轻烧白云石的煅烧工艺对活性度的影响_冯小平

轻烧白云石的煅烧工艺对活性度的影响_冯小平
轻烧白云石的煅烧工艺对活性度的影响_冯小平

切削加工时表面粗糙度形成的原因及其影响因

切削加工时表面粗糙度形成的原因及其影响因素 简介:1 表面粗糙度产生的原因几何因素由于刀具切削刃的几何形状、几何参数、进给运动及切削刃本身的粗糙度等原因,未能将被加工表面上的材料层完全干净地去除掉(只有当刀具上带有刀具的副偏角kr=0的修光刃、且进给量小于修光刃宽度时,理论上才不产生残留面积),在已加工表面上遗留下残留面积,残留面积的高度构成了表面粗糙度Rz。当f≤2resinkr,残留面积是由圆弧过渡刃构成。此时关键字:刀具夹具切削铣削车削机床测量 1 表面粗糙度产生的原因 几何因素 由于刀具切削刃的几何形状、几何参数、进给运动及切削刃本身的粗糙度等原因,未能将被加工表面上的材料层完全干净地去除掉(只有当刀具上带有刀具的副偏角k'r=0的修光刃、且进给量小于修光刃宽度时,理论上才不产生残留面积),在已加工表面上遗留下残留面积,残留面积的高度构成了表面粗糙度Rz。 当f≤2resink'r,残留面积是由圆弧过渡刃构成。此时 式中:f——进给量,mm/r; re——刀尖圆弧半径。 当2resink'r≤f≤(re/sink'r)[1-cos(kr+k'r],残留面积是由刀尖圆弧过渡刃和直线副切削刃构成。此时 Rz=re[1-sin(k'r+b)]×1,000 sinb=1-(f/re)sink'r 式中kr,k'r——刀具的主偏角、副偏角。 当f>(re/sink'r)[1-cos(kr+k'r)],残留面积是由刀尖圆弧过渡刃和二直线主、副切削刃构成。此时Rz= 1 f-re(tan kr +tan k'r )]×1000 cotkr+k'r 2 2 当re→0时,残留面积是由主、副2条直线切削刃构成。此时Rz= f ×1000 cotkr+k'r 刀具切削刃的粗糙度由于直接复映在加工表面上,所以刀具切削刃的粗糙度值,应低于加工表面要求的粗糙度值。 实际上加工表面的粗糙度总是大于按以上计算的残留面积的高度,只有切削脆性材料或高速切削塑性材料时,实际加工表面的粗糙度才比较接近残留面积的高度,说明影响表面粗糙度的还有其他原因。 积屑瘤

机械加工影响表面粗糙度的因素及改善措施

机械加工影响表面粗糙度的因素及改善措施 摘要:零件表面粗糙度是判断一个制造品是否符合工业标准的重要指标,直接决定其能否在机械中发挥正常功能,因此,研究机械加工影响表面粗糙度的因素十分重要,文中结合实际加工经验,探析了哪些因素对零件表面粗糙度有显著影响,并且根据这些影响因素给出合理的解决方案。 关键词:机械加工;表面粗糙度;改善措施 引言 在机械使用过程中,大多因为零件的破损导致其部分功能无法正常使用,工业产品的使用时间,产品质量和产品性能取决于组成零件的加工质量,而零件本身的质量由可靠性,耐磨性,表面粗糙度等因素决定,而其中的重要因素就是表面粗糙度,表面粗糙度即是零件加工表面较小间距和微小峰谷的不平度的表述,波峰和波谷的距离差距会影响机械零件的性能。因此研究表面粗糙度的影响因素十分重要,能够帮助改善零件的性能和机械设备的整体性能。 1.零件表面粗糙度的影响因素分析 1.1切削加工带来的影响 使用刀具给零件加工时,会在表面存留切削的残留面,这种残留面具有微观几何误差,进给量,主副偏角和刀尖圆弧的半径都会对残留面的大小,调整好加工时的进给量,角度就可以减小零件的变形程度和切割面积,另外,加工零件时应该选择符合材质特性的润滑剂和刀具。材料的选择也是至关重要的,因为材料加工发生切屑分离时,会产生塑性变形,这种塑性变形程度是和材料的弹力极限有关系,如果材料不好,残留塑形面积就会扩大,最终导致零件不符合工业标准。刀具的后刀面和已经加工的工件表面的摩擦也会对表面粗糙度产生影响,外力作用增大也会增加表面粗糙度。 1.2磨削加工带来的影响 磨削加工用于机械精细加工,磨粒的硬度很高,具有白锐性,可以用加工各种材料,在加工过程中,磨削转速一般是30到35m/s,转速非常高。但是磨削加工可以获得很高的加工精度和表面粗糙度值。正是因为磨削加工的优势,在具体加工过程中,温度可达1000摄氏度到1500摄氏度,会加深塑性变形,而且磨粒的负前角磨削比较薄,磨削时大多挤压零件表面,面对塑性变形过程,磨粒侧边会产生塑性热流,进而在零件上划出微小粗糙,高温会更近一步加深表面粗糙度。 一般而言,当磨削转速增大时,工件表面磨削度粗糙值减少,因为没有变形的磨粒的厚度会变小,工件转速增加时,磨削表面粗糙度反而会增大,轴方向的

轻烧白云石在炼钢使用情况

赴@@考察轻烧白云石生产及其在炼钢使用情况的报告 2013年7月17~7月22日,就¥¥¥熔剂车间6、7号气烧窑转产为轻烧白云石的生产工艺技术及其在炼钢使用情况等相关事项的考察,到@@进行学习。现将考察情况汇报如下: (一)轻烧白云生产部分 @@石灰车间有6座气烧竖窑+1座回转窑,其中5座气烧竖窑生产石灰,供烧结厂使用;1座气烧窑煅烧轻烧白云石,供炼钢使用;回转窑生产的石灰供炼钢使用。 一、竖窑工艺装备对比情况 1.1竖窑技术参数对比 1.2部分设备对比情况

