伺服技术

伺服技术
伺服技术

伺服系统

伺服系统,servomechanism,是使物体的位置、方位、状态等输出被控量能够跟随输入目标(或给定值)的任意变化的自动控制系统。

伺服的主要任务是按控制命令的要求、对功率进行放大、变换与调控等处理,使驱动装置输出的力矩、速度和位置控制的非常灵活方便。

[编辑本段]

基本概念

伺服系统是用来精确地跟随或复现某个过程的反馈控制系统。又称随动系统。在很多情况下,伺服系统专指被控制量(系统的输出量)是机械位移或位移速度、加速度的反馈控制系统,其作用是使输出的机械位移(或转角)准确地跟踪输入的位移(或转角)。伺服系统的结构组成和其他形式的反馈控制系统没有原则上的区别。

伺服系统最初用于船舶的自动驾驶、火炮控制和指挥仪中,后来逐渐推广到很多领域,特别是自动车床、天线位置控制、导弹和飞船的制导等。采用伺服系统主要是为了达到下面几个目的:①以小功率指令信号去控制大功率负载。火炮控制和船舵控制就是典型的例子。②在没有机械连接的情况下,由输入轴控制位于远处的输出轴,实现远距同步传动。③使输出机械位移精确地跟踪电信号,如记录和指示仪表等。

衡量伺服系统性能的主要指标有频带宽度和精度。频带宽度简称带宽,由系统频率响应特性来规定,反映伺服系统的跟踪的快速性。带宽越大,快速性越好。伺服系统的带宽主要受控制对象和执行机构的惯性的限制。惯性越大,带宽越窄。一般伺服系统的带宽小于15赫,大型设备伺服系统的带宽则在1~2赫以下。自20世纪70年代以来,由于发展了力矩电机及高灵敏度测速机,使伺服系统实现了直接驱动,革除或减小了齿隙和弹性变形等非线性因素,使带宽达到50赫,并成功应用在远程导弹、人造卫星、精密指挥仪等场所。伺服系统的精度主要决定于所用的测量元件的精度。因此,在伺服系统中必须采用高精度的测量元件,如精密电位器、自整角机、旋转变压器、光电编码器、光栅、磁栅和球栅等。此外,也可采取附加措施来提高系统的精度,例如将测量元件(如自整角机)的测量轴通过减速器与转轴相连,使转轴的转角得到放大,来提高相对测量精度。采用这种方案的伺服系统称为精测粗测系统或双通道系统。通过减速器与转轴啮合的测角线路称精读数通道,直接取自转轴的测角线路称粗读数通道。

伺服系统按所用驱动元件的类型可分为机电伺服系统、液压伺服系统和气动伺服系统。

最基本的伺服系统包括伺服执行元件(电机、液压缸等)、反馈元件和伺服驱动器,但是要让这个系统运转起来还需要一个上位机构,PLC,专门的运动控制卡,工控机+PCI卡,以便于给伺服驱动器发送指令。

[编辑本段]

有关伺服电机的问答

什么是伺服电机?有几种类型?工作特点是什么?

答:伺服电动机又称执行电动机,在自动控制系统中,用作执行元件,把所收到的电信号转换成电动机轴上的角位移或角速度输出。分为直流和交流伺服电动机两大类

请问交流伺服电机和无刷直流伺服电机在功能上有什么区别?

答:交流伺服要好一些,因为是正弦波控制,转矩脉动小。无刷直流伺服是梯形波。但直流伺服比较简单,便宜。

[编辑本段]

永磁交流伺服电动机

20世纪80年代以来,随着集成电路、电力电子技术和交流可变速驱动技术的发展,永磁交流伺服驱动技术有了突出的发展,各国著名电气厂商相继推出各自的交流伺服电动机和伺服驱动器系列产品并不断完善和更新。交流伺服系统已成为当代高性能伺服系统的主要发展方向,使原来的直流伺服面临被淘汰的危机。90年代以后,世界各国已经商品化了的交流伺服系统是采用全数字控制的正弦波电动机伺服驱动。交流伺服驱动装置在传动领域的发展日新月异。永磁交流伺服电动机同直流伺服电动机比较,主要优点有:

⑴无电刷和换向器,因此工作可靠,对维护和保养要求低。

⑵定子绕组散热比较方便。

⑶惯量小,易于提高系统的快速性。

⑷适应于高速大力矩工作状态。

⑸同功率下有较小的体积和重量。

自从德国MANNESMANN的Rexroth公司的Indramat分部在1978年汉诺威贸易博览会上正式推出MAC永磁交流伺服电动机和驱动系统,这标志着此种新一代交流伺服技术已进入实用化阶段。到20世纪80年代中后期,各公司都已有完整的系列产品。整个伺服装置市场都转向了交流系统。早期的模拟系统在诸如零漂、抗干扰、可靠性、精度和柔性等方面存在不足,尚不能完全满足运动控制的要求,近年来随着微处理器、新型数字信号处理器(DSP)的应用,出现了数字控制系统,控制部分可完全由软件进行。

到目前为止,高性能的电伺服系统大多采用永磁同步型交流伺服电动机,控制驱动器多采用快速、准确定位的全数字位置伺服系统。典型生产厂家如德国西门子、美国科尔摩根和日本松下及安川等公司。

永磁交流伺服电机的应用趋势

自动控制系统不仅在理论上飞速发展,在其应用器件上也日新月异。模块化、数字化、高精度、长寿命的器件每隔3~5年就有更新换代的产品面市。传统的交流伺服电机特性软,并且其输出特性不是单值的;步进电机一般为开环控制而无法准确定位,电动机本身还有速度谐振区,pwm调速系统对位置跟踪性能较差,变频调速较简单但精度有时不够,直流电机伺服系统以其优良的性能被广泛的应用于位置随动系统中,但其也有缺点,例如结构复杂,在超低速时死区矛盾突出,并且换向刷会带来噪声和维护保养问题。目前,新型的永磁交流伺服电机发展迅速,尤其是从方波控制发展到正弦波控制后,系统性能更好,它调速范围宽,尤其是低速性能优越。

伺服电机■定义: 在伺服系统中控制机械元件运转的发动机.是一种补助马达间接变速装置。

■作用:伺服电机,可使控制速度,位置精度非常准确。将电压信号转化为转矩和转速以驱动控制对象

■分类:直流伺服电机和交流伺服电机。

直流伺服电机分为有刷和无刷电机。有刷电机成本低,结构简单,启动转矩大,调速范围宽,控制容易,需要维护,但维护方便(换碳刷),产生电磁干扰,对环境有要求。因此它可以用于对成本敏感的普通工业和民用场合。

无刷电机体积小,重量轻,出力大,响应快,速度高,惯量小,转动平滑,力矩稳定。控制复杂,容易实现智能化,其电子换相方式灵活,可以方波换相或正弦波换相。电机免维护,效率很高,运行温度低,电磁辐射很小,长寿命,可用于各种环境。

交流伺服电机也是无刷电机,分为同步和异步电机,目前运动控制中一般都用同步电机,它的功率范围大,可以做到很大的功率。大惯量,最高转动速度低,且随着功率增大而快速降低。因而适合做低速平稳运行的应用。

伺服电机内部的转子是永磁铁,驱动器控制的U/V/W三相电形成电磁场,转子在此磁场的作用下转动,同时电机自带的编码器反馈信号给驱动器,驱动器根据反馈值与目标值进行比较,调整转子转动的角度。伺服电机的精度决定于编码器的精度(线数)。

什么是伺服电机?有几种类型?工作特点是什么?

答:伺服电动机又称执行电动机,在自动控制系统中,用作执行元件,把所收到的电信号转换成电动机轴上的角位移或角速度输出。分为直流和交流伺服电动机两大类,其主要特点是,当信号电压为零时无自转现象,转速随着转矩的增加而匀速下降,

请问交流伺服电机和无刷直流伺服电机在功能上有什么区别?

答:交流伺服要好一些,因为是正弦波控制,转矩脉动小。直流伺服是梯形波。但直流伺服比较简单,便宜。

永磁交流伺服电动机

20世纪80年代以来,随着集成电路、电力电子技术和交流可变速驱动技术的发展,永磁交流伺服驱动技术有了突出的发展,各国著名电气厂商相继推出各自的交流伺服电动机和伺服驱动器系列产品并不断完善和更新。交流伺服系统已成为当代高性能伺服系统的主要发展方向,使原来的直流伺服面临被淘汰的危机。90年代以后,世界各国已经商品化了的交流伺服系统是采用全数字控制的正弦波电动机伺服驱动。交流伺服驱动装置在传动领域的发展日新月异。永磁交流伺服电动机同直流伺服电动机比较,主要优点有:

⑴无电刷和换向器,因此工作可靠,对维护和保养要求低。

⑵定子绕组散热比较方便。

⑶惯量小,易于提高系统的快速性。

⑷适应于高速大力矩工作状态。

⑸同功率下有较小的体积和重量。

自从德国MANNESMANN的Rexroth公司的Indramat分部在1978年汉诺威贸易博览会上正式推出MAC永磁交流伺服电动机和驱动系统,这标志着此种新一代交流伺服技术已进入实用化阶段。到20世纪80年代中后期,各公司都已有完整的系列产品。整个伺服装置市场都转向了交流系统。早期的模拟系统在诸如零漂、抗干扰、可靠性、精度和柔性等方面存在不足,尚不能完全满足运动控制的要求,近年来随着微处理器、新型数字信号处理器(DSP)的应用,出现了数字控制系统,控制部分可完全由软件进行,分别称为摪胧只瘮或抟旌鲜綌、撊只瘮的永磁交流伺服系统。

