动态规划算法实现多段图的最短路径问题算法设计与分析实验报告

动态规划算法实现多段图的最短路径问题算法设计与分析实验报告
动态规划算法实现多段图的最短路径问题算法设计与分析实验报告

动态规划算法实现多段图的最短路径问题算法设计与分析实验报告

算法设计与分析实验报告

实验名称 动态规划算法实现多段图的最短路径问题 评分 实验日期 年 月 日 指导教师 姓名 专业班级 学号

一.实验要求

1. 理解最优子结构的问题。

有一类问题的活动过程可以分成若干个阶段,而且在任一阶段后的行为依赖于该阶段的状态,与该阶段之前的过程如何达到这种状态的方式无关。这类问题的解决是多阶段的决策过程。在50年代,贝尔曼(Richard Bellman )等人提出了解决这类问题的“最优化原理”,从而创建了最优化问题的一种新的算法设计方法-动态规划。

对于一个多阶段过程问题,是否可以分段实现最优决策,依赖于该问题是否有最优子结构性质,能否采用动态规划的方法,还要看该问题的子问题是否具有重叠性质。

最优子结构性质:原问题的最优解包含了其子问题的最优解。

子问题重叠性质:每次产生的子问题并不总是新问题,有些子问题被反复计算多次。问题的最优子结构性质和子问题重叠性质是采用动态规划算法的两个基本要素。 2.理解分段决策Bellman 方程。

每一点最优都是上一点最优加上这段长度。即当前最优只与上一步有关。 U s 初始值,u j 第j 段的最优值。

?

????+==≠}.{min ,

0ij

i

j

i j

s w u u u

3.一般方法

1)找出最优解的性质,并刻画其结构特征;2)递归地定义最优值(写出动态规划方程);3)以自底向上的方式计算出最优值;

4)根据计算最优值时得到的信息,构造一个

最优解。

步骤1-3是动态规划算法的基本步骤。在只需要求出最优值的情形,步骤4可以省略,步骤3中记录的信息也较少;若需要求出问题的一个最优解,则必须执行步骤4,步骤3中记录的信息必须足够多以便构造最优解。

二.实验内容

1.编程实现多段图的最短路径问题的动态规

划算法。

2.图的数据结构采用邻接表。

3.要求用文件装入5个多段图数据,编写从文件到邻接表的函数。

4.验证算法的时间复杂性。

三.程序算法

多段图算法:

Procedure FGRAPH(E,k,n,P)

//输入是按段的顺序给结点编号的,有n个结点的k段图。E是边集,c(i,j)是边的成本。P(1:k)是最小成本路径。//

real COST(n),integer(n-1),P(k),r,j,k,n COST(n)<-0

for j<-n-1 to 1 by -1 do //计算COST(j)//

设r是一个这样的结点,(j,r) E且使c(j,

r)+COST(r)取最小值

COST(j)<- c(j,r)+COST(r);D(j)<-r;Repeat //向前对j-1进行决策//

P(1)<-1; P(k)<-n;

for j<-2 to k-1 do // 找路径上的第j个节点//

P(j)<-D(P(j-1));repeat;

end FGRAPH

四.程序代码

#include

#include

#include

#include

#define MAX 100

#define n 12 /*顶点数*/

#define k 5 /*段数*/

int c[n][n];

void init(int cost[]) //初始化图

{

int i,j;

for(i=0;i<13;i++)

{

for(j=0;j<13;j++)

{

c[i][j]=MAX;

}

}

c[1][2]=9; c[1][3]=7; c[1][4]=3;

c[1][5]=2; c[2][6]=4; c[2][7]=2;

c[2][8]=1;

c[3][6]=2; c[3][7]=7; c[4][8]=11;

c[5][7]=11; c[5][8]=8; c[6][9]=6;

c[6][10]=5;

c[7][9]=4; c[7][10]=3; c[8][10]=5;

c[8][11]=6; c[9][12]=4;

c[10][12]=2;c[11][12]=5;

}

void fgraph(int cost[],int path[],int d[]) //使用向前递推算法求多段图的最短路径

{

int r,j,temp,min;

for(j=0;j<=n;j++)

cost[j]=0;

for(j=n-1;j>=1;j--)

{

temp=0;

min=c[j][temp]+cost[temp]; //初始化最小值

for(r=0;r<=n;r++)

{

if(c[j][r]!=MAX)

{

if((c[j][r]+cost[r])

{

min=c[j][r]+cost[r];

temp=r;

}

}

}

cost[j]=c[j][temp]+cost[temp];

d[j]=temp;

}

path[1]=1;

path[k]=n;

for(j=2;j

path[j]=d[path[j-1]];

}

void bgraph(int bcost[],int path1[],int

d[])//使用向后递推算法求多段图的最短路径

{

int r,j,temp,min;

for(j=0;j<=n;j++)

bcost[j]=0;

for(j=2;j<=n;j++)

{

temp=12;

min=c[temp][j]+bcost[temp]; //初始化最小值

for(r=0;r<=n;r++)

{

if(c[r][j]!=MAX)

{

if((c[r][j]+bcost[r])

{

min=c[r][j]+bcost[r];

temp=r;

}

}

}

bcost[j]=c[temp][j]+bcost[temp];

d[j]=temp;

}

path1[1]=1;

path1[k]=n;

for(int i=4;i>=2;i--)

{

path1[i]=d[path1[i+1]];

}

}

void main()

{

int cur=-1;

int cost[13],d[12],bcost[13];

int path[k];

int path1[k];

cout<<"\t\t\t动态规划解多段图问题"<

cout<<"\n\n";

init(cost);

fgraph(cost,path,d);

cout<<"输出使用向前递推算法后的最短路径:\n\n";

for(int i=1;i<=5;i++)

{

cout<

}

cout<<"\n";

cout<

cout<<"\n";

cout<<"\n输出使用向后递推算法后的最短路径:\n\n";

bgraph(bcost,path1,d);

for(i=1;i<=5;i++)

{

cout<

}

cout<<"\n";

cout<

度:"<

五.程序调试中的问题

在这次实验中,确实遇到了一些问题,例如最短路径的选择问题。

六.实验结果

1、数据的五段图

2、实验结果如下:

1

2

3

4

5

6

7

8

11

10

9

12

9

7 3 2

8

1 6

5 3 5 5

2 4

6 4 4 2 1 1 2 图为标准

7

实验三 最短路径的算法(离散数学实验报告)

实验3:最短路径算法 一、实验目的 通过本实验的学习,理解Floyd(弗洛伊得)最短路径算法的思想 二、实验内容 用C语言编程实现求赋权图中任意两点间最短路径的Floyd算法,并能对给定的两结点自动求出最短路径 三、实验原理、方法和手段 1、Floyd算法的原理 定义:Dk[i,j] 表示赋权图中从结点vi出发仅通过v0,v1,┉,vk-1中的某些结点到达vj的最短路径的长度, 若从vi到vj没有仅通过v0,v1,┉,vk-1 的路径,则D[i,j]=∝即 D-1[i,j] 表示赋权图中从结点vi到vj的边的长度,若没有从结点vi到vj的边,则D[i,j]=∝ D0[i,j] 表示赋权图中从结点vi到vj的”最短”路径的长度, 这条路上除了可能有v0外没有其它结点 D1[i,j] 表示赋权图中从结点vi到vj的”最短”路径的长度, 这条路上除了可能有v0,v1外没有其它结点 ┉┉┉ 根据此定义,D k[i,j]=min{ D k-1[i,j] , D k-1[i,k-1]+D k-1[k-1,j] } 定义:path[i,j]表示从结点vi到vj的“最短”路径上vi的后继结点 四、实验要求 要求输出每对结点之间的最短路径长度以及其最短路径 五、实验步骤 (一)算法描述 Step 1 初始化有向图的成本邻矩阵D、路径矩阵path 若从结点vi到vj有边,则D[i,j]= vi到vj的边的长度,path[i,j]= i; 否则D[i,j]=∝,path[i,j]=-1 Step 2 刷新D、path 对k=1,2,┉n 重复Step 3和Step 4 Step 3 刷新行对i=1,2,┉n 重复Step 4 Step 4 刷新Mij 对j=1,2,┉n 若D k-1[i,k]+D k-1[k,j]

动态规划实验报告

华东师范大学计算机科学技术系上机实践报告 一、 内容与设计思想 1.对于以下5 个矩阵: M 1: 2?3, M 2: 3?6, M 3: 6?4, M 4: 4?2, M 5: 2?7 , (a) 找出这5个矩阵相乘需要的最小数量乘法的次数。 (b) 请给出一个括号化表达式,使在这种次序下达到乘法的次数最少。 输入: 第一行为正整数N,表示有N 组测试数据; 每组测试数据的第一行为n,表示有n 个矩阵,2<=n<=50; 接下去的n 行,每行有两个整数x 和y,表示第ni 个矩阵是x*y 的。 输出: 对行每组数据,输出一行,每行一个整数,最小的矩阵连乘积。 我们保证输出的结果在2^64之内。 基本思想: 对于n 个矩阵的连乘积,设其不同的计算次序为P(n)。 由于每种加括号方式都可以分解为两个子矩阵的加括号问题:(A1...Ak)(Ak+1…An)可以得到关于P(n)的递推式如下: 2.定义0/1/2背包问题为:}x p max{n 1i i i ∑=。限制条件为:c x w n 1i i i ≤∑=,且 n i 1},2,1,0{x i ≤≤∈。设f(i , y)表示剩余容量为y ,剩余物品为:i ,i+1,…,n 时的最优解的值。 1.)给出f(i , y)的递推表达式; 2.)请设计求解f(i , y)的算法,并实现你的算法; 3.)设W=[10,20,15,30],P=[6,10,15,18],c=48,请用你的算法求解。 输入: 第一行为一个正整数N ,表示有几组测试数据。 每组测试数据的第一行为两个整数n 和M ,0=-=∑-=

专题训练之最短路径问题(最全面的经典例题)

最短路径问题 1、①如右图是一个棱长为4的正方体木块,一只蚂蚁要从木块的点面 爬到点B处,则它爬行的最短路径是 _______________ 。 ②如右图是一个长方体木块,已知AB=3,BC=4,CD=2假设一只蚂蚁在点A处, 它要沿着木块侧面爬到点D处,则蚂蚁爬行的最短路径是____________________ 。 2、①如图,要在河边修建一个水泵站,分别向张村、李庄送水,水泵站修在河边什么地方可使所用的水管最短。 *李庄 张村. ②如图,直线L同侧有两点A B,已知A、B到直线L的垂直距离分别为1和3, 两点的水平距离为3,要在直线L上找一个点P,使PA+PB勺和最小。请在图中找出点P的位置,并计算PA+P啲最小值。.B A■ _____________________ L ③要在河边修建一个水泵站,向张村、李庄铺设管道送水,若张村、李庄到河边的垂直距离分别为1Km和3Km张村与李庄的水平距离为3Km则所用水管最短长度为。 A沿木块侧 A B

是一个长方体木块,已知 AB=5,BC=3,CD=4假设一只蚂 蚁在点A D 处,则蚂蚁爬行的最短路径是2、 现要在如图所示的圆柱体侧面 A 点与B 点之间缠一条金丝带(金丝带的宽度 忽略不计),圆柱体高为6cm 底面圆周长为16cm ,则所缠金丝带长度的最小值 为 。 3、 如图是一个圆柱体木块,一只蚂蚁要沿圆柱体的表面从 A 点爬到点B 处吃到 食物,知圆柱体的高为5 cm ,底面圆的周长为24cm 则蚂蚁爬行的最短路径 为 。 5、 在菱形ABCD 中 AB=2 / BAD=60,点E 是AB 的中点,P 是对角线 AC 上 的一个动点,贝S PE+PB 勺最小值为 ___________ 。 6、 如图,在△ ABC 中, AC= BC= 2,Z ACB= 90°, D 是 BC 边的中点,E 是 AB 边 上一动点,则EO ED 的最小值为 ____________ 。 7、 AB 是OO 的直径,AB=2 OC 是O O 的半径,OCL AB,点 D 在 AC 上,AD 二 2CD 点P 是半径OC 上的一个动点,贝S AP+PD 勺最小值为 __________ 。 &如图,点P 关于OA OB 的对称点分别为 C D,连接CD 交OA 于M 交OB 于N 若CD= 18cm 则厶PMN 勺周长为 ___________ 。 9、已知,如图DE >^ ABC 的边AB 的垂直平分线,D 为垂足,DE 交BC 于 E ,且 AC= 5, BC= 8,则厶 AEC 的周长为 __________ 。 10、已知,如图,在△ ABC 中, AB