备注:两家钢厂均使用湖北风机厂产品对比分析,两个钢厂的炉窑技术参数及使用的引风机和底风/侧风风机能力相似,**使用的煤气加压机能力比济钢的更大。 二、生产工艺流程 2.1@@石灰车间白云石生产工艺流程 2.2矿山熔剂车间石灰生产工艺流程 对比分析,@@石灰车间上料系统减少了一个称量斗装置,原料经过振动给料机直接进入单斗,上料量由人工设定振料时间控制,每斗重量在1000kg左右;矿山熔剂的原料经过振动给料机进入称量斗,在由称量斗放入单斗中,上料量由人工设定称量斗重量控制,每斗重

量在700~800kg左右。 2.3@@石灰车间轻烧白云石生产工艺操作规定 2.3.1工艺参数要求 煤气压力:18——22Kpa、煤气流量:7000——7500m3/h 侧风压力:17——18kpa、侧风流量:5300——5800m3/h 底风压力:16——19kpa、底风流量:5000——5500 m3/h 上料斗数:11——12斗/h、出灰时间:≤30min 预热后的煤气温度≥100℃,空气温度≥120℃,冷却带温度≤650℃。 在济钢石灰车间现场主控室操作画面观察,日产白云石约150~160t/d(含粉灰,即全灰),煤气流量控制在7000m3/h,煤气压力保持在19~20KPa,侧风流量控制在6000 m3/h,侧风压力保持在17~18KPa,底风流量控制在5700 m3/h,底风压力保持在16~17KPa,预热带有4个测温点,温度控制在400~450℃,上煅烧带与下煅烧带分别各有4个测温点,煅烧温度控制在850~900℃,冷却带有4个测温点,温度控制在650℃以下。 根据料位进行出灰,探尺每分钟探料面一次,出灰到零位线以下2.7m~2.9m停止出灰,每小时出灰约20~25min,出灰结束后进行补料,补料到零位线以下1.5m停止补料,每小时补料约11~12斗。 2.3.2工艺操作要求 (1)司炉工每批料必须上炉观察下料情况,重点是上下排南面烧嘴处的下料情况,要求每批料下料情况必须做好记录。 (2)下排正南方三个煤气烧嘴有烧结现象,下料缓慢,要求三个烧

克劳斯硫回收工艺事故整理

克劳斯硫回收工艺事故整理 1.硫磺开工烧坏人孔 1999年8月15日16:30,某炼油厂硫磺回收装置操作员在巡检时发现炉人孔烧坏。 事故经过: 1999年7月10日,硫磺回收装置按计划点炉开工,7月10日点焚烧炉F-202,11日23:25时点燃烧炉F-101,14日点尾气炉F-201,转化器、炉开始烘烤,7月23日烘炉完毕;7月29日至30日R-101、R-102、R-201装催化剂,8月6日重新点火开工,8月13日引酸气入燃烧炉,系统继续升温,8月15日加大酸气入炉量,到16:30发现燃烧炉人孔烧坏而紧急停工。 事故分析: 造成主燃烧炉人孔烧坏的主要原因是: 1、燃烧炉F-101衬里材料选材错误。 2、风量表偏小,酸气量偏小,造成配风过大,主燃烧炉超温。 3、主要仪表存在不少问题:酸气超声波流量计无指示,H2S/SO2比值分析仪无法投用,SO2、O2分析仪不准,火焰检测仪无法投用等问题。 4、整个人孔被错误用保温材料包得严严实实。) 5、操作人员经验不足。 采取措施:

8月20日至9月20日修复衬里,校验风量流量表,更换超声波流量计。 经验教训: “三查四定”时要认真仔细,对各关键设备内衬里选材要严格确认,避免开工后出现衬里不能经受操作温度的纰漏。 2. 开工过程中造成燃烧炉外壁超温 1999年10月1日,某炼油厂硫磺回收装置燃烧炉外壁超温。 事故经过: 1999年9月20日燃烧炉人孔烧坏处理完毕后,24日重新点火升温,29日产出合格硫磺,10月1日发现主燃烧炉外壁超温而紧急停工。事故分析: 1、燃烧炉衬里问题 2、开工引酸气量较大,酸气量波动大,造成炉膛温度过高。 采取措施: 紧急停工,修复燃烧炉衬里 经验教训: 在烘炉完毕后,打开燃烧炉人孔检查衬里时,要严格按照裂缝的条数和尺寸进行审核,不合格就要返工,别把缺陷带到开工后。 3. 停工过程废热锅炉露点腐蚀报废 事故经过: 2000年3月27日,硫磺回收装置停工,28日发现烟道法兰处漏出铵盐,4月3日拆开F-202人孔,E-202头盖试漏发现废锅E-202内管程

影响机械加工表面粗糙度的几个因素及措施

职教类 影响机械加工表面粗糙度的几个因素及措施 摘要:表面粗糙度是零件表面所具有的微小峰谷的不平程度,它是评价零件的一项重要指标。一般说来,它的波距和波高都比较小,是一种微观的几何形状误差。对机械加工表面,表面粗糙度是由切削时的刀痕,刀具和加工表面之间的摩擦,切削时的塑性变形,以及工艺系统中的高频振动等原因所造成的。表面粗糙度是检验零件质量的主要依据,它的选择直接关系到生产成本、产品的质量、使用寿命。 关键词:机械加工表面粗糙度提高措施 随着工业技术的飞速发展,机器的使用要求越来越高,一些重要零件在高压力、高速、高温等高要求条件下工作,表面层的任何缺陷,不仅直接影响零件的工作性能,而且还可能引起应力集中、应力腐蚀等现象,将进一步加速零件的失效,这一切都与加工表面质量有很大关系。因而表面质量问题越来越受到各方面的重视。 一、机械加工表面粗糙度对零件使用性能的影响 表面粗糙度对零件的配合精度,疲劳强度、抗腐蚀性,摩擦磨损等使用性能都有很大的影响。 1、表面质量对零件配合精度的影响 (1)对间隙配合的影响 由于零件表面的凹凸不平,两接触表面总有一些凸峰相接触。表面粗糙度