到目前为止,高性能的电伺服系统大多采用永磁同步型交流伺服电动机,控制驱动器多采用快速、准确定位的全数字位置伺服系统。典型生产厂家如德国西门子、美国科尔摩根和日本松下及安川等公司。

日本安川电机制作所推出的小型交流伺服电动机和驱动器,其中D系列适用于数控机床(最高转速为1000r/min,力矩为0.25~2.8N.m),R系列适用于机器人(最高转速为3000r/min,力矩为0.016~0.16N.m)。之后又推出M、F、S、H、C、G 六个系列。20世纪90年代先后推出了新的D系列和R系列。由旧系列矩形波驱动、8051单片机控制改为正弦波驱动、80C、154CPU和门阵列芯片控制,力矩波动由24%降低到7%,并提高了可靠性。这样,只用了几年时间形成了八个系列(功率范围为0.05~6kW)较完整的体系,满足了工作机械、搬运机构、焊接机械人、装配机器人、电子部件、加工机械、印刷机、高速卷绕机、绕线机等的不同需要。

以生产机床数控装置而著名的日本法奴克(Fanuc)公司,在20世纪80年代中

期也推出了S系列(13个规格)和L系列(5个规格)的永磁交流伺服电动机。L系列有较小的转动惯量和机械时间常数,适用于要求特别快速响应的位置伺服系统。

日本其他厂商,例如:三菱电动机(HC-KFS、HC-MFS、HC-SFS、HC-RFS和HC-UFS 系列)、东芝精机(SM系列)、大隈铁工所(BL系列)、三洋电气(BL系列)、立石电机(S系列)等众多厂商也进入了永磁交流伺服系统的竞争行列。

德国力士乐公司(Rexroth)的Indramat分部的MAC系列交流伺服电动机共有7个机座号92个规格。

德国西门子(Siemens)公司的IFT5系列三相永磁交流伺服电动机分为标准型和短型两大类,共8个机座号98种规格。据称该系列交流伺服电动机与相同输出力矩的直流伺服电动机IHU系列相比,重量只有后者的1/2,配套的晶体管脉宽调制驱动器6SC61系列,最多的可供6个轴的电动机控制。

德国宝石(BOSCH)公司生产铁氧体永磁的SD系列(17个规格)和稀土永磁的SE系列(8个规格)交流伺服电动机和Servodyn SM系列的驱动控制器。

美国著名的伺服装置生产公司Gettys曾一度作为Gould 电子公司一个分部(Motion Control Division),生产M600系列的交流伺服电动机和A600 系列的伺服

驱动器。后合并到AEG,恢复了Gettys名称,推出A700全数字化的交流伺服系统。

美国A-B(ALLEN-BRADLEY)公司驱动分部生产1326型铁氧体永磁交流伺服电动机和1391型交流PWM伺服控制器。电动机包括3个机座号共30个规格。

I.D.(Industrial Drives)是美国著名的科尔摩根(Kollmorgen)的工业驱动分部,曾生产BR-210、BR-310、BR-510 三个系列共41个规格的无刷伺服电动机和BDS3型伺服驱动器。自1989年起推出了全新系列设计的掺鹣盗袛(Goldline)永磁交流伺服电动机,包括B(小惯量)、M(中惯量)和EB(防爆型)三大类,有10、20、40、60、80五种机座号,每大类有42个规格,全部采用钕铁硼永磁材料,力矩范围为0.84~111.2N.m,功率范围为0.54~15.7kW。配套的驱动器有BDS4(模拟型)、BDS5(数字型、含位置控制)和Smart Drive(数字型)三个系列,最大连续电流55A。Goldline系列代表了当代永磁交流伺服技术最新水平。

爱尔兰的Inland原为Kollmorgen在国外的一个分部,现合并到AEG,以生产直流伺服电动机、直流力矩电动机和伺服放大器而闻名。生产BHT1100、2200、3300三种机座号共17种规格的SmCo永磁交流伺服电动机和八种控制器。

法国Alsthom集团在巴黎的Parvex工厂生产LC系列(长型)和GC系列(短型)

交流伺服电动机共14个规格,并生产AXODYN系列驱动器。

原苏联为数控机床和机器人伺服控制开发了两个系列的交流伺服电动机。其中ДBy系列采用铁氧体永磁,有两个机座号,每个机座号有3种铁心长度,各有两种绕组数据,共12个规格,连续力矩范围为7~35N.m。2ДBy系列采用稀土永磁,6个机座号17个规格,力矩范围为0.1~170N.m,配套的是3ДБ型控制器。

近年日本松下公司推出的全数字型MINAS系列交流伺服系统,其中永磁交流伺服电动机有MSMA系列小惯量型,功率从0.03~5kW,共18种规格;中惯量型有MDMA、MGMA、MFMA三个系列,功率从0.75~4.5kW,共23种规格,MHMA系列大惯量电动机的功率范围从0.5~5kW,有7种规格。

韩国三星公司近年开发的全数字永磁交流伺服电动机及驱动系统,其中FAGA交流伺服电动机系列有CSM、CSMG、CSMZ、CSMD、CSMF、CSMS、CSMH、CSMN、CSMX 多种型号,功率从15W~5kW。

现在常采用(Powerrate)这一综合指标作为伺服电动机的品质因数,衡量对比各种交直流伺服电动机和步进电动机的动态响应性能。功率变化率表示电动机连续(额定)力矩和转子转动惯量之比。

按功率变化率进行计算分析可知,永磁交流伺服电动机技术指标以美国I.D 的Goldline 系列为最佳,德国Siemens的IFT5系列次之。

伺服电机原理

一、交流伺服电动机

交流伺服电动机定子的构造基本上与电容分相式单相异步电动机相似.其定子上装有两个位置互差90°的绕组,一个是励磁绕组Rf,它始终接在交流电压Uf上;另一个是控制绕组L,联接控制信号电压Uc。所以交流伺服电动机又称两个伺服电动机。

交流伺服电动机的转子通常做成鼠笼式,但为了使伺服电动机具有较宽的调速范围、线性的机械特性,无“自转”现象和快速响应的性能,它与普通电动机相比,应具有转子电阻大和转动惯量小这两个特点。目前应用较多的转子结构有两种形式:一种是采用高电阻率的导电材料做成的高电阻率导条的鼠笼转子,为了减小转子的转动惯量,转子做得细长;另一种是采用铝合金制成的空心杯形转子,杯壁很薄,仅0.2-0.3mm,为了减小磁路的磁阻,要在空心杯形转子内放置固定的内定子.空心杯形转子的转动惯量很小,反应迅速,而且运转平稳,因此被广泛采用。

交流伺服电动机在没有控制电压时,定子内只有励磁绕组产生的脉动磁场,转子静止不动。当有控制电压时,定子内便产生一个旋转磁场,转子沿旋转磁场的方向旋转,在负载恒定的情况下,电动机的转速随控制电压的大小而变化,当控制电压的相位相反时,伺服电动机将反转。

交流伺服电动机的工作原理与分相式单相异步电动机虽然相似,但前者的转子电阻比后者大得多,所以伺服电动机与单机异步电动机相比,有三个显著特点:

1、起动转矩大

由于转子电阻大,其转矩特性曲线如图3中曲线1所示,与普通异步电动机的转矩特性曲线2相比,有明显的区别。它可使临界转差率S0>1,这样不仅使转矩特性(机械特性)更接近于线性,而且具有较大的起动转矩。因此,当定子一有控制电压,转子立即转动,即具有起动快、灵敏度高的特点。

2、运行范围较广

3、无自转现象

正常运转的伺服电动机,只要失去控制电压,电机立即停止运转。当伺服电动机失去控制电压后,它处于单相运行状态,由于转子电阻大,定子中两个相反方向旋转的旋转磁场与转子作用所产生的两个转矩特性(T1-S1、T2-S2曲线)以及合成转矩特性(T-S曲线)交流伺服电动机的输出功率一般是0.1-100W。当电源频率为50Hz,电压有36V、110V、220、380V;当电源频率为400Hz,电压有20V、26V、36V、115V等多种。

交流伺服电动机运行平稳、噪音小。但控制特性是非线性,并且由于转子电阻大,损耗大,效率低,因此与同容量直流伺服电动机相比,体积大、重量重,所以只适用于0.5-100W的小功率控制系统。

[编辑本段]伺服电机的选型方法

1、伺服电机和步进电机的性能比较

步进电机作为一种开环控制的系统,和现代数字控制技术有着本质的联系。在目前国内的数字控制系统中,步进电机的应用十分广泛。随着全数字式交流伺服系统的出现,交流伺服电机也越来越多地应用于数字控制系统中。为了适应数字控制的发展趋势,运动控制系统中大多采用步进电机或全数字式交流伺服电机作为执行电动机。虽然两者在控制方式上相似(脉冲串和方向信号),但在使用性能和应用场合上存在着较大的差异。现就二者的使用性能作一比较。