多项式分治,背包问题,单元最短路径,克鲁斯卡尔,多段图

算法设计与分析大作业 班级:物联网1401 学号: 姓名:zk 江南大学物联网工程学院

一、多项式分治 1.1算法简介 分治字面上的解释是“分而治之”,就是把一个复杂的问题分成两个或更多的相同或相似的子问题,再把子问题分成更小的子问题……直到最后子问题可以简单的直接求解,原问题的解即子问题的解的合并。 因为多项式的表示是Pn(x)= a n x n+a n-1x n-1+…+a1x+a0 任意大整数都可以看作是一多项式(其中X=10,a n是第n+1位上的数字,个位用a0表示)。如:9876=6+7*101+8*102+9*103 所以大整数相乘可以用多项式乘积的分治算法实现,实际上大整数相乘就是多项式乘积的一个特例。把一个多项式分为两个 P (x)= P0(x)+ P1(x)x n/2 q(x)=q0(x)+q1(x)x n/2 P(x)*q(x)=P0(x)*q0(x)+P1(x)*P1(x)*x n+((P0(x)+ P1(x))*( q0(x)+q1(x))- P0 * q0– P1* q1)* x n/2 令:R0= P0(x)*q0(x) R1= P1(x)*q1(x) R2= P0(x)+ P1(x))*( q0(x)+q1(x))- P0 * q0– P1* q1 于是上式可化简为P(x)*q(x)= R0 +(R2- R0- R1)* x n/2+ R1*x n 由于多项式乘法时间远多于加法时间,所以多项式乘积分治算法对比较大的n将有很大的改进。 1.2调试过程 ①在调试过程中poly_product()函数出错,单步调试发现 图1poly_product()错误部分 第16,17行出错,多项式阶数相同系数相加,所以讲r2+k改为r2或17,18行r3改为r3+k 即可。 ②多项式的输入只能是2的倍数。 1.3运行结果

MATLAB实验报告,遗传算法解最短路径以及函数最小值问题讲解

硕士生考查课程考试试卷 考试科目:MATLAB教程 考生姓名:考生学号: 学院:专业: 考生成绩: 任课老师(签名) 考试日期:20 年月日午时至时

《MATLAB 教程》试题: A 、利用MATLA B 设计遗传算法程序,寻找下图11个端点的最短路径,其中没有连接的端点表示没有路径。要求设计遗传算法对该问题求解。 a d e h k B 、设计遗传算法求解f (x)极小值,具体表达式如下: 3 21231(,,)5.12 5.12,1,2,3 i i i f x x x x x i =?=???-≤≤=? ∑ 要求必须使用m 函数方式设计程序。 C 、利用MATLAB 编程实现:三名商人各带一个随从乘船渡河,一只小船只能容纳二人,由他们自己划行,随从们密约,在河的任一岸,一旦随从的人数比商人多,就杀人越货,但是如何乘船渡河的大权掌握在商人手中,商人们怎样才能安全渡河? D 、结合自己的研究方向选择合适的问题,利用MATLAB 进行实验。 以上四题任选一题进行实验,并写出实验报告。

选择题目: A 一、问题分析(10分) 1 4 10 11 如图如示,将节点编号,依次为 1.2.3.4.5.6.7.8.9.10.11,由图论知识,则可写出其带权邻接矩阵为: 0 2 8 1 500 500 500 500 500 500 500 2 0 6 500 1 500 500 500 500 500 500 8 6 0 7 500 1 500 500 500 500 500 1 500 7 0 500 500 9 500 500 500 500 500 1 500 500 0 3 500 2 500 500 500 500 500 1 500 3 0 4 500 6 500 500 500 500 500 9 500 4 0 500 500 1 500 500 500 500 500 2 500 500 0 7 500 9 500 500 500 500 500 6 500 7 0 1 2 500 500 500 500 500 500 1 500 1 0 4 500 500 500 500 500 500 500 9 2 4 0 注:为避免计算时无穷大数吃掉小数,此处为令inf=500。 问题要求求出任意两点间的最短路径,Floyd 算法采用的是在两点间尝试插入顶点,比较距离长短的方法。我思考后认为,用遗传算法很难找到一个可以统一表示最短路径的函数,但是可以对每一对点分别计算,然后加入for 循环,可将相互之间的所有情况解出。观察本题可发现,所有节点都是可双向行走,则可只计算i 到j 的路径与距离,然后将矩阵按主对角线翻折即可得到全部数据。 二、实验原理与数学模型(20分) 实现原理为遗传算法原理: 按所选择的适应度函数并通过遗传中的复制、交叉及变异对个体进行筛选,使得适应度高的个体被保留下来,组成新的群体,新的群体既继承了上一代的信息,又优于上一代。这样周而复始,群体中个体适应度不断提高,直到满足一定的条件。 数学模型如下: 设图G 由非空点集合12{,...}n V V V V = 和边集合12{,...}m E e e e = 组成,其中121221(,)e ,P ,)(P ,P ), i i i i i i i i e P P E P =∈≠且若(则G 为一个有向图; 又设i e 的值为i a ,12{,...},m A a a a = 故G 可表示为一个三元组{,,}G P E A = 则求最短路径的数学模型可以描述为:

动态规划算法的应用实验报告

实验二动态规划算法的应用 一、实验目的 1.掌握动态规划算法的基本思想,包括最优子结构性质和基于表格的最优值计算方法。 2.熟练掌握分阶段的和递推的最优子结构分析方法。 3.学会利用动态规划算法解决实际问题。 二、实验内容 1.问题描述: 题目一:数塔问题 给定一个数塔,其存储形式为如下所示的下三角矩阵。在此数塔中,从顶部出发,在每一节点可以选择向下走还是向右走,一直走到底层。请找出一条路径,使路径上的数值和最大。 输入样例(数塔): 9 12 15 10 6 8 2 18 9 5 19 7 10 4 16 输出样例(最大路径和): 59 三、算法设计 void main() { 申明一个5*5的二维数组; for(int i=0;i<5;i++) { for(int j=0;j<=i;j++) { 输入数组元素p[i][j]; }

} for(int k=0;k<5;k++) { for(int w=0;w<=k;w++) { 输出数组元素p[k][w]; } } for(int a=4;a>0;a--) { for(int s=0;s<=a;s++) { if(p[a][s]大于p[a][s+1]) p[a-1][s]等于p[a-1][s]加p[a][s]; else p[a-1][s] 等于p[a-1][s] 加p[a][s+1]; } } 输出p[0][0] }

四.程序调试及运行结果分析 五.实验总结 虽然这个实验比较简单,但是通过这次实验使我更加了解的动态规划法的好处和、,在解决问题时要尝试使用动态规划,这样就有可能得到一种即简单复杂性有不高的算法。

动态规划算法原理与的应用

动态规划算法原理及其应用研究 系别:x x x 姓名:x x x 指导教员: x x x 2012年5月20日

摘要:动态规划是解决最优化问题的基本方法,本文介绍了动态规划的基本思想和基本步骤,并通过几个实例的分析,研究了利用动态规划设计算法的具体途径。关键词:动态规划多阶段决策 1.引言 规划问题的最终目的就是确定各决策变量的取值,以使目标函数达到极大或极小。在线性规划和非线性规划中,决策变量都是以集合的形式被一次性处理的;然而,有时我们也会面对决策变量需分期、分批处理的多阶段决策问题。所谓多阶段决策问题是指这样一类活动过程:它可以分解为若干个互相联系的阶段,在每一阶段分别对应着一组可供选取的决策集合;即构成过程的每个阶段都需要进行一次决策的决策问题。将各个阶段的决策综合起来构成一个决策序列,称为一个策略。显然,由于各个阶段选取的决策不同,对应整个过程可以有一系列不同的策略。当过程采取某个具体策略时,相应可以得到一个确定的效果,采取不同的策略,就会得到不同的效果。多阶段的决策问题,就是要在所有可能采取的策略中选取一个最优的策略,以便得到最佳的效果。动态规划是一种求解多阶段决策问题的系统技术,可以说它横跨整个规划领域(线性规划和非线性规划)。在多阶段决策问题中,有些问题对阶段的划分具有明显的时序性,动态规划的“动态”二字也由此而得名。动态规划的主要创始人是美国数学家贝尔曼(Bellman)。20世纪40年代末50年代初,当时在兰德公司(Rand Corporation)从事研究工作的贝尔曼首先提出了动态规划的概念。1957年贝尔曼发表了数篇研究论文,并出版了他的第一部著作《动态规划》。该著作成为了当时唯一的进一步研究和应用动态规划的理论源泉。在贝尔曼及其助手们致力于发展和推广这一技术的同时,其他一些学者也对动态规划的发展做出了重大的贡献,其中最值得一提的是爱尔思(Aris)和梅特顿(Mitten)。爱尔思先后于1961年和1964年出版了两部关于动态规划的著作,并于1964年同尼母霍思尔(Nemhauser)、威尔德(Wild)一道创建了处理分枝、循环性多阶段决策系统的一般性理论。梅特顿提出了许多对动态规划后来发展有着重要意义的基础性观点,并且对明晰动态规划路径的数

《数据结构课程设计》最短路径问题实验报告

《数据结构课程设计》最短路径问题实验报告

目录 一、概述 0 二、系统分析 0 三、概要设计 (1) 四、详细设计 (5) 4.1建立图的存储结构 (5) 4.2单源最短路径 (6) 4.3任意一对顶点之间的最短路径 (7) 五、运行与测试 (8) 参考文献 (11) 附录 (12)

交通咨询系统设计(最短路径问题)一、概述 在交通网络日益发达的今天,针对人们关心的各种问题,利用计算机建立一个交通咨询系统。在系统中采用图来构造各个城市之间的联系,图中顶点表示城市,边表示各个城市之间的交通关系,所带权值为两个城市间的耗费。这个交通咨询系统可以回答旅客提出的各种问题,例如:如何选择一条路径使得从A城到B城途中中转次数最少;如何选择一条路径使得从A城到B城里程最短;如何选择一条路径使得从A城到B城花费最低等等的一系列问题。 二、系统分析 设计一个交通咨询系统,能咨询从任何一个城市顶点到另一城市顶点之间的最短路径(里程)、最低花费或是最少时间等问题。对于不同的咨询要求,可输入城市间的路程、所需时间或是所需费用等信息。 针对最短路径问题,在本系统中采用图的相关知识,以解决在实际情况中的最短路径问题,本系统中包括了建立图的存储结构、单源最短问题、对任意一对顶点间最短路径问题三个问题,这对以上几个问题采用了迪杰斯特拉算法和弗洛伊德算法。并未本系统设置一人性化的系统提示菜单,方便使用者的使用。

三、概要设计 可以将该系统大致分为三个部分: ①建立交通网络图的存储结构; ②解决单源最短路径问题; ③实现两个城市顶点之间的最短路径问题。

迪杰斯特拉算法流图:

动态规划算法实验

一、实验目的 (2) 二、实验内容 (2) 三、实验步骤 (3) 四.程序调试及运行结果分析 (5) 附录:程序清单(程序过长,可附主要部分) (7)

实验四动态规划算法的应用 一、实验目的 1.掌握动态规划算法的基本思想,包括最优子结构性质和基于表格的最优值计算方法。 2.熟练掌握分阶段的和递推的最优子结构分析方法。 3.学会利用动态规划算法解决实际问题。 二、实验内容 1.问题描述: 题目一:数塔问题 给定一个数塔,其存储形式为如下所示的下三角矩阵。在此数塔中,从顶部出发,在每一节点可以选择向下走还是向右走,一直走到底层。请找出一条路径,使路径上的数值和最大。 输入样例(数塔): 9 12 15 10 6 8 2 18 9 5 19 7 10 4 16 输出样例(最大路径和): 59 题目二:最长单调递增子序列问题(课本184页例28) 设有由n个不相同的整数组成的数列,记为:a(1)、a(2)、……、a(n)且a(i)<>a(j) (i<>j) 若存在i1

