模电仿真实验 共射极单管放大器

模电仿真实验 共射极单管放大器
模电仿真实验 共射极单管放大器

仿真实验报告册

仿真实验课程名称:模拟电子技术实验仿真仿真实验项目名称:共射极单管放大器

仿真类型(填■):(基础■、综合□、设计□)

院系:专业班级:

姓名:学号:

指导老师:完成时间:

成绩:

.

.

一、实验目的

(1)掌握放大器静态工作点的调试方法,熟悉静态工作点对放大器性能的影响。 (2)掌握放大器电压放大倍数、输入电阻、输出电阻及最大不失真输出电压的测试方法。

(3)熟悉低频电子线路实验设备,进一步掌握常用电子仪器的使用方法。

二、实验设备及材料

函数信号发生器、双踪示波器、交流毫伏表、万用表、直流稳压电源、实验电路板。

三、实验原理

电阻分压式共射极单管放大器电路如图3.2.1所示。它的偏置电路采用(R W +R 1)和R 2组成的分压电路,发射极接有电阻R 4(R E ),稳定放大器的静态工作点。在放大器的输入端加入输入微小的正弦信号U i ,经过放大在输出端即有与U i 相位相反,幅值被放大了的输出信号U o ,从而实现了电压放大。

在图3.2.1电路中,当流过偏置电阻R 1和R 2的电流远大于晶体管T 的基极电流I B

时(一般5~10倍),则它的静态工作点可用下式进行估算(其中U CC 为电源电压):

CC

21W 2

BQ ≈

U R R R R U ++ (3-2-1)

C 4

BE

B EQ ≈I R U U I -=

(3-2-2) )(43C CC CEQ R R I U U +=- (3-2-3)

电压放大倍数 be

L

3u ||=r R R β

A - (3-2-4) 输入电阻 be 21W i ||||)(r R R R R += (3-2-5)

图3.2.1 共射极单管放大器

.

输出电阻 3o ≈R R (3-2-6) 1、放大器静态工作点的测量与调试 (1)静态工作点的测量

测量放大器的静态工作点,应在输入信号U i = 0的情况下进行,即将放大器输入端与地端短接,然后选用量程合适的万用表,分别测量晶体管的集电极电流I C 以及各电极对地的电位U B 、U C 和U E 。一般实验中,为了避免测量集电极电流时断开集电极,所以采用测量电压,然后计算出I C 的方法。例如,只要测出U E ,即可用E

E

E C ≈R U I I =

计算出I C (也可根据C C CC C R U U I -=,由U C 确定I C ),同时也能计算出U BE = U B -U E ,

U CE = U C -U E 。

(2)静态工作点的调试

放大器静态工作点的调试是指对三极管集电极电流I C (或U CE )的调整与测试。 静态工作点是否合适,对放大器的性能和输出波形都有很大的影响。如工作点偏高(如图3.2.2中的Q 1点),放大器在加入交流信号以后易产生饱和失真,此时U o 的负半周将被削底。如工作点偏低(如图3.2.2中的Q 2点),则易产生截止失真,即U o 的正半周被削顶(一般截止失真不如饱和失真明显)。这些情况都不符合不失真放大的要求。所以在选定工作点以后还必须进行动态调试,即在放大器的输入端加入一定的U i ,检查输出电压U o 的大小和波形是否满足要求。如不满足,则应调节静态工作点的位置。

改变电路的参数U CC 、R C 、R B (R W ,R 2)会引起静态工作点的变化。通常采用调节偏电阻R W 的方法来改变静态工作点,如减小R W ,可提高静态工作点等。

注意:静态工作点的“偏高”或“偏

低”是相对信号的幅度而言。如果信号幅度很小,即使工作点较高或较低也不会出现失真。所以说,波形失真是信号幅度与静态工作点设置不匹配而导致的。如须满足较大的输入信号,静态工作点最好尽量靠近交流负载线的中点。

2、放大器动态指标测试

放大器动态指标测试包括电压放大倍数、输入电阻、输出电阻、最大不失真输出电压(动态范围)和通频带等。

(1)电压放大倍数A u 的测量

调整放大器到合适的静态工作点,然后加入输入电压u i ,在输出电压u o 不失真的

图3.2.2 静态工作点对U o 波形失真的影响

情况下,用交流毫伏表测出u i和u o的有效值

U

i

和U o,则

i

o

u U

U

A=(3-2-7)(2)输入电阻R i的测量

为了测量放大器的输入电阻,在被测放大器的输入端与信号源之间串入一已知电阻R S,如图3.2.3所示。在放大器正常工作的情况下,用交流毫伏表测出U S和U i,则根据输入电阻的定义可得:

S

i

S

i

S

R

i

i

i

i

=

=

=R

U

U

U

R

U

U

I

U

R

-

(3-2-8)

测量时应注意:

①测量R S两端电压U R时必须分别测出U S和U i,然后按U R=U S-U i求出U R值。

②电阻R S的值不宜取得过大或过小,以免产生较大的测量误差,通常R S与R i 为同一数量级为宜,本实验可取R S=1 kΩ。

(3)输出电阻R o的测量

输出电阻R o的测量电路如图3.2.4所示,同样应取R L的值接近R o为宜。在放大器正常工作条件下,测出输出端不接负载R L的输出电压U∞和接入负载后输出电压U L,根据:

+

=U

R

R

R

U

L

o

L

L

(3-2-9)即可求出R o:

L

L

o

)1

(R

U

U

R-

=(3-2-10)在测试中应注意的是,必须保持R L接入前后的输入信号大小不变。

(4)最大不失真输出电压U omp-p的测量(最大动态范围)

为了得到最大动态范围,首先应将静态工作点调在交流负载线的中点。为此在放大器正常工作情况下,逐步增大输入信号的幅度,并同时调节R W(改变静态工作点),用示波器观察U o,当输出波形在正、负峰附近同时开始出现削底和削顶现象(如图3.2.5)时,说明静态工作点已调在交流负载线的中点。然后再反复调整输入信号,使波形输出幅度最大,且无明显失真时,从示波器上可直接读出最大动态范围U omp-p,或用交流毫图3.2.3 输入电阻测量电路图3.2.4 输出电阻测量电路

.

