么{|a n |}还是等差数列吗如果不再是等差数列,如何求{|a n |}的前n 项和

最新2.3等差数列的前n项和第一课时教案

§2.3 等差数列的前 n 项和 授课类型:新授课 (第1课时) 一、教学目标 知识与技能:掌握等差数列前n 项和公式;会用等差数列的前n 项和公式解决问题。 过程与方法:通过公式的推导和公式的运用,使学生体会从特殊到一般,再从一般到特殊的思维规律;通过公式推导的过程教学,扩展学生思维。 情感态度与价值观:通过公式的推导过程,使学生体会数学中的对称美,促进学生的逻辑思维。 二、教学重点 等差数列n 项和公式的理解、推导及应用 三、教学难点 灵活应用等差数列前n 项公式解决一些简单的有关问题 四、教学过程 1、课题导入 “小故事”:高斯是伟大的数学家,天文学家,高斯十岁时,有一次老师出了一道题目,老师说: “现在给大家 出道题目: 1+2+…100=?” 过了两分钟,正当大家在:1+2=3;3+3=6;4+6=10…算得不亦乐乎时,高斯站起来回答说: “1+2+3+…+100=5050。” 教师问:“你是如何算出答案的? 高斯回答说:因为1+100=101; 2+99=101;…50+51=101,所以 101×50=5050” 这个故事告诉我们: (1)作为数学王子的高斯从小就善于观察,敢于思考,所以他能从一些简单的事物中发现和寻找出某些规 律性的东西。 (2)该故事还告诉我们求等差数列前n 项和的一种很重要的思想方法,这就是下面我们要介绍的“倒序相加”法。 2、讲授新课 (1)等差数列的前n 项和公式1:2 )(1n n a a n S += 证明: n n n a a a a a S +++++=-1321 ① 1221a a a a a S n n n n +++++=-- ② ①+②:)()()()(223121n n n n n n a a a a a a a a S ++++++++=-- ∵ =+=+=+--23121n n n a a a a a a ∴)(21n n a a n S += 由此得:2 )(1n n a a n S +=

等差数列前n项和公式说课稿

等差数列前n项和公式说课稿 各位评委,大家好: 我说课的课题是高中数学(人教B版)必修5第二章等差数列中“等差数列前n 项和公式”的第一节内容,我将从教材分析、教法、学法分析、教学过程、板书设计和效果分析五个方面来展开本节的说课内容。 一、教材分析 1、地位与作用 “等差数列前n项和公式”是《数列》一章中重要的基础知识,无论在知识,还是在能力上,都是进一步学习其他数列知识的基础。知识方面:等差数列前n 项和公式有广泛的实际应用,是今后继续学习高等数学的基础,能体现解决数列问题的通性通法,并且在推导等差数列前n项和公式中运用的“例序相加法”是今后数列求和的一种常用的重要方法。能力方面:可考查学生的运算、推理、及等价转化能力,使学生进一步深入体会学习函数方程、数形结合等重要数学思想方法。因此等差数列前n项和公式在《数列》一章具有极为重要的地位,也是高考命题的热点。 2、目标分析: 根据上述教材结构与内容分析,考虑到学生已有的认知结构心理特征,我制定如下教学目标: A、知识目标

掌握等差数列前n项和公式的推导方法;掌握公式及公式的运用。 B、能力目标 (1)通过公式的探索、发现,在知识发生、发展以及形式过程中培养学生观察、联想、归纳、分析、综合和逻辑推理的能力。 (2)利用以退求进的思维策略,遵循从特殊到一般的认知规律,让学生在实践中通过观察、尝试、分析、类比导出等差数列的求和公式,培养学生的类比思维能力。 (3)通过对公式从不同角度、不同侧面的剖析,培养学生思维的灵活性,提高学生分析和解决问题的能力。 C、情感目标: (1)公式的发现反映了普遍性寓于特殊性之中,从而使学生受到辩证唯物主义思想的熏陶。 (2)公式运用的过程中,使学生逐步养成实事求是,扎实严谨的科学态度。 (3)通过生动具体的现实问题,令人着迷的数学史,激发学生探究的兴趣和欲望,树立学生求真的勇气和自信心,增强学生学好数学的心理体验,产生热爱数学的情感。 3、教学重点和难点 结合以上教学目标,我制定了下面的教学重点和难点

