几种常用的随机过程

几种常用的随机过程
几种常用的随机过程

第十讲 几种常用的随机过程

10.1 马尔可夫过程 10.1.1马尔可夫序列

马尔可夫序列是指时间参数离散,状态连续的马尔可夫过程。

一个随机变量序列x n (n=1,2,…),若对于任意的n 有

)|(),...,,|(112

1

x x F x x

x x F n n X n n n

X

---= (10.1)

)|(),...,,|(112

1

x

x f x x

x x f n n

X

n n n

X

---=

(10.2)

则称x n 为马尔可夫序列。x n 的联合概率密度为

)

()|( )

|()|(),...,,(1

1

2

2

11

2

1

x f x x f x

x f x x f x x x f X

X

n n X

n n

X

n

X

??---=

(10.3)

马尔可夫序列有如下性质:

(1) 一个马尔可夫序列的子序列仍为马尔

可夫序列。

(2) )

|(),...,,|(1

21x

x f x x x x f n n

X

k n n n n X -+++=

(10.4)

(3) )|(),...,|(111x X x x X n n n n E E --=

(10.5)

(4) 在一个马尔可夫序列中,若已知现在,

则未来与过去相互独立。即

)

|()

|()|,(1

x x f x

x f x x x f r

s

X

n n

X

r

s

n

X

-=

,n>r>s (10.6)

(5) 若条件概率密度)|(1

x x f n n

X

-与n 无关,

则称马尔可夫序列是齐次的。

(6) 若一个马尔可夫序列是齐次的,且所

有的随机变量X n 具有同样的概率密度,则称该马尔可夫序列为平稳的。

(7) 马尔可夫序列的转移概率满足切普曼

—柯尔莫哥洛夫方程,即

)

|()|

()|(x x f

x x f

x x f

s

r X

r

n X

s

n X

?

-=

n>r>s (10.7)

10.1.2马尔可夫链

马尔可夫链是指时间参数,状态方程皆

为离散的马尔可夫过程。

1 马尔可夫链的定义 设

),2,1( =n X n 为离散时间随机过程,

其状态空间},,,{21a a a N I =。如果过程在k m t +时刻为任一状态),,2,1(N i a i k m =+的概率,只与过程在m t 时刻的状态有关,而与过程在m t 时刻以前的状态无关,即

1

1m k {|,,}

P{|} (10.8)X m k m m k m m k m m P i i i i i a

a a X X X a a X ++++====== 则称该过程为马尔可夫链,或简称马氏链。

2 马氏链的转移概率及有限维分布

马氏链的转移概率定义为

(,){|},

i,j 1,2,N;m,k

.9m k

m j i ij

m m k p p a a X

X ++====皆为正整数(10)

如果

)

,(k m m p ij

+与m 无关,则称该马氏

链为齐次的。下面我们仅研讨齐次马氏链,

并习惯上省去“齐次”二字。

马氏链的一步转移概率及其矩阵分别定义为

m 1

(1)(,1)P{|} (10.10)

X

m ij ij ij m m j i

p p p a

a X +=+====

??????????

????==p p

p p

p p p p

p NN N N N N P P

2

1

222

21

11211)1(

(10.11) 一步转移概率矩阵P 有以下两个性质

1

0≤≤

p

ij

(10.12)

∑==N

i ij

p

1

1

(10.13)

马氏链的高阶转移概率及其矩阵分别定义为

m n

()(,)P{|}

( 10.14 )

X

m ij ij n m m n j

i

p p a

a X +=+===11

12

121

22

212

()()()()

()()() (10.15)

()()

()N

N N N NN n n n n n n P n n n n p p

p p p p

p p

p ??????=?????

?

???

?

n 步转移概率矩阵P(n)具有如下的性质:

0() 1 (10.16)

ij

n p ≤

1

() 1 (10.17)

N

ij

i n p ==∑

此外,还规定

???≠====j

i j

i m m ij ij ij p p ,0,1),()0(δ

马氏链的n 步转移概率及其矩阵具有如下的切普慢—柯尔摩哥洛夫方程的离散形式,即

N

ir

r 1

()()() (10.18)

p ij

ij

rj

n l k k p p p

==+=∑()()()() (10.19)

p n p l k p l p k =+=当n 为任意正整数时,则有

()(1) (10.20)

n

p n p p n p =?-==

式(7.18),若n=k+1,则有

(1)()() (10.21)

ij

ir

rj

ir

rj

r

r

k k k p p p

p p +==∑∑ 由上可知,以一步转移概率

p ij

为元素的一步转移概率矩阵P 决定了马氏链状态转移过程的概率法则。但是,P 决定不了初始概率分布,必须引入初始概率

0{},0,1,2,

(10.22)i i

p i p

x a ===

并称{p i

}=( ,,,2

1

p p p )为初始分布,显然

10, 1 (10.23)i

i

i

p

p ≥≥=∑

若绝对概率}{)(a X p j

k

j

p k ==,则有

(1)(1)() (10.24)j

i

ij

i

ij

i

i

k k k p p p p p +=+=∑∑

马氏链的有限维分布可表示为

01010

10

01

1010101{,,,}

p{}{|}

{|}

(10.25)

i X X p

n

n n n n

n n n p i i i P i i i P i i i i i

i

a a a X X X a a a X a a X X p p ---==========

3.遍历性及平稳分布

(1)遍历性 设)(n X 为齐次马氏链,若

对于一切状态i 与j ,存在不依赖于i 的极限

lim () (10.36)ij j n p n p →∞

= 则称马氏链X (n )具有遍历性。

定理 (有限马氏链具有遍历性的充分条件)对有限状态的齐次马氏链X (n ),若存在正整数m ,使

()0,,1,2,..., (10.37)ij p m i j N >=

则此链是遍历的。而且,式(10.36)中的

}

,...,{}{21N j p p p p =是方程组

1

,1,2,..., (10.38)N

j i ij i p p p j N ===∑

在满足条件

11, 1 (10.39)

N

j j i o p p =<<=∑

下的惟一解。

(2)平稳分布 马氏链的一个概率分布

,如有

和即:10},{0=≥∑∞

=j j j j v v v

.40j i i ij

v v p ∞

==∑(10)