. 伏表测出U o

(有效值),则最大动态范围U omp-p =o 22U 。

(5)放大器频率特性的测量

放大器的频率特性是指放大器的电压放大倍数A u 与输入信号频率f 之间的关系曲线。单管阻容耦合放大电路的幅频特性曲线如图3.2.6所示。A um 为中频电压放大倍数,通常规定电压放大倍数随频率变化下降到中频放大倍数的1/2倍,即

0.707A um 所对应

的频率分别称为下限频率f L 和上限频率f H ,则通频带

BW = f H -f L (3-2-11)

测量放大器的幅频特性就是测量不同频率信号时的电压放大倍数A u 。可以采用前面测A u 的方法,每改变一个信号频率,测量其相应的电压放大倍数即可。测量时要注意取点要恰当,在低频段与高频段要多测几个点,在中频可以少测几个点。此外,在改变频率时,要保持输入信号的幅度不变,且输出波形不能失真。

实验中通常只要求测量出通频带。利用示波器可以进行BW 的简易测量,方法是在示波器上测量出输入中频段信号时的输出信号幅度后,在保持输入信号幅度不变的情况下,减小或增大输入信号的频率,再通过在示波器上观测输出信号幅度,找到输出信号幅度降低至中频段输出的1/2倍时的输入信号频率即为f L 或f H 。

四、仿真元件及仿真测试仪器

图3.2.5 波形同时出现削底和削顶现象的失真

图3.2.6 放大器的幅频特性曲线

电阻

电容

函数信号 发生器

示波器

三极管

电位器

万用表

五、实验内容

如图3.2.1所示连接共射极单管放大器实验电路。注意当检查电路无误后,调节直流电源电压至U CC选定值12V,方可接通电源。

1、静态工作点的测量与调整(验证性实验)

(1)静态工作点的测量

静态工作点测量条件:没有输入信号,即U i = 0。实验时将电路信号输入端接地。

调节电位器R W,使I CQ =1.5 mA。实验时为了避免直接测量电流,可采取测量晶体管发射极电压U E或测量晶体管集电极电压U C的方法:调节电位器R W,使U E=2.25V 或U C =9.3V或者I CQ =1.5mA。调整好I CQ后,用万用表直流电压档测量U BQ、U EQ、U CQ 值,记入表3-2-1。根据测量值计算U BEQ=U BQ-U EQ和U CEQ=U CQ-U EQ,再与理论计算值比较。

.

表3-2-1 静态工作点测量数据记录电压单位:/ V

测量值理论计算值U B Q U E Q U C Q U B E Q U C E Q I C Q U B E Q′U C E Q′

2.888V 2.274V 9.284V 61

3.249m V 7.01V 1.508mA 0. 7V 7V

(2)观察静态工作点对输出波形失真的影响

在前面实验设定的静态工作点(R C =1.8 kΩ、I C =1.5 mA)基础上,取R L=∞。按图3.2.7连接测量仪器,用示波器观测放大器的输入、输出信号波形,交流毫伏表测量放大器的输入信号电压。

仿真电路

①调节信号发生器,输出频率为1kHz、有效值为5mV的正弦波从A1端输入信号U i,用示波器观察并记录输出电压的输出波形,将数据记入表3-2-2。

②保持输入信号U i不变,增大电位器R W的值,使波形出现失真,定性绘出U o 的波形,并测出失真情况下的I C和U CE值,记入表3-2-2。

③仍保持输入信号U i不变,减小电位器R W的值,使波形出现失真,定性绘出U o 的波形,并测出失真情况下的I C和U CE值,记入表3-2-2。

注:表3-2-2中工作状态判断:判断输出波形是否存在失真?存在的失真是截止失图3.2.7 放大器性能测试系统

.

真还是饱和失真?晶体管工作点状态判断是否基本合适?是偏高还是偏低?

3-2-2 测量静态工作点对输出波形失真的影响数据记录R C =1.8 kΩ R L= ∞ 工作条件U o 波形工作状态判断

U i = 5 mV

R W适中

U EQ = 2.25 V u o

t

失真情况:基本不失真

晶体管工作点状态:

基本合适

U CQ =9. 284 V

I CQ = 1.5 mA

U CEQ=7.009 V

U i = mV

R W偏小

U EQ =4.484V u o

t

失真情况:饱和失真

晶体管工作点状态:

偏高

U CQ =6.698V

I CQ =2.946mA

U CEQ =2.214 V

U i = mV

R W偏大

U EQ =1.536 V u o

t

失真情况:截止失真

晶体管工作点状态:

偏低

U CQ =10.164 V

I C Q=1.02mA

U CEQ = 8.628 V

饱和失真电路及各项参数如下:

饱和失真波形:

.

截止失真电路图及其各项参数:

截止失真波形:

.

.

2、放大器性能指标测试(验证性实验) 放大器性能指标测量仪器的连接如图3.2.7所示。 (1)测量电压放大倍数A u

调节信号发生器,输出频率f =1kHz 、有效值为5mV 的正弦波(用毫伏表测量)作为输入信号U i ,同时用双线示波器观察放大器输入电压U i 和输出电压U o 的波形,在U o 波形不失真的条件下,用示波器测量不同负载时放大器输出电压U o 波形,计算放大器的电压放大倍数A u 。测量数据记入表3-2-3,并记录其中一组输入、输出电压波形,注意用双线示波器观察U o 和U i 的相位关系。

表3-2-3 电压放大倍数A u 测量数据记录 R L / k Ω U op-p / V U orms /V A u 测试条件 5.1 1 0.337 68 R C =1.8 k Ω I C =1.5 mA U irms = 4.95 mV

51 1.25 0.436 88 ∞

1.25

0.451

91

. u i 和

u o波形

.

输入输出波形如下:

注意:由于晶体管元件参数的分散性,定量分析时所给U i,根据具体实际情况输入适当的U i值,在表3-2-3中测试条件栏记入实际输入的U i值。由于用示波器所测U o 的值为峰峰值,故需要转化为有效值或用毫伏表测得的U o来计算A u值。切记万用表、毫伏表测量的是有效值,而示波器观察的是峰峰值。

(1)测量输入电阻R i和输出电阻R o

.

输入电阻R i:电路连接如图3.2.3所示,从A端输入f =1kHz、有效值分别为5mV、8mV的正弦信号U S,在输出电压U o不失真的情况下,用毫伏表分别测出U S、U i,记入表3-2-4,利用式3-2-8计算出R i和R i平均值,并与理论计算值比较。

表3-2-4 输入电阻R i测量数据记录R C=1.8 kΩ;I C=1.5 mA

(2)输出电阻R o:电路连接如图3.2.4所示。

.

断开R L时的输出波形如下:

接入RL=5.1 kΩ时的输出波形如下:.

保持输入信号U i(3mv、5mV)不变的条件下,分别在断开R L与接入R L=5.1 kΩ的情况下,示波器测量输出电压U∞和U L的峰峰值,记入表3-2-5,利用式3-2-10计算R o和R o平均值,并与理论计算值比较。

表3-2-5 输出电阻R o测量数据记录R C =1.8 kΩ;I C =1.5 mA

六、实验总结

.

每次做电路仿真实验都要特别的谨慎,因为电路仿真实验是全理想化的,不会像现实操作那般干扰甚多。如果仿真电路无法达到预期的效果,那一定是线路图出现错误,而出现的错误也很难寻找,只能提出猜想,然后逐个排除。本来我做的电路图也是不能实现预期效果的,但是在我自己仔细寻找电路问题和找同学寻求帮助,不断修改电路以后,它终于出现了理想的波形。

所以我觉得学习就必须非常谨慎,稍微有些参数没调好或者电路没有画好,就难以成功地把实验做好。其次,学习并不是一个人的事,有什么不懂的就应该谦虚的向同学发问。相信下次实验一定可以做得更好。

.