题目三 0-1背包问题 给定n种物品和一个背包。物品i的重量是wi,其价值为vi,背包的容量为c,。问应如何选择装入背包中的物品,使得装入背包中物品的总价值最大? 在选择装入背包的物品时,对每种物品只有两个选择:装入或不装入,且不能重复装入。输入数据的第一行分别为:背包的容量c,,物品的个数n。接下来的n 行表示n个物品的重量和价值。输出为最大的总价值。 输入样例: 20 3 11 9 9 10 7 5 输出样例 19 2.数据输入:个人设定,由键盘输入。 3.要求: 1)上述题目任选一做。上机前,完成程序代码的编写 2)独立完成实验及实验报告 三、实验步骤 1.理解算法思想和问题要求; 2.编程实现题目要求; 3.上机输入和调试自己所编的程序; 4.验证分析实验结果; 5.整理出实验报告。

动态规划算法实现多段图的最短路径问题算法设计与分析实验报告

动态规划算法实现多段图的最短路径问题算法设计与分析实验报告

算法设计与分析实验报告 实验名称 动态规划算法实现多段图的最短路径问题 评分 实验日期 年 月 日 指导教师 姓名 专业班级 学号 一.实验要求 1. 理解最优子结构的问题。 有一类问题的活动过程可以分成若干个阶段,而且在任一阶段后的行为依赖于该阶段的状态,与该阶段之前的过程如何达到这种状态的方式无关。这类问题的解决是多阶段的决策过程。在50年代,贝尔曼(Richard Bellman )等人提出了解决这类问题的“最优化原理”,从而创建了最优化问题的一种新的算法设计方法-动态规划。 对于一个多阶段过程问题,是否可以分段实现最优决策,依赖于该问题是否有最优子结构性质,能否采用动态规划的方法,还要看该问题的子问题是否具有重叠性质。 最优子结构性质:原问题的最优解包含了其子问题的最优解。 子问题重叠性质:每次产生的子问题并不总是新问题,有些子问题被反复计算多次。问题的最优子结构性质和子问题重叠性质是采用动态规划算法的两个基本要素。 2.理解分段决策Bellman 方程。 每一点最优都是上一点最优加上这段长度。即当前最优只与上一步有关。 U s 初始值,u j 第j 段的最优值。 ? ????+==≠}.{min , 0ij i j i j s w u u u

3.一般方法 1)找出最优解的性质,并刻画其结构特征;2)递归地定义最优值(写出动态规划方程);3)以自底向上的方式计算出最优值; 4)根据计算最优值时得到的信息,构造一个 最优解。 步骤1-3是动态规划算法的基本步骤。在只需要求出最优值的情形,步骤4可以省略,步骤3中记录的信息也较少;若需要求出问题的一个最优解,则必须执行步骤4,步骤3中记录的信息必须足够多以便构造最优解。 二.实验内容 1.编程实现多段图的最短路径问题的动态规 划算法。 2.图的数据结构采用邻接表。 3.要求用文件装入5个多段图数据,编写从文件到邻接表的函数。 4.验证算法的时间复杂性。 三.程序算法 多段图算法: Procedure FGRAPH(E,k,n,P) //输入是按段的顺序给结点编号的,有n个结点的k段图。E是边集,c(i,j)是边的成本。P(1:k)是最小成本路径。// real COST(n),integer(n-1),P(k),r,j,k,n COST(n)<-0 for j<-n-1 to 1 by -1 do //计算COST(j)// 设r是一个这样的结点,(j,r) E且使c(j,

动态规划讲解大全(含例题及答案)

动态规划讲解大全 动态规划(dynamic programming)是运筹学的一个分支,是求解决策过程(decision process)最优化的数学方法。20世纪50年代初美国数学家R.E.Bellman等人在研究多阶段决策过程(multistep decision process)的优化问题时,提出了著名的最优化原理(principle of optimality),把多阶段过程转化为一系列单阶段问题,逐个求解,创立了解决这类过程优化问题的新方法——动态规划。1957年出版了他的名著Dynamic Programming,这是该领域的第一本著作。 动态规划问世以来,在经济管理、生产调度、工程技术和最优控制等方面得到了广泛的应用。例如最短路线、库存管理、资源分配、设备更新、排序、装载等问题,用动态规划方法比用其它方法求解更为方便。 虽然动态规划主要用于求解以时间划分阶段的动态过程的优化问题,但是一些与时间无关的静态规划(如线性规划、非线性规划),只要人为地引进时间因素,把它视为多阶段决策过程,也可以用动态规划方法方便地求解。 动态规划程序设计是对解最优化问题的一种途径、一种方法,而不是一种特殊算法。不象前面所述的那些搜索或数值计算那样,具有一个标准的数学表达式和明确清晰的解题方法。动态规划程序设计往往是针对一种最优化问题,由于各种问题的性质不同,确定最优解的条件也互不相同,因而动态规划的设计方法对不同的问题,有各具特色的解题方法,而不存在一种万能的动态规划算法,可以解决各类最优化问题。因此读者在学习时,除了要对基本概念和方法正确理解外,必须具体问题具体分析处理,以丰富的想象力去建立模型,用创造性的技巧去求解。我们也可以通过对若干有代表性的问题的动态规划算法进行分析、讨论,逐渐学会并掌握这一设计方法。 基本模型 多阶段决策过程的最优化问题。 在现实生活中,有一类活动的过程,由于它的特殊性,可将过程分成若干个互相联系的阶段,在它的每一阶段都需要作出决策,从而使整个过程达到最好的活动效果。当然,各个阶段决策的选取不是任意确定的,它依赖于当前面临的状态,又影响以后的发展,当各个阶段决策确定后,就组成一个决策序列,因而也就确定了整个过程的一条活动路线,如图所示:(看词条图) 这种把一个问题看作是一个前后关联具有链状结构的多阶段过程就称为多阶段决策过程,这种问题就称为多阶段决策问题。 记忆化搜索 给你一个数字三角形, 形式如下: 1 2 3 4 5 6 7 8 9 10 找出从第一层到最后一层的一条路,使得所经过的权值之和最小或者最大. 无论对与新手还是老手,这都是再熟悉不过的题了,很容易地,我们写出状态转移方程:f(i, j)=a[i, j] + min{f(i+1, j),f(i+1, j + 1)} 对于动态规划算法解决这个问题,我们根据状态转移方程和状态转移方向,比较容易地写出动态规划的循环表示方法。但是,当状态和转移非常复杂的时候,也许写出循环式的动态规划就不是那么