等差数列的前n项和

等差数列的前n项和 1.理解并掌握等差数列的前n项和公式及其推导过程,体会等差数列的前n项和公式与二次函数的关系.(重点) 2.熟练掌握等差数列的五个基本量a1,d,n,a n,S n之间的联系,能够由其中的任意三个求出其余的两个.(重点) [基础·初探] 教材整理等差数列的前n项和 1.等差数列的前n项和公式 已知量首项、末项与项数首项、公差与项数 求和公式S n=n a1+a n 2S n=na1+ n n-1 2d 2.等差数列前n项和公式的函数特点 S n=na1+n n-1 2d= d 2n2+? ? ? ? ? a1- d 2n. d≠0时,S n是关于n的二次函数,且无常数项. 判断(正确的打“√”,错误的打“×”) (1)公差为零的数列不能应用等差数列的前n项和公式.() (2)数列{n2}可以用等差数列的前n项和公式求其前n项和S n.() (3)若数列{a n}的前n项和为S n=an2+bn,则{a n}是等差数列.() 【解析】(1)任何等差数列都能应用等差数列的前n项和公式. (2)数列{n2}不是等差数列,故不能用等差数列的前n项和公式. (3)当公差不为0时,等差数列的前n项和是关于n的二次函数(常数项为0).【答案】(1)×(2)×(3)√

[小组合作型] 与S n 有关的基本量的计算 (1)已知等差数列{a n }中,a 1=32,d =-1 2,S n =-15,求n 和a n ; (2)已知等差数列{a n }中,S 5=24,求a 2+a 4; (3)数列{a n }是等差数列,a 1=1,a n =-512,S n =-1 022,求公差d ; (4)已知等差数列{a n }中,a 2+a 5=19,S 5=40,求a 10. 【精彩点拨】 运用方程的思想,根据已知条件建立方程或方程组求解,另外解题时要注意整体代换. 【尝试解答】 (1)S n =n ·32+n n -1 2·? ?? ?? -12=-15,整理得n 2-7n -60=0, 解得n =12或n =-5(舍去), 所以a 12=32+(12-1)×? ???? -12=-4. (2)设等差数列的首项为a 1,公差为d , 则S 5=5a 1+ 5×5-1 2 d =24, 即5a 1+10d =24,所以a 1+2d =24 5, 所以a 2+a 4=2(a 1+2d )=2×245=48 5. (3)因为a n =a 1+(n -1)d ,S n =na 1+ n n -1 2 d , 又a 1=1,a n =-512,S n =-1 022, 所以????? 1+n -1d =-512, ①n +1 2n n -1d =-1 022, ② 把(n -1)d =-513代入②得

等差数列前n项求和

2.3 等差数列的前n 项和 一、教学目标 1、理解等差数列的概念;探索并掌握等差数列的通项公式、前n 项和。 2、体会等差数列与二次函数的关系。 二、基础知识 1、数列前n 项和公式: 一般地,称n a a a a ++++...321为数列}{n a 的前n 项的和,用n S 表示,即n n a a a a S ++++= (321) 2、数列通项n a 与前n 项和n S 的关系 当2≥n 时,有n n a a a a S ++++=...321;13211...--++++=n n a a a a S ,所以n a =____________;当n=1时,11s a =。总上可得n a =____________ 3、等差数列}{n a 的前n 项和的公式=n S ________________=__________________ 4、若数列{}n a 的前n 项和公式为Bn An S n +=2(B A ,为常数),则数列{}n a 为 。 5、在等差数列}{n a 中,n S ;n S 2-n S ;n S 3-n S 2;。。。 仍成等差数列,公差为___________ 6、在等差数列}{n a 中:若项数为偶数2n 则=n S ________________;奇偶-s s =________________;=偶奇 s s ________________。 若项数为奇数2n-1则=-1n S ________________;偶奇-s s =________________;=偶奇 s s ________________。 7、若数列}{n a 与}{n b 均为等差数列,且前n 项和分别是n S 和n T ,则 =m m b a _____________。 三、典例分析 例1、已知数列{}n a 的前n 项和22+=n S n ,求此数列的通项公式。 解析:32111=+==s a ① )2(12]2)1[(2221≥-=+--+=-=-n n n n s s a n n n ② 在②中,当n=1时,1112=-?与①中的1a 不相等

高中数学必修五第二章数列学案 等差数列的前n项和(2)

§2.3 等差数列的前n 项和(2) 主备人: 王 浩 审核人: 马 琦 学习目标 1. 进一步熟练掌握等差数列的通项公式和前n 项和公式; 2. 了解等差数列的一些性质,并会用它们解决一些相关问题; 3. 会利用等差数列通项公式与前 n 项和的公式研究n S 的最大(小)值. 学习过程 一、复习回顾 1:等差数列{n a }中, 4a =-15, 公差d =3,求5S . 2:等差数列{n a }中,已知31a =,511a =,求和8S . 二、新课导学 ※ 探究一:如果一个数列{}n a 的前n 项和为2n S pn qn r =++,其中p 、q 、r 为常数,且0p ≠,那么这个数列一定是等差数列吗?如果是,它的首项与公差分别是多少? ※探究二:记等差数列{}n a 的偶数项和为S 偶,奇数项和为S 奇.当项数为2n 时,则有 S S nd -=奇偶 ;当项数为21n -时,则有n S S a -=奇偶 。 ※探究三:当等差数列{}n a 的项数为21n -时,有12-n S = 。 ※ 典型例题 例1、已知数列{}n a 的前n 项为212 n S n n =+,求这个数列的通项公式. 这个数列是等差数列