则称它为该链的平稳分布。并有

() (10.41)i i ij i v v p n ∞

==∑

10.1.3马尔可夫过程

这里论及的马尔可夫过程是指时间,

状态皆连续的马尔可夫过程。扩散过程就是 这类马尔可夫过程的一个特例。

设有一随机过程:

满足

,,相应的观测值)观测得到

(对,,若在n n n n n n x x x x t X t t t t T t t t t T t t X ,...,...,...,),(121121121---∈<<<<∈

1221122111(;/,,...,,;,...,,)

(;/;),3 .42X n n n n n n X n n n n F x t x x x x t t t t F x t x t n ------=≥的整数(10)

则称此类过程为马尔可夫过程,简称马氏过程。

马氏过程的转移概率分布定义为:

111100000(;|;){()()} (10.43 )(;|;){()|()}, (10.44 )

X n n n n n n n X F x t x t P X t X t x F x t x t P X t x X t x t t ----=≤==≤=>或 转移概率分布是关于x 的分布函数,故有:

00000001|0 .452| 1 .463|0 (10.47 4|X X X X F x t x t F t x t F t x t F x t x ≥∞=-∞=()(;;)(10)()(;;)(10)()(;;))()(;;1000111100 5||| X X X X t x F x t x t F x t x t d F x t x t ∞-∞

=?)是关于单调不减,右连续的函数。

()满足切普曼—柯尔莫哥洛夫方程

(;;)(;;)(;;) .48(10)

马氏过程的转移概率密度定义为

0000(;|;)(;|;) .49 X X f x t x t F x t x t x

?

=

?(10)故有 0000001221122111(;/;) 1 .50(;/;)(), .51(;/,,...,,;,...,,)

(;/;),3 X X X n n n n n n X n n n n f x t x t dx f x t x t x x t t f x t x x x x t t t t f x t x t n δ∞

-∞

------=→-→=≥?

(10)

当时(10)的整数 .52(10)

它也满足切普曼——柯尔莫哥洛夫方程

(;/;)(;/;)(;/;),

.53X n n k k X n n r r X r r k k k r n f x t x t f x n x t f x t x t dx t t t ∞-∞

=<

(10)

如果马氏过程X (t )有

00000000 (;/;)(/;),t ( 10.54 ) (;/;)(/;), .55 X X X X F x t x t F x x t f x t x t f x x t t ττττ==-==-或(10)

则称它为为齐次马尔可夫过程。

马氏过程X (t )的n 维概率密度可写成

12121

111112n 1

(,,...;,,...,)

(;)(;/;),...t (10.56 )

X n n X X i i i i i f x x x t t t f x t f x t x t t t τ-++=<<<∏

10.2 独立增量过程 10.2.1独立增量过程

设有一个随机过程))((T t t X ∈,若对任意的时刻b t t t t n <<<<<≤ 2100,过程的增量

)()()()( )()(11201----n n t X t X t X t X t X t X 、、、 是

相互独立的随机变量,则称)(t X 为独立增量过程或可加过程。

若参数集[] ,0b t T =,则像马尔可夫过程一样,独立增量过程的有限维分布可由它的初始概率分布{}x t X <)(P 0及一切增量的概率分布唯一地确定。

如果独立增量过程)(t X 的增量

)()(1--i i t X t X 的分布仅与)(1--i i t t 有关,而与

1-i i t t 、本身无关,则称)(t X 为齐次的。

10.2.2泊松过程

实际上,泊松过程就是一个纯不连续的马尔可夫过程,而且也是一个独立增量过程。

1. 泊松过程

(1) 定义 设随机过程))

,0[)((0∞≥∈t t t X 的状态只取非负整数值,若满足下列三个条件:

① 1;}0)(P{0==τX

② X(t)为均匀独立增量过程; ③ 对任意时刻,21021),,(,t t t t t <∞∈对

应的随机变量的增量)()(),(1221t X t X t t X -=服从数学期望为)(12t t -λ的泊松分布,即对于k=0,1,2···有

21k 121221()21P (,){(,)()()}[()] (10.57)

!

k t t t t P X t t X t X t k t t e k λλ--==-=-=

则称X(t)为泊松过程。

对于式(10.57),若t t t ==21,0 时,则

k 2()P (0,),0,0,1,2,

(10.58)!

k t

t t e t k k λλ-=>=

(2)数字特征 泊松过程X(t)的均值、均方差、方差、自相关函数分别为:

222[()]

(10.59)[()] (10.60)D[()] E X t t

E X t t t X t t λλλλ==+=22

1212X 12122

11212

(10.61)

,R ( ,)[ ()()] (7.26),t t t t t t t E X t X t t t t t t λλλλ?+≤?==?+≥?? 2. 泊松增量

(1) 定义 由泊松过程X(t)在给定的

时间间隔0t >?内的增量与t ?之比,我们构成一新过程: X(t t)-X(t)Y(t) (10.63)t

+?=?

称它为泊松增量。显然,若k 是间隔t),(?+t t 内的随机点数,则Y(t)=k/△t 。故

k

t

k (t)P Y(t) (10.64)t k!e λλ-????==??

??

? (2) Y(t)的均值、自相关函数分别为:

21212212

1211

E[Y(t)][(t)]-[()] (10.65)

t t

, t (,) (10.66), t t t Y E X t E X t t t R t t t t t t λλλλλ=+?=???->??

=?-+--

???