一、控制精度不同

两相混合式步进电机步距角一般为1.8°、0.9°,五相混合式步进电机步距角一般为0.72 °、0.36°。也有一些高性能的步进电机通过细分后步距角更小。如山洋公司(SANYO DENKI)生产的二相混合式步进电机其步距角可通过拨码开关设置为1.8°、0.9°、0.72°、0.36°、0.18°、0.09°、0.072°、0.036°,兼容了两相和五相混合式步进电机的步距角。

交流伺服电机的控制精度由电机轴后端的旋转编码器保证。以山洋全数字式交流伺服电机为例,对于带标准2000线编码器的电机而言,由于驱动器内部采用了四倍频技术,其脉冲当量为360°/8000=0.045°。对于带17位编码器的电机而言,驱动器每接收131072个脉冲电机转一圈,即其脉冲当量为360°/131072=0.0027466°,是步距角为1.8°的步进电机的脉冲当量的1/655。

二、低频特性不同

步进电机在低速时易出现低频振动现象。振动频率与负载情况和驱动器性能有关,一般认为振动频率为电机空载起跳频率的一半。这种由步进电机的工作原理所决定的低频振动现象对于机器的正常运转非常不利。当步进电机工作在低速时,一般应采用阻尼技术来克服低频振动现象,比如在电机上加阻尼器,或驱动器上采用细分技术等。

交流伺服电机运转非常平稳,即使在低速时也不会出现振动现象。交流伺服系统具有共振抑制功能,可涵盖机械的刚性不足,并且系统内部具有频率解析机能(FFT),可检测出机械的共振点,便于系统调整。

三、矩频特性不同

步进电机的输出力矩随转速升高而下降,且在较高转速时会急剧下降,所以其最高工作转速一般在300~600RPM。交流伺服电机为恒力矩输出,即在其额定转速(一般为2000RPM 或3000RPM)以内,都能输出额定转矩,在额定转速以上为恒功率输出。

四、过载能力不同

步进电机一般不具有过载能力。交流伺服电机具有较强的过载能力。以山洋交流伺服系统为例,它具有速度过载和转矩过载能力。其最大转矩为额定转矩的二到三倍,可用于克服惯性负载在启动瞬间的惯性力矩。步进电机因为没有这种过载能力,在选型时为了克服这种惯性力矩,往往需要选取较大转矩的电机,而机器在正常工作期间又不需要那么大的转矩,便出现了力矩浪费的现象。

五、运行性能不同

步进电机的控制为开环控制,启动频率过高或负载过大易出现丢步或堵转的现象,停止时转速过高易出现过冲的现象,所以为保证其控制精度,应处理好升、降速问题。交流伺服驱动系统为闭环控制,驱动器可直接对电机编码器反馈信号进行采样,内部构成位置环和速度环,一般不会出现步进电机的丢步或过冲的现象,控制性能更为可靠。

六、速度响应性能不同

步进电机从静止加速到工作转速(一般为每分钟几百转)需要200~400毫秒。交流伺服系统的加速性能较好,以山洋400W交流伺服电机为例,从静止加速到其额定转速3000RPM 仅需几毫秒,可用于要求快速启停的控制场合。

综上所述,交流伺服系统在许多性能方面都优于步进电机。但在一些要求不高的场合也经常用步进电机来做执行电动机。所以,在控制系统的设计过程中要综合考虑控制要求、成本等多方面的因素,选用适当的控制电机。

2、伺服电机的选型计算方法

注意三点:转数山洋公司根据客户实际要求,对于同等功率的电机可以选配不同转数的电机,一般来说,转数越低,价格越便宜。

扭矩必须满足实际需要,但是不需要像步进电机那样留有过多的余量。

机电专业技术论坛

惯量根据现场要求选用不同惯量的电机,如机床行业一般选用P1系列大惯量的伺服电机。

反馈控制系统

反馈控制系统

基于反馈原理建立的自动控制系统。所谓反馈原理,就是根据系统输出变化的信息来进行控制,即通过比较系统行为(输出)与期望行为之间的偏差,并消除偏差以获得预期的系统性能。在反馈控制系统中,既存在由输入到输出的信号前向通路,也包含从输出端到输入端的信号反馈通路,两者组成一个闭合的回路。因此,反馈控制系统又称为闭环控制系统。反馈控制是自动控制的主要形式。在工程上常把在运行中使输出量和期望值保持一致的反馈控制系统称为自动调节系统,而把用来精确地跟随或复现某种过程的反馈控制系统称为伺服系统或随动系统。

反馈控制系统包括:(一)负反馈(negative feedback):凡反馈信息的作用与控制信息的作用方向相反,对控制部分的活动起制约或纠正作用的,称为负反馈1.意义:维持稳态2. 缺点:滞后、波动(二)正反馈(positive feedback ):凡反馈信息的作用与控制信息的作用方向相同,对控制部分的活动起增强作用的,称为正反馈意义:加速生理过程,使机体活动发挥最大效应。

反馈控制系统由控制器、受控对象和反馈通路组成。在反馈控制系统中,不管出于什么原因(外部扰动或系统内部变化),只要被控制量偏离规定值,就会产生相应的控制作用去消除偏差。因此,它具有抑制干扰的能力,对元件特性变化不敏感,并能改善系统的响应特性。

交直流伺服技术的比较

学无止境 2008-12-27 17:02 阅读33 评论0

字号:大中小

交直流伺服技术的比较

一、直流伺服技术

伺服系统的发展经历了由液压到电气的过程。电气伺服系统根据所驱动的电机类型分为直流(DC)伺服系统和交流(AC)伺服系统。20世纪50年代,无刷电机和直流电机实现了产品化,并在计算机外围设备和机械设备上获得了广泛的应用。20世纪70年代则是直流伺服电机的应用最为广泛的时代。

二、交流伺服技术

从20世纪70年代后期到80年代初期,随着微处理器技术、大功率高性能半导体功率器件技术和电机永磁材料制造工艺的发展及其性能价格比的日益提高,交流伺服技术—交流伺服电机和交流伺服控制系统逐渐成为主导产品。交流伺服驱动技术已经成为工业领域实现自动化的基础技术之一,并将逐渐取代直流伺

服系统。

交流伺服系统按其采用的驱动电动机的类型来分,主要有两大类:永磁同步(SM型)电动机交流伺服系统和感应式异步(IM型)电动机交流伺服系统。其中,永磁同步电动机交流伺服系统在技术上已趋于完全成熟,具备了十分优良的低速性能,并可实现弱磁高速控制,拓宽了系统的调速范围,适应了高性能伺服驱动的要求。并且随着永磁材料性能的大幅度提高和价格的降低,其在工业生产自动化领域中的应用将越来越广泛,目前已成为交流伺服系统的主流。感应式异步电动机交流伺服系统由于感应式异步电动机结构坚固,制造容易,价格低廉,因而具有很好的发展前景,代表了将来伺服技术的方向。但由于该系统采用矢量变换控制,相对永磁同步电动机伺服系统来说控制比较复杂,而且电机低速运行时还存在着效率低,发热严重等有待克服的技术问题,目前并未得到普遍应用。

系统的执行元件一般为普通三相鼠笼型异步电动机,功率变换器件通常采用智能功率模块IPM。为进一步提高系统的动态和静态性能,可采用位置和速度闭环控制。三相交流电流的跟随控制能有效地提高逆变器的电流响应速度,并且能限制暂态电流,从而有利于IPM的安全工作。速度环和位置环可使用单片机控制,以使控制策略获得更高的控制性能。电流调节器若为比例形式,三个交流电流环都用足够大的比例调节器进行控制,其比例系数应该在保证系统不产生振荡的前提下尽量选大些,使被控异步电动机三相交流电流的幅值、相位和频率紧随给定值快速变化,从而实现电压型逆变器的快速电流控制。电流用比例调节,具有结构简单、电流跟随性能好以及限制电动机起制动电流快速可靠等诸多优点。

三、交直流伺服技术的比较

直流伺服驱动技术受电机本身缺陷的影响,其发展受到了限制。直流伺服电机存在机械结构复杂、维护工作量大等缺点,在运行过程中转子容易发热,影响了与其连接的其他机械设备的精度,难以应用到高速及大容量的场合,机械换向器则成为直流伺服驱动技术发展的瓶颈。

交流伺服电机克服了直流伺服电机存在的电刷、换向器等机械部件所带来的各种缺点,特别是交流伺服电机的过负荷特性和低惯性更体现出交流伺服系统的优越性。所以交流伺服系统在工厂自动化(FA)等各个

领域得到了广泛的应用。

从伺服驱动产品当前的应用来看,直流伺服产品正逐渐减少,交流伺服产品则日渐增加,市场占有率逐步扩大。在实际应用中,精度更高、速度更快、使用更方便的交流伺服产品已经成为主流产品。

反馈原理

反馈原理指什幺

管理,实质上就是一种控制系统,所以必然存在着反馈问题。反馈是控制论的一个极其重要的概念。反馈就是由控制系统把信息输送出去,又把其作用结果返送回来,并对信息的再输出发生影响,起到控制的作用,以达到预定的目的。原因产生结果,结果又构成新的原因、新的结果……反馈在原因和结果之间架起了桥梁。

这种因果关系的相互作用,不是各有目的,而是为了完成一个共同的功能目的,所以反馈又在因果性和目的性之间建立了紧密的联系。面对着永远不断变化的客观实际,管理是否有效,关键在于是否有灵敏、准确和有力的反馈。这就是现代管理的反馈原理。