过大,则零件相对运动过程中,接触表面会很快磨损,从而使间隙增大,引起配合性质改变,影响配合的稳定性。特别是在零件尺寸和公差小的情况下,此影响更为明显。 (2)对过盈配合的影响 粗糙表面在装配压入过程中,会将相接触的峰顶挤平,减少实际有效过盈量,降低了配合的连接强度。 2、表面质量对疲劳强度的影响 零件表面越粗糙,则表面上的凹痕就越深明,产生的应力集中现象就越严重。当零件受到交变载荷的作用时,疲劳强度会降低,零件疲劳损坏的可能性增大。 3、表面质量对零件抗腐蚀性的影响 零件表面越粗糙,则积聚在零件表面的腐蚀气体或液体也越多,且通过表面的微观凹谷向零件表层渗透,形成表面锈蚀。 4、表面质量对零件摩擦磨损的影响 两接触表面作相对运动时,表面越粗糙,摩擦系数越大,摩擦阻力越大,因摩擦消耗的能量也越大,并且还影响零件相对运动的灵活性。此外,表面越粗糙,两配合表面的实际有效接触面积越小,单位面积压力越大,更易磨损。 此外,表面粗糙度还影响零件的接触刚度、密封性能、产品的美观和表面涂层的质量等。因此,提高产品的质量和寿命应选取合理的表面粗糙度。 二、影响表面粗糙度的因素及措施 1、切削加工影响表面粗糙度的因素 在加工表面留下了切削层残留面积,其形状是刀具几何形状的复映。减小

轻烧白云石工艺技术的改造

Da t a preprocessing in rough con trol GU O Y u 2shu (Northern Engineering &Technol ogy Cor porati on,MCC,Anshan 114009,China ) Abstract:Rough contr ol is such a method that acquires contr ol rules according t o the data observed .The results of data p rep r ocessing in r ough contr ol,theref ore,is vital t o the final p r oduced contr ol rules .M ethods app lied in data p rep r ocessing are discussed in this paper .A t the sa me ti m e,s ome i m p r ovements of these methods are p r oposed,and es pecially a ne w algorith m t o get rid of the inconsistent data is put for ward .These methods have been app lied in the r ough contr ol of cati on anti -fl oatati on in Gongchangling ,receiving remarkable effect . Key words:r ough contr ol;r ough set;data p rep r ocessing;algorith m of survival of the fittest 收稿日期:2007-11-21 作者简介:刘建伟(1972-),男(汉族),山西定襄人,山西定襄县河边镇太钢复合材料厂,工程师。 轻烧白云石工艺技术的改造 刘建伟 (太原钢铁(集团)有限公司复合材料厂,山西定襄035407) 摘要:轻烧白云石是炼钢过程中排渣用的良好的辅助原料,通过轻烧白云石工艺技术改造使产品质量及工艺流程得到提高和改善,从而满足了用户要求。 关键词:轻烧白云石;工艺技术;改造 中图分类号:TF 044 文献标识码:A 文章编号:1671-8550(2008)03-0067-03 0 引言 轻烧白云石是白云石矿与一定的燃料混合经过焙烧加工而成的矿物材料,可作为炼钢过程中排渣用的良好的辅助原料。太钢复合材料厂自1984年以来陆续建成5座 215m ×1215m 轻烧白云石土竖窑,仅有3座正常生产,生产的轻烧白云石主要供太钢第二炼钢厂造渣使用。近年来,随着太钢生产的发展和新建150万t 不锈钢项目陆续建成投产,现有土竖窑的生产能力、产品质量均不能满足需求。为了改变这种被动局面,陆续拆除了原有的3座土竖窑,建成了一座机械化竖窑,为保证公司 需求和提高经济效益提供了保证。 1 原土竖窑生产状况 111 原料及产品技术指标(表1、2) 表1 轻烧白云石使用原料 原料白云石矿 Mg O (%)Si O 2(%) R 2O 3+Mn 3O 4(%) 粒度范围 /mm 无烟煤(%)固定炭灰分挥发分 S 指标≥19≤210≤21020~45 ≥76≤10≤14≤110 表2 轻烧白云石产品质量指标 项目Mg O (%) Si O 2(%)灼减(%) 粒度范围/mm 指标 ≥29≤410≤22 10~40 112 生产工艺流程(图1) 原料使用自产白云石块矿,燃料使用无烟块煤,白云石块矿经煅烧2小时筛分后存入成品料仓。竖窑的主要参数为:外径316m 、内径2165m 、有效高11m 、有效容积58m 3 ,年生产能 力1万t/座。 白云石矿中有用组分为MgCO 3、Mg O,轻烧白云石中的有用成分为Mg O 。为提高其中Mg O 含量,将白云石矿在1050~1200℃的高温下煅烧,使Mg C O 3发生热分解反应,从而增加Mg O 的含量。 7 6第6卷 第3期2008年6月 矿 业 工 程M i n i n g Eng i n eer i n g

硫磺回收工艺介绍

目录 第一章总论 (3) 1.1项目背景 (3) 1.2硫磺性质及用途 (4) 第二章工艺技术选择 (4) 2.1克劳斯工艺 (4) 2.1.1MCRC工艺 (4) 2.1.2CPS硫横回收工艺 (5) 2.1.3超级克劳斯工艺 (6) 2.1.4三级克劳斯工艺 (9) 2.2尾气处理工艺 (9) 2.2.1碱洗尾气处理工艺 (9) 2.2.2加氢还原吸收工艺 (13) 2.3尾气焚烧部分 (13) 2.4液硫脱气 (14) 第三章超级克劳斯硫磺回收工艺 (15) 3.1工艺方案 (15) 3.2工艺技术特点 (15) 3.3工艺流程叙述 (15) 3.3.1制硫部分 (15) 3.3.2催化反应段 (15) 3.3.3部分氧化反应段 (16) 3.3.4碱洗尾气处理工艺 (17) 3.3.5工艺流程图 (17) 3.4反应原理 (18) 3.4.2制硫部分一、二级转化器内发生的反应: (18) 3.4.3尾气处理系统中 (18) 3.5物料平衡 (19)

3.6克劳斯催化剂 (19) 3.6.1催化剂的发展 (19) 3.6.2催化剂的选择 (21) 3.7主要设备 (21) 3.7.1反应器 (21) 3.7.2硫冷凝器 (21) 3.7.3主火嘴及反应炉 (22) 3.7.4焚烧炉 (22) 3.7.5废热锅炉 (22) 3.7.6酸性气分液罐 (22) 3.8影响Claus硫磺回收装置操作的主要因素 (23) 3.9影响克劳斯反应的因素 (24) 第四章工艺过程中出现的故障及措施 (26) 4.1酸性气含烃超标 (26) 4.2系统压降升高 (27) 4.3阀门易坏 (28) 4.4设备腐蚀严重 (28)