3.过滤的泊松过程与散粒噪声

泊松过程X(t)对t 求导,就能得到与时间轴上随机点i t 相对应的冲激序列)(t Z ,称此离散随机过程为泊松冲激序列。即

∑-==i

i t t dt t dX t Z )()()(δ

(10.67)

(1) 过滤的泊松过程 设有一泊松冲激脉冲序列 )()(∑-=i

i t t t Z δ经过一线性时不

变滤波器,则此滤波器输出是一随机过程X(t),如图:

()

1

X(t)()()(),0 (10.72)

N T i

i Z t h t h t t t ==*=

-≤<∞∑

式中,h(t)为滤波器的冲激响应;i t 为第

i 个冲激脉冲出现的时间;N(t)为在T ][0,内输入到滤波器的冲激脉冲的个数,它服从泊

松分布。我们称此为过滤的泊松过程。

(2) 散粒噪声 在电子管、晶体管中, 由散粒效应引起的散粒噪声电流皆为过滤的泊松过程。因此,散粒噪声X(t)可表示成类似式(10.72)的形式。

X(t)Z(t)()(), (10.73)

i i

h t h t t t =*=--∞<<+∞∑

而且,不难证明此X(t)也是平稳的。

10.2.3 维纳过程

维纳过程)(t W 是另一个最重要的独立增

量过程,有时也称它为布朗运动过程,还可以将它看成是随机游动X(t)的极限形式。

1.定义 设随机过程 ) ),0[)((∞∈t t W 满足下列条件:

(1)1;0}P{W(0)== (2) )(t W 为均匀独立增量过程,且对任意时刻 ,t t ),0[t t 2121<∞∈,、及 )]W(t )[W(t , 012εεε+-+>具有与)]W(t )[W(t 12-相同的正态分布函数,其概率密度为

21212

2121(;t ,t )1()

exp[]

2(t t ) (10.79)

W f w w w w α-=

---

式中,α为正常数。

(3) 对任意时刻),0[∞∈t ,

)(t W 具有均值E[W(t)]=0的正态分布函数,

其概率密度为

2/2t

1

(,) (10.80)

w

W

f w t eα

-

=

2.W(t)的均值与自相关函数分别为

T0

n

E[W(t)]E[lim()]0 (10.81)

X t nT

→∞

===

121212

112

212

(t,t)E[W(t)W(t)]min(t,t)

t,t t

(10.82)

t,t t

W

α

α

==

?

=?

?

3. W(t)与正态白噪声N(t)

维纳过程W(t)的形式导数W(t)?就是正态白噪声N(t),N(t)的自相关函数为

121212

2

1212

12

(t,t)E[N(t)N(t)][W(t)W(t)]

(t,t)(t t) (10.83)

t t

N

W

R E

Rαδ

==

?

==-

??

令τ=

-

1

2

t

t,则有

()() (10.84)

N

Rταδτ

=

换言之,W(t)可表示为N(t)的积分,即

t

W(t)N(u)du (10.85)

=?

4. 扩散方程

维纳方程W(t)满足下列扩散方程

2

211

2

22

22 (10.86)02p p t w p p t w αα???=????????+=???? 式中,))()(;(),;,(2122111122t t w t W t w f t w t w p p W >=== 为在22)(w t W =之下随机变量)(1t W 的条件概率密度。实际上,此式是柯尔莫格洛夫方

程的特例。

可以证明,下列条件概率密度式

221111222

121212(,;,)(;;)

1()

exp[]

2() , (10.88)

W p w t w t f w t w t w w t t t t α=-=-->

是式(10.85)具有初始条件为

11221212(;;)(), (10.89)

W f w t w t w w t t δ→-→

的惟一解。

最新随机过程考试试题及答案详解1

随机过程考试试题及答案详解 1、(15分)设随机过程C t R t X +?=)(,),0(∞∈t ,C 为常数,R 服从]1,0[区间上的均 匀分布。 (1)求)(t X 的一维概率密度和一维分布函数; (2)求)(t X 的均值函数、相关函数和协方差函数。 【理论基础】 (1)? ∞ -= x dt t f x F )()(,则)(t f 为密度函数; (2))(t X 为),(b a 上的均匀分布,概率密度函数?? ???<<-=其他,0,1 )(b x a a b x f ,分布函数 ?? ??? >≤≤--<=b x b x a a b a x a x x F ,1,,0)(,2)(b a x E += ,12)()(2a b x D -=; (3)参数为λ的指数分布,概率密度函数???<≥=-0,00 ,)(x x e x f x λλ,分布函数 ?? ?<≥-=-0 ,00,1)(x x e x F x λ,λ1)(=x E ,21 )(λ=x D ; (4)2 )(,)(σμ==x D x E 的正态分布,概率密度函数∞<<-∞= -- x e x f x ,21 )(2 22)(σμπ σ, 分布函数∞<<-∞= ? ∞ --- x dt e x F x t ,21)(2 22)(σμπ σ,若1,0==σμ时,其为标准正态分布。 【解答】本题可参加课本习题2.1及2.2题。 (1)因R 为]1,0[上的均匀分布,C 为常数,故)(t X 亦为均匀分布。由R 的取值范围可知, )(t X 为],[t C C +上的均匀分布,因此其一维概率密度?? ???+≤≤=其他,0,1 )(t C x C t x f ,一维分布 函数?? ??? +>+≤≤-<=t C x t C X C t C x C x x F ,1,,0)(;

随机过程-答案

2012-2013学年第一学期统计10本 《随机过程》期中考试 一. 填空题 1.设马氏链的一步转移概率矩阵()ij P p =,n 步转移矩阵() ()n ij P p =,二者之间的关系为 (n) n P P = 2.状态i 常返的充要条件为( ) n i i n p ∞ ==∑∞。 3.在马氏链{},0n X n ≥中,记() n i j p ={}0,11,n P Xm j m n X j X i ≠≤≤-==,n ≥1. i j p =( ) 1n i j n p ∞ =∑,若i j p <1,称状态i 为 。 二. 判断题 1. S 是一个可数集,{:0n n X ≥}是取值于S 的一列随机变量,若 ( ) 1 01110011111 1,,...,(,...,)n n n n n n n n n n n n i i S P i X i X i X i P i i -+++--++-?≥?∈X =|====X =|X =并且满足,则{:0n n X ≥}是一个马氏链。 × 2. 任意状态都与它最终到达的状态是互通的,但不与它自己是互通的。 × 3. 一维与二维简单随机游动时常返的,则三维或更高维的简单随机游动也是常返的。× 4. 若状态i ?状态j ,则i 与j 具有相同的周期。 √ 5. 一个有限马尔科夫链中不可能所有的状态都是暂态。 √ 三. 简答题 1.什么是随机过程,随机序列? 答:设T 为[0,+∞)或(-∞,+∞),依赖于t(t ∈T)的一族随机变量(或随机向量){t ξ}通称为随机过程,t 称为时间。当T 为整数集或正整数集时,则一般称为随机序列。 2 .什么是时齐的独立增量过程?