射极跟随器实验报告

肇庆学院 实验二射极跟随器实验报告 班别:学号:姓名:指导老师: 一、实验目的 1、掌握射极跟随器的特性及测试方法 2、进一步学习放大器各项参数测试方法 二、实验仪器 DZX-1型电子学综合实验装置一个、TDS 1002 示波器一个、数字万用表一个、色环电阻一个、螺丝刀一把、导线若干 三、实验原理 射极跟随器的原理图如图1所示。它是一个电压串联负反馈放大电路,它具有输入电阻高,输出电阻低,电压放大倍数接近于1,输出电压能够在较大范围内跟随输入电压作线性变化以及输入、输出信号同相等特点。 图1 射极跟随器 射极跟随器的输出取自发射极,故称其为射极输出器。 1、输入电阻R i 图1电路 R i=r be+(1+β)R E 如考虑偏置电阻R B和负载R L的影响,则

R i =R B ∥[r be +(1+β)(R E ∥R L )] 由上式可知射极跟随器的输入电阻R i 比共射极单管放大器的输入电阻R i =R B ∥r be 要高得多,但由于偏置电阻R B 的分流作用,输入电阻难以进一步提高。 输入电阻的测试方法同单管放大器,实验线路如图2所示。 图2 射极跟随器实验电路 (其中,R L 的测量值为0.995ΩK ,取1.00ΩK ;R 的测量值为1.98ΩK ) R U U U I U R i s i i i i -== 即只要测得A 、B 两点的对地电位即可计算出R i 。 2、输出电阻R O 图1电路 β r R ∥βr R be E be O ≈= 如考虑信号源内阻R S ,则 β ) R ∥(R r R ∥β)R ∥(R r R B S be E B S be O +≈+= 由上式可知射极跟随器的输出电阻R 0比共射极单管放大器的输出电阻R O ≈R C 低得多。三极管的β愈高,输出电阻愈小。 输出电阻R O 的测试方法亦同单管放大器,即先测出空载输出电压U O ,再测接入负载R L 后的输出电压U L ,根据 O L O L L U R R R U += 即可求出 R O

射极跟随器实验报告

实验二射极跟随器实验报告 姓名:班级:学号: 指导老师:实验日期:实验成绩: 一、实验目的 1、掌握射极跟随器的特性及测试方法 2、进一步学习放大器各项参数测试方法 二、实验原理 射极跟随器的原理图如图5-1所示。它是一个电压串联负反馈放大电路,它具有输入电阻高,输出电阻低,电压放大倍数接近于1,输出电压能够在较大范围内跟随输入电压作线性变化以及输入、输出信号同相等特点。 图5-1 射极跟随器 射极跟随器的输出取自发射极,故称其为射极输出器。 1、输入电阻R i 图5-1电路 R i=r be+(1+β)R E 如考虑偏置电阻R B 和负载R L 的影响,则 R i=R B∥[r be+(1+β)(R E∥R L)] 由上式可知射极跟随器的输入电阻R i比共射极单管放大器的输入电阻R B∥rbe要高得多,但由于偏置电阻RB的分流作用,输入电阻难以进一步提高。 输入电阻的测试方法同单管放大器,实验线路如图5-2所示。Ri= 图5-2 射极跟随器实验电路

即只要测得A 、B 两点的对地电位即可计算出R i 。 2、输出电阻R O 图5-1电路 如考虑信号源内阻R S ,则 由上式可知射极跟随器的输出电阻R 0比共射极单管放大器的输出电阻R O ≈R C 低得多。三极管的β愈高,输出电阻愈小。 输出电阻R O 的测试方法亦同单管放大器,即先测出空载输出电压U O ,再测接入负载R L 后的输出电压U L ,根据 即可求出 R O 3、电压放大倍数 图5-1电路 上式说明射极跟随器的电压放大倍数小于近于1,且为正值。 这是深度电压负反馈的结果。但它的射极电流仍比基流大(1+β)倍, 所以它具有一定的电流和功率放大作用。 4、电压跟随范围 电压跟随范围是指射极跟随器输出电压u O 跟随输入电压u i 作线性变化的区域。当u i 超过一定范围时,u O 便不能跟随u i 作线性变化,即u O 波形产生了失真。为了使输出电压u O 正、负半周对称,并充分利用电压跟随范围,静态工作点应选在交流负载线中点,测量时可直接用示波器读取u O 的峰峰值,即电压跟随范围;或用交流毫伏表读取u O 的有效值,则电压跟随范围 U 0P -P =2 U O 三、实验设备与器件 1、+12V 直流电源 2、函数信号发生器 3、双踪示波器 4、交流毫伏表 5、直流电压表 6、频率计 1 ) //)(1() //)(1(≤+++= L E be L E V R R r R R A β β

音频功率放大器设计实验报告

题目:音频功率放大器电路 音频功率放大器设计任务 1、基本要求 (1)频带范围 200Hz —— 10KHz,失真度 < 5%。 (2)电压增益 >= 20dB。 (3)输出功率 >= 1 W (8欧姆负载)。 (4)功率放大电路部分使用分立元件设计。 发挥部分 (1)增加音调控制电路。 (2)增加话筒输入接口,灵敏度 5mV,输入阻抗 >> 20 欧姆。 (3)输出功率 >= 10W (8欧姆负载)。 (4)其他。 目录 1 引言····························································· 2 总体设计方案·····················································2.1 设计思路······················································· 2.2 总体设计框图··················································· 3 设计原理分析·····················································3.1设计总原理图 3.2设计的PCB电路图 ··· 1 引言 在现代音响普及中,人们因生活层次、文化习俗、音乐修养、欣赏口味的不同,令对相同电气指标的音响设备得出不同的评价。所以,就高保真度功放而言,应该达到电气指标与实际听音指标的平衡与统一。

音频功率放大器是一个技术已经相当成熟的领域,几十年来,人们为之付出了不懈的努力,无论从线路技术还是元器件方面,乃至于思想认识上都取得了长足的进步。本次设计旨在熟悉设计流程,达到基本指标。 2 总体方案 根据实验要求,本次设计主要是也能够是用集成功放TDA2030为主的电路 一、电路工作原理 图1所示电路为音频功率放大器原理图,其中TDA2030是高保真集成功率放大器芯片,输出功率大于10W,频率响应为10~1400Hz,输出电流峰值最大可达3.5A。其内部电路包含输入级、中间级和输出级,且有短路保护和过热保护,可确保电路工作安全可靠。TDA2030使用方便、外围所需元器少,一般不需要调试即可成功。 RP是音量调节电位器,C1是输入耦合电容,R1是TDA2030同相输入端偏置电阻。 R2、R3决定了该电路交流负反馈的强弱及闭环增益。该电路闭环增益为 (R2+R3)/R2=(0.68+22)/0.68=33.3倍,C2起隔直流作用,以使电路直流为100%负反馈。静态工作点稳定性好。 C4、C5为电源高频旁路电容,防止电路产生自激振荡。R4、R5称为茹贝网路,用以在电路接有感性负载扬声器时,保证高频稳定性。VD1、VD2是保护二极管,防止输出电压峰值损坏集成块TDA2030。 2.电流反馈 电流反馈是指在一个反馈电路中,若反馈量与输出电流成正比则为电流反馈;若反馈量与输出电压成正比则为电压反馈。通常可以采用负载短路法来判断。 从概念上说,若反馈量与输出电压(有时不一定是输出电压,而是取样处的电压)成正比则为电压反馈;若反馈量与输出电流(有时不一定是输出电流,而是取样处的电流)成正比则为电流反馈。在判断电压反馈和电流反馈时,除了上述方法外,也可以采用负载短路法。负载短路法实际上是一种反向推理法,假设将放大电路的负载电阻RL短路(此时,),若

模电仿真实验 共射极单管放大器

仿真实验报告册 仿真实验课程名称:模拟电子技术实验仿真仿真实验项目名称:共射极单管放大器 仿真类型(填■):(基础■、综合□、设计□) 院系:专业班级: 姓名:学号: 指导老师:完成时间: 成绩: .