吗?如果是,它的首项与公差分别是什么? 变式:已知数列{}n a 的前n 项为212 343n S n n =++,求这个数列的通项公式. 小结:数列通项n a 和前n 项和n S 关系为 n a =11(1) (2)n n S n S S n -=??-≥?,由此可由n S 求n a . 例2、等差数列{}m a 共有2n 项,其中奇数项的和为90,偶数项的和为72,且 2133n a a -=-,求该数列的公差d 。 变式:已知两个等差数列{}n a 和{}n b 的前n 项和分别为n A 和n B ,且745 3 n n A n B n +=+,求n n a b 。 例2、已知等差数列24 54377,,,....的前n 项和为n S ,求使得n S 最大的序号n 的值. 变式:等差数列{n a }中, 4a =-15, 公差d =3, 求数列{n a }的前n 项和n S 的最小值.

高中数学必修五《等差数列的前n项和》名师教学设计

《等差数列的前n项和》教学设计 一.教学目标: (1)掌握等差数列前n项和公式的推导和应用; (2)体会方程、函数和数形结合的数学思想; (3)发展学生数学抽象、逻辑推理和数学建模等学科核心素养; (4)感受数学文化,品味数学魅力. 二.教学重点:等差数列前n项和公式的推导及应用 教学难点:等差数列前n项和公式的推导 三.教学过程: (一)公式探究 公元前4世纪,古希腊毕达哥拉斯学派数学家常用小石子在沙滩上摆成各种形状来研究各种有形数。比如:三角形数:1,3,6,10,...... 1 3 6 10 ...... 问题1:三角形数的第100个数是? 【学生活动】分组讨论,展示成果 问题2:三角形数的第n个数是? 【学生活动】分组讨论,展示不同方法,在比较争论中感悟倒序相加的优势 追问1:为什么要对和式配对? 追问2:为什么要倒序相加? 追问3:能再举出一个可以用倒序相加法求和的数列吗? 追问4:所有等差数列都可以用倒序相加法求和吗? 【学生活动】回答问题,相互补充 小结:我们借助“倒序相加”这一手段,将和式转化为n个相同数求和的问题,实现了化多为少的目的,而最终这一目的可以达到的根本原因是:等差数列自身的性质。 (二)公式应用

问题3:在等差数列{}n a 中, (1)1503,101a a ==,求50S ; (2)113,2 a d ==,求10.S 由(2)推导公式:1(1)2n n n d S na -=+ . 问题4:在等差数列{}n a 中,已知1315,,222 n n d a S ===-,求1a 及n . (三)感悟提升 问题5:回顾刚刚的探究过程,我们有什么收获? 【学生活动】展开讨论,总结收获 1. 数学知识: (1)1()2n n a a S += (2)1(1)2 n n n d S na -=+ 2. 数学方法:倒序相加(除了可以对等差数列求和还可以对哪些数列求和?) 3. 数学思想:数形结合,方程思想,函数思想 4. 数学文化:北宋时期的沈括提出了隙积术,南宋时期的杨辉发明了垛积术; 《九章算术》、《张丘建算经》等我国经典数学著作中都研究过等差数列的求和问题。

《等差数列前n项和公式》说课稿

《等差数列前n项和公式》说课稿 各位评委,大家好: 我说课的课题是高中数学(人教B版)必修5第二章等差数列中“等差数列前n项和公式”的第一节内容,我将从教材分析、学情分析、教法分析、学法过程、教学过程五个方面来展开本节的说课内容。 一、设计思想 在讲授式的教学中,课堂实施过于注重知识的机械传授,忽略了学生学习的主体性,也抑制了学生综合能力的提高和综合素质的发展。当代学生观重视学生的自主发展,认为教育就应看到学生的未完成性,给学生创造发展的环境和机会。 本堂课以个性化的教学思想为指导进行设计。采用探究活动为主的教学方法,借助教材或教师提供的相关资料让学生亲自去探索得出结论或规律性的知识,培养学生的探究思维能力。 因此,我在此堂课的教学中借助图形拼接演示等差数列的前n项和公式,帮助理解,启迪思路,更加形象地揭示研究对象的性质和关系,也在教学中展示了数学的对称美。 二、教材分析 1、教学内容:《等差数列前n项和》是现行教材高一上册第三章第三节“等差数列前n项和” 的第一课时,主要内容是等差数列前n项和的推导过程和简单应用。 2、地位与作用: 数列是刻画离散现象的函数,是一种重要的数学模型。高中数列研究的主要对象是等差、等比两个基本数列。本节课的教学内容是等差数列的前n项和公式及其简单应用。它与前面学过的等差数列的定义、通项公式、性质有着密切的联系;同时,又为后面学习等比数列前n项和、数列求和等内容作好准备。因此,本节课既是本章的重点也是教材的重点。 与几何、函数等其他数学领域知识结合性强,是方程思想等诸多数学思想的学习载体,具有丰富的现实背景 3.教学目标