反馈原理的分类

反馈分正反馈和负反馈两种,前者使系统的输入对输出的影响增大,后者则使其影响减少。反馈的最终目的就是要求对客观变化做出应有的反应。在运用反馈方法对管理系统进行控制时,情况是多种多样的。

如果系统所给的目标是一个常量,这样的控制叫“简单控制”;系统所给的目标是一个随时间而变的函数,那么,这样的控制称为“程序控制”;系统给的目标是一个随其他变量而变的函数,这样的控制称为“跟踪控制”;如果系统给的目标是达到某一函数的极值,这样的控制就是“最佳控制”。在现代化管理中,均运用反馈原理,从而显着改善企业管理系统的功能,提高企业效率,增强企业内部的凝聚力、驱动力和竞争力,并使系统本身产生自激发展功能,促进企业良性循环。

伺服电机控制技术的应用与发展 朱舒柏

伺服电机控制技术的应用与发展朱舒柏 发表时间:2019-11-26T09:27:03.093Z 来源:《中国西部科技》2019年第24期作者:朱舒柏 [导读] 近年来,经济的发展,促进我国科技水平的提升。科技的进步促进伺服电机控制技术被广泛应用,不仅能够有效提升数控系统计算性能,缩短时间,还能够有效提升系统运行性能,逐渐向更加科学化、智能化方向转变。本文就伺服电机控制技术的应用与发展趋势,展开探讨。 摘要:近年来,经济的发展,促进我国科技水平的提升。科技的进步促进伺服电机控制技术被广泛应用,不仅能够有效提升数控系统计算性能,缩短时间,还能够有效提升系统运行性能,逐渐向更加科学化、智能化方向转变。本文就伺服电机控制技术的应用与发展趋势,展开探讨。 伺服控制系统是一个整体,其主要组成元素包含了驱动、控制系统和保护系统还有电力的电子元件等,是从步进向直流进步,与数字脉宽调制技术、微电子技术等共同发展进步。同时,伺服控制技术又从直流发展到了交流,与特种电机材料技术和现代控制技术等同步发展。硬件服务控制系统为加工技术提供了推动力,实现了软件伺服控制系统的转变,提高了伺服系统运行的性能。同时,处理器和数字化伺服系统的协调发展,还提升了数控系统计算性能。 1.伺服控制系统 1.1开环伺服系统 开环伺服系统中并未设置检测反馈设备,因此也不存在运动反馈控制回路。一旦设备发出了脉冲指令,这时电动机便开始运行。虽然可能存在运动误差,但是不会做出任何信息错误反馈。期间,步进电动机在开环伺服中是最为关键的驱动部件。步进电机在步距角精度、机械传动精度等方面具有极大优势,直接关系到开环系统的精准度。通常,针对开环系统精准度没有过高要求。尽管步进电动机的转速不高,部件运行期间也存在限制,但其结构精简、可靠性高、制造成本低,所以为控制电路赋予了简单的特点。因此,开环控制系统内部没有对精度和速度提出严格要求的装置,一般会使用步进电动机。 1.2半闭环伺服系统 半闭环伺服系统,运行与调试步骤内容相对简捷,主要应用于对位置与速度的检测。测量位置无刷旋转变压器与测度的发电机构成半闭环伺服系统的两个主要部分。其中,脉冲编码器是无刷旋转变压器内部中最为重要的一个器件,抗干扰能力较强,不易受某些非线性因素影响,系统能够正常运行,实现对机械传动的控制。将系统内全部反馈信号装在电机轴中,能够有效对速度和位置两个重要信号量进行检测,并且为系统提供机械传动保障。在数控机床应用领域中半闭环伺服系统应用最广泛,由于机械传动装置精度与此系统定位精确度具有密切联系,所以即使机械传动装置精度不高,只需利用数控装置所具有的误差补偿与间隙补偿功能,也可以使其精确度有所提升。 1.3全闭环伺服系统 全闭环伺服系统是由各种装置组成,即:比较环节、伺服驱动放大器、机械传动装置、进给伺服电动机以及直线位移测量装置等。其中,全闭环伺服系统的驱动部件能够监测、反馈修正机床运动部件的移动量,即:直流伺服电动机或者交流伺服电动机。在测量机床部件时,能够构成一个较高精度的全闭环控制位置系统,可以直接利用安装在工作台的光棚或者感应同步器。在整个全闭环系统中,可以在移动的部件上,安装直线位移检测器,也就是说,这个位移检测器的精度和灵敏度就是移动部件测量精度、灵敏度,同样加工精度也相对地得到了提升。但机械传动装置之间的一些非线性因素,会影响整体的稳定性,如:摩擦阻尼、装置刚度以及反响间隙等。并且在整个全闭环伺服电机系统中,安装和调试全闭环伺服系统过程非常复杂。 2.伺服电控技术的应用 2.1低频特性中的应用 在实际低速运转过程中,步进电机常会出现低频振动现象,可见电机控制系统自身负载能力、驱动器性能好坏与低频振动有着密切关联。一般来说,电机空载起跳频率的一半就是振动频率,若是步进电机由于工作原理而产生低频振动问题,就会对运行带来阻碍,不能进行日常的工作;步进电机进入低速运转状态时,一般可以使用阻尼技术对低频振动问题加以控制。例如可以将阻尼器或驱动器中的一种,设置在电机中,通过细分技术进行控制。通过对比发现,交流伺服电机运转时稳定性更高,即使处于低速运转状态中,低频振动问题也不会出现。在交流伺服电机中,由于系统自带共振功能,能够弥补机械刚性中存在的不足进行问题,同时系统中还带有频率解析功能,可对机械共振点进行有效测量监视,及时发现问题,避免发生共振现象。 2.2在控制精准度的应用 全数字交流伺服是以2000线编码器为标准,控制交流伺服则更能体现控制精准度,将旋转编码器安装在交流伺服电机电机轴后方。驱动器的安装使用四倍频技术,脉冲量为0.045o。在数字化伺服电机系统中,如果使用17编码器其脉冲量可以换算为1.8的步距角,为 0.0027466o,电动机旋转1圈接收一次131072个脉冲。两相混合式和五相混合式是步进电机的两种形式,两相混合式步进电机的脉冲量数据较小,脉冲量为1/655.相比之下。其中,两相混合式性能较高,步距角则主要以1.8o、0.9o为主经过细分之后,性能较高的二相混合式步进电机步距角更小,可以有效实现五相混合式、普通二相混合式步距角的兼容,五相混合式步距角是以0.72o、0.36o为主;诸如0.072o、0.18o、0.9o等二相混合式在设置步距角时,可以利用拨码开关的方式。 2.3过载能力方面应用 步进电机并没有过载性能,相反交流伺服电机则体现出极强的过载能力。例如,SANYO交流伺服电机本身就有非常高的速度过载能力和转矩过载能力。因为步进电机并不具备过载能力,因此在实践过程中为了克服启动时产生的惯性力矩,一般会选择大机型电机。但是,其中存在的问题在于,实际应用期间不需要过高的电机转矩,很容易导致力矩浪费。 3.伺服电机控制技术的发展前景 电机控制专用继承电路是企业设计伺服电机最普遍的形式,设计软件主要为复杂可编程逻辑器件和现场可编程逻辑阵列。并且在设计电机控制集成电路时,需要依据用户、电子系统要求。该电路能够实现操作边界的有效扫描,特点在于用户现场可操控编程。电机控制专用集成电路具有设计、生产时间短等特征,主要体现在制定用户要求、数量少等方面。与通用电路相比,集成电路电子技术和用户积淀系统生产出来的产品,重量轻、成本低、体积小、功耗低,质量高。并且在电机控制MCU设计、电机控制DSP设计等方面,伺服电机控制技术也有所体现。交流伺服电动机属于无刷结构,提升功率与转速快、维修几率少。20世纪80年代中,伺服电机控制技术已经融合催化加工

伺服系统设计.

辽宁工程技术大学《电力拖动自动控制系统》课程设计 目录 1、前言 (1) 1.1设计目的 (1) 1.2设计内容 (1) 2、伺服系统的基本组成原理及电路设计 (2) 2.1伺服系统基本原理及系统框图 (2) 2.2 伺服系统的模拟PD+数字前馈控制 (4) 2.3 伺服系统的程序 (6) 3、仿真波形图 (9) 结论 (12) 心得与体会 (13) 参考文献 (14)

1、前言 1.1设计目的 1、使学生进一步掌握电力拖动自动控制系统的理论知识,培养学生工程设计能力和综合分析问题、解决问题的能力; 2、使学生基本掌握常用电子电路的一般设计方法,提高电子电路的设计和实验能力; 3、熟悉并学会选用电子元器件,为以后从事生产和科研工作打下一定的基础。 1.2设计内容 1、分析和设计具有三环结构的伺服系统,用绘图软件(matlab)画原理图还有波形图; 2、分析并理解具有三环结构的伺服系统原理。

2、伺服系统的基本组成原理及电路设计 2.1伺服系统基本原理及系统框图 伺服系统三环的PID控制原理: 以转台伺服系统为例,其控制结构如图2-1所示,其中r为框架参考角位置输入信号, 为输出角位置信号. 图2-1 转台伺服系统框图 伺服系统执行机构为典型的直流电动驱动机构,电机输出轴直接与负载-转动轴相连,为使系统具有较好的速度和加速度性能,引入测速机信号作为系统的速度反馈,直接构成模拟式速度回路.由高精度圆感应同步器与数字变换装置构成数字式角位置伺服回路. 转台伺服系统单框的位置环,速度环和电流环框图如图2-2,图2-3和图2-4所示. 图2-2 伺服系统位置环框图 图2-3 伺服系统速度环框图