. 一、实验目的 (1)掌握放大器静态工作点的调试方法,熟悉静态工作点对放大器性能的影响。 (2)掌握放大器电压放大倍数、输入电阻、输出电阻及最大不失真输出电压的测试方法。 (3)熟悉低频电子线路实验设备,进一步掌握常用电子仪器的使用方法。 二、实验设备及材料 函数信号发生器、双踪示波器、交流毫伏表、万用表、直流稳压电源、实验电路板。 三、实验原理 电阻分压式共射极单管放大器电路如图3.2.1所示。它的偏置电路采用(R W +R 1)和R 2组成的分压电路,发射极接有电阻R 4(R E ),稳定放大器的静态工作点。在放大器的输入端加入输入微小的正弦信号U i ,经过放大在输出端即有与U i 相位相反,幅值被放大了的输出信号U o ,从而实现了电压放大。 在图3.2.1电路中,当流过偏置电阻R 1和R 2的电流远大于晶体管T 的基极电流I B 时(一般5~10倍),则它的静态工作点可用下式进行估算(其中U CC 为电源电压): CC 21W 2 BQ ≈ U R R R R U ++ (3-2-1) C 4 BE B EQ ≈I R U U I -= (3-2-2) )(43C CC CEQ R R I U U +=- (3-2-3) 电压放大倍数 be L 3u ||=r R R β A - (3-2-4) 输入电阻 be 21W i ||||)(r R R R R += (3-2-5) 图3.2.1 共射极单管放大器

单管共射极放大电路仿真实验报告

单管共射极分压式放大电路仿真实验报告 班级__________姓名___________学号_________ 一、实验目的:1.学会放大器静态工作点的调试方法,分析静态工作点对放大器性能的影响。 2.掌握放大器电压放大倍数、输入电阻、输出电阻及最大不失真输出电压的 测量法。 3.熟悉简单放大电路的计算及电路调试。 4.能够设计较为简单的对温度稳定的具有一定放大倍数的放大电路。 二、实验要求:输入信号Ai=5 mv, 频率f=20KHz, 输出电阻R0=3kΩ, 放大倍数Au=60,直 流电源V cc=6v,负载R L=20 kΩ,Ri≥5k,Ro≤3k,电容C1=C2=C3=10uf。三、实验原理: (一)双极型三极管放大电路的三种基本组态。 1.单管共射极放大电路。 (1)基本电路组成。如下图所示: (2)静态分析。I BQ=(V cc-U BEQ)/R B (V CC为图中RC(1)) I=βI BQ

U CEQ=V CC-I CQ R C (3)动态分析。A U=-β(R C管共集电极放大电路(射极跟随器)。 (1)基本电路组成。如下图所示: (2)静态分析。I BQ=(V cc-U BEQ)/(R b +(1+β)R e)(V CC为图中Q1(C)) I CQ=βI BQ U CEQ=V CC-I EQ R e≈V CC-I CQ R e (3)动态分析。A U=(1+β)(R e管共基极放大电路。 (1)基本电路组成。如下图所示:

(2)静态分析。I EQ=(U BQ-U BEQ)/R e≈I CQ (V CC为图中RB2(2)) I BQ=I EQ/(1+β) U CEQ=V CC-I CQ R C-I EQ R e≈V CC-I QC(R C+R e) (3)动态分析。AU=β(R C极管将输入信号放大。 2.两电阻给三极管基极提供一个不受温度影响的偏置电流。 3.采用单管分压式共射极电流负反馈式工作点稳定电路。 四、实验步骤: 1.选用2N1711型三极管,测出其β值。 (1)接好如图所示测定电路。为使ib达到毫安级,设定滑动变阻器Rv1的最大阻值是 1000kΩ,又R1=3 kΩ。

音频功率放大器实验报告_音频功率放大器课程设计报告.docx

音频功率放大器实验报告_音频功率放大器课程设计报告 本科实验报告 课程名称:姓名:学院:系:专业:学号:指导教师: 电子电路安装与调试 信息与电子工程学院 电子科学与技术 一、实验目的二、实验任务与要求 三、实验方案设计与实验参数计算(3.1 总体设计、3.2 各功能电路设计与计算、3.3完整的实验电路……)四、主要仪器设备五、实验步骤与过程六、实验调试、实验数据记录七、实验结果和分析处理八、讨论、心得 一、实验目的 1、学习并初步掌握音频功率放大器的设计、调试方法。 2、学习并掌握电路布线、元器件安装和焊接。 3、掌握音频功率放大器各项主要性能及指标的调试方法。 二、实验任务与要求 1、设计 (1)设计一音频功率放大器,使其达到如下主要技术指标:负载阻抗:R L =4Ω额定功率:P o =10W 带宽:BW ≥(50~15000) Hz 音调控制: 低音:100Hz ±12dB 高音:10kHz ±12dB 失真度:γ≤3% 输入灵敏度:U " i (2)设计满足以上设计要求的稳压电源。 2、在Altium Designer中画出原理图, 并进行PCB 板的编辑与设计。 3、根据给定的功率放大器的原理图(三),做如下工作: (1)分析计算晶体管前置放大器的直流工作电压、电流、输入电阻、输出电阻、各级放大器的交流增益。 (2)分析音调控制电路的工作原理,计算4个极端情况下的交流增益。(3)安装实验电路板 (4)调试和测试实验电路的增益、频响特性曲线、输入电阻和输出电阻、以及改变某实验名称:音频功率放大器的设计、安装和调试姓名:陈肖苇学号:3140104580_ 些电路参数后的性能测试(电路图中括号内的数字)。 (5)分析实验数据,并与理论计算值比较,讨论二者之间的误差和产生误差的原因。三、实验原理和实验方案设计 作为音频放大器的音源部分,其输出电平既有高至数百毫伏(如调谐器:50~500mV,线路输出:100~500mV),也有低至1mV (如话筒:1~5mV),相差达几百倍。音频放大器就是要把这些不同大小的音源放大后驱动喇叭,发出同等强度的声音。因此,根据不同音源的需要,可以画出音频放大器的原理框图,如图1所示。 P.2 装订线 图1音频功率放大器框图 1、各部分电路电压增益的确定 根据额定输出功率P o =10W和负载R L =4Ω,可求得输出电压为 : V o ===6.32V 所以整机中频电压增益为:A O um =

射极跟随器实验报告

射极跟随器实验报告 班级: 姓名: 学号: 一、实验目的 (1)掌握射极跟随器的特性及测试方法。 (2)进一步学习放大器各项参数的测试方法。 二、实验原理 射极跟随器的原理图如图(1)所示。它是一个电压串联负反馈放大电路,具有输入电阻高、输出电阻低,电压放大倍数接近于1,输出电压能够在较大范围内跟随输入电压作线性变化以及输入、输出信号同相等特点。 由于射极跟随器的输出取自发射极,故也称其为射极输出器。 1、输入电阻i R 根据图(1)电路所示,有 R r R E be i )1(β++= 如考虑偏置电阻B R 和负载L R 的影响,则 ]//)(1(//[R R r R R L E be B i β++= 图 (1) 射极跟随器 由上式可知,射极跟随器的输入电阻 i R 比共射极单管放大器的输入电阻 be B i r R R //=的阻值要高的多。但由于偏置电阻B R 的分流作用,输入电阻的阻值难以 进一步提高。