知识与技能目标:掌握等差数列的前n项和公式,并能运用公式解决简单的问题。 过程与方法目标:经历公式的推导过程,体会数形结合的数学思想,体验从特殊到一般的研究方法,掌握倒序相加法。 情感与态度价值观:使学生获得发现的成就感,优化思维品质,提高代数的推理能力。 4.教学重点、难点 重点:等差数列的前n项和公式。 用等差数列前项和公式解决简单实际问题。 难点:等差数列的前n项和公式的推导。 关键通过具体的例子发现一般规律。 三、学情分析 1、1 .认知基础:学生已经学习了等差数列的定义及通项公式,掌握了等差数列的基本性质,有了一定的知识准备。 2、2 .思维特点:正从经验性的逻辑思维向抽象思维发展,仍依赖一定的具体形象的经验材料来理解抽象的逻辑关系。思维的严密性需要进一步的加强。 3、学生的认知规律角度:本节课采取了循序渐进、层层深入的教学方式,以问题解答的形式,通过探索、讨论、分析、归纳而获得知识,为学生积极思考、自主探究搭建了理想的平台,让学生去感悟倒序相加法的和谐对称以及使用范围。 四、教法分析 数学是一门培养和发展思维的重要学科,因此在教学中要以学生为本,遵循学生的认知规律,展现获取知识和方法的思维过程。在教学中采用以问题驱动,层层铺垫,由特殊到一般的方法启发学生获得公式的推导思路,并采用变式题组的形式加强公式的掌握运用。整个教学过程分成问题呈现、探索与发现、应用公式三个阶段。 五、学法分析 建构主义学习理论认为,学习是学生积极主动建构知识的过程,学习应该与学生熟悉的背

等差数列前n项和公式教育教学案例分析

等差数列前n项和公式教学案例分析

————————————————————————————————作者:————————————————————————————————日期:

《等差数列前n项和公式》教学案例分析教学案例: 一、教学设计思想 本堂课的设计是以个性化教学思想为指导进行设计的。 本堂课的教学设计对教材部分内容进行了有意识的选择和改组,为了体现个性化教学的教学理念,在教法上,采用了以学生为主体,以问题为中心,以老师为引导,以小组的合作为主要学习方式。课堂结构个性化,让学生在探究中展现个性,在合作中促进学生的个性发展。 在教学中通过生动具体的现实问题,激发学生探究的兴趣和欲望,树立学生求真的勇气和自信心,增强学生学好数学的心理体验,产生热爱数学的情感,体验在学习中获得成功。 二、学生情况与教材分析 1、学生通过上一节的学习,已经了解了等差数列的定义,基本上掌握了通项公式,会运用等差数列的通项公式进行解题,因此只要简单地回顾上一节课的知识就可引入新课; 2、几何能直观地启迪思路,帮助理解,特别是对于职中类学生,他们对知识的理解还是处于模糊阶段,因此,借助几何直观学习和理解数学,是数学学习中的重要方面。只有做到了直观上的理解,才是真正的理解。因此在教学中,要鼓励学生借助几何直观进行思考,揭示研究对象的性质和关系,从而渗透了数形结合的数学思想。 3、学习应该是学生积极主动的建构知识的过程,应该与学生熟悉的背景相联系。本课要求学生通过自主地观察、讨论、归纳、反思来参与学习,认识和理解数学知识,学会发现问题并尝试解决问题,在学习活动中进一步提升自己的能力。 三、教学目标 1、知识目标 (1)掌握等差数列前n项和公式,理解公式的推导方法; (2)能较熟练应用等差数列前n项和公式求和。 2、能力目标 经历公式的推导过程,体会数形结合的数学思想,体验从特殊到一般的研究方法,学会观察、归纳、反思和逻辑推理的能力。