机械加工表面粗糙度及其影响因素

题目机械加工表面粗糙度及其影响因素 摘要:在现代工业生产中,许多制件的表面被加工而具有特定的技术性能特征,诸如:制件表面的耐磨性、密封性、配合性质、传热性、导电性以及对光线和声波的反射性,液体和气体在壁面的流动性、腐蚀性,薄膜、集成电路元件以及人造器官的表面性能,测量仪器和机床的精度、可靠性、振动和噪声等等功能,而这些技术性能的评价常常依赖于制件表面特征的状况,也就是与表面的几何结构特征有密切联系。因此,控制加工表面质量的核心问题在于它的使用功能,应该根据各类制件自身的特点规定能满足其使用要求的表面特征参量。不难看出,对特定的加工表面,我们总希望用最(或比较)恰当的表面特征参数去评价它,以期达到预期的功能要求;同时我们希望参数本身应该稳定,能够反映表面本质的特征,不受评定基准及仪器分辨率的影响,减少因对随机过程进行测量而带来参数示值误差。 关键词:机械加工表面粗糙度表面质量物理因素 1. 绪论 1.1机械加工表面粗糙度历史 表面粗糙度标准的提出和发展与工业生产技术的发展密切相关,它经历了由定性评定到定量评定两个阶段。表面粗糙度对机器零件表面性能的影响从1918年开始首先受到注意,在飞机和飞机发动机设计中,由于要求用最少材料达到最大的强度,人们开始对加工表面的刀痕和刮痕对疲劳强度的影响加以研究。但由于测量困难,当时没有定量数值上的评定要求,只是根据目测感觉来确定。在20世纪20~30年代,世界上很多工业国家广泛采用三角符号(▽)的组合来表示不同精度的加工表面。 为研究表面粗糙度对零件性能的影响和度量表面微观不平度的需要,从20年代末到30年代,德国、美国和英国等国的一些专家设计制作了轮廓记录仪、轮廓仪,同时也产生出了光切式显微镜和干涉显微镜等用光学方法来测量表面微观不平度的仪器,给从数值上定量评定表面粗糙度创造了条件。从30年代起,已对表面粗糙度定量评定参数进行了研究,如美国的Abbott就提出了用距表面轮廓峰顶的深度和支承长度率曲线来表征表面粗糙度。1936年出版了Schmaltz论述表面粗糙度的专著,对表面粗糙度的评定参数和数值的标准化提出了建议。但粗糙度评定参数及其数值的使用,真正成为一个被广泛接受的标准还是从40年代各国相应的国家标准发布以后开始的。 1.2表面粗糙度标准中的基本参数定义 随着工业的发展和对外开放与技术合作的需要,我国对表面粗糙度的研究和标准化愈来愈被科技和工业界所重视,为迅速改变国内表面粗糙度方面的术语和概念不统一的局面,并达到与国际统一的作用,我国等效采用国际标准化组织(ISO)有关的国际标准制订了GB3505-1983《表面粗糙度术语表面及其参数》。GB3505专门对有关表面粗糙度的表面及其参数等术语作了规定,其中有三个部分共27个参数术语: 与微观不平度高度特性有关的表面粗糙度参数术语。其中定义的常用术语为:轮廓算术平均偏差Ra、轮廓均方根偏差Rq、轮廓最大高度Ry和微观不平度十点高度Rz等11个参数。 与微观不平度间距特性有关的表面粗糙度参数术语。其中有轮廓微观不平度的平均间距Sm、轮廓峰密度D、轮廓均方根波长 q以及轮廓的单峰平均间距S等共9个参数。 与微观不平度形状特性有关的表面粗糙度参数术语。这其中有轮廓偏斜度Sk、轮廓均方根斜率 q和轮廓支承长度率tp等共5 个参数。 2. 精密加工表面性能 2.1精密加工表面性能评价的内容及其迫切性 表面粗糙度参数这一概念开始提出时就是为了研究零件表面和其性能之间的关系,实现对表

磨削加工时 影响工件表面粗糙度的因素

磨削加工时,影响工件表面粗糙度的因素 1、磨削用量对表面粗糙度的影响 1)砂轮的速度越高,单位时间内通过被磨表面的磨粒数就越多,因而工件表面的粗糙度值就越小。同时,砂轮速度越高,就有可能使表面金属塑性变形的传播速度大于切削速度,工件材料来不及变形,致使表层金属的塑性变形减小,磨削表面粗糙度值也将减小。 2)工件速度对表面粗糙度的影响刚好与砂轮速度的影响相反,增大工件速度时,单位时间内通过被磨表面的磨粒数减少,表面粗糙度值将增加。 3)砂轮的纵向进给减小,工件表面的每个部位被砂轮重复磨削的次数增加,被磨表面的粗糙度值将减小。 4)磨削液厂家“联诺化工”发现随着磨削深度增大,表层塑性变形将随之增大,被磨表面粗糙度值也会增大。 2、磨削液对表面粗糙度的影响 磨削液对磨削力,磨削温度及砂轮磨损等方面的影响,最终会影响工件表面粗糙度。 高效磨削液是一种水基化学合成液,它含有阴离子表面活性剂,磨削加工时,砂轮与工件间的磨削产生阳离子。因此,这种磨削液可使砂轮与工件的接触区不产生高热,减少磨粒磨损。同时它含有润滑性能好,吸附性能强的添加剂,在高温高压下与铁反应形成牢固的润滑膜,减小了磨削阻力。高效磨削液还含有非离子表面活性剂,它可降低水的表面张力,提高磨削液的浸润性和清洗性,有利于降低工件表面粗糙度。磨削液厂家“联诺化工”的SCC750B水性环保磨削液属于高效磨削液。SCC750B选用特制的高性能极压添加剂、防锈剂等其它添加剂复配而成,与水混合时可形成稳定的透明荧光绿色溶液。SCC750B水性环保磨削液具有良好的极压润滑性、防锈性、冷却性、沉降性和清洗性。具有极强的抗微生物分解能力,在不同的水硬度条件下,仍可保持其稳定性,是新一代高性能的多用途的无泡磨削液。 SCC750B水性环保磨削液优点: ●含特种极压润滑添加剂,可显著减少砂轮磨损; ●采用高分子水/油溶性防锈剂,对设备及工件(特别是铸铁)有极好的防锈性; ●无泡沫倾向,清洗性能好,比同类产品有更好的金属屑沉降性;透明度高,有利于监察工件的表面加工状态及切削液消耗量,不会刺激皮肤,保护操作者健康;使用寿命长,一年以上更换期,符合环保要求,减少浪费,提高生产效率; ●对操作工人皮肤无伤害、及机台油漆无影响,且有保护作用。 3、砂轮对表面粗糙度的影响 1)砂轮粒度单纯从几何因素考虑,砂轮粒度越细,磨削的表面粗糙度值越小。但磨削液厂家“联诺化工”发现磨粒太细时,砂轮易被磨屑堵塞,若导热情况不好,反而会在加工表面产生烧伤等现象,使表面粗糙度值增大。因此,砂轮粒度常取为46~60号。 2)砂轮硬度砂轮太硬,磨粒不易脱落,磨钝了的磨粒不能及时被新磨粒替代,使表面粗糙度值增大。磨削液厂家“联诺化工”发现砂轮太软,磨粒易脱落,磨削作用减弱,也会使表面粗糙度值增大。常选用中软砂轮。 3)砂轮组织紧密组织中的磨粒比例大,气孔小,在成形磨削和精密磨削时,能获得较小的表面粗糙度值。疏松组织的砂轮不易堵塞,适于磨削软金属、非金