输入电阻的测试方法与单管放大器的相同,试验线路如图(2)所示。 R U U U I U R i s i i i i -= = 即只要测得A 、B 两点的对地电位即可计算出i R 。 2、输出电阻O R 根据图(1)电路所示,有 β β r R r R be E be O ≈ = // 如考虑信号源内阻S R ,则 β β ) //(//) //(R R r R R R r R B S be E B S be O +≈ += 由上式可知,射极跟随器的输出电阻O R 比共射极单管放大器的输出电阻C O R R ≈低得多。三极管的β值愈高。

OTL功率放大器实验报告(DOC)

课程设计 课程名称模拟电子技术 题目名称功率放大器 专业班级12网络工程本2 学生姓名郭能 学号51202032019 指导教师孙艳孙长伟 二○一三年十二月二十三日 目录 引言 (2)

一、设计任务与要求 (2) 1.1 设计任务 (2) 1.2 设计要求 (2) 二、方案设计 (3) 三、总原理图及元器件清单 (4) 四、电路仿真与调试 (6) 五、性能测试与分析 (7) 六、总结 (8) 七、参考文献 (8)

OTL功率放大器 引言:OTL(Output transformerless )电路是一种没有输出变压器的功率放大电路。过去大功率的功率放大器多采用变压器耦合方式,以解决阻抗变换问题,使电路得到最佳负载值。但是,这种电路有体积大、笨重、频率特性不好等缺点,目前已较少使用。OTL电路不再用输出变压器,而采用输出电容与负载连接的互补对称功率放大电路,使电路轻便、适于电路的集成化,只要输出电容的容量足够大,电路的频率特性也能保证,是目前常见的一种功率放大电路。它的特点是:采用互补对称电路(NPN、PNP参数一致,互补对称,均为射随组态,串联,中间两管子的射极作为输出),有输出电容,单电源供电,电路轻便可靠。两组串联的输出中点”可理解为采用互补对称电路(NPN、PNP参数一致,互补对称,均为射随组态,串联,中间两管子的射极作为输出)。 1:设计任务与要求 1.1设计任务: 1.学习基本理论在实践中综合运用的初步经验,掌握模拟电路设计的基本方法、设计步骤,培养综合设计与调试能力。 2.培养实践技能,提高分析和解决实际问题的能力。 3.掌握OTL音频功率放大器的设计方法,基本工作原理和性能指标测试方法。 4. 通过一个OTL功率放大器的设计、安装和调试,进一步加深对互补对称功率放大电路的理解,增强实际动手能力。 1.2 设计要求: 1.设计时要综合考虑实用,经济并满足性能指标的要求,合理选用元器件。 2.广泛查阅相关的资料,不懂的地方积极向老师同学请教,讨论。认真独立的完成课题的设计。 3.按时完成课程设计并提交设计报告。 2:方案设计 要求设计一个由二极管,三极管,电容,电阻等元件组合而成的OTL音频功

音频功率放大器实验报告

一、实验目的 1)了解音频功率放大器的电路组成,多级放大器级联的特点与性能; 2)学会通过综合运用所学知识,设计符合要求的电路,分析并解决设计过程中遇到的问题,掌握设计的基本过程与分析方法; 3)学会使用Multisim、Pspice等软件对电路进行仿真测试,学会Altium Designer使用进行PCB制版,最后焊接做成实物,学会对实际功放的测试调试方法,达到理想的效果。 4)培养设计开发过程中分析处理问题的能力、团队合作的能力。 二、实验要求 1)设计要求 设计并制作一个音频功率放大电路(电路形式不限),负载为扬声器,阻抗8Ω。要求直流稳压电源供电,多级电压、功率放大,所设计的电路满足以下基本指标: (1)频带宽度50Hz~20kHz,输出波形基本不失真; (2)电路输出功率大于8W; (3)输入阻抗:≥10kΩ; (4)放大倍数:≥40dB; (5)具有音调控制功能:低音100Hz处有±12dB的调节范围,高音10kHz 处有±12dB的调节范围; (6)所设计的电路具有一定的抗干扰能力; (7)具有合适频响宽度、保真度要好、动态特性好。 发挥部分: (1)增加电路输出短路保护功能; (2)尽量提高放大器效率; (3)尽量降低放大器电源电压; (4)采用交流220V,50Hz电源供电。 2)实物要求 正确理解有关要求,完成系统设计,具体要求如下: (1)画出电路原理图; (2)确定元器件及元件参数; (3)进行电路模拟仿真; (4)SCH文件生成与打印输出;

(5)PCB文件生成与打印输出; (6)PCB版图制作与焊接; (7)电路调试及参数测量。 三、实验内容与原理 音频功率放大器是一种应用广泛、实用性强的电子音响设备,它主要应用于对弱音频信号的放大以及音频信号的传输增强和处理。按其构成可分为前置放大级、音调控制级和功率放大级三部分,如图1所示。 v 图1 音频功率放大器的组成框图 1)前置放大级 音频功率放大器的作用是将声音源输入的信号进行放大,然后输出驱动扬声器。声音源的种类有多种,如传声器(话筒)、电唱机、录音机(放音磁头)、CD 唱机及线路传输等,这些声音源的输出信号的电压差别很大,从零点几毫伏到几百毫伏。一般功率放大器的输入灵敏度是一定的,这些不同的声音源信号如果直接输入到功率放大器中的话,对于输入过低的信号,功率放大器输出功率不足,不能充分发挥功放的作用;假如输入信号的幅值过大,功率放大器的输出信号将严重过载失真,这样将失去了音频放大的意义。所以一个实用的音频功率放大系统必须设置前置放大器,以便使放大器适应不同的输入信号,或放大,或衰减,或进行阻抗变换,使其与功率放大器的输入灵敏度相匹配。另外在各种声音源中,除了信号的幅度差别外,它们的频率特性有的也不同,如电唱机输出信号和磁带放音的输出信号频率特性曲线呈上翘形,即低音被衰减,高音被提升。对于这样的输入信号,在进行功率放大器之前,需要进行频率补偿,使其频率特性曲线恢复到接近平坦的状态,即加入频率均衡网络放大器。 对于话筒和线路输入信号,一般只需将输入信号进行放大和衰减,不需要进行频率均衡。前置放大器的主要功能一是使话筒的输出阻抗与前置放大器的输入阻抗相匹配;二是使前置放大器的输出电压幅度与功率放大器的输入灵敏度相匹配。由于话筒输出信号非常微弱,一般只有100μV~几毫伏,所以前置放大器输入级的噪声对整个放大器的信噪比影响很大。前置放大器的输入级首先采用低噪声电路,对于由晶体管组成的分立元件组成的前置放大器,首先要选择低噪声的晶体管,另外还要设置合适的静态工作点。由于场效应管的噪声系数一般比晶体管小,而且它几乎与静态工作点无关,在要求高输入阻抗的前置放大器的情况下,