变频与伺服区别

[文章]伺服与变频的区别 变频, 伺服 简单的讲,伺服是一个闭环控制系统,而变频器通常工作于开环控制,所以无论从速度还是精度上,变频器都无法和伺服相比; 不过,高端闭环矢量变频器精度也能满足很多应用场合。大功率情况,例如100KW的电机,用伺服就太贵了,用变频器上的编码器信号反馈到上端的运动控制器,也可实现(位置)闭环控制。尽管动态性能变频器比不上伺服,但稳态精度也不差。和伺服一样,取决于连接系统的机械特性和编码器分辨率。 其实变频是伺服的一个重要部分,对变频的内部进行闭环的精确控制就成为了伺服了。 伺服放大器不能接普通电机,虽然交流伺服电机与普通三相电机原理上相同,除非普通电机的功率很小。如果控制器输出的是PWM脉冲,它可以与变频器组成一个闭环系统。 交流伺服电机与普通电机有很多区别,具体你可以参考一下《电机学》方面的书籍,按道理如果功放通流容量足够的话是可以接普通三相电机的,这一点往往是满足不了的。普通电机通常功率很大,尤其是启动电流很大,伺服放大器的电流容量不能满足要求。你从电机的尺寸就可以知道原因了。 准确的说伺服系统既有开环系统,也有闭环系统。变频器是改变电源频率和电压,它是一种电源可供更多机床作为无级调速应用。伺服是改变角位移和角速度来达到数控机床的自动加工。 伺服的额定速度比一般异步电机高的多,并且可以控制转速和位移,而一般的变频器只侧重于转速控制,适用于开环调速,而伺服可以做到精确定位,速度环控制响应比变频器加外围速度控制更直接,动态响应好。 其实各位都忽略了一个问题,就是伺服电机都是同步电机,其转子转速就是电机的实际转速,不存在速度差,而变频器控制对象是异步电机,其实际转速跟转子转速存在着转差,所以它本身电机在速度就不是很稳定 ---伺服电机分直流伺服电机和交流伺服电机,交流伺服电机可理解为"两相交流异步电动机",可控性、灵敏度较好,一般用在闭环系统 ---变频器是用来改变频率和电压的,用于交流调速及其他需变频的场合。 ---伺服是"奴隶"的意思。 变频器最大的功能就是可实现无级和可设定的多级变速,当然也可在开环和闭环状态下进行控制;变频器可以和以前的直流调速系统相比;变频器也份恒转矩和恒功率,分别对应于基速下调和基速向上调,基速向上调就类似直流调速中的弱磁调速。目前变频器的功率可做到15000kw甚至更高,而流行的IGBT也可做到几千KW。而伺服系统一般做不到这么大,他更适合于小功率,精密控制的速度,位移,转矩。 交流伺服和交流变频的区别其实只在于控制指标,包括稳态精度和动态性能。 先说稳态精度:交流伺服的执行单元是永磁同步电机(也有人把无刷直流系统叫做交流伺服,但电机大体上与同步电机差不多,只是控制方法不同,后面详说),它的特点是同步,就是说,当控制电机定子磁场的强度和矢量方向后,外力是难以改变转子(动子)的相对位置的,在额定力矩以内,无论外力怎样变化,转子都会自动产生一个回归力,一旦扰动撤消,转子矢量即回归原位。变频器不然,电机转子对定子的相对位置没有记忆,扰动后不能回位。即使加装位置传感器做位置闭环,变频器仍不能和伺服相比。原因是,在位置-速度-力矩三闭环中,变频器实现速度闭环指标比伺服差多了。不过,现在新出来的普通异步电机的伺服控制方案中,采用磁场行波控制,异步电机伺服控制也不是难事,指标也很高。不过驱动器已经不是楼主说的普通变频器或者矢量变频器了 再说动态指标:当伺服系统(通常以速度闭环来举例)速度环给定一个正弦波信号,

伺服系统在数控机床上的应用

[摘要]伺服电机比步进电机性能更优越,随着现代电机控制理论的发展,伺服电机控制技术成为了机床数控系统的重要组成部分,并正朝着交流化、数字化、智能化方向发展。 [关键词] 数控系统伺服电机直接驱动 近年来,伺服电机控制技术正朝着交流化、数字化、智能化三个方向发展。作为数控机床的执行机构,伺服系统将电力电子器件、控制、驱动及保护等集为一体,并随着数字脉宽调制技术、特种电机材料技术、微电子技术及现代控制技术的进步,经历了从步进到直流,进而到交流的发展历程。本文对其技术现状及发展趋势作简要探讨。 一、数控机床伺服系统 (一)开环伺服系统。开环伺服系统不设检测反馈装置,不构成运动反馈控制回路,电动机按数控装置发出的指令脉冲工作,对运动误差没有检测反馈和处理修正过程,采用步进电机作为驱动器件,机床的位置精度完全取决于步进电动机的步距角精度和机械部分的传动精度,难以达到比较高精度要求。步进电动机的转速不可能很高,运动部件的速度受到限制。但步进电机结构简单、可靠性高、成本低,且其控制电路也简单。所以开环控制系统多用于精度和速度要求不高的经济型数控机床。 (二)全闭环伺服系统。闭环伺服系统主要由比较环节、伺服驱动放大器,进给伺服电动机、机械传动装置和直线位移测量装置组成。对机床运动部件的移动量具有检测与反馈修正功能,采用直流伺服电动机或交流伺服电动机作为驱动部件。可以采用直接安装在工作台的光栅或感应同步器作为位置检测器件,来构成高精度的全闭环位置控制系统。系统的直线位移检测器安装在移动部件上,其精度主要取决于位移检测装置的精度和灵敏度,其产生的加工精度比较高。但机械传动装置的刚度、摩擦阻尼特性、反向间隙等各种非线性因素,对系统稳定性有很大影响,使闭环进给伺服系统安装调试比较复杂。因此只是用在高精度和大型数控机床上。 (三)半闭环伺服系统。半闭环伺服系统的工作原理与全闭环伺服系统相同,同样采用伺服电动机作为驱动部件,可以采用内装于电机内的脉冲编码器,无刷旋转变压器或测速发电机作为位置/ 速度检测器件来构成半闭环位置控制系统,其系统的反馈信号取自电机轴或丝杆上,进给系统中的机械传动装置处于反馈回路之外,其刚度等非线性因素对系统稳定性没有影响,安装调试比较方便。机床的定位精度与机械传动装置的精度有关,而数控装置都有螺距误差补偿和间隙补偿等项功能,在传动装置精度不太高的情况下,可以利用补偿功能将加工精度提高到满意的程度。故半闭环伺服系统在数控机床中应用很广。 二、伺服电机控制性能优越 (一)低频特性好。步进电机易出现低速时低频振动现象。交流伺服电机不会出现此现象,运转非常平稳,交流伺服系统具有共振抑制功能,可涵盖机械的刚性不足,并且系统内部具有频率解析机能,可检测出机械的共振点,便于系统调整。 (二)控制精度高。交流伺服电机的控制精度由电机轴后端的旋转编码器保证。例如松下全数字式交流伺服电机,对于带17位编码器的电机而言,驱动器每接收217=131072个脉冲电机转一圈,即其脉冲当量为360°/131072=9.89秒。是步距角为 1.8°的步进电机的脉冲当量的1/655。 (三)过载能力强。步进电机不具有过载能力,为了克服惯性负载在启动瞬间的惯性力矩,选型时需要选取额定转矩比负载转矩大很多的电机,造成了力矩浪费的现象。而交流伺服电机具有较强的过载能力,例如松下交流伺服系统中的伺服电机的最大转矩达到额定转矩的三倍,可用

机电设备伺服与变频应用第一次形考作业

附件 江苏开放大学 形成性考核作业 学号2016020000025 姓名周宇峰 课程代码110050 课程名称机电设备伺服与变频应用 评阅教师 第 1 次任务 共 3 次任务 江苏开放大学

一、选择题(每小题2分,共20分) 1.1.带二极管整流器的SPWM 变频器是以正弦波为逆变器输出波形,是一系列( A )的矩形波。 A. 幅值不变,宽度可变 B. 幅值可变,宽度不变 C. 幅值不变,宽度不变 D. 幅值可变,宽度可变 2.绕线式异步电动机双馈调速,如原处于低同步电动运行,在转子侧加入与转子反电动势相位相同的反电动势,而负载为恒转矩负载,则( B )。 A .10<

伺服电机及其驱动技术-许家忠

运动控制系统 哈尔滨理工大学自动化学院主讲教师:许家忠

伺服电机及其驱动技术

伺服系统的发展 (1)直流伺服系统 ?伺服系统的发展经历了由液压到电气的过程。电 气伺服系统根据所驱动的电机类型分为直流(DC)伺服系统和交流(AC)伺服系统。50年代,无刷电机和直流电机实现了产品化,并在计算机外围 设备和机械设备上获得了广泛的应用。70年代则 是直流伺服电机的应用最为广泛的时代。 3