等差数列前n项和公式说课稿

《等差数列前n项和公式》说课稿 一、设计思想 本堂课以个性化的教学思想为指导进行设计。采用探究活动为主的教学方法,借助教材或教师提供的相关资料让学生亲自去探索得出结论或规律性的知识,培养学生的探究思维能力。因此,我在此堂课的教学中借助图形拼接演示等差数列的前n项和公式,帮助理解,启迪思路,更加形象地揭示研究对象的性质和关系,也在教学中展示了数学的对称美。 二、教材分析 1、教学内容:《等差数列前n项和》主要内容是等差数列前n项和的推导过程和简单应用。 2、地位与作用: 数列是刻画离散现象的函数,是一种重要的数学模型。高中数列研究的主要对象是等差、等比两个基本数列。本节课的教学内容是等差数列的前n项和公式及其简单应用。它与前面学过的等差数列的定义、通项公式、性质有着密切的联系;同时,又为后面学习等比数列前n项和、数列求和等内容作好准备。因此,本节课既是本章的重点也是教材的重点。 与几何、函数等其他数学领域知识结合性强,是方程思想等诸多数学思想的学习载体,具有丰富的现实背景 3.教学目标 知识与技能目标:掌握等差数列的前n项和公式,并能运用公式解决简单的问题。 过程与方法目标:经历公式的推导过程,体会数形结合的数学思想,体验从特殊到一般的研究方法,掌握倒序相加法。 情感与态度价值观:使学生获得发现的成就感,优化思维品质,提高代数的推理能力。 4.教学重点、难点 重点:等差数列的前n项和公式。 用等差数列前项和公式解决简单实际问题。 难点:等差数列的前n项和公式的推导。

关键通过具体的例子发现一般规律。 三、学情分析 1、认知基础:学生已经学习了等差数列的定义及通项公式,掌握了等差数列的基本性质,有了一定的知识准备。 2、思维特点:正从经验性的逻辑思维向抽象思维发展,仍依赖一定的具体形象的经验材料来理解抽象的逻辑关系。思维的严密性需要进一步的加强。 3、学生的认知规律角度:本节课采取了循序渐进、层层深入的教学方式,以问题解答的形式,通过探索、讨论、分析、归纳而获得知识,为学生积极思考、自主探究搭建了理想的平台,让学生去感悟倒序相加法的和谐对称以及使用范围。 四、教法分析 数学是一门培养和发展思维的重要学科,因此在教学中要以学生为本,遵循学生的认知规律,展现获取知识和方法的思维过程。在教学中采用以问题驱动,层层铺垫,由特殊到一般的方法启发学生获得公式的推导思路,并采用变式题组的形式加强公式的掌握运用。整个教学过程分成问题呈现、探索与发现、应用公式三个阶段。 五、学法分析 建构主义学习理论认为,学习是学生积极主动建构知识的过程,学习应该与学生熟悉的背景相联系。在教学中,让学生在问题情境中,经历知识的形成和发展,通过观察、探索、交流、反思参与学习,认识和理解数学知识,学会学习,发展能力。 六、教学流程 七、教学过程设计 (一)上节回顾,铺垫思维 (1)等差数列的定义

等差数列前n项和公式及性质

2.2 等差数列的前n项和 第一课时等差数列前n项和公式及性质 【选题明细表】 基础达标 1.在等差数列{a n}中,已知a1=2,a2+a3=13,则a4+a5+a6等于( B ) (A)40 (B)42 (C)43 (D)45 解析:∵a1=2,a2+a3=13, ∴3d=13-4=9,∴d=3, a4+a5+a6=S6-S3=6×2+×6×5×3-(3×2+×3×2×3)=42.故选B. 2.等差数列{a n}共有2n+1项,其中奇数项之和为319,偶数项之和为290,则其中间项为( B ) (A)28 (B)29 (C)30 (D)31

解析:∵S奇=a1+a3+…+a2n+1=(n+1)a n+1, S偶=a2+a4+…+a2n=na n+1, ∴S奇-S偶=a n+1=29.故选B. 3.(2013南阳高二阶段性考试)已知等差数列{a n}的前n项和为S n,若2a8=6+a11,则S9等于( D ) (A)27 (B)36 (C)45 (D)54 解析:∵2a8=a5+a11=6+a11,∴a5=6, ∴S9===9a5=54.故选D. 4.(2012郑州四十七中月考)设等差数列{a n}的前n项和为S n,若 S3=9,S6=36,则a7+a8+a9等于( B ) (A)63 (B)45 (C)36 (D)27 解析:由S3,S6-S3,S9-S6成等差数列, ∴2(S6-S3)=S3+(S9-S6),∴a7+a8+a9=S9-S6=2(S6-S3)-S3=2×(36-9)-9=45.故选B. 5.(2013广州市铁一中第一学期期中测试)在各项均不为零的等差数列中,若a n+1-+a n-1=0(n≥2),则S2n-1-4n等于( A ) (A)-2 (B)0 (C)1 (D)2 解析:由已知得2a n-=0, 又a n≠0,∴a n=2, ∴S2n-1===2(2n-1), ∴S2n-1-4n=-2.故选A.