晶体管共射极单管放大器 实验报告

实验二 晶体管共射极单管放大器 一、实验目的 1、 学会放大器静态工作点的调试方法,分析静态工作点对放大器性能的影响。 2、 掌握放大器电压放大倍数、输入电阻、输出电阻及最大不失真输出电压的测试方法。 3、 熟悉常用电子仪器及模拟电路实验设备的使用。 二、实验原理 图2-1为电阻分压式工作点稳定单管放大器实验电路图。它的偏置电路采用R B1和R B2 组成的分压电路,并在发射极中接有电阻R E ,以稳定放大器的静态工作点。当在放大器的输入端加入输入信号u i 后,在放大器的输出端便可得到一个与u i 相位相反,幅值被放大了的输出信号u 0,从而实现了电压放大。 在图2-1电路中,当流过偏置电阻R B1和R B2 的电流远大于晶体管T 的 基极电流I B 时(一般5~10倍),则它的静态工作点可用下式估算 CC B2 B1B1B U R R R U +≈ C E BE B E I R U U I ≈+-≈ 1 F R U CE =U CC -I C (R C +R E +R F1) 电压放大倍数 1 )1(F R // β++-=be L C V r R R β A 输入电阻 R i =R B1 // R B2 // [ r be +(1+β)R F1 ] 输出电阻 R O ≈R C 由于电子器件性能的分散性比较大,因此在设计和制作晶体管放大电路时,离不开测量 图2-1 共射极单管放大器实验电路

和调试技术。在设计前应测量所用元器件的参数,为电路设计提供必要的依据,在完成设计和装配以后,还必须测量和调试放大器的静态工作点和各项性能指标。一个优质放大器,必定是理论设计与实验调整相结合的产物。因此,除了学习放大器的理论知识和设计方法外,还必须掌握必要的测量和调试技术。 放大器的测量和调试一般包括:放大器静态工作点的测量与调试,消除干扰与自激振荡及放大器各项动态参数的测量与调试等。 1、放大器静态工作点的测量与调试 1) 静态工作点的测量 测量放大器的静态工作点,应在输入信号u i =0的情况下进行,即将放大器输入端与地端短接,然后选用量程合适的直流毫安表和直流电压表,分别测量晶体管的集电极电流 I C 以及各电极对地的电位U B 、U C 和U E 。一般实验中,为了避免断开集电极,所以采用测量电 压U E 或U C ,然后算出I C 的方法,例如,只要测出U E ,即可用 C E BE B E I R U U I≈ + - ≈ 1 F R 算出I C (也可根据C C CC C R U U I - = ,由U C 确定I C ),同时也能算出U BE =U B -U E ,U CE =U C -U E 。 为了减小误差,提高测量精度,应选用内阻较高的直流电压表。 2) 静态工作点的调试 放大器静态工作点的调试是指对管子集电极电流I C (或U CE )的调整与测试。 静态工作点是否合适,对放大器的性能和输出波形都有很大影响。如工作点偏高,放 大器在加入交流信号以后易产生饱和失真,此时u O 的负半周将被削底,如图2-2(a)所示; 如工作点偏低则易产生截止失真,即u O 的正半周被缩顶(一般截止失真不如饱和失真明显),如图2-2(b)所示。这些情况都不符合不失真放大的要求。所以在选定工作点以后还必须进 行动态调试,即在放大器的输入端加入一定的输入电压u i ,检查输出电压u O 的大小和波形 是否满足要求。如不满足,则应调节静态工作点的位置。 (a) (b) 图2-2 静态工作点对u O 波形失真的影响

实验三:电子实做实验(射极跟随器)

实验三 射极跟随器实验 1. 实验目的 (1)熟悉射极跟随器的工程估算,掌握射极跟随器静态工作点的调整与测试方法。 (2)熟悉电路参数变化对静态工作点的影响;熟悉静态工作点对放大器性能的影响。 (3)掌握放大器电压放大倍数、输入电阻、输出电阻及频率特性的测试方法。 (4)了解自举电路在提高射极跟随器的输入电阻中的作用。 2. 实验仪表及器材 (1)双踪示波器 (2)双路直流稳压电源 (3)函数信号发生器 (4)数字万用表 (5)双路晶体管毫伏表 3. 实验电路图 4. 知识准备 (1)复习共集电极放大器的相关理论知识。 (2)根据理论知识对实验电路的静态工作点、电压增益、输入电阻、输出电阻进行工程估算。 5. 实验原理 (1)基本原理 共集放大器又称射极输出器,它的输出信号取自于发射极,其电压放大倍数小于且接近于1 , 图1-1 射极跟随器

输入信号与输出信号是同相的,即输出信号基本上是随输入信号变化而变化,因此它又称为射极跟随器。由于射极跟随器的输入电阻高,向信号源索取的电流小;输出电阻小,有较强的带负载能力;因此它可以作为信号源或低阻负载的缓冲级,也可以在多级放大电路中作为输入级,以提高输入电阻,向信号源索取较小的电流,保证放大精度;同时也可以作为多级放大电路的输出级,用以增大带负载的能力。但由于基极偏置电阻的存在使输入电阻降低,从而发挥不出输入电阻高的优点;通常采用自举电路来起到大大提高输入电阻的作用;在使用射极跟随器的时候,要注意最大不失真输出电压的幅度,即跟踪范围。为了尽可能增大跟踪范围,应当把静态工作点安排在交流负载线的中点。 (2)静态工作点的调整 实验电路通过调节电位器R p 来调节静态工作点。 (3)静态工作点的测量 放大器的静态工作点是指当放大器的输入端短路时,流过三极管的直流电流I CQ 、I EQ 及三极管极间直流电压V CEQ 、V BEQ 。 静态工作点的测量就是测出三极管各电极对地直流电压V BQ 、V EQ 、V CQ ,从而计算得到V CEQ 和V BEQ 。而测量直流电流时,通常采用间接测量法测量,即通过直流电压来换算得到直流电流;这样即可以避免更动电路,同时操作也简单。 EQ CQ CEQ V V V -= EQ BQ BEQ V V V -= e EQ EQ R V I = C CQ CC CQ )(R V V I -= (4)电压放大倍数的测量 电压放大倍数A u 是指输出电压U o 与输入电压U i 之比,即A u =U o /U i 。 测量电压放大倍数时需用示波器观察输出波形;在输出波形不失真的条件下,给定输入信号值(有效值U i 或峰值U ip 或峰峰值U ipp ),测量相应的输出信号值(有效值U o 或峰值U op 或峰峰值U opp ),则: ipp opp ip op i o u U U U U U U A === (5)输入电阻的测量 输入电阻是指输入信号的电压与电流之比,即R i =U i /I i 。 由于实验电路的输入电阻较大,测量仪表的内阻引入则产生的分流作用不能忽略;所以采用图1-2所示的测试方法。 当开关K 合上时(即R 不接入),测量输出电压为U 01,并且U 01 = A u ×U s 当开关K 打开时(即R 接入时),测量输出电压为U 02,并且U 02 = A u ×U i 所以有: R U U U R U U U I U R 02 0102i S i i i i )(-=-== 可以证明,只有在0102012 1U U U =-时测量误差最小;同电阻R 的准确度直接影响测量的准确度,电阻R 不宜取得过大,否则易引入干扰;也不宜取得过小,否则易引起较大的测量误差。