(2)交流伺服系统 ?从70年代后期到80年代初期,随着微处理器技术、大功率高性能半导体功率器件技术和电机永磁材料制造工艺的发展及其性能价格比的日益提高,交流伺服技术—交流伺服电机和交流伺服控制系统逐渐成为主导产品。交流伺服驱动技术已经成为工业领域实现自动化的基础技术之一,并将逐渐取代直流伺服系统。 4

(2)交流伺服系统 ?交流伺服系统按其采用的驱动电动机的类型来分,主要有两大类:永磁同步(SM型)电动机交流伺服系统和感应式异步(IM型)电动机交流伺服系统。其中,永磁同步电动机交流伺服系统在技术上已趋于完全成熟,具备了十分优良的低速性能,并可实现弱磁高速控制,拓宽了系统的调速范围,适应了高性能伺服驱动的要求。并且随着永磁材料性能的大幅度提高和价格的降低,其在工业生产自动化领域中的应用将越来越广泛,目前已成为交流伺服系统的主流。感应式异步电动机交流伺服系统由于感应式异步电动机结构坚固,制造容易,价格低廉,因而具有很好的发展前景,代表了将来伺服技术的方向。但由于该系统采用矢量变换控制,相对永磁同步电动机伺服系统来说控制比较复杂,而且电机低速运行时还存在着效率低,发热严重等有待克服的技术问题,目前并未得到普遍应用。 5

伺服驱动器和电机变频器有什么区别和联系

伺服驱动器和电机变频器有什么区别和联系呢? 一、两者的共同点: 交流伺服的技术本身就是借鉴并应用了变频的技术,在直流电机的伺服控制的基础上通过变频的PWM方式模仿直流电机的控制方式来实现的,也就是说交流伺服电机必然有变频的这一环节,变频是伺服之母。变频就是将工频的50、60HZ的交流电先整流成直流电,然后通过可控制门极的各类晶体管(IGBT,IGCT等)通过载波频率和PWM调节逆变为频率可调的波形类似于正余弦的脉动电,由于频率可调,所以交流电机的速度就可调了(n=60f/p ,n转速,f频率,p极对数) 二、两者的区别: 先谈谈变频器。简单的变频器只能调节交流电机的速度,这时可以开环也可以闭环,要视控制方式和变频器而定,这就是传统意义上的V/F控制方式。现在很多的变频已经通过数学模型的建立,将交流电机的定子磁场UVW3相转化为可以控制电机转速和转矩的两个电流的分量,现在大多数能进行力矩控制的著名品牌的变频器都是采用这样方式控制力矩,UVW每相的输出要加霍尔效应的电流检测装置,采样反馈后构成闭环负反馈的电流环的PID 调节;这样可以既控制电机的速度也可控制电机的力矩,而且速度的控制精度优于v/f控制,编码器反馈也可加可不加,加的时候控制精度和响应特性要好很多。 再看伺服。伺服就是一个提供闭环反馈信号来控制位置和转速。 驱动器方面,伺服驱动器在发展了变频技术的前提下,在驱动器内部的电流环,速度环和位置环(变频器没有该环)都进行了比一般变频更精确的控制技和算法运算,在功能上也比传统的变频强大很多,主要的一点可以进行精确的位置控制。通过上位控制器发送的脉冲序列来控制速度和位置(当然也有些伺服内部集成了控制单元或通过总线通讯的方式直接将位置和速度等参数设定在驱动器里),驱动器内部的算法和更快更精确的计算以及性能更优良的电子器件使之更优越于变频器。 目前主流的伺服驱动器均采用数字信号处理器(DSP)作为控制核心,可以实现比较复杂的控制算法,实现数字化、网络化和智能化。 三:中智H600系列伺服驱动器的特点 由于伺服控制系统大部分都采用传统的硬件结构,控制算法比较固定,而且也无法实现不同工况下的高性能控制算法,难以满足现代工业的需求 中智最新一代H600系列伺服驱动器,将ST公司的ARM7升级版STM32F103RET6的工控芯片引入智能电液伺服系统,具有软硬件结合程度更加紧密、系统的智能化程度更高、可实现多种控制策略的优势,主要应用于对效率、精度及节能都要较高要求的电液伺服行业。采用新一代高性能一体化矢量控制平台和先进的一体化驱动解决方案,实现了同步电机驱动与异步电机驱动的一体化,转矩控制、速度控制、位置控制的一体化,并可实现在线切换模式,其各项驱动指标均达到业界领先水准,使电液控制技术进一步朝向数字化、集成化、智能化、轻量化和节能降耗的方向持续发展,进一步增强了配套主机厂商在高端应用和新兴行业的竞争力。

伺服控制系统(设计)

第一章伺服系统概述 伺服系统是以机械参数为控制对象的自动控制系统。在伺服系统中,输出量能够自动、快速、准确地跟随输入量的变化,因此又称之为随动系统或自动跟踪系统。机械参数主要包括位移、角度、力、转矩、速度和加速度。 近年来,随着微电子技术、电力电子技术、计算机技术、现代控制技术、材料技术的快速发展以及电机制造工艺水平的逐步提高,伺服技术已迎来了新的发展机遇,伺服系统由传统的步进伺服、直流伺服发展到以永磁同步电机、感应电机为伺服电机的新一代交流伺服系统。 目前,伺服控制系统不仅在工农业生产以及日常生活中得到了广泛的应用,而且在许多高科技领域,如激光加工、机器人、数控机床、大规模集成电路制造、办公自动化设备、卫星姿态控制、雷达和各种军用武器随动系统、柔性制造系统以及自动化生产线等领域中的应用也迅速发展。 1.1伺服系统的基本概念 1.1.1伺服系统的定义 “伺服系统”是指执行机构按照控制信号的要求而动作,即控制信号到来之前,被控对象时静止不动的;接收到控制信号后,被控对象则按要求动作;控制信号消失之后,被控对象应自行停止。 伺服系统的主要任务是按照控制命令要求,对信号进行变换、调控和功率放大等处理,使驱动装置输出的转矩、速度及位置都能灵活方便的控制。

1.1.2伺服系统的组成 伺服系统是具有反馈的闭环自动控制系统。它由检测部分、误差放大部分、部分及被控对象组成。 1.1.3伺服系统性能的基本要求 1)精度高。伺服系统的精度是指输出量能复现出输入量的精确程度。 2)稳定性好。稳定是指系统在给定输入或外界干扰的作用下,能在短暂的调节过程后,达到新的或者恢复到原来的平衡状态。 3)快速响应。响应速度是伺服系统动态品质的重要指标,它反映了系统的跟踪精度。 4)调速范围宽。调速范围是指生产机械要求电机能提供的最高转速和最低转速之比。 5)低速大转矩。在伺服控制系统中,通常要求在低速时为恒转矩控制,电机能够提供较大的输出转矩;在高速时为恒功率控制,具有足够大的输出功率。 6)能够频繁的启动、制动以及正反转切换。 1.1.4 伺服系统的种类 伺服系统按照伺服驱动机的不同可分为电气式、液压式和气动式三种;按照功能的不同可分为计量伺服和功率伺服系统,模拟伺服和功率伺服系统,位置

变频器与伺服电机的区别

简单的讲,伺服是一个闭环控制系统,而变频器通常工作于开环控制,所以无论从速度还是精度上,变频器都无法和伺服相比。 其实变频只是伺服的一个部分,伺服是在变频的基础上进行闭环的精确控制从而达到更理想的效果。 变频器只是一个V-F转换,用于控制电机的一个器件。而伺服是一个闭环的系统。简单说变频器主要控制电机的转速。伺服是既可以控制速度,又可以控制位置和移动量,力距,定位,从而达到精确、稳定,不会因变频而产生死机。伺服不仅能达到以上的功能,而且产生一个闭环的系统,从而避免变频器产生的辐射。变频器在变频过程中还会产生大量热量,造成温度的提高与声音,而伺服系统是不会产生这样的后果。所以说伺服系统的达到的效果是变频电机无法比拟的。 伺服电机都是同步电机,其转子转速就是电机的实际转速,不存在速度差,而变频器控制对象是异步电机,其实际转速跟转子转速存在着转差,所以它本身电机在速度就不是很稳定。 伺服的基本概念是准确、精确、快速定位。变频仅仅是伺服控制的一个必须的内部环节,伺服驱动器中同样存在变频(要进行无级调速)。但伺服将电流环速度环或者位置环都闭合进行控制,这是很大的区别。除此外,伺服电机的构造与普通电机是有区别的,要满足快速响应和准确定位。同步伺服的成本价格及其昂贵,这样在现场应用允许的情况下多采用交流异步伺服,这时很多驱动器就是高端变频器,带编码器反馈闭环控制。所谓伺服就是要满足准确、精确、快速定位,所以往往只有高端的产品才采用伺服系统。 变频最早只是用来调速,无论同步还是异步电机都可以用,并不用来完成精确定位跟踪的工作,伺服本身的功能就是精确快速定位跟踪,变频器一般做不到这个效果。 应用方面: 由于变频器和伺服在性能和功能上的不同,所以应用也不大相同。 1、在速度控制和力矩控制的场合要求不是很高的一般用变频器,也有在上位加位置反馈信号构成闭环用变频进行位置控制的,精度和响应都不高。现有些变频也接受脉冲序列信号控制速度的,但直接控制位置不准确。 2、在有严格位置控制要求的场合中只能用伺服来实现,还有就是伺服的响应速度远远大于变频,有些对速度的精度和响应要求高的场合也用伺服控制,能用变频控制的运动的场合几乎都能用伺服取代,但关键是在价格方面伺服远远高于变频。 伺服的基本概念是准确、精确、快速定位。变频是伺服控制的一个必须的内部环节,伺服驱动器中同样存在变频(要进行无级调速)。但伺服将电流环速度环或者位置环都闭合进行控制,这是很大的区别。除此外,伺服电机的构造与普通电机是有区别的,要满足快速响应和准确定位。现在市面上流通的交流伺服电机多为永磁同步交流伺服,但这种电机受工艺限制,很难做到很大的功率,十几KW以上的同步伺服价格及其昂贵,这样在现场应用允许的情况下多采用交流异步伺服,这时很多驱动器就是高端变频器,带编码器反