最短路径实验报告

一、实验目的 学习掌握图的存储结构 利用最短路径算法,通过java编程实现最短路径输出。 二、实验环境 Eclipse平台 三、实验过程 最短路径算法问题是计算机科学、运筹学、地理信息系统和交通诱导、导航系统等领域研究的一个热点。传统的最短路径算法主要有Floyd算法和Dijkstra算法。Floyd 算法用于计算所有结点之间的最短路径。Dijkstra算法则用于计算一个结点到其他所有结点的最短路径。本程序利用Dijkstra算法用java语言实现最短路径的可视化。 流程: 画无向邻接矩阵邻接矩阵初始化求取最短路径 Java文件如下 M ain.java 文件: import java.awt.BorderLayout; import java.awt.Color; import java.awt.FlowLayout; import java.awt.event.ActionEvent; import java.awt.event.ActionListener; import java.awt.event.ItemEvent; import java.awt.event.ItemListener; import java.util.StringTokenizer; import javax.swing.JButton; import javax.swing.JComboBox; import javax.swing.JFrame; import javax.swing.JLabel; import javax.swing.JPanel; import javax.swing.border.TitledBorder; public class Main { public static void main(String args[]) { new UI("最短路径"); } } @SuppressWarnings("serial") class UI extends JFrame implements ActionListener, ItemListener { JFrame frame; JButton button;

排列组合中的最短路径问题

两个计数原理的应用 一、选择题 1.如图,小明从街道的E处出发,先到F处与小红会合,再一起到位于G处的老年公寓参加志愿者活动,则小明到老年公寓可以选择的最短路径条数为【答案】B (A)24 (B)18 (C)12 (D)9 【解析】 试题分析:由题意,小明从街道的E处出发到F处最短路径的条数为6,再从F处到G ?=,故处最短路径的条数为3,则小明到老年公寓可以选择的最短路径条数为6318 选B. 【考点】计数原理、组合 【名师点睛】分类加法计数原理在使用时易忽视每类中每一种方法都能完成这件事情,类与类之间是相互独立的;分步乘法计数原理在使用时易忽视每步中某一种方法只是完成这件事的一部分,而未完成这件事,步步之间是相互关联的. 2.如图,一只蚂蚁从点出发沿着水平面的线条爬行到点,再由点沿着置于水平面的长方体的棱爬行至顶点,则它可以爬行的不同的最短路径有( B )条

A. 40 B. 60 C. 80 D. 120 【解析】试题分析:蚂蚁从到需要走五段路,其中三纵二竖,共有条路径,从到共有条路径,根据分步计数乘法原理可知,蚂蚁从到可以爬行的不同的最短路径有条,故选B. 考点:分步计数乘法原理. 二、解答题 3.某城市有连接8个小区A、B、C、D、E、F、G、H和市中心O的整齐方格形道路网,每个小方格均为正方形,如图,某人从道路网中随机地选择一条最短路径,由小区A前往H. (1)列出此人从小区A到H的所有最短路径(自A至H依次用所经过的小区的字母表示); (2)求他经过市中心O的概率. 【答案】(1)见解析(2)2 3 【解析】 解:(1)此人从小区A前往H的所有最短路径为:

最短路径实验报告

云南财经大学信息学院学生综合性与设计性实验报告 (2013—2014 学年第 2 学期) 周次:第7周日期:2014年 4 月 17 日地点: 一、实验内容与目的 1.内容 查看“最短路径.swf”,选择熟悉的程序设计语言定义有向图,根据动画演示求取从有向图任一结点到其他结点的最短路径。 2.实验目的 了解最短路径的概论,掌握求最短路径的方法。 二、实验原理或技术路线(可使用流程图描述) 实验原理:(李燕妮负责设计,周丽琼负责编程) 图是由结点的有穷集合V和边的集合E组成,求最短路径用迪杰斯特拉算法: 1)适用条件&范围: a) 单源最短路径(从源点s到其它所有顶点v); b) 有向图&无向图(无向图可以看作(u,v),(v,u)同属于边集E的有向图) c) 所有边权非负(任取(i,j)∈E都有Wij≥0); 2)算法描述: a)初始化:dis[v]=maxint(v∈V,v≠s); dis[s]=0; pre[s]=s; S={s}; b)For i:=1 to n 1.取V-S中的一顶点u使得dis[u]=min{dis[v]|v∈V-S}

2.S=S+{u} 3.For V-S中每个顶点v do Relax(u,v,Wu,v) c)算法结束:dis[i]为s到i的最短距离;pre[i]为i的前驱节点 三、实验环境条件(使用的软件环境) Microsoft Visual C++6.0 四、实验方法、步骤(列出程序代码或操作过程) /*本程序的功能是求图中任意两点间的最短路径*/ #include #include #include #include #define ING 9999 typedef struct ArcCell{ int adj; /*顶点关系类型,用1表示相邻,0表示不相邻*/ }ArcCell,**AdjMatrix; /*邻接矩阵*/ typedef struct type{ char data[3]; /*顶点值*/ }VertexType; typedef struct{ VertexType *vexs; /*顶点向量*/ AdjMatrix arcs; /*邻接矩阵*/ int vexnum,arcnum; /*图的顶点数和边数*/ }MGraph; /*初始图*/ void InitGraph(MGraph *G) { int i,nu,mu; printf("\n输入顶点的个数和(边)弧的个数:"); scanf("%d %d",&nu,&mu); G->arcs=(ArcCell **)malloc(nu*sizeof(ArcCell *)); for(i=0;iarcs[i]=(ArcCell *)malloc(nu*sizeof(ArcCell)); G->vexs=(VertexType *)malloc(nu*sizeof(VertexType)); /*分配顶点空间*/ G->vexnum=nu;G->arcnum=mu; /*图的顶点数和边数*/ }