音频功率放大电路实验报告分析

实验报告 课程名称: 电路与模拟电子技术实验 指导老师: 成绩:__________________ 实验名称: 音频功率放大电路 实验类型: 研究探索型实验 同组学生姓名:__________ 一、实验目的和要求 1、理解音频功率放大电路的工作原理。 2、学习手工焊接和电路布局组装方法。 3、提高电子电路的综合调试能力。 4、通过myDAQ 来分析理论数据和实际数据之间的关系。 二、实验内容和原理(必填) 音频功率放大电路,也即音响系统放大器,用于对音频信号的处理和放大。按其构成可分为前置放大级、音调控制级和功率放大级三部分。 作为音响系统中的放大设备,它接受的信号源有多种形式,通常有话筒输出、唱机输出、录音输出和调谐器输出。它们的输出信号差异很大,因此,音频功放电路中设置前置放大级以适应不同信号源的输入。 为了满足听众对频响的要求和弥补设置了音调控制放大器,希望能对高音、低音部分的频率特性进行调节扬声器系统的频率响应不足,。 为了充分地推动扬声器,通常音响系统中的功率放大器能输出数十瓦以上功率,而高级音响系统的功放最大输出功率可达几百瓦以上。 扩音机的整机电路如下图所示,按其构成,可分为前置放大级,音调控制级和功率放大级三部分。 装 订 线

前置放大电路: 前置放大级输入阻抗较高,输出阻抗较低。前置放大级的性能对整个音频功放电路的影响很大,为了减小噪声,前置级通常要选用低噪声的运放。 由A1组成的前置放大电路是一个电压串联负反馈同相输入比例放大器。 理想闭环电压放大倍数为:23 1R R A vf + = 输入电阻:1R R if = 输出电阻:0of =R 功率放大级: 对于功率放大级,除了输出功率应满足技术指标外,还要求电路的效率高、非线性失真小、输出与音箱负载相匹配,否则将会影响放音效果。 集成功率放大器通常有OTL 和OCL 两种电路结构形式。OTL 功放的优点是只需单电源供电,缺点是输出要通过大电容与负载耦合,因此低频响应较差;OCL 功放的优点是输出与负载可直接耦合,频响特性较好,但需要用双电源供电。(实验室提供本功能模块) 本实验电路的功率放大级由集成功率器件TDA2030A 连成OCL 电路输出形式。 TDA2030A 功率集成电路具有转换速率高,失真小,输出功率大,外围电路简单等特点,采用5脚塑料封装结构。其中1脚为同相输入端;2脚为反相输入端;3脚为负电源;4脚为输出端; 5脚为正电源。 功放级电路中,电容C15、C16用作电源滤波。D1和D2为防止输出端的瞬时过电压损坏芯片的保护二极管。R11、C10为输出端校正网络以补偿感性负载,其作用是把扬声器的电感性负载补偿接近纯电阻性,避免自激和过电压。 图中通过R10、R9、C9引入了深度交直流电压串联负反馈。由于接入C9,直流反馈系数F ′=1。对于交流信号而言,

实验二 射极跟随器

实验二 射极跟随器 一、实验目的 1、掌握射极跟随器的特性及测试方法 2、进一步学习放大器各项参数测试方法 二、实验仪器 +12V 直流电源、函数信号发生器、双踪示波器、直流电压表、实验电路板。 三、实验原理 1、射极跟随器的原理图如图5-1所示。它是一个电压负反馈型放大电路,它 具有输入电阻高,输出电阻低,电压放大倍数接近于1,输出电压能够在较大范围内跟随输入电压作线性变化以及输入、输出信号同相位等特点。 2、射极跟随器的动态参数计算 输入电阻: e R be r i R )1(β++=(不考虑偏置电阻和负载的影响) )]//)(1(//[L R e R be r B R i R β++=(考虑偏置电阻和负载的影响) 测试方法,按照实验电路图,分别测出A 、B 两点的对地电位Us 和Ui ,即可通 过公式R i U s U i U i R -= 算出输入电阻(其中R 为电路图中10k 的电阻) 。 输出电阻: β β be E be o r R r R ≈ = //(不考虑信号源内阻)

β ) //(B S be o R R r R +≈ (考虑信号源内阻) 测试方法:先测出空载输出电压Uo ,再测出接入负载R L 后的输出电压U L ,根 据公式O U L R O R L R L U += 即可计算出R O 电压放大倍数:1) //)(1()//)(1(≤+++= L R E R be r L R E R v A ββ 3、电压跟随范围 电压跟随范围是指射极跟随器输出电压u o 跟随输入电压u i 作线性变化的区域。当u i 超过一定范围时,u o 便不能跟随u i 作线性变化,即输出电压波形产生了失真。 四、实验内容及数据记录表格 1、静态工作点的调整与测试 接通+12V 电源,在B 点加入f=1KH Z 正弦信号u i ,在输出端用示波器观察输出波形,反复调整R W 及信号源的输出幅度,以便在示波器上得到一个最大不失真的输出波形,然后置信号源为0,用直流电压表测量晶体管各电极对地电位, 2、测量电压放大倍数A V 接入负载Ω=K L R 1,在 B 点加入f=1KH Z 正弦信号u i ,调节输入信号幅 度,用示波器观察输出波形uo ,在输出不失真的情况下,用示波器测出u i 和u o 3、测量输入电阻Ri 在A 点加入f=1KH Z 正弦信号u i ,用示波器观察输出波形,分别测出A 、B 两点的对地电位Us 4、测量输出电阻Ro

6低频功率放大器实验报告1

实验报告 姓名: 学号: 日期: 成绩 : 课程名称 模拟电子实验 实验室名称 模电实验室 实验 名称 低频功率放大器 同组 同学 指导 老师 一、实验目的 1、进一步理解OTL 功率放大器的工作原理 2、学会OTL 电路的调试及主要性能指标的测试方法 二、实验原理 图7-1所示为OTL 低频功率放大器。其中由晶体三极管T 1组成推动级(也称前置放大级),T 2、T 3是一对参数对称的NPN 和PNP 型晶体三极管,它们组成互补推挽OTL 功放电路。由于每一个管子都接成射极输出器形式,因此具 图7-1 OTL 功率放大器实验电路 有输出电阻低,负载能力强等优点,适合于作功率输出级。T 1管工作于甲类状态,它的集电极电流I C1由电位器R W1进行调节。I C1 的一部分流经电位器R W2及二极管