硫磺回收工艺介绍

硫磺回收工艺介绍

————————————————————————————————作者:————————————————————————————————日期:

目录 第一章总论 .............................................................................. 错误!未定义书签。 1.1项目背景 (2) 1.2硫磺性质及用途2? 第二章工艺技术选择2? 2.1克劳斯工艺 (2) 2.1.1MCRC工艺2? 2.1.2CPS硫横回收工艺2? 2.1.3超级克劳斯工艺2? 2.1.4三级克劳斯工艺....................................................... 2 2.2尾气处理工艺 (2) 2.2.1碱洗尾气处理工艺 (2) 2.2.2加氢还原吸收工艺 (2) 2.3尾气焚烧部分2? 2.4液硫脱气........................................................................................ 2第三章超级克劳斯硫磺回收工艺. (2) 3.1工艺方案 (2) 3.2工艺技术特点?2 3.3工艺流程叙述 (2) 3.3.1制硫部分 (2) 3.3.2催化反应段............................................ 错误!未定义书签。 3.3.3部分氧化反应段....................................... 错误!未定义书签。 3.3.4碱洗尾气处理工艺 (2) 3.3.5工艺流程图2? 3.4反应原理 (2) 3.4.2制硫部分一、二级转化器内发生的反应: (2)

机械加工影响表面粗糙度的工艺因素

机械加工影响表面粗糙度的工艺因素 从影响表面粗糙度的成因可以看出,影响表面粗糙度的因素可以分为三类:第一类,与切削刀具有关;第二类,与工件材质有关;第三类,与加工条件有关。 1 切削加工影响表面粗糙度的因素 1.1 切削用量切削参数选择的不同对表面粗糙度影响较大,应引起足够的重视。 切削速度在一定速度范围内,塑性材料容易产生积屑瘤或鳞刺,所以应避开这个积屑瘤区,如用中、低速容易形成积屑瘤。 切削深度切削深度对表面粗糙度基本上没有影响,但过小的切削深度将在刀尖圆弧下挤压过去,形成附加的塑性变形,增大表面粗糙度值。 进给量减小进给量可减小残留面积高度,但过小的进给量将使切屑厚度太薄。当厚度小于刃口圆弧半径时,会引起薄层切削打滑,产生附加表面粗糙度。 1.2 刀刃在工件表面留下的残留面积被加工表面上残留的面积愈大,获得表面将愈粗糙。 用单刃刀切削时,残留面积只与进给量f 、刀尖圆弧半径ro及刀具的主偏角kr、副偏角k1r 有关。 减小进给量f,减小主偏角、副偏角,增大刀尖圆角半径,都能减小残留面积的高度H ,也就降低了零件的表面粗糙度值。 进给量f对表面粗糙度影响较大,但f值较低时,虽然有利于表面粗糙度值的降低,但影响生产率。增大刀尖圆角半径ro,有利于表面粗糙度值的降低。但刀尖圆角半径的增加,会引起吃刀抗力的增加,而吃刀抗力过大会造成工艺系统的振动。减小主、副偏角,均有利于表面粗糙度值的降低。但在精加工时, 主、副偏角对表面粗糙度值的影响较小。 1.3 工件材料的性质塑性材料与脆性材料对表面粗糙度都有较大的影响。 积屑瘤的影响(塑性材料) 在一定的切削速度范围内加工塑性材料时,由于前刀面的挤压和摩擦作用,使切屑的底层金属流动缓慢而形成滞留层,此时切屑上的一些小颗粒就会黏附在前刀面的的刀尖处,形成硬度很高的楔状物,称为积屑瘤。积屑瘤的硬度可达工件硬度的2~3.5倍,它可代替切削刃进行切削,由于积屑瘤的存在,使刀具上的几何角度发生了变化,切削厚度也随之增大,因此将会在已加工表面上切出沟槽。积屑瘤生成以后,当切屑与积屑瘤的摩擦力大于积屑瘤与前刀面的冷焊强度或受到振动、冲击时,积屑瘤会脱落,又会逐渐形成新的积屑瘤。由此可见,积屑瘤的生成、长大和脱落,使切削发生波动,并严重影响工件的表面质量。脱落的积屑瘤碎片,还会在工件的已加工表面上形成硬点,因此,积屑瘤是增大表面粗糙度值的不可忽视的因素。