中国科学大学随机过程(孙应飞)复习题及答案

(1) 设}0),({≥t t X 是一个实的零均值二阶矩过程,其相关函数为 t s s t B t X s X E ≤-=),()}()({,且是一个周期为T 的函数,即0),()(≥=+τττB T B ,求方差函数)]()([T t X t X D +-。 解:由定义,有: )(2)0()0()}()({2)0()0()]} ()()][()({[2)] ([)]([)]()([=-+=+-+=+-+--++=+-T B B B T t X t X E B B T t EX T t X t EX t X E T t X D t X D T t X t X D (2) 试证明:如果}0),({≥t t X 是一独立增量过程,且0)0(=X ,那么它必是一个马 尔可夫过程。 证明:我们要证明: n t t t <<<≤? 210,有 } )()({})(,,)(,)()({11112211----=≤=====≤n n n n n n n x t X x t X P x t X x t X x t X x t X P 形式上我们有: } )()(,,)(,)({} )()(,,)(,)(,)({} )(,,)(,)({} )(,,)(,)(,)({})(,,)(,)()({1122221111222211112211112211112211--------------========≤= ======≤=====≤n n n n n n n n n n n n n n n n n n n n x t X x t X x t X x t X P x t X x t X x t X x t X x t X P x t X x t X x t X P x t X x t X x t X x t X P x t X x t X x t X x t X P 因此,我们只要能证明在已知11)(--=n n x t X 条件下,)(n t X 与2 ,,2,1,)(-=n j t X j 相互独立即可。 由独立增量过程的定义可知,当2,,2,1,1-=<<<-n j t t t a n n j 时,增量 )0()(X t X j -与)()(1--n n t X t X 相互独立,由于在条件11)(--=n n x t X 和0)0(=X 下,即 有)(j t X 与1)(--n n x t X 相互独立。由此可知,在11)(--=n n x t X 条件下,)(n t X 与 2,,2,1,)(-=n j t X j 相互独立,结果成立。 (3) 设随机过程}0,{≥t W t 为零初值(00=W )的、有平稳增量和独立增量的过程, 且对每个0>t ,),(~2t N W t σμ,问过程}0,{≥t W t 是否为正态过程,为什么? 解:任取n t t t <<<≤? 210,则有: n k W W W k i t t t i i k ,,2,1][1 1 =-=∑=-

随机过程试题带答案

1.设随机变量X 服从参数为λ的泊松分布,则X 的特征函数为 。 2.设随机过程X(t)=Acos( t+),-t t 则 {(5)6|(3)4}______P X X === 9.更新方程()()()()0t K t H t K t s dF s =+-?解的一般形式为 。 10.记()(),0n EX a t M M t μ=≥→∞-→对一切,当时,t +a 。 二、证明题(本大题共4道小题,每题8分,共32分) P(BC A)=P(B A)P(C AB)。 1.为it (e -1) e λ。2. 1(sin(t+1)-sin t)2ωω。3. 1 λ 4. Γ 5. 212t,t,;e,e 33?????? 。 6.(n)n P P =。 7.(n) j i ij i I p (n)p p ∈=?∑。 8.6 18e - 9。()()()()0 t K t H t K t s dM s =+-? 10. a μ 2.设{X (t ),t ≥0}是独立增量过程, 且X (0)=0, 证明{X (t ),t ≥0}是一个马尔科夫过程。 3.设{}n X ,n 0≥为马尔科夫链,状态空间为I ,则对任意整数n 0,1

(完整版)答案应用随机过程a

山东财政学院 2009—2010学年第 1 学期期末考试《应用随机过程》试卷(A ) (考试时间为120分钟) 参考答案及评分标准 考试方式: 闭卷 开课学院 统计与数理学院 使用年级 07级 出题教师 张辉 一. 判断题(每小题2分,共10分,正确划√,错误划ⅹ) 1. 严平稳过程一定是宽平稳过程。(ⅹ ) 2. 非周期的正常返态是遍历态。(√ ) 3. 若马氏链的一步转移概率阵有零元,则可断定该马氏链不是遍历的。(ⅹ ) 4. 有限马尔科夫链没有零常返态。(√ ) 5.若状态i 有周期d, 则对任意1≥n , 一定有:0)(?nd ii p 。(ⅹ ) 二. 填空题(每小题5分,共10分) 1. 在保险公司的索赔模型中,设索赔要求以平均每月两次的速率的泊松过程到达保险公司,若每次赔付金额是均值为10000元的正态分布,一年中保险公司的平均赔付金额是__240000元___。 2.若一个矩阵是随机阵,则其元素满足的条件是:(1)任意元素非负(2)每行元素之和为1。 三. 简答题(每小题5分,共10分) 1. 简述马氏链的遍历性。 答:设) (n ij p 是齐次马氏链{}1,≥n X n 的n 步转移概率,,如果对任意 I j i ∈,存在不依赖于i 的极限0)(?=j n ij p p ,则称齐次马氏链{}1,≥n X n 具有遍历性。 2. 非齐次泊松过程与齐次泊松过程有何不同?