等差数列的前n项和教学案例

等差数列的前n项和 一、教学内容分析 本节课教学内容是《普通高中课程标准实验教科书?数学(5)》(人教A版)中笫二章的第三节“等差数列的前n项和”(第一课时).本节课主要研究如何应用倒序相加法求等差数列的前n项和以及该求和公式的应用?等差数列在现实生活中比较常见,因此等差数列求和就成为我们在实际生活中经常遇到的一类问题.同时,求数列前n项和也是数列研究的基本问题,通过对公式推导,可以让学生进一步掌握从特殊到一般的研究问题方法. 二、学生学习情况分析 在本节课之询学生已经学习了等差数列的通项公式及基本性质,也对高斯算法有所了解,这都为倒序相加法的教学提供了基础;同时学生已有了函数知识,因此在教学中可适当渗透函数思想?高斯的算法与一般的等差数列求和还有一定的距离,如何从首尾配对法引出倒序相加法,这是学生学习的障碍. 三、设计思想 建构主义学习理论认为,学习是学生积极主动地建构知识的过程,因此,应该让学生在具体的问题情境中经历知识的形成和发展,让学生利用自己的原有认知结构中相关的知识与经验,自主地在教师的引导下促进对新知识的建构.在教学过程中,根据教学内容,从介绍高斯的算法开始,探究这种方法如何推广到一般等差数列的前n项和的求法.通过设计一些从简单到复杂,从特殊到一般的问题,层层铺垫,组织和启发学生获得公式的推导思路,并且充分引导学生展开自主.合作、探究学习,通过生生互动和师生互动等形式,让学生在问题解决中学会思考、学会学习.同时根据我校的特点,为了促进成绩优秀学生的发展,还设计了选做题和探索题,进一步培养优秀生用函数观点分析、解决问题的能力,达到了分层教学的目的. 四、教学目标 1.理解等差数列前n项和公式的推导过程;掌握并能熟练运用等差数列前n 项和公式;了解倒序相加法的原理; 2.通过公式的推导过程,体验从特殊到一般的研究方法,渗透函数思想与方程(组)思想,培养学生观察、归纳、反思的能力;通过小组讨论学习,培养学生合作交流、独立思考等良好的个性品质. 五、教学重点和难点 本节教学重点是探索并掌握等差数列前n项和公式,学会用公式解决一些实际问题;难点是等差数列前n项和公式推导思路的获得. 六、教学过程设计.V ? ? ? '、 (一)创设情景,唤起学生知识经验的感悟和体验 世界七大奇迹之一的泰姬陵坐落于印度古都阿格,传说陵寝中有一个三角形图案,以相同大小的圆宝??:?:?:?:?:?:?:?:?:?石镶饰而成,共有100 层,你知道这个图案一共花了多少宝石吗?

等差数列前n项和优质课教案 doc

(一)教学目标 1知识与技能目标: (1)掌握等差数列前n项和公式, (2)能较熟练应用等差数列前n项和公式求和。 2过程与方法目标: 经历公式的推导过程,体会数形结合的数学思想,体验从特殊到一般的研究方法,学会观察、归纳、反思。 3情感、态度与价值观目标: 获得发现的成就感,逐步养成科学严谨的学习态度,提高代数推理的能力。(二)教学重点、难点 等差数列前n项和公式是重点。 获得等差数列前n项和公式推导的思路是难点。 (三)教学方法:启发、讨论、引导式。 (四)教具:采用多媒体辅助教学 (五)教学过程 一、复习引入 二、设置情景 1建筑工地上一堆圆木,从上到下每层的数目分别为1,2,3,……,10 . 问共有多少根圆木?如何用简便的方法 三探究发现 变式: 问题1若把问题变成求:1+2+3+4+‥‥ +99=?可以用哪些方法求出来呢? 方法1:原式=(1+2+3+4+‥‥ +99+100)-100

方法2:原式=(1+2+3+4+‥ ‥ +98)+99 方法3:原式=0+1+2+3+4+‥ ‥ +98+99 方法4:原式=(1+2+3+4+‥ +49+51+52+‥ 99)+50 方法5:原式=(1+2+3+4+‥ ‥ +98+99+99+98+‥ +2+1)÷ 2 方法6 令 S=1+2+3+4+‥ ‥ +99 又 S=99+98+97+‥ +2+1 故 2S=(1+99)+(2+98)+‥ ‥ +(98+2)+(99+1) 从而 S =(100×99)÷ 2 = 4950 问题2:1+2+3+4+‥ ‥ +(n-1)+n=? 在上面6种方法中,哪个能较好地推广应用于这个式子的求和? 令 Sn =1+2+3+4+‥ ‥ +n , 则 Sn =n+(n-1)+‥ ‥ +2+1 从而有 2Sn =(n+1) + (n+1) + (n+1) +‥ ‥ +(n+1) =(n+1)n 上述求解过程带给我们什么启示? (1)所求的和可以用首项、末项及项数来表示; (2)等差数列中任意的第k 项与倒数第k 项的和都等于首项与末项的和。 问题 3:现在把问题推广到更一般的情形: 设数列 {an }为等差数列,它的首项为a1 , 公差为d , 试求 Sn =a1 +a2 + a3 +‥ ‥ + an-1 +an (I) a n =a 1+(n-1)d 代入公式(1)得 Sn=na 1+ 2 ) 1(-n n d(II) 所以 S n = 2 )1(+n n 12321n n n n S a a a a a a --=++++++12321 n n n n S a a a a a a --=++++++12()n n S n a a ?=+1() 2 n n n a a S +?=