交流伺服电机的工作原理

交流伺服电机的工作原理 伺服电机内部的转子是永磁铁,驱动器控制的U/V/W三相电形成电磁场,转子在此磁场的作用下转动,同时电机自带的编码器反馈信号给驱动器,驱动器根据反馈值与目标值进行比较,调整转子转动的角度。伺服电机的精度决定于编码器的精度(线数)。 4. 什么是伺服电机?有几种类型?工作特点是什么? 答:伺服电动机又称执行电动机,在自动控制系统中,用作执行元件,把所收到的电信号转换成电动机轴上的角位移或角速度输出。分为直流和交流伺服电动机两大类,其主要特点是,当信号电压为零时无自转现象,转速随着转矩的增加而匀速下降, 请问交流伺服电机和无刷直流伺服电机在功能上有什么区别? 答:交流伺服要好一些,因为是正弦波控制,转矩脉动小。直流伺服是梯形波。但直流伺服比较简单,便宜。 永磁交流伺服电动机 20世纪80年代以来,随着集成电路、电力电子技术和交流可变速驱动技术的发展,永磁交流伺服驱动技术有了突出的发展,各国著名电气厂商相继推出各自的交流伺服电动机和伺服驱动器系列产品并不断完善和更新。交流伺服系统已成为当代高性能伺服系统的主要发展方向,使原来的直流伺服面临被淘汰的危机。90年代以后,世界各国已经商品化了的交流伺服系统是采用全数字控制的正弦波电动机伺服驱动。交流伺服驱动装置在传动领域的发展日新月异。永磁交流伺服电动机同直流伺服电动机比较,主要优点有: ⑴无电刷和换向器,因此工作可靠,对维护和保养要求低。 ⑵定子绕组散热比较方便。 ⑶惯量小,易于提高系统的快速性。 ⑷适应于高速大力矩工作状态。 ⑸同功率下有较小的体积和重量。 自从德国MANNESMANN的Rexroth公司的Indramat分部在1978年汉诺威贸易博览会上正式推出MAC永磁交流伺服电动机和驱动系统,这标志着此种新一代交流伺服技术已进入实用化阶段。到20世纪80年代中后期,各公司都已有完整的系列产品。整个伺服装置市场都转向了交流系统。早期的模拟系统在诸如零漂、抗干扰、可靠性、精度和柔性等方面存在不足,尚不能完全满足运动控制的要求,近年来随着微处理器、新型数字信号处理器(DSP 到目前为止,高性能的电伺服系统大多采用永磁同步型交流伺服电动机,控制驱动器多采用快速、准确定位的全数字位置伺服系统。典型生产厂家如德国西门子、美国科尔摩根和日本松下及安川等公司。 日本安川电机制作所推出的小型交流伺服电动机和驱动器,其中D系列适用于数控机床(最高转速为1000 r/min,力矩为0.25~2.8N.m),R系列适用于机器人(最高转速为3000r/min,力矩为0.016~0.16N.m)。之后又推出M、F、S、H、C、G 六个系列。20世纪90年代先后推出了新的D系列和R系列。由旧系列矩形波驱动、8051单片机控制改为正弦波驱动、80C、154CPU和门阵列芯片控制,力矩波动由24%降低到7%,并提高了可靠性。这样,只用了几年时间形成了八个系列(功率范围为0.05~6kW)较完整的体系,满足

交流异步电机伺服控制技术的应用

交流异步电机伺服控制技术的应用 摘要对交流异步电机实现伺服控制是电机控制技术的一大突破,交流异步伺服控制技术在几种控制技术中具有明显的优势,控制功能和精度已经达到了同步伺服的水平,在各行业自动控制领域,特别是中、大功率运动控制系统有很好的应用前景。采用滑差频率矢量控制原理、系统级芯片SOC 和“软伺服”技术的时光全数字化交流伺服控制器,可应用于需要对位置、速度、加速度和转矩进行控制的各种领域。 关键词交流异步电机伺服控制应用 1 交流异步电动机伺服控制系统 1.1交流异步电动机 交流异步电动机是应用最广的驱动设备,占总动力负载的85 % 左右。三相交流异步电机具有效率较高、结构简单、牢固耐用、经济可靠以及成本较低等优点,在工业、农业和国民经济的各个部门中,具有极其重要的地位。三相交流异步电动机是由流过定子线圈的电流产生旋转磁场而令转子转动,旋转磁场和转子转动之间的速度差称为转差。转子的感应电流与转差成比例关系。为保证旋转磁场与感应电流保持正交关系,需要进行AC矢量控制。但与直流电机和交流同步电机的励磁(或永久)磁场相比,对交流异步电机的控制难度要大得多。在调速性能和改善功率因数,尤其是高精度伺服控制方面,技术上一直未取得突破。 随着微电子、电力电子与计算机技术的发展,变频技术出现,变频器不需改变电机结构,通过改变电机输入电压及频率,扩大了电机的调速范围。但变频技术满足不了“高、精、尖”产品对于工业控制技术的要求。自动控制技术要求对电机的输出参数如位置、速度、加速度、转矩进行控制,即伺服控制。 时光科技有限公司自主研发了具有完全知识产权的全数字化交流伺服控制技术,实现了对三相交流异步电机的高精度伺服控制。对交流异步电机实现伺服控制是电机控制技术的一大突破,使得交流异步电机在发挥固有的优势的基础上,大大扩展了应用领域。 伺服系统又称为随动系统,它的基本功能就是按照指令要求实现对执行机构运动的控制,使系统的输出精确地跟随指令值变化。其特点是:宽的调速范围,转速、转向可控;线性的机械特性和调节特性;快速响应;无自转现象(零速锁定)。 1.2交流伺服控制系统 伺服控制器伺服电动机组 伺服系统控制的方式有:位置控制、速度控制、转矩控制以及混合控制,即前三者之间的切换。近几年来,伺服控制的优势已经被广泛认识,交流伺服技术在各个领域得到广泛应用。 2 几种电机控制方式的比较

工控商务网:伺服系统技术特性在数控机床中的应用案例

工控商务网:伺服系统技术特性在数控机床中的应用案例 文章来自:中国工控网 摘要:作为数控机床的重要功能部件,伺服系统的特性一直是影响系统加工性能的重要指标。笔者介绍了数控机床的进给伺服系统、主轴伺服系统的特性,并对其应用前景进行展望。 关键词:数控机床;伺服系统特性;应用 1 概述 作为数控机床的执行机构,伺服系统集电力电子器件、控制、驱动及保护为一体,并随着数字脉宽调制技术、特种电机材料技术、微电子技术及现代控制技术的进步,经历了从步进到直流,进而到交流的发展历程。数控机床中的伺服系统种类繁多。 伺服系统是以机械运动的驱动设备一电动机为控制对象,以控制器为核心,以电力电子功率变换装置为执行机构,在自动控制理论的指导下组成的电气传动自动控制系统。这类系统控制电动机的转矩、转速和转角,将电能转换为机械能,实现机械的运动要求。数控机床中,伺服系统接收数控系统发出的位移、速度指令,经变换、放调与整大后,由电动机和机械传动机构驱动机床坐标轴、主轴等,带动工作台及刀架,通过轴的联动使刀具相对工件产生各种复杂的机械运动,从而加工出用户要求的复杂形状工件。 2 伺服系统的结构 从基本结构看,伺服系统主要由控制器、功率驱动装置、反馈装置和电动机组成。控制器按照数控系统的给定值和通过反馈装置检测的实际运行值的差,调节控制量;功率驱动装置作为系统的主回路,一方面按控制量的大小将电网中的电能作用到电动机上,调节电动机转矩的大小;另一方面按电动机的要求把恒压恒频的电网供电转换为电动机所需的交流电或直流电;电动机则按供电大小拖动机械运转。 考虑伺服系统在数控机床中的应用,本文按机床中传动机械的不同将其分为进给伺服与主轴伺服。 3 进给伺服系统的特性 进给伺服以数控机床的各坐标为控制对象,产生机床的切削进给运动。为此,要求进给伺服能快速调节坐标轴的运动速度,并能精确地进行位置控制。具体要求其调速范围宽、位移精度高、稳定性好、动态响应快。根据系统使用的电动机,进给伺服可细分为步进伺服、直流伺服、交流伺服和直线伺服[2]。 (1)步进伺服系统 步进伺服是一种用脉冲信号控制,并将脉冲信号转换成相应角位移的控制系统。其角位