D , 给T 2、T 3提供偏压。调节R W2,可以使T 2、T 3得到合适的静态电流而工作于甲、 乙类状态,以克服交越失真。静态时要求输出端中点A 的电位CC A U 21 U =,可以 通过调节R W1来实现,又由于R W1的一端接在A 点,因此在电路中引入交、直流电压并联负反馈,一方面能够稳定放大器的静态工作点,同时也改善了非线性失真。 当输入正弦交流信号u i 时,经T 1放大、倒相后同时作用于T 2、T 3的基极,u i 的负半周使T 2管导通(T 3管截止),有电流通过负载R L ,同时向电容C 0充电,在u i 的正半周,T 3导通(T 2截止),则已充好电的电容器C 0起着电源的作用,通过负载R L 放电,这样在R L 上就得到完整的正弦波。 C 2和R 构成自举电路,用于提高输出电压正半周的幅度,以得到大的动态范围。 OTL 电路的主要性能指标 1、最大不失真输出功率P 0m 理想情况下,L 2CC om R U 81P =,在实验中可通过测量R L 两端的电压有效值,来 求得实际的L 2 O om R U P =。 2、 效率η 100%P P ηE om = P E —直流电源供给的平均功率 理想情况下,ηmax = 78.5% 。在实验中,可测量电源供给的平均电流I dC , 从而求得P E =U CC ·I dC ,负载上的交流功率已用上述方法求出,因而也就可以计算实际效率了。 3、 频率响应 详见实验二有关部分内容 4、 输入灵敏度 输入灵敏度是指输出最大不失真功率时,输入信号U i 之值。 三、实验设备与器件 1、 +5V 直流电源 5、 直流电压表 2、 函数信号发生器 6、 直流毫安表

共射极单管放大电路(一)

电路分析实验报告 共射极单管放大电路(一) 一 、实验摘要 通过单管放大电路,认识三极管放大电路的性能参数。静态参数有:三极管的静态工作点Ib、Ic和Vce;了解三极管放大电路的线性放大,饱和失真、截止失真;动态参数有:电压放大倍数Av、最大不失真输出电压Uomax。 2、 实验环境 模拟电路试验箱 函数信号发生器 示波器 万用表 3、 实验原理 ui直接加在三极管V的基极和发射极之间,引起基极电流iB作相应的变化 。 通过三极管VT的电流放大作用,VT的集电极电流iC也将变化 。 iC的变化引起V的集电极和发射极之间的电压uCE变化。 uCE中的交流分量uce经过电容C2畅通地传送给负载RL,成为输出交流电压uo,,实现了电压放大作用。 4、 实验步骤 在模电试验箱对应模块上连 接电路 调节信号发生器调节频率、峰峰值,观察波形 调节电位器调节电位器,观察波形 分别在饱和失真、截止失计算得出放大倍数,Ib、Ic和Vce,最

真、不失真时观察波形,记 大不失真输出电压 录数据 5、 实验数据 截止失真 Vce/V Ic/A Ie/A Ib/A放大倍数Av 8.380.000890.0008-0.000098.89 饱和失真 Vce/V Ic/A Ie/A Ib/A放大倍数Av 2.610.00220.0023-0.000111.23 不失真

Vce/V Ic/A Ie/A Ib/A放大倍数Av 4.820.00170.001780.0000812.63 最大不失真输出电压Uomax=500mVPP 上下半波均失真,形成矩形波 相移:140.5° 6、 实验总结 在本次实验中了解到了三极管的放大特性。通过单管放大电路,认识了三极管放大电路的性能参数。

射极跟随器实验报告

实验六 射极跟随器 一、实验目的 l 、掌握射极跟随器的特性及测量方法。 2、进一步学习放大器各项参数的测量方法。 二、实验原理 下图为射极跟随器实验电路。跟随器输出电压能够在较大的范围内跟随输入电压作线性变化,而具有优良的跟随特性。 1、输入电阻R i 实际测量时,在输入端串接一个已知电阻R 1,在A 端输入的信号是V i ,在B 端的输入信号是i V ',显然射极输出器的输入电流为:1 R V V I i i i '-= ' i I '是流过R 的电流,于是射极输出器之输入电阻为: 1 1-'='-'=''=i i i i i i i i V V R R V V V I V R 所以只要测得图中A 、B 两点信号电压的大小就可按上式计算出输入电阻R i 。 2、输出电阻R 0 在放大器的输出端的D 、F 两点,带上负载R L ,则放大器的输出信号电压V L 将比不带负载时的V 0有所下降,因此放大器的输出端D 、F 看进去整个放大器相当于一个等效电源,该等到效电源的电动势为V S ,内阻即为放大器的输出电阻R 0,按图中等效电路先使放大器开路,测出其输出电压为V 0,显然V 0=V S ,再使放大器带上负载R L ,由于R 0的影响,输出电压将降为: L S L R R V R V +'= S V V =0Θ 则L S R V V R ?? ? ??-=100 所以在已知负载R L 的条件下,只要测出V 0和V L ,就可按上式算出射极输出器的输出电阻R 0。 3、电压跟随范围 电压跟随范围,是指跟随器输出电压随输入电压作线性变化的区域,但在输入电压超过一定范围时,输出电压便不能跟随输入电压作线性变化,失真急剧增加。因为射极跟随器的

音频功率放大电路实验报告

实验报告 课程名称: 电路与模拟电子技术实验 指导老师: 成绩:__________________ 实验名称: 音频功率放大电路 实验类型: 研究探索型实验 同组学生姓名:__________ 一、实验目的和要求 1、理解音频功率放大电路的工作原理。 2、学习手工焊接和电路布局组装方法。 3、提高电子电路的综合调试能力。 4、通过myDAQ 来分析理论数据和实际数据之间的关系。 二、实验内容和原理(必填) 音频功率放大电路,也即音响系统放大器,用于对音频信号的处理和放大。按其构成可分为前置放大级、音调控制级和功率放大级三部分。 作为音响系统中的放大设备,它接受的信号源有多种形式,通常有话筒输出、唱机输出、录音输出和调谐器输出。它们的输出信号差异很大,因此,音频功放电路中设置前置放大级以适应不同信号源的输入。 为了满足听众对频响的要求和弥补设置了音调控制放大器,希望能对高音、低音部分的频率特性进行调节扬声器系统的频率响应不足,。 为了充分地推动扬声器,通常音响系统中的功率放大器能输出数十瓦以上功率,而高级音响系统的功放最大输出功率可达几百瓦以上。 扩音机的整机电路如下图所示,按其构成,可分为前置放大级,音调控制级和功率放大级三部分。 专业: 姓名: 学号: 日期: 地点: 桌号 装 订 线 点名册上的序号 前置 放大级 音调控制 放大级 功率 放大级

前置放大电路: 前置放大级输入阻抗较高,输出阻抗较低。前置放大级的性能对整个音频功放电路的影响很大,为了减小噪声,前置级通常要选用低噪声的运放。 由A1组成的前置放大电路是一个电压串联负反馈同相输入比例放大器。 理想闭环电压放大倍数为:23 1R R A vf + = 输入电阻:1R R if = 输出电阻:0of =R 功率放大级: 对于功率放大级,除了输出功率应满足技术指标外,还要求电路的效率高、非线性失真小、输出与音箱负载相匹配,否则将会影响放音效果。 集成功率放大器通常有OTL 和OCL 两种电路结构形式。OTL 功放的优点是只需单电源供电,缺点是输出要通过大电容与负载耦合,因此低频响应较差;OCL 功放的优点是输出与负载可直接耦合,频响特性较好,但需要用双电源供电。(实验室提供本功能模块) 本实验电路的功率放大级由集成功率器件TDA2030A 连成OCL 电路输出形式。 TDA2030A 功率集成电路具有转换速率高,失真小,输出功率大,外围电路简单等特点,采用5脚塑料封装结构。其中1脚为同相输入端;2脚为反相输入端;3脚为负电源;4脚为输出端;5脚为正电源。 功放级电路中,电容C15、C16用作电源滤波。D1和D2

相关文档
最新文档