等差数列前n项和性质

精心整理 2.3.2等差数列的前n 项和的性质【学习目标】 1.熟练掌握等差数列前n 项和公式,等差数列前n 项和的性质以及其与二次函数的关系; 2. 在学习等差数列前n 项和性质的同时感受数形结合的基本思想,会由等差数列前n 项和公式求其通项公式. 【自学园地】 1. 等差数列的前n 项和的性质: 已知数列{a n }是等差数列,S n 是其前n 项和. (1)若m ,n ,p ,q ,k 是正整数,且m +n =p +q =2k ,则a m +a n =a p +a q =2a k . (2)a m (3)(4(5(6){pa n +qb n }都是等差数列(p ,q 都是常数),且公差分别为pd 1,d 1,pd 1+qd 2. 2.{}n a 为等差数列?其前n 项和2n S An Bn =+. 3.若数列{}n a 为等差数列{ }n S n ?成等差. 4.等差数列的单调性的应用: (1)当10,0a d ><时,n S 有最大值,n 是不等式100 n n a a +≥??

(2)当10,0a d <>时,n S 有最大值,n 是不等式1 00n n a a +≤??>?的正整数解时取得. (II )当数列中有某项值为0时,n 应有两解.110m m m S S a ++=?=. 5.知三求二问题:等差数列数列前n 项和公式中各含有4个元素:1,,,n n S n a a 与1,,,n S n a d ,已知其中3个量,即可求出另外1个;综合通项公式及前n 项和公式,已知其中3个量即可求出另外2个量. 【典例精析】 1.(1(2(3(4,则项数n (5d . (62.3.4(1(2)问12,,S 中哪个值最大?5中,a 1=-60,6.7.已知正项数列{}n a 的前n 项和为n S ,且(1)n a n n = +,求n S 8.已知正项数列{}n a 的前n 项和为n S ,且1(2) n a n n = +,求n S 【巩固练习】 1.一个有11项的的等差数列,奇数项之和是30,则它的中间项是() A.8 B.7 C.6 D.5 2.设n S 是等差数列{}n a 的前n 项和,若3613S S =,则612 S S =()

等差数列前N项和说课稿

《等差数列的前n 项和》(第一课时)说课稿 人教版普通高中课程标准教科书 数学 必修五 一、说教材 本节是在学习了等差数列的概念和性质的基础上,使学生掌握等差数列求和公式,并能利用它求和解决数列和的最值问题。 等差数列求和公式的推导,采用了“倒序相加法”,思路的获得得益于等差数列{a n }任意的第k 项与倒数第n-k+1项的和都等于首项a 1与末项a n 的和这一性质的认识和发现,并且通过对等差数列求{a n }和公式的推导,使学生能掌握“倒序相加”数学方法。 二、说教学目标及重点、难点 1、教学目标的确定 依据教学大纲和学生获得知识、培养能力及思想教育等方面的要求:我制定了如下教育教学目标: (1) 知识目标:通过等差数列求和公式的推导,掌握等差数列前n 项和公式的应用。 (2) 能力目标:培养学生自主学习、综合归纳、探究发现的能力。 (3) 德育目标:培养学生对待知识的科学态度、勇于探索和创新的精神。 (4) 情感目标:通过实际生活中的应用使得学生感受到数学来源于生活又服务于生活, 激学习数学的兴趣 2、教学重点、难点 重点:掌握等差数列前n 项和公式,会应用等差数列的前n 项和公式解决简单的问题,并且能够探求解决问题的方法。 难点:对等差数列求和公式的深刻理解及其灵活应用。 三、说教法 教学过程是教师和学生共同参与的过程,启发学生自主性学习,充分调动学生的积极性、主动性;有效地渗透数学思想方法,提高学生素质。根据这样的原则和所要完成的教学目标,并为激发学生的学习兴趣,我采用如下的教学方法: (1)引导学生进行思考、分析、实验、探索、归纳。 (2)体现“对比联系”的思想方法。 (3)借助多媒体演示法。 四、说学法 教给学生方法比教给学生知识更重要,本节课注重调动学生积极思考、主动探索,尽可能地增加学生参与教学活动的时间和空间,我进行了以下学法指导: (1)联系学习法:利用简单的数学问题联系到等差数列前n 项和的求解方法。 (2)探究式学习法:学生通过分析、探索、得出等差数列前n 项和的公式 (3)自主性学习法:通过2 )(1n n a a n S +=推导出d n n na S n 2)1(1-+= (4)联系记忆法:通过等腰梯形的面积计算公式联系记忆等差数列前n 项和公式。