轻烧白云石合同主要条款

轻烧白云石合同主要条款 二、交货地点及运输方式:汽车运输至买方石钢公司地仓交货,费用由卖方负担。 三、损耗及计算方式:实物一律不计损耗。 四、包装标准:散装,贮存、运输必须防雨、防潮。 五、验收标准、方法及提出异议期限:1、数量以买方计量为准,质量以买方检验为准。2、卖方随货附质 保书,复验有异议时以买方为准。3、如卖方有异议,自买方通知结果后24小时内以书面方式提出,否则买方有权不予处理。 六、价格及加减价有关规定: 1、价格:价格为以二级品为基准含税包到承兑价***元/吨(****元/吨),税率17%。一张增值税发票结 算。 2、考核 2.1粒度考核: 2.2 质量考核: 2.2.1当42%≤CaO<45%时,以45%为基准CaO每下降1%降价10元/吨;当35%≤CaO<42%时,以42% 为基准CaO每下降1%降价20元/吨;当CaO<35%时,以35%为基准CaO每下降1%降价50元/吨;CaO 不足1%的部分舍去。 2.2.2当28%≤MgO<30%时,MgO含量以30%为基准每下降1%降价5元/吨;当25%≤MgO<28%时,MgO 含量以28%为基准每下降1%降价10元/吨;当MgO<25%时,MgO含量以25%为基准每下降1%降价50元/吨;MgO不足1%的部分舍去。 2.1.3当SiO2>5%时,以5%为基准SiO2每上升1%降价5元/吨,SiO2考核精确到1%,不足1%时按1% 计算。 2.2.4 当活性度(4mol/ml 40±1℃10min)<80ml时,以80ml为基准每降低1ml降价0.5元/吨;活 性度不足1ml的部分舍去。 2.2.5当酌减>20%时,以20%为基准酌减每上升1%降价5元/吨,酌减考核精确到1%,不足1%时按 1%计算。

关于硫回收工艺总结

当前硫回收方法主要有湿法和干法脱硫,干法又分为:传统克劳斯法、亚露点类克劳斯工艺,还原吸收类工艺、直接氧化类克劳斯工艺、富氧克劳斯工艺、和氧化吸收类克劳斯工艺;湿法主要有鲁奇的低、高温冷凝工艺、托普索的WSA工艺。 1 干法脱硫 1.1 常规克劳斯(Claus)法 克劳斯法是一种比较成熟的多单元处理技术,是目前应用最为广泛的硫回收工艺。其工艺过程为:含有硫化氢的酸性气体在克劳斯炉内燃烧,使部分硫化氢氧化为二氧化硫,二氧化硫再与剩余的未反应的硫化氢在催化剂上反应生成硫磺。传统克劳斯法的特征为:1)控制n(O2):n(H2S)=1:2,若氧气含量过高有SO2溢出,过低则降低H2S的脱除效率;2)需要安装除雾器脱除气流中的硫以提高硫回收量;3)克劳斯法硫总回收率为94%-96%;4)对含可燃性成分的气体如煤气,或当硫质量分数低于40%时不宜用克劳斯法。 1.2亚露点类克劳斯工艺 所谓的亚露点工艺是以在低于硫露点的温度下进行克劳斯反应为主要特征的工艺。主要包括Sulfreen、Hydrosulfreen、Carbonsulfreen、Oxysulfreen、CBA、ULTRA、MCRC、Clauspol 1500、Clauspol 300、Clisulf SDP、ER Claus、Maxisulf等工艺。 1.3

还原吸收类工艺 还原吸收类工艺由于将有机硫及SO2等转化为H2S再行吸收,故总硫回收率可达99.5%以上。主要有SCOT、Super-SCOT、LS-SCOT、BSR/Amine、BSR/Wet Oxidation、Resulf、AGE/Dual Solve、HCR、Parsons/BOC Recycle、Sulfcycle和ELSE工艺。 1.4 直接氧化类工艺 直接氧化是指H2S在固体催化剂上直接氧化成硫,实际上乃是克劳斯原型工艺的新发展。直接氧化法工艺技术的关键是研制出选择性好、对H2O 和过量O2不敏感的高活性催化剂,目前用铁基金属氧化物的不同混合物制备。选择性催化氧化硫回收技术主要有:主要有Seleclox、BSR/Selectox、BSR/Hi-Activity claus、MODOP、Superclaus、Catasulf 和Clinsulf DO等工艺。 以超级克劳斯(Superclaus)工艺为例进行简单介绍。超级克劳斯工艺有2种类型:Super Claus-99型和Super Claus-99.5型。超级克劳斯工艺中气体不必脱水,选择性氧化时,可配入过量氧而对选择性无明显影响。该工艺方法简单,操作容易。过程连续无需周期切换,硫回收率高,投资省,能耗及原材料费用低,且应用规模不限,使用范围广。 1.5 富氧克劳斯工艺 以富氧空气乃至纯氧代替空气用于克莱斯装置,可以相应地减少惰性组分N2的量,进而提高装置的处理能力。已经工业化的富氧克劳斯工艺

表面粗糙度及其影响因素

表面粗糙度及其影响因素 一、切削加工中影响表面粗糙度的因素 影响表面粗糙度的因素主要有几何因素和物理因素。 1.几何因素: 式中 f ——进给量。 Kr ——主偏角。 Kr’——副偏角 考虑刀尖圆弧角: 式中 f ——进给量。 r ——刀尖圆弧半径。 如图11-8、9所示,用刀尖圆弧半径r=0的车刀纵车外圆时,每完成一单位进给量f后,留在已加工表面上的残留面积,它的高度Rmax即为理论粗糙度的轮廓最大高度Ry。 图11- 8 图11- 9 图11- 10 加工后表面实际轮廓和理论轮廓 切削加工后表面粗糙度的实际轮廓形状,一般都与纯几何因素所形成的理论轮廓有较大的差别,如图11-10。这是由于切削加工中有塑性变形发生的缘故。 生产中,若使用的机床精度高和材料的切削加工性好,选用合理的刀具几何形状、切削用量和在刀具刃磨质量高、工艺系统刚性足够情况下,加工后表面实际粗糙度接近理论粗糙度,这样减小表面粗糙度数值、提高加工表面质量的措施,主要是减小残留面积的高度Ry。 2.物理因素 多数情况下是在已加工表面的残留面积上叠加着一些不规则的金属生成物、粘附物或刻痕。形成它们的原因有积屑瘤、鳞刺、振动、摩擦、切削刃不平整、切屑划伤等。 3.积屑瘤的影响 积屑瘤的生成、长大和脱落将严重影响工件表面粗糙度。 同时,由于部分积屑瘤碎屑嵌在工件表面上,在工件表面上形成硬质点。见图11-11。