机器人应用技术分析

2014年12月(下) 机器人应用技术分析 石红梅 ( 北京信息职业技术学院专业部,北京市100070) [摘要]机器人的应用领域十分广泛,包括工业生产、海空探索、康复和军事等。此外,机器人已逐渐在医院、家庭和一些服务行业获得 应用,并且已经进入高校的课堂。根据其功能可分为工业机器人、服务机器人、探索机器人和军事机器人。机器人核心技术的应用围绕基本结构优化与技术参数的提高。本文先将机器人的技术参数进行简单描述,对其主要知识基础与技术要求做了简单的论述,其应用的核心技术是目前国际各大企业关注的问题。[关键词]机器人;控制器;伺服系统;核心 机器人是“一种装备有记忆装置和末端执行装置的、能够完成各种移动来代替人类劳动的通用机器”。它又分为以下两种情况来定义: 工业机器人是“一种能够执行与人的上肢类似动作的多功能机器”;如图1所示。 智能机器人是“一种具有感觉和识别能力,并能够控制自身行为的机器”。如图2所示。 1工业机器人基本结构及技术参数1.1工业机器人基本结构 从机械结构上,可以分为串联和并列机器人,目前广泛应用的是串联通用机器人。串联通用机器人一般由手臂、手腕组成。机器人手臂具有3个自由度(运动坐标轴),机器人作业空间由手臂运动范围决定。手腕是机器人工具(如焊枪、喷嘴、机加工刀具、夹爪)与主构架的连接机构,它具有3个自由度。如图1所示。 图1串联通用机器人 图2智能机器人 从机器人系统整体来看,分为控制器(包括示教器)、伺服驱动系统、机构、测量及传感器。其中控制器,用于控制机器人各运动部件的位置、速度和加速度,使机器人手爪或机器人工具的中心点以给定的速度沿着给定轨迹到达目标点。控制器是机器人的大脑,其性能和功能直接决定了机器人的整体能力。驱动系统,为机器人各运动部件提供力、力矩、速度、加速度。驱动系统是机器人的肌肉,其质量、驱动能力、响应速度、稳定性,直接决定了机器人的运动能力。 目前国产工业机器人,绝大多数使用日本品牌的伺服驱动系统,如松下、安川、三菱、三洋、富士等。测量系统,用于机器人运动部件的位移、速度和加速度的测量以及工作对象的测量,如工件及其位置的识别,障碍物的识别,抓举工件的重量是否过载等。通常机器人自身运动部件及工件重量的测量,使用伺服驱动系统提供的位置及电流信息,工件位置、障碍物识别等使用机器视觉等外接的测量设备。 1.2工业机器人技术参数1.2.1自由度数和类型 自由度(DOF)是指机器人所具有的独立坐标轴运动的数目。自 由度越多就越灵活,但结构也越复杂。机器人的自由度要根据其用途设计,一般在3 ̄6个之间。如果小于3个,不能称为机器人。大于6个的自由度称为冗余自由度(空间位姿只有6个参数)。冗余自由度能使机器人避开障碍物和改善机器人的动力性能。设计人类的手臂共有7个自由度。类型指的是所设计的关节属于转动关节还是移动关节。 1.2.2结构形式 结构形式指机器人运动链的形式,包括并联、串联、混合形式,决定了机器人适应的行业。串联结构优点是工作范围大,缺点是最大速度和刚度较差。并联结构优点是速度和刚度很好,但是工作范围小。 1.2.3运动范围 运动范围指机器人关节的运动范围,决定了工作空间的大小。由于末端执行器的形状和尺寸是多种多样的,为真实反映机器人的特征参数,故工作空间是指不安装末端执行器时的工作区域。工作空间的大小不仅与机器人各连杆的尺寸有关,而且与机器人的总体结构形式有关。工作空间的形状和大小是十分重要的,机器人在执行某作业时可能会因存在手部不能到达的盲区而不能完成任务。 1.2.4最大速度 最大速度指机器人关节或末端操作器的最高运动速度,决定了机器人的最大效率。 有的厂家指工业机器人主要自由度上最大的稳定速度,有的厂家 指手臂末端最大的合成速度,对此通常都会在技术参数中加以说明。最大工作速度愈高,其工作效率愈高。 1.2.5负载能力 负载能力指机器人在一定精度和运动条件下所能承担的最大负载,是决定机器人成本的主要参数。承载能力是指机器人在作业范围内的任何位姿上所能承受的最大质量。承载能力不仅取决于负载的质量,而且与机器人运行的速度和加速度的大小和方向有关。为保证安全,通常将承载能力这一技术指标确定为高速运行时的承载能力。 1.2.6重复定位精度 重复定位精度指机器人经过多次循环运动后,到达空间同一位置和姿态的最大误差范围。重复定位精度是指在同一环境、同一条件、同一目标动作、同一命令之下,机器人连续重复运动若干次时,其位置的分散情况,是关于精度的统计数据。因重复定位精度不受工作载荷变化的影响,故通常用重复定位精度这一指标作为衡量示教-再现工业机器人水平的重要指标。 1.2.7控制方式 控制方式指机器人运动控制的方式,如示教再现、点位控制、或轨迹控制,是机器人控制器的基本指标。 1.2.8驱动方式 驱动方式指机器人是采用液压、气动、交流电机或步进电机控制等,目前先进的工业机器人通常采用交流电机驱动。 2机器人技术涉及的基本知识 机器人技术所涉及的基本知识范围广,归纳起来包括以下几个学科:1)工程力学(理论力学、材料力学)。2)高等代数(线性代数、矩阵分析)。 14

交流伺服与变频技术A(17-18-1) - 答案

考试学期 17-18-1 开课部门 电气工程学院 考试班级 机电1631、1632、1633、1634、1635、1636、1637、1638(答案) 考试形式 闭卷 题号 一 二 三 四 五 六 七 八 九 …… 总分 得分 本试卷共 2页,请核对试卷页数,班级、姓名等信息写在左侧,否则试卷无效。 一、填空题:(每空1分,共20分) 1.晶闸管的导通条件是 U AK >0 和 Ugk >0 ,两者缺一不可。晶闸 管一旦导通,门极即失去控制作用。要关断已导通的晶闸管,必须使 I A < I H 。 2.单相桥式可控整流电路电阻负载控制角的移相范围是 180o ,晶闸管承受的最大压 为 √2 U 2 (交流输入电压为 2 u )。 3. 课程学习的全控型电力电子器件有 GTR 、 MOSFET 和 IGBT 等。 4.直流斩波电路调制方法有 PWM 、 PFM 、 混合调制 三种。 6.逆变电路的作用是 把直流电变换为频率可调的交流电 。 7.根据逆变电路的负载不同分为 有源逆变 和 无源逆变 。以逆变电路的形式又 分为 电压 型逆变器和 电流 型逆变器,现普遍使用 PWM 型逆变器。 8.一般变频器主接线时R 、S 、T 端接 电源 ,U 、V 、W 端接 负载 。 9.变频器在使用中出现报警时首先要切断变频器 电源 。 二、判断题:(每题2分,共10分) 1. 在单相全控桥整流电路中,晶闸管的额定电压应取 2 u 。 ( × ) 2. 双向晶闸管的额定电流是用有效值表示。( √ ) 3.GTR 是电压驱动器件,而电力MOSFET 是电流驱动型器件 ( ×) 4. 变频器安装时要考虑到环境、温度、湿度等因素。 ( √) 5. 变频调速是直流调速。 ( × ) 三、选择题(每题2分,共10分) 1. 单相半波可控整流电阻性负载电路中,控制角α的最大移相范围是 D 。 A :90° B :120° C :150° D :180° 2. 若晶闸管电流有效值是157A ,则其额定电流为 B 。 A: 157A B: 100A C: 80A D: 246.5A 3. IGBT 是MOSFET 与GTR 复合而成的,其驱动为 B 驱动。 A :电流 B :电压 C :电压与电流均可 4. 变频器电气安装布线时,主电路布线与控制线要分开并相距100mm 以上,尽量不要交叉, 如果必须交叉时要 A 交叉。 A :垂直, B :随意 , C :大于90度 5. 三菱500变频器使用外部调节频率时P79参数设置为 C 。 A :0 B :1 C :2 D :3 四、简答题:(共20分) 1.试说明电力MOSFET 的导通与关断原理(4分)。 答:当D 、S 加正电压(漏极为正,源极为负),U GS =0时,P 体区和N 漏区的PN 结反偏,D 、S 之间无电流通过;如果在G 、S 之间加一正电压U GS ,由于栅极是绝缘的,所以不会有电流流过,但栅极的正电压会将其下面P 区中的空穴推开,而将P 区中的少数载流子电子吸引到栅极下面的P 区表面。当U GS 大于某一电压U T 时,栅极下P 区表面的电子浓度将超过空穴浓度,从而使P 型半导体反型成N 型半导体而成为反型层,该反型层形成N 沟道而使PN 结J1消失,漏极和源极导电。电压U T 称开启电压或阀值电压,U GS 超过UT 越多,导电能力越强,漏极电流越大。(或用表达式表示) 2.简述PWM 逆变中面积等效原理(5分)。 冲量相等而形状不同的窄脉冲加在具有惯性环节上时,其效果基本相同。冲量为窄脉 冲的面积,效果基本相同为输出响应波形基本相同。 3.画出下例器件的电气符号(6分) (1)晶闸管: (2)IGBT : (3)MOSFET : 4.什么是有源逆变?什么是无源逆变?并各举一例其应用(5分) 1)逆变器输出交流电回归电网叫有源逆变。如并网光伏逆变。 2) 逆变器输出交流电供给不同频率需要的负载叫无源逆变。如变频器调速。