答:非齐次泊松过程与齐次泊松过程的不同在于:强度λ不再是常数,而是与t 有关,也就是说,不再具有平稳增量性。它反映了其变化与时间相关的过程。如设备的故障率与使用年限有关,放射物质的衰变速度与衰败时间有关,等等。 四. 计算、证明题(共70分) 1. 请写出C —K 方程,并证明之. (10分) 解: 2. 写出复合泊松过程的定义并推算其均值公式. (15分) 解:若{}0),(≥t t N 是一个泊松过程,是Λ,2,1,=i Y i 一族独立同分布的随机变量,并且与{}0),(≥t t X 也是独立的, )(t X =∑=t N i i Y 1,那么{}0),(≥t t X 复合泊松过程

期末随机过程试题及标准答案

《随机过程期末考试卷》 1.设随机变量X 服从参数为λ的泊松分布,则X 的特征函数为 。 2.设随机过程X(t)=Acos( t+),-t t 则 {(5)6|(3)4}______P X X === 9.更新方程()()()()0t K t H t K t s dF s =+-?解的一般形式为 。 10.记()(),0n EX a t M M t μ=≥→∞-→对一切,当时,t +a 。 二、证明题(本大题共4道小题,每题8分,共32分) 1.设A,B,C 为三个随机事件,证明条件概率的乘法公式: P(BC A)=P(B A)P(C AB)。 2.设{X (t ),t ≥0}是独立增量过程, 且X (0)=0, 证明{X (t ),t ≥0}是一个马尔科夫过程。 3.设{}n X ,n 0≥为马尔科夫链,状态空间为I ,则对任意整数n 0,1

随机过程试题及答案

一.填空题(每空2分,共20分) 1.设随机变量X 服从参数为λ的泊松分布,则X 的特征函数为it (e -1) e λ。 2.设随机过程X(t)=Acos( t+),-

(完整版)北邮研究生概率论与随机过程2012-2013试题及答案

北京邮电大学2012——2013学年第1学期 《概率论与随机过程》期末考试试题答案 考试注意事项:学生必须将答题内容(包括填空题)做在试题答题纸上,做在试卷纸上一律无效。在答题纸上写上你的班号和选课单上的学号,班内序号! 一. 单项选择题和填空题:(每空3分,共30分) 1.设A 是定义在非空集合Ω上的集代数,则下面正确的是 .A (A )若A B ∈∈A,A ,则A B -∈A ; (B )若A A B ∈?A,,则B ∈A ; (C )若12n A n =∈?A,,,,则 1 n n A ∞=∈A ; (D )若12n A n =∈?A,,,,且123A A A ??? ,则 1 n n A ∞ =∈A . 2. 设(),ΩF 为一可测空间,P 为定义在其上的有限可加测度,则下面正确的是 .c (A )若A B ∈∈F,F ,则()()()P A B P A P B -=-; (B )若12n A n =∈?F,,,,,且123A A A ??? ,则1 li ( )()m n n n n P A A P ∞→∞ ==; (C )若A B C ∈∈∈F,F,F,,则()()()()P A B C P A P AB P A BC =++; (D )若12n A n =∈?F,,,,,且,i j A i j A =??=/,1 1 ( )()n n n n P P A A ∞ ∞===∑. 3.设f 为从概率空间(),P ΩF,到Borel 可测空间(),R B 上的实可测函数,表达式为100 0()k A k f kI ω==∑,其中1000 ,, i j n n i j A A A ==??=Ω/=,则fdP Ω=? ;

随机过程习题及答案

第二章 随机过程分析 学习指导 1.1.1 要点 随机过程分析的要点主要包括随机过程的概念、分布函数、概率密度函数、数字特征、通信系统中常见的几种重要随机过程的统计特性。 1. 随机过程的概念 随机过程是一类随时间作随机变化的过程,它不能用确切的时间函数描述。可从两种不同角度理解:对应不同随机试验结果的时间过程的集合,随机过程是随机变量概念的延伸。 2. 随机过程的分布函数和概率密度函数 如果ξ(t )是一个随机过程,则其在时刻t 1取值ξ(t 1)是一个随机变量。ξ(t 1)小于或等于某一数值x 1的概率为P [ ξ(t 1) ≤ x 1 ],随机过程ξ(t )的一维分布函数为 F 1(x 1, t 1) = P [ξ(t 1) ≤ x 1] (2-1) 如果F 1(x 1, t 1)的偏导数存在,则ξ(t )的一维概率密度函数为 1111111 (,) (, ) (2 - 2)?=?F x t f x t x 对于任意时刻t 1和t 2,把ξ(t 1) ≤ x 1和ξ(t 2) ≤ x 2同时成立的概率 {}212121122(, ; , )(), () (2 - 3)F x x t t P t x t x ξξ=≤≤ 称为随机过程 (t )的二维分布函数。如果 2212122121212 (,;,) (,;,) (2 - 4)F x x t t f x x t t x x ?=??? 存在,则称f 2(x 1, x 2; t 1, t 2)为随机过程 (t )的二维概率密度函数。 对于任意时刻t 1,t 2,…,t n ,把 {}n 12n 12n 1122n n ()(),(),,() (2 - 5) =≤≤≤L L L F x x x t t t P t x t x t x ξξξ,,,;,,,称为随机过程 (t )的n 维分布函数。如果 n n 12n 12n n 12n 12n 12n (x )() (2 - 6)?=???L L L L L F x x t t t f x x x t t t x x x ,,,;,,,,,,;,,, 存在,则称f n (x 1, x 2, …, x n ; t 1, t 2, …, t n )为随机过程 (t )的n 维概率密度函数。 3. 随机过程的数字特征 随机过程的数字特征主要包括均值、方差、自相关函数、协方差函数和互相关函数。 随机过程 (t )在任意给定时刻t 的取值 (t )是一个随机变量,其均值为 []1()(, )d (2 - 7)E t xf x t x ξ∞ -∞ =?