图11- 11 图11- 12 鳞刺的影响鳞刺的出现,使已加工表面更为粗糙不平。 鳞刺的形成分为: 抹拭阶段:前一鳞刺已经形成,新鳞刺还未出现;而切屑沿着前刀面流出,切屑以刚切离的新鲜表面抹拭刀——屑摩擦面,将摩擦面上有润滑作用的吸附膜逐渐拭净,以致摩擦系数逐渐增大,并使刀具和切屑实际接触面积增大,为这两相摩擦材料的冷焊创造条件,如图11-12(a)。 导裂阶段:由于在第一阶段里,切屑将前刀面上的摩擦面抹拭干净,而前刀面与切屑之间又有巨大的压力作用着,于是切屑与刀具就发生冷焊现象,切屑便停留在前刀面上,暂时不再沿前刀面流出。这时切屑代替前刀面进行挤压,刀具只起支撑切削的作用。其特点是在切削刃前下方,切屑与加工表面之间出现一裂口。如图11-12(b)。 层积阶段:由于切削运动的连续性,切屑一旦停留在前刀面上,便代替刀具继续挤压切削层,使切削层中受到挤压的金属转变为切屑。而这部分新成为切屑的金属,只好逐层的积聚在起挤压作用的那部分切屑的下方。;这些金属一旦积聚并转化为切屑,便立即参与挤压切削层的工作;同时,随着层积过程的发展,切削厚度将逐渐增大,切削力也随之增大,如图11-12(c)。 刮成阶段:由于切削厚度逐渐增大,切削抗力也随之增大,推动切屑沿前刀面流出的分力Fy也增大。当层积金属达到一定厚度后,Fy力便也随之增大到能够推动切屑重新流出的程度,于是切屑又重新开始沿前刀面流出,同时对切削刃便刮出鳞刺的顶部,如图11-12(d)。至此,一个鳞刺的形成过程便告结束。紧接着,又开始另一个新鳞刺的形成过程。如此周而复始,在工件加工表面上便不断地生成一系列鳞刺。 振动的影响切削加工时,在工件与刀具之间经常发生振动,使工件表面粗糙度值增大。 从物理因素看,要降低表面粗糙度主要应采取措施减少加工时的塑性变形,避免产生积屑瘤和鳞刺。对此起主要作用的影响因素有切削速度、被加工材料的性质及刀具的几何形状、材料和刃磨质量。 ①切削速度的影响: 图11- 13

克劳斯法硫回收工艺实例

克劳斯法硫回收工艺 一、工艺要求 三高无烟煤:元素分析含硫3.3% 造气:121332Nm3含硫化氢1.11% 含COS0.12% 约17克/Nm3 低温甲醇洗:净化气含硫0.1ppm 送出H2S含量为35%左右的酸性气体3871Nm3。 本岗位主要任务是回收低温甲醇洗含硫CO2尾气中的H2S组份,通过该装置回收,制成颗粒状硫磺。同时将尾气送到锅炉燃烧,使排放废气达到国家排放标准,本装置的正常硫磺产量约为16160吨/年。 二、工艺方法 1、常用硫回收工艺 (1) 液相直接氧化工艺 有代表性的液相直接氧化工艺有:ADA法和改良ADA法脱硫、拷胶法脱硫、氨水液相催化法脱等。液相直接氧化工艺适用于硫的“粗脱”,如果要求高的硫回收率和达到排放标准的尾气,宜采用固定床催化氧化工艺或生物法硫回收工艺。 (2) 固定床催化氧化工艺 硫回收率较高的Claus工艺是固定床催化氧化硫回收工艺的代表。Claus硫回收装置一般都配有相应的尾气处理单元,这些先进的尾气处理单元或与硫回收装置组合为一个整体装置,或单独成为一个后续装置。Claus硫回收工艺及尾气处理方式种类繁多,但基本是在Claus硫回收技术基础上发展起来的,主要有:SCOT 工艺、SuperClaus工艺、Clinsulf工艺、Sulfreen工艺、MCRC工艺等。 2. 克劳斯硫回收工艺特点 常规Claus工艺是目前炼厂气、天然气加工副产酸性气体及其它含H2S 气体回收硫的主要方法。其特点是:流程简单、设备少、占地少、投资省、回收硫磺纯度高。但是由于受化学平衡的限制,两级催化转化的常规Claus工艺硫回收率为90-95%,三级转化也只能达到95-98%,随着人们环保意识的日益增强和环保标准的提高,常规Claus工艺的尾气中硫化物的排放量已不能满足现行环保标准的要求,降低硫化物排放量和提高硫回收率已迫在眉睫。

切削因素对粗糙度的影响.

“工程材料与成形加工基础实验远程教学系统”用户手册 切削因素对粗糙度的影响 实验目的:1.了解加工表面粗糙度的影响因素. 2.了解降低表面粗糙度的工艺措施. 实验原理: 一、影响表面粗糙度的因素 1、切削时刀刃在已加工表面上遗留下来的刀痕------主要因素; 2、切削时塑性材料前刀面的挤压和摩擦作用,形成积屑瘤或鳞刺; 3、刀具后刀面与已加工表面的摩擦及挤压导致弹性恢复、硬化甚至龟裂; 4、切削脆性材料时切削崩碎形成的麻点痕迹; 5、加工系统的高频震动形成的振纹。 、降低加工表面粗糙度的工艺措施 1、合适的切削条件 (1)切削速度v: 塑性材料,用低速或高速,避免产生切削瘤,降低表面粗糙度. (2)进给量f: 减小进给量,可有效地减小残留面积高度,降低表面粗糙度. (3)背吃刀量: 背吃刀量过小,则刀尖圆弧过度刃口切不下切削层,加工表面引起附加塑性变形,影响表面粗糙度. (4)切削液: 冷却润滑作用,减小摩擦,降低温度,从而减小切削过程的塑性变形,抑制鳞刺和积屑瘤的生成,降低表面粗糙度. 2、合理的刀具几何参数和刀具材料 (1)前角γ o : 增大γ o, 可抑制积屑瘤产生,降低表面粗糙度. (2)副偏角k 'r :减小k 'r,可减小残留面积,高度h.降低表面粗糙度. (3刀尖圆弧过渡半径r Σ : 增大r Σ ,可减小残留高度, 降低表面粗糙度. (4)刀具材料: 刀具材料与工件材料分子亲和力小,前刀面上形成积屑瘤的机率小,则表面粗糙度下降.