动态规划算法实现多段图的最短路径问题算法设计与分析实验报告

算法设计与分析实验报告 实验名称 动态规划算法实现多段图的最短路径问题 评分 实验日期 年 月 日 指导教师 姓名 专业班级 学号 一.实验要求 1. 理解最优子结构的问题。 有一类问题的活动过程可以分成若干个阶段,而且在任一阶段后的行为依赖于该阶段的状态,与该阶段之前的过程如何达到这种状态的方式无关。这类问题的解决是多阶段的决策过程。在50年代,贝尔曼(Richard Bellman )等人提出了解决这类问题的“最优化原理”,从而创建了最优化问题的一种新的算法设计方法-动态规划。 对于一个多阶段过程问题,是否可以分段实现最优决策,依赖于该问题是否有最优子结构性质,能否采用动态规划的方法,还要看该问题的子问题是否具有重叠性质。 最优子结构性质:原问题的最优解包含了其子问题的最优解。 子问题重叠性质:每次产生的子问题并不总是新问题,有些子问题被反复计算多次。问题的最优子结构性质和子问题重叠性质是采用动态规划算法的两个基本要素。 2.理解分段决策Bellman 方程。 每一点最优都是上一点最优加上这段长度。即当前最优只与上一步有关。 U s 初始值,u j 第j 段的最优值。 3.一般方法 1) 找出最优解的性质,并刻画其结构特征; 2) 递归地定义最优值(写出动态规划方程); 3) 以自底向上的方式计算出最优值; 4) 根据计算最优值时得到的信息,构造一个最优解。 步骤1-3是动态规划算法的基本步骤。在只需要求出最优值的情形,步骤4可以省略,步骤3中记录的信息也较少;若需要求出问题的一个最优解,则必须执行步骤4,步骤3中记录的信息必须足够多以便构造最优解。 二.实验内容 1.编程实现多段图的最短路径问题的动态规划算法。 2.图的数据结构采用邻接表。 ?? ???+==≠}. {min , 0ij i j i j s w u u u

最短路径_Dijkstra算法__实验报告

实验六:编程实现Dijkstra 算法求最短路问题. 1.需求分析: 首先让用户输入一个带权的有向图,输入时可通过一对一对输入存在弧的两个弧头与弧尾顶点以及弧上的权值从而输入整个有向图。用户输入一对对弧后,我们可以采用数组的形式来进行存储每个顶点之间的权值,最后由用户输入该有向图的源点(即每个最短路径的起点),要求源点必须为刚才输入的各顶点中的某一个,如果用户输入错误,程序要给出错误信息提示并退出程序。然后,我们可以设计一个Graph这样的类,将对关系的各种操作放入其中,然后我们在主函数中调运这个类就可以实现最短路问题的求解了。 2.概要设计: ①.构造一个新的类Graph: class Graph { private: int arcs[MAX][MAX],Path[MAX][MAX],D[MAX]; int arcnum,vexnum,weight,v0; Type a,b,vexs[MAX]; public: void Creat_Graph(); void Show_ShortestPath(); void ShortestPath_DIJ(); }; ②.结构化调用类中方法的主函数: int main() { Graph G; G.Creat_Graph(); G.ShortestPath_DIJ(); G.Show_ShortestPath(); return 0; } 3.代码实现: #include #define MAX 100 #define INFINITY INT_MAX enum BOOL{FALSE,TRUE}; using namespace std; template class Graph {

南京邮电大学算法设计实验报告——动态规划法

实验报告 (2009/2010学年第一学期) 课程名称算法分析与设计A 实验名称动态规划法 实验时间2009 年11 月20 日指导单位计算机学院软件工程系 指导教师张怡婷 学生姓名丁力琪班级学号B07030907 学院(系) 计算机学院专业软件工程

实验报告 实验名称动态规划法指导教师张怡婷实验类型验证实验学时2×2实验时间2009-11-20一、实验目的和任务 目的:加深对动态规划法的算法原理及实现过程的理解,学习用动态规划法解决实际应用中的最长公共子序列问题。 任务:用动态规划法实现求两序列的最长公共子序列,其比较结果可用于基因比较、文章比较等多个领域。 要求:掌握动态规划法的思想,及动态规划法在实际中的应用;分析最长公共子序列的问题特征,选择算法策略并设计具体算法,编程实现两输入序列的比较,并输出它们的最长公共子序列。 二、实验环境(实验设备) 硬件:计算机 软件:Visual C++

三、实验原理及内容(包括操作过程、结果分析等) 1、最长公共子序列(LCS)问题是:给定两个字符序列X={x1,x2,……,x m}和Y={y1,y2,……,y n},要求找出X和Y的一个最长公共子序列。 例如:X={a,b,c,b,d,a,b},Y={b,d,c,a,b,a}。它们的最长公共子序列LSC={b,c,d,a}。 通过“穷举法”列出所有X的所有子序列,检查其是否为Y的子序列并记录最长公共子序列并记录最长公共子序列的长度这种方法,求解时间为指数级别的,因此不可取。 2、分析LCS问题特征可知,如果Z={z1,z2,……,z k}为它们的最长公共子序列,则它们一定具有以下性质: (1)若x m=y n,则z k=x m=y n,且Z k-1是X m-1和Y n-1的最长公共子序列; (2)若x m≠y n且x m≠z k,则Z是X m-1和Y的最长公共子序列; (3)若x m≠y n且z k≠y n,则Z是X和Y的最长公共子序列。 这样就将求X和Y的最长公共子序列问题,分解为求解较小规模的问题: 若x m=y m,则进一步分解为求解两个(前缀)子字符序列X m-1和Y n-1的最长公共子序列问题; 如果x m≠y n,则原问题转化为求解两个子问题,即找出X m-1和Y的最长公共子序列与找出X 和Y n-1的最长公共子序列,取两者中较长者作为X和Y的最长公共子序列。 由此可见,两个序列的最长公共子序列包含了这两个序列的前缀的最长公共子序列,具有最优子结构性质。 3、令c[i][j]保存字符序列X i={x1,x2,……,x i}和Y j={y1,y2,……,y j}的最长公共子序列的长度,由上述分析可得如下递推式: 0 i=0或j=0 c[i][j]= c[i-1][j-1]+1 i,j>0且x i=y j max{c[i][j-1],c[i-1][j]} i,j>0且x i≠y j 由此可见,最长公共子序列的求解具有重叠子问题性质,如果采用递归算法实现,会得到一个指数时间算法,因此需要采用动态规划法自底向上求解,并保存子问题的解,这样可以避免重复计算子问题,在多项式时间内完成计算。 4、为了能由最优解值进一步得到最优解(即最长公共子序列),还需要一个二维数组s[][],数组中的元素s[i][j]记录c[i][j]的值是由三个子问题c[i-1][j-1]+1,c[i][j-1]和c[i-1][j]中的哪一个计算得到,从而可以得到最优解的当前解分量(即最长公共子序列中的当前字符),最终构造出最长公共子序列自身。