应用随机过程试题及答案

应用随机过程试题及答案 一.概念简答题(每题5 分,共40 分) 1. 写出卡尔曼滤波的算法公式 2. 写出ARMA(p,q)模型的定义 3. 简述Poisson 过程的随机分流定理 4. 简述Markov 链与Markov 性质的概念 5. 简述Markov 状态分解定理 6.简述HMM 要解决的三个主要问题得分B 卷(共9 页)第2 页7. 什么是随机过程,随机序列?8.什么是时齐的独立增量过程?二.综合题(每题10 分,共60 分) 1 .一维对称流动随机过程n Y , 0 1 0, , n n k k Y Y X ? ? ? ? 1 ( 1) ( 1) , 2 k k k X p x p x ? ? ? ? ? 具有的概率分布为且1 2 , , ... X X 是相互独立的。试求1 Y 与2 Y 的概率分布及其联合概率分布。 2. 已知随机变量Y 的密度函数为其他而且,在给定Y=y 条件下,随机变量X 的条件密度函数为? ? 其他试求随机变量X 和Y 的联合分布密度函数( , ) f x y . 得分B 卷(共9 页)第3 页 3. 设二维随机变量( , ) X Y 的概率密度为( ,其他试求p{x<3y} 4.设随机过程( ) c o s 2 , ( , ) , X t X t t ? ? ? ? ? ? X 是标准正态分布的随机变量。试求数学期望( ) t E X ,方差( ) t D X ,相关函数1 2 ( , ) X R t t ,协方差1 2 ( , ) X C t t 。B 卷(共9 页)第4 页5 .设马尔科夫链的状态空间为I={0,1}, 一步转移概率矩阵为

学期数理统计与随机过程(研)试题(答案)

北京工业大学2009-20010学年第一学期期末 数理统计与随机过程(研) 课程试卷 学号 姓名 成绩 注意:试卷共七道大题,请写明详细解题过程。 考试方式:半开卷,考试时只允许看教材《概率论与数理统计》 浙江大学 盛 骤等编第三版(或第二版)高等教育出版社。可以看笔记、作业,但不允许看其它任何打印或复印的资料。考试时允许使用计算器。考试时间120分钟。考试日期:2009年12月31日 一、随机抽取某班28名学生的英语考试成绩,算得平均分数为80=x 分,样本标准差8=s 分,若全年级的英语成绩服从正态分布,且平均成绩为85分,问:能否认为该班的英语成绩与全年级学生的英语平均成绩有显著差异(取显著性水平050.=α)? 解:这是单个正态总体 ),(~2σμN X ,方差2σ未知时关于均值μ的假设检验问题,用T 检验法. 解 85:0=μH ,85:1≠μH 选统计量 n s x T /0 μ-= 已知80=x ,8=s ,n =28,850=μ, 计算得n s x T /0μ-= 31 .328/885 80=-= 查t 分布表,05.0=α,自由度27,临界值052.2)27(025.0=t . 由于052.2>T 2622.2>,故拒绝 0H ,即在显著水平05.0=α下不能认为 该班的英语成绩为85分.

050.= 解:由极大似然估计得.2?==x λ 在X 服从泊松分布的假设下,X 的所有可能的取值对应分成两两不相交的子集A 0, A 1,…, A 8。 则}{k X P =有估计 =i p ?ΛΛ,7,0, !2}{?2 ===-k k e k X P k =0?p

随机过程复习试题及答案

2.设{X (t ),t ≥0}是独立增量过程, 且X (0)=0, 证明{X (t ),t ≥0}是一个马尔科夫过程。 证明:当12n 0t t t t <<< <<时, 1122n n P(X(t)x X(t )=x ,X(t )=x ,X(t )=x )≤= n n 1122n n P(X(t)-X(t )x-x X(t )-X(0)=x ,X(t )-X(0)=x , X(t )-X(0)=x )≤= n n P(X(t)-X(t )x-x )≤,又因为n n P(X(t)x X(t )=x )=≤n n n n P(X(t)-X(t )x-x X(t )=x )≤= n n P(X(t)-X(t )x-x )≤,故1122n n P(X(t)x X(t )=x ,X(t )=x , X(t )=x )≤=n n P(X(t)x X(t )=x )≤ 3.设{}n X ,n 0≥为马尔科夫链,状态空间为I ,则对任意整数n 0,1

几种常用的随机过程

第十讲 几种常用的随机过程 10.1 马尔可夫过程 10.1.1马尔可夫序列 马尔可夫序列是指时间参数离散,状态连续的马尔可夫过程。 一个随机变量序列x n (n=1,2,…),若对于任意的n 有 )|(),...,,|(112 1 x x F x x x x F n n X n n n X ---= (10.1) 或 )|(),...,,|(112 1 x x f x x x x f n n X n n n X ---= (10.2) 则称x n 为马尔可夫序列。x n 的联合概率密度为 ) ()|( ) |()|(),...,,(1 1 2 2 11 2 1 x f x x f x x f x x f x x x f X X n n X n n X n X ??---= (10.3) 马尔可夫序列有如下性质: (1) 一个马尔可夫序列的子序列仍为马尔

可夫序列。 (2) ) |(),...,,|(1 21x x f x x x x f n n X k n n n n X -+++= (10.4) (3) )|(),...,|(111x X x x X n n n n E E --= (10.5) (4) 在一个马尔可夫序列中,若已知现在, 则未来与过去相互独立。即 ) |() |()|,(1 x x f x x f x x x f r s X n n X r s n X -= ,n>r>s (10.6) (5) 若条件概率密度)|(1 x x f n n X -与n 无关, 则称马尔可夫序列是齐次的。 (6) 若一个马尔可夫序列是齐次的,且所 有的随机变量X n 具有同样的概率密度,则称该马尔可夫序列为平稳的。 (7) 马尔可夫序列的转移概率满足切普曼 —柯尔莫哥洛夫方程,即 ) |()| ()|(x x f x x f x x f s r X r n X s n X ? ∞ ∞ -= , n>r>s (10.7) 10.1.2马尔可夫链 马尔可夫链是指时间参数,状态方程皆