3、改善工件材料的力学性能和金相组织 材料硬度越高→切削抗力越大→切削温度越高→刀具磨损越快→表面质量越不稳定. 材料越软(塑性越好) →切削变形越大→切削温度越高→刀具磨损越快→表面质量越低. 处理方法: 低碳钢(塑性大): 正火(提高硬度). 高碳钢(硬度高):球化退火(提高塑性). 中碳钢可调质处理(提高力学性能). 实验设备:

影响表面粗糙度的因素

影响表面粗糙度的因素 表面粗糙度是衡量已加工表面质量的重要标志之一,它对零件的耐磨性、耐腐蚀性、疲劳强度和配合性质都有很大影响。但是,在加工中表面粗糙度影响因素有很多,为了达到良好的表面粗糙度,我们就来了解一下这些因素有哪些。 影响表面粗糙度的因素 一、加工表面粗糙的原因 1、残留面积:残留面积是刀具的主、副切削刃切削后,残留在已加工表面上的一些尚未被切去的面积。 2、鳞刺:用高速钢刀具低速或中速切削塑性金属材料时,如低碳钢、中碳钢、不锈钢、铝合金等,常在已加工表面上产生鱼鳞片状的毛刺,称为鳞刺。出现鳞刺会显著增大已加工表面的表面粗糙度。 3、积屑瘤:在切削过程中,当产生积屑瘤时,其突出的部分能代替切削刃切入工件,在已加工表面上划出深浅不一的沟纹;当积屑瘤脱落时,部分积屑瘤碎片粘附在已加工表面上,形成细小毛刺,造成表面粗糙度增大。 4、振动:在切削加工时,由于工艺系统产生周期性振动,使已加工表面出现条痕或波纹痕迹,使表面粗糙度值明显增大。 二、影响表面粗糙度的因素 凡影响残留面积、积屑瘤、鳞刺、振动的因素都影响加工表面粗糙度。 1、切削用量:进给量对残留面积的影响最大。进给量减小,残留面积减小。 切削塑性金属时,当切削速度很低或很高时,表面粗糙度值较小。这是因为低速时积屑瘤不易产生;切削速度较高时,塑性变形减小,可消除鳞刺的产生。在切削脆性材料时,切削速度的影响较小,因为材料变形小,故表面粗糙度值也减小。 2、刀具几何参数:刀具的刀尖圆弧半径、主偏角和副偏角对残留面积和振动有较大的影响。一般当刀尖圆弧半径增大,主偏角和副偏角减小时,表面粗糙度值小,但如果机床刚度低,刀尖圆弧半径过大或主偏角过小,会由于切削力增大而产生振动,使表面粗糙度值增大。 3、刀具材料:刀具材料不同,刃口圆弧半径的大小和保持锋利的时间是不同的。高速钢刀具能刃磨得很锋利,但保持的时间较短,所以在低速切削时表面粗糙度

国外硫磺回收和尾气处理技术进展综述

国外硫磺回收和尾气处理技术进展综述 引言 自从二十世纪三十年代改良克劳斯法实现工业化以后,以H2S酸性气为原料的回收硫生产得到了迅速发展,特别是五十年代以来开采和加工了大量的含硫原油和天然气,工业上普遍采用克劳斯过程回收元素硫。据1991年统计,世界上已建成500多套装臵,生产H2S回收硫2600万吨,占世界产品硫5700万吨的45%,其中58%来自天然气硫,39%来自炼厂酸气硫。另外装臵规模日益向大型化发展,加拿大的回收硫装臵平均日产量已达1000-1500吨水平。 经过近半个世纪的演变,克劳斯法在催化剂研制、自控仪表应用、材质和防腐技术改善等方面取得了很大的进展,但在工艺技术方面,基本设计变化不大,普遍采用的仍然是直流式或分流式工艺。由于受反应温度下化学反应平衡的限制,即使在设备和操作条件良好的情况下,使用活性好的催化剂和三级转化工艺,克劳斯法硫的回收率最高也只能达到97%左右,其余的H2S、气态硫和硫化物即相当于装臵处理量的3-4%的硫,最后都已SO2的形式排入大气,严重的污染了环境。 鉴此,国外在不断开发具有高活性和多重性能热点的催化剂以形成系列化产品的同时,八十年代以来还发展了许多硫回收工艺技术。这些进展都是沿着两个方面来开拓的。其一是改进硫回收工艺本身,

提高硫的回收率或装臵效能,这包括发展新型催化剂,贫酸气制硫技术和富氧氧化硫回收工艺等;其二是发展尾气处理技术,主要包括低温克劳斯反应技术和催化转化法两大类。这两个途径都取得了很大成功。例如近年来在工业上迅速推广的低温克劳斯反应技术,就是从改善热力学平衡的角度出发,经过不断改进二逐渐成熟的;而八十年代初、中、后期相继实现工业化的selectox、modop和super claus 硫回收过程,却是以选择性催化氧化为基础,从反应途径、设备和催化剂等方面对传统的克劳斯工艺进行了改革。不久前lindeA.G公司还开发了一种新的硫回收技术-clinsulf工艺,使用一个内冷式转化器就可达到普通克劳斯装臵需二个转化器才能获得的94-95%硫回收率,并且还可以节省20%的投资费用。另外,即使在技术上已经比较成熟并且在装臵数量上一直处于压倒优势的SCOT还原吸收法尾气处理工艺,近年来亦有所新发展,除了开发成功不需要外供还原用H2的HCR工艺外,最新投用的降耗节能型superSCOT装臵,净化尾气中的H2S含量已从300ppm进一步降低至10-50ppm。上述技术发展动向预示着克劳斯工艺的重大改革,因此引起了人们关注,对于今后面临的日益严格的环境和生态保护要求,实现高效能和高效益的回收硫生产具有重要和现实意义。 一、富氧氧化硫回收工艺 在硫回收技术领域,过去很少采取使用氧气或富氧空气的工艺。七十年代初,联邦德国的一套硫回收装臵曾经用富氧空气处理贫酸

相关文档
最新文档