常见动态规划算法问题策略分析

常见动态规划算法问题 策略分析

目录 一、动态规划策略 (1) 1.动态规划介绍 (1) 2.求解动态规划问题步骤 (1) 二、几种动态规划算法的策略分析 (1) 1.装配线调度问题 (1) 2.矩阵链乘问题 (2) 3.最长公共子序列(LCS) (3) 4.最大字段和 (4) 5.0-1背包问题 (4) 三、两种解决策略 (5) 1.自底向上策略 (5) 2.自顶向上(备忘录)策略 (5) 3.优缺点分析 (5) 四、总结 (6)

一、动态规划策略 1.动态规划介绍 动态规划过程是:每次决策依赖于当前状态,又随即引起状态的转移。一个决策序列就是在变化的状态中产生出来的,所以,这种多 阶段最优化决策解决问题的过程就称为动态规划。 基本思想与分治法类似,也是将待求解的问题分解为若干个子问题(阶段),按顺序求解子阶段,前一子问题的解,为后一子问题的 求解提供了有用的信息。在求解任一子问题时,列出各种可能的局部 解,通过决策保留那些有可能达到最优的局部解,丢弃其他局部解。 依次解决各子问题,最后一个子问题就是初始问题的解。 由于动态规划解决的问题多数有重叠子问题这个特点,为减少重复计算,对每一个子问题只解一次,将其不同阶段的不同状态保存在 一个二维数组中。 与分治法最大的差别是:适合于用动态规划法求解的问题,经分解后得到的子问题往往不是互相独立的(即下一个子阶段的求解是建 立在上一个子阶段的解的基础上,进行进一步的求解)。 2.求解动态规划问题步骤 (1)确定最优解结构 (2)递归定义最优解的值 (3)自底向上计算最优解的值 (4)重构最优解 二、几种动态规划算法的策略分析 1.装配线调度问题 分析:首先确定最优解结构,分析问题可知大致分为两种情况:

实验四图的最短路径弗洛伊德算法实现

数据结构与算法课程实验报告实验四:图的相关算法应用 姓名:王连平 班级:09信科2班 学号:I09630221

实验四图的相关算法应用 一、实验内容 求有向网络中任意两点之间的最短路。 二、实验目的 掌握图和网络的定义,掌握图的邻接矩阵、邻接表和十字链表等存储表示。掌握图的深度和广度遍历算法,掌握求网络的最短路的标号法和floyd算法。 三、问题描述 对于下面一张若干个城市以及城市间距离的地图,从地图中所有可能的路径中求出任意两个城市间的最短距离及路径,给出任意两个城市间的最短距离值及途径的各个城市。 四、问题的实现 4.1数据结构的抽象数据类型定义和说明 1) typedef struct ArcCell{//储存弧信息 int Distance; ArcCell *info;//此项用来保存弧信息,,在本实验中没有相关信息要保存 }ArcCell,AdjMatrix[ MAX_VERTEX_NUM][ MAX_VERTEX_NUM]; typedef struct{//储存顶点信息 string vexs[ MAX_VERTEX_NUM];//顶点向量

AdjMatrix arcs;//邻接矩阵 int vexnum , arcnum;//图的当前顶点数和弧数 }MGraph; 顶点信息和弧信息都是用来建立一个有向网G 2) d[v][w];//G中各对顶点的带权长度 若P[v][w][u]为TRUE,则u是从v到w当前求得最短路径上的顶点 4.2主要的实现思路 首先通过一个函数(CreateDN)建立图的邻接矩阵储存方式,一次输入某条弧的起点,终点,和权值。通过调用Locate函数来找到该弧在邻接矩阵中的相应位置。 其次运用弗洛伊德算法来求各定点的最短路劲,具体思路为:如果从v到w有弧,则存在一条长度为arcs[v][w]的路径,该路径不一定是最短路径。考虑路径(v,u,w)是否存在,若存在,比较(v,w)和(v,u,w)的长度,取较短者为从v到w的中间点序号不大于0的最短路径。以此类推,每次增加一个点,从而求出任意两点间的最短路径。这样,经过n次比较后,所求得的必为从v到w的最短路径。按此方法,可以同时求得任意两点间的最短路径。 五、主要源程序代码(包含程序备注) #include #include using namespace std; #define INfinity 10000//最大值 # define MAX_VERTEX_NUM 10//最大顶点数 typedef struct ArcCell{//储存弧信息 int Distance; ArcCell *info; }ArcCell,AdjMatrix[ MAX_VERTEX_NUM][ MAX_VERTEX_NUM]; typedef struct{//储存顶点信息 string vexs[ MAX_VERTEX_NUM];//顶点向量 AdjMatrix arcs;//邻接矩阵 int vexnum , arcnum;//图的当前顶点数和弧数 }MGraph; int Locate(MGraph &G,string v) { int a=0; for (int i=0;i

相关文档
最新文档