随机过程试题及解答

2016随机过程(A )解答 1、(15分)设随机过程V t U t X +?=)(,),0(∞∈t ,U ,V 是相互独立服从正态分布(2,9)N 的随机变量。 1) 求)(t X 的一维概率密度函数; 2) 求)(t X 的均值函数、相关函数和协方差函数。 3) 求)(t X 的二维概率密度函数; 解: 由于U ,V 是相互独立服从正态分布(2,9)N 的随机变量,所以V t U t X +?=)(也服从正态分布, 且: {}{}{}{}()()22m t E X t E U t V t E U E V t ==?+=?+=+ {}{}{}{}22()()99D t D X t D U t V t D U D V t ==?+=+=+ 故: (1) )(t X 的一维概率密度函数为:()2 22218(1) (),x t t t f x e x --- += -∞≤≤∞ (2) )(t X 的均值函数为:()22m t t =+;相关函数为: {}{} (,)()()()()R s t E X s X t E U s V U t V =?=?+??+ {}{}{} 22()13()413 st E U s t E U V E V st s t =?++??+=?++?+ 协方差函数为:(,)(,)()()99B s t R s t m s m t st =-?=+ (3)相关系数: (,)s t ρρ== == )(t X 的二维概率密度函数为: 2212222(22)(22)12(1)9(1)4(1),12(,)x s x t s t s t f x x e ρ????-----?? +????-++???????? = 2、(12分)某商店8时开始营业,在8时顾客平均到达率为每小时4人,在12时顾客的 平均到达率线性增长到最高峰每小时80人,从12时到15时顾客平均到达率维持不变为每小时80人。问在10:00—14:00之间无顾客到达商店的概率是多少?在10:00—14:00之间到达商店顾客数的数学期望和方差是多少? 解: 到达商店顾客数服从非齐次泊松过程。 将8时至15时平移到0—7时,则顾客的到达速率函数为: 419,04 ()80,47t t t t λ+≤≤?=? <≤? 在10:00—14:00之间到达商店顾客数(6)(2)X X -服从泊松分布,其均值: 6 4 6 2 2 4 (6)(2)()(419)80282m m t dt t dt dt λ-==++=???

应用随机过程习题课二

习题 1. 设随机过程{(,),}X t t ω-∞<<+∞只有两条样本函数 12(,)2cos ,(,)2cos ,X t t X t t x ωω==--∞<<+∞ 且1221 (),()33P P ωω==,分别求: (1)一维分布函数(0,)F x 和(,)4F x π ; (2)二维分布函数(0,;,)4F x y π ; (3)均值函数()X m t ; (4)协方差函数(,)X C s t . 2. 利用抛掷一枚硬币一次的随机试验,定义随机过程 1 2 cos ()2t X t πωω?=??出现正面出现反面 且“出现正面”与“出现反面”的概率相等,各为1 2 ,求 1)画出{()}X t 的样本函数 2){()}X t 的一维概率分布,1 (;)2F x 和(1;)F x 3){()}X t 的二维概率分布121 (,1;,)2 F x x 3. 通过连续重复抛掷一枚硬币确定随机过程{()}X t cos ()2 t t X t t π?=? ?在时刻抛掷硬币出现正面 在时刻抛掷硬币出现反面 求:(1)1(,),(1,)2F x F x ; (2)121 (,1;,)2 F x x 4. 考虑正弦波过程{(),0}X t t ≥,()cos X t t ξω=,其中ω为正常数,~(0,1)U ξ. (1)分别求3,,,424t ππππωωωω = 时()X t 的概率密度(,)f t x . (2)求均值函数()m t ,方差函数()D t ,相关函数(,)R s t ,协方差函数(,)C s t . 5. 给定随机过程: ()X t t ξη=+ ()t -∞<<+∞ 其中r. v. (,)ξη的协方差矩阵为1334C ?? = ??? , 求随机过程{(),}X t t -∞<<+∞的协方差函数. 6. 考虑随机游动{(),0,1,2,}Y n n =

随机过程复习题(含答案)

随机过程复习题 一、填空题: 1.对于随机变量序列}{n X 和常数a ,若对于任意0>ε,有 ______}|{|lim =<-∞ >-εa X P n n ,则称}{n X 依概率收敛于a 。 2.设}),({0≥t t X 是泊松过程,且对于任意012≥>t t , ,则 15 92}6)5(,4)3(,2)1({-??= ===e X X X P , 618}4)3(|6)5({-===e X X P 15 32 62 32 92! 23!2)23(!23}2)3()5({}2)1()3({}2)0()1({} 2)3()5(,2)1()3(,2)0()1({} 6)5(,4)3(,2)1({----??=???==-=-=-==-=-=-====e e e e X X P X X P X X P X X X X X X P X X X P 66 218! 26}2)3()5({}4)3(|6)5({--===-===e e X X P X X P 3.已知马尔可夫链的状态空间为},,{321=I ,初始分布为),,(4 1 2141, ?????? ?? ????????? ?=434 103 13131043 411)(P ,则167)2(12=P ,161}2,2,1{210====X X X P

???????? ?????? ????=48 31481348 436133616367 164167165)1()2(2P P 16 7 )2(12=P 16 1 314341}2|2{}1|2{}1{}2,1|2{}1|2{}1{} 2,2,1{12010102010210=??=================X X P X X P X P X X X P X X P X P X X X P 4.强度λ的泊松过程的协方差函数),min(),(t s t s C λ= 5.已知平稳过程)(t X 的自相关函数为πττcos )(=X R , )]()([)(π?δπ?δπω-++=X S 6. 对于平稳过程)(t X ,若)()()(ττX R t X t X >=+<,以概率1成立,则称)(t X 的自相关函数具有各态历经性。 7.已知平稳过程)(t X 的谱密度为2 3)(2 42 ++=ωωωωS ,则)(t X 的均方值= 2 121- 222 2221 1221)2(22211122)(+??-+??=+-+= ωωωωωS ττ τ-- -=e e R X 2 12 1)(2

随机过程作业题及参考答案(第一章)

! 第一章 随机过程基本概念 P39 1. 设随机过程()0cos X t X t ω=,t -∞<<+∞,其中0ω是正常数,而X 是标准正态变量。试求()X t 的一维概率分布。 解: 1 当0cos 0t ω=,02 t k π ωπ=+ ,即0112t k πω??= + ??? (k z ∈)时, ()0X t ≡,则(){}01P X t ==. 2 当0cos 0t ω≠,02 t k π ωπ≠+ ,即0112t k πω?? ≠ + ??? (k z ∈)时, ()~01X N ,,()0E X ∴=,()1D X =. ¥ ()[]()00cos cos 0E X t E X t E X t ωω===????. ()[]()22 000cos cos cos D X t D X t D X t t ωωω===????. ()()20~0cos X t N t ω∴,. 则( )2202cos x t f x t ω- = ;. 2. 利用投掷一枚硬币的试验,定义随机过程为 ()cos 2t X t t π?=??,出现正面,出现反面 假定“出现正面”和“出现反面”的概率各为 12。试确定()X t 的一维分布函数12F x ?? ???;和()1F x ;,以及二维分布函数12112 F x x ? ? ?? ? ,;, 。