完整版等差数列前n项和教案

等差数列的前n项和(第一课时)教学设计 【教学目标】 一、知识与技能 1 ?掌握等差数列前n项和公式; 2?体会等差数列前n项和公式的推导过程; 3?会简单运用等差数列前n项和公式。 二、过程与方法 1?通过对等差数列前n项和公式的推导,体会倒序相加求和的思想方法; 2.通过公式的运用体会方程的思想。 三、情感态度与价值观 结合具体模型,将教材知识和实际生活联系起来,使学生感受数学的实用性,有效激发学习兴趣,并通过对等差数列求和历史的了解,渗透数学史和数学文化。 【教学重点】 等差数列前n项和公式的推导和应用。 【教学难点】 在等差数列前n项和公式的推导过程中体会倒序相加的思想方法。 【重点、难点解决策略】 本课在设计上采用了由特殊到一般、从具体到抽象的教学策略。利用数形结合、类比归纳的思想,层层深入,通过学生自主探究、分析、整理出推导公式的思路,同时,借助多媒体的直观演示,帮助学生理解,师生互动、讲练结合,从而突出重点、突破教学难点。 【教学用具】 多媒体软件,电脑 【教学过程】 一、明确数列前n项和的定义,确定本节课中心任务:

前n 和呢,于数列{a n } :ai, a 2, as, a n ,…我 称ai+且2+23+…+a n 数列{a n } 的前n 和,用Sn 表不,Sn=ai+a2+a3+…+a 如 , Si =ax S 7 =ai+a 24-a 3+ +a 7,下面我们来共同探究如何求等差数列的前 n 项 和。 二、问题牵引,探究发现 问题1:(播放媒体资料情景引入)古算术《张邱建算经》中卷有一道题:今有与人钱,初一人 与一钱,次一人与二钱,次一人与三钱,以次与之,转多一钱,共有百人,问共与几钱? 即:Sioo=l+2+3+ ? +100=? 著名数学家高斯小时候就会算,闻名于世;那么小高斯是如何快速地得出答案的呢?请同 学们思考高斯方法的特点,适合类型和方法本质。 同学们讨论后总结发言:等差数列项数为偶数相加时首尾配对,变不同数的加法运算为 相同数的乘法运算大大提高效率。高斯的方法很妙,如果等差数列的项数为奇数时怎么办 呢? — ...... .... 探索与发现1:假如让你计算从第一人到第21人的钱数,高斯 的首尾配对法行吗? 即计算S2F1+2+3+?+21的值,在这个过程中让学生发现当 项数为奇数时,首尾配对出现了问题,通过动画演示引导帮助 学生思考解决问题的办法,为引出倒序相加法做铺垫。 特点: 首项与末项的和: 第2项与倒数第2项的和: 第3项与倒数第3项的和: 1+ 100 = 101, 2 + 99 =101, 3+98 =101, 50+ 51 = 101, 101 X 50 = 5050。 5050 第50项与倒数第50项的和: 于是所求的和是: 1 + 2+3+ ? +100 二 101X50

高中数学等差数列前n项和教学案苏教版必修

[课 题]:2.1 等差数列的前n 项和(1) [知识摘记] 1. 等差数列的前n 项和: 公式1:___________________; 公式2:___________________; 2.若数列{a n }的前n 项和S n =An 2+Bn ,则数列{a n }为 ________________. [例题解析] 例1 在等差数列{a n }中, (1)已知31=a ,10150=a ,求50S ; (2)已知31=a ,21= d ,求10S . 例2 在等差数列{a n }中,已知21=d ,23=n a ,215-=n S ,求1a 及n . 例3 在等差数列{a n }中,已知第1项到第10项的和为310,第11项到第20项的和为910,求第21项到第30项的和. 例4 根据数列{a n }的前n 项和公式,判断下列数列是否是等差数列. (1)S n =2n 2-n (2)S n =2n 2-n +1 [反思] [课外作业] 1.在等差数列{n a }中,若1107,43a a ==-,则10S = ;

2.等差数列{}n a 中,2519a a +=,540S =,则10a = ; 3.在等差数列{n a }中,若4141,a a +=则17S = ; 4.若等差数列{n a }的公差为 12,且100145S =,则13599a a a a +++???+= ; 5.在等差数列{}n a 中, (1)已知13d =,37n =,629n S =,求1a 及n a ; (2)已知120,54,999,n n a a S ===求d 及n ; 6.等差数列的前n 项和为n S ,若122028S 84,S 460,S .==求

相关文档
最新文档