】 解: 00 11101222 11

随机过程答案-西交大

【第一章】 1.1 证明: ∵1111,,,,,A F F F F ∈ΩΦ∈ΩΩ∈Φ∈Ω-Φ∈ΩΦ∈U 且∴1F 是事件域。 ∵222,,,,c A A F F A F A A ∈Ω∈Ω∈-Φ∈=Ω- ∴22222,,,,c c A F A F A F A F A F ∈-Φ∈-Φ∈Ω-∈Ω-∈ 且2,c c A A A A F ΦΩ=ΩΦΩ∈U U U U U U ∴2F 是事件域。且12F F ∈。∵2ΩΩ∈∴3F Ω∈ ∴3F 是事件域。且23F F ∈∴123,,F F F 皆为事件域且123F F F ∈∈。 1.2 一次投掷三颗均匀骰子可能出现的点数ω为 (),,,,,,,,16,6,6i j k i R j R k R j i k j i j k ∈∈∈≥≥≤≤≤≤ ∴样本空间()6 1= ,,n i j i k j i j k ==≥≥ΩU 事件(){} ,,|,,i j k A i j k ωω==,,,,,,6,16,6i R j R k R j i k j i j k ∈∈∈≥≥≤≤≤≤ 事件域2F Ω= 概率测度 ()()() ,,1P 677i j k A i j = --,,,,,,16,6,6i R j R k R j i k j i j k ∈∈∈≥≥≤≤≤≤

则(),,F P Ω为所求的概率空间。 1.3 证明: (1)由公理可知()0P Φ= (2)有概率测度的可列可加性可得 ()11 n n k k k k P A P A ==??= ???∑∑ (3)∵,,A B F A B ∈? ∴B A F -∈,()A B A -=Φ 由概率测度的可列可加性可得:()()()()P B P A B A P A P B A =+-=+- 即()()()P B A P B P A -=- 有概率测度的非负性可得()()()0P B P A P B A -=-≥,即()()P B P A ≥ (4)若B =Ω,由(3)则有() ()1P A P A =- (5) ∵()()()()121212P A A P A P A P A A +=+- 假设 ()()()()()1 121 1111m m m k k i j i j k m k i j m i j k m k P A P A P A A P A A A P A A A +=≤<≤≤<<≤=??=-+-+- ???∑∑∑K K U 成 立,则

《概率论与随机过程》第1章习题答案

《概率论与随机过程》第一章习题答案 1. 写出下列随机试验的样本空间。 (1) 记录一个小班一次数学考试的平均分数(设以百分制记分)。 解: ? ??????=n n n n S 100 , ,1,0 ,其中n 为小班人数。 (2) 同时掷三颗骰子,记录三颗骰子点数之和。 解:{}18,,4,3 =S 。 (3) 10只产品中有3只是次品,每次从其中取一只(取出后不放回),直到将3只次品都取出,记录 抽取的次数。 解: {}10,,4,3 =S 。 (4) 生产产品直到得到10件正品,记录生产产品的总件数。 解: { } ,11,10=S 。 (5) 一个小组有A ,B ,C ,D ,E5个人,要选正副小组长各一人(一个人不能兼二个职务),观察选 举的结果。 解: {}ED EC EB EA DE DC DB DA CE CD CB CA BE BD BC BA AE AD AC AB S ,,,,,,,,,,,,,,,,,,,=其中,AB 表示A 为正组长,B 为副组长,余类推。 (6) 甲乙二人下棋一局,观察棋赛的结果。 解: {}210,,e e e S =其中,0e 为和棋,1e 为甲胜,2e 为乙胜。 (7) 一口袋中有许多红色、白色、蓝色乒乓球,在其中任意取4只,观察它们具有哪几种颜色。 解: {}rwb wb rb rw b w r S ,,,,,,=其中,,,,b w r 分别表示红色、白色、蓝色。 (8) 对某工厂出厂的产品进行检查,合格的盖上“正品”,不合格的盖上“次品”,如连续查出二个次 品就停止检查,或检查4个产品就停止检查,记录检查的结果。 解: {}1111,1110,1101,0111,1011,1010,1100,0110,0101,0100,100,00=S 其中,0为次品,1为正品。 (9) 有A ,B ,C 三只盒子,a ,b ,c 三只球,将三只球装入三只盒子中,使每只盒子装一只球,观察 装球的情况。 解: {}Ca Bb Ac Cc Ba Ab Cb Bc Aa Cb Ba Ac Ca Bc Ab Cc Bb Aa S ,,;,,;,,;,,;,,;,,=其中,Aa 表示球a 放 在盒子A 中,余者类推。 (10) 测量一汽车通过给定点的速度。 解:{}0>=v v S (11) 将一尺之棰折成三段,观察各段的长度。 解: (){}1,0,0,0,,=++>>>=z y x z y x z y x S 其中,z y x ,,分别表示第一段,第二段,第三段的 长度。# 2. 设A ,B ,C 为三事件,用A ,B ,C 的运算关系表示下列事件。 (1) A 发生,B 与C 不发生。 解:C A (2) A 与B 都发生,而C 不发生。 解: C AB (3) A ,B ,C 都发生。 解: ABC (4) A ,B ,C 中至少有一个发生。 解: C B A ?? (5) A ,B ,C 都不发生。 解: C B A (6) A ,B ,C 中至多于一个发生。 解: A C C A ?? (7) A ,B ,C 中至多于二个发生。 解: C B A ?? (8) A ,B ,C 中至少有二个发生。 解: CA BC AB ??. # 3. 设{ }10,2,1, =S ,{}4,3,2=A ,{}5,4,3=B ,{}7,6,5=C ,具体写出下列各等式 (1)B A 。 解: {}5=B A ; (2)B A ?。 解: { }10,9,8,7,6,5,4,3,1=?B A ; (3)B A 。 解:{}5,4,3,2=B A ;

相关文档
最新文档