例说求函数的最大值和最小值的方法

例说求函数的最大值和最小值的方法
例说求函数的最大值和最小值的方法

例说求函数的最大值和最小值的方法

例1.设x 是正实数,求函数x

x x y 32+

+=的最小值。 解:先估计y 的下界。 55)1(3)1(5)21(3)12(222≥+-

+-=+-+

++-=x

x x x x x x y 又当x =1时,y =5,所以y 的最小值为5。

说明 本题是利用“配方法”先求出y 的下界,然后再“举例”说明这个下界是可以限到的。“举例”是必不可少的,否则就不一定对了。例如,本题我们也可以这样估计:

77)1(3)1(7)21(3)12(222-≥-+

+-=-++

++-=x

x x x x x x y 但y 是取不到-7的。即-7不能作为y 的最小值。

例2. 求函数1

223222++--=x x x x y 的最大值和最小值。 解 去分母、整理得:(2y -1)x 2+2(y +1)x +(y +3)=0. 当2

1≠y 时,这是一个关于x 的二次方程,因为x 、y 均为实数,所以 ?=[2(y +1)]2-4(2y -1)(y +3)≥0, y 2+3y --4≤0,

所以 -4≤y ≤1 又当3

1-=x 时,y =-4;x =-2时,y =1.所以y min =-4,y max =1.

说明 本题求是最值的方法叫做判别式法。

例3.求函数152++-=x x y ,x ∈[0,1]的最大值 解:设]2,1[1∈=+t t x ,则x =t 2-1

y = -2(t 2-1)+5t = -2t 2+5t +1

原函数当t =169,45=x 即时取最大值8

33 例4求函数22

3,5212≤≤+--=x x x x y 的最小值和最大值 解:令x -1=t (

121≤≤t ) 则t t t t y 4142+=+=

y min =5

1,172max =y 例5.已知实数x ,y 满足1≤x 2+y 2≤4,求f (x )=x 2+xy +y 2的最小值和最大值 解:∵)(2

122y x xy +≤ ∴6)(23

),(2222≤+≤++=y x xy y x y x f 又当2==y x 时f (x ,y )=6,故f (x ,y )max =6 又因为)(2122y x xy +-

∴2

1)(21),(2222≥+≥++=y x xy y x y x f 又当2

2,22-==y x 时f (x ,y )=21,故f (x ,y )min =21 例6.求函数2

224)1(5+++=x x x y 的最大值和最小值 解:原函数即111)1(5222++-+=

x x y 令1

12+=x t (0

2019,当x =0时,函数取最大值5 例7.求函数|]2

11[1|)(+-=x x x f 的最大值 解:设α=+=+}2

11{,]211[x n x ,则 f (x )=|2

1|1|-=-αn x 由于 0≤α<1,故f (x )≤

21,又当x =122-k (k 为整数)时f (x )= 21, 故f (x )max =2

1 例8.求函数113632424+-++--=x x x x x y 的最大值 解:原函数即222222)1()0()2()3()(-+---+-=

x x x x x f

在直角坐标系中,设点P(x ,x 2),A(3,2),B(0,1),则

f (x )=|PA|-|PB|≤|AB|=10 又当6

137+-=x 时,f (x )= 10 故f max (x ) = 10

例9.设a 是实数,求二次函数y =x 2-4ax +5a 2-3a 的最小值m ,当0≤a 2-4a -2≤10中变动时,求m 的最大值

解:y =x 2-4ax +5a 2-3a =(x -2a )2+a 2-3a

由0≤a 2-4a -2≤10解得:622-≤≤-a 或62+≤a ≤6

故当a =6时,m 取最大值18

例10.已知函数f (x )=log 2(x +1),并且当点(x ,y )在y =f (x )的图象上运动时,点)2,

3(y x 在y =g (x )的图象上运动,求函数p (x )=g (x )-f (x )的最大值。

解 因为点(x ,y )在y =f (x )的图象上,所以y =log 2(x +1)。点)2

,3(y x 在y =g (x )的图象上,所以)3

(2x g y =故 )13(log 2

1)(),1log(21)3(2+=+=x x g x x g 2222)

1(13log 21)1(log )13(log 21)()()(++=+-+=

-=x x x x x f x g x p

令2)

1(13++=x x u , 则 8989)4311(213)1(2)1(2)1(3222≤+-+-=+++-=+-+=x x x x x u 当4311=+x ,即31=x 时,89=u ,所以8

9max =u 从而 89log 21)(2max =

=x p 。 例11.已知函数2

622+++=x bx ax y 的最小值是2,最大值是6,求实数a 、b 的值。 解:将原函数去分母,并整理得(a -y )x 2+bx +(6-2y )=0.

若y =a ,即y 是常数,就不可能有最小值2和最大值6了,所以y ≠a 。于是

?=b 2-4(a -y )(6-2y )≥0,所以y 2

-(a +3)y +3a -82

b ≤0. 由题设,y 的最小值为2,最大值为6,所以(y -2)(y -6)≤0, 即 y 2-8y +12≤0.

由(1)、(2)得??

???=-=+1283832

b a a 解得:62,5±==b a 例12.求函数48148)(22----=x x x x x f 的最小值和最大值。

解 先求定义域。由?????≥--≥-0

48140822x x x x 最6≤x ≤8. ]8,6[,686)6(8)(∈-+-=---=x x x x

x x x x f

当x ∈[6,8],且x 增加时,6-+

x x 增大,而x -8减小,于是f (x )是随着x 的增加而

减小,即f (x )在区间[6,8]上是减函数。所以

f max (x )=f (8)=0, f min (x )=f (6)=032

例13.设x ,y ,z 是3个不全为零的实数,求2222z

y z yz xy +++的最大值 分析:欲求2222z

y z yz xy +++的最大值,只须找一个最小常数k ,使得xy +2yz ≤k (x 2+y 2+z 2) ∵ x 2+αy 2≥2αxy (1-α)y 2+z 2≥2α-1yz

∴ x 2+y 2+z 2≥2αxy +2α-1yz

令2α=α-1,则α=51

解:∵yz z y xy y x 5

454,52512222≥+≥+ ∴)2(52

222yz xy z y x +≥++ 即2522

22≤+++z y x yz xy 又当x =1,y =5,z =2时,上面不等号成立,从而

2222z y z yz xy +++的最大值为25 例14.设函数f :(0,1)→R 定义为??

???<<==+=q p q p q p x q p x x x f 0,1),(,1)(当是无理数时当求f (x )在区间

)9

8,87(上的最大值 解:(1)若x ∈)9

8

,87(且x 是无理数,则 f (x )=x <9

8 (2) 若x ∈)98

,87(且x 是有理数,设q

p x =,其中(p ,q )=1,0

p p q q p p q q p 所以 63q +9≤64q -8,∴q ≥17 因此17

16989898819181)()(≤+=+=+-≤+==q q q q q q p q p f x f 17

16)1715(=f ∴f (x )在区间)98

,87(上的最大值1716)1715(

=f 作业:

1.若3x 2+2y 2=2x ,求x 2+y 2的最大值

2.设x ,y 是实数,且0622222=+--+-y x y xy x 求u =x +y 的最小值

3.已知x 1,x 2是方程x 2-(k -2)x +k 2+3k +5=0 (k ∈R)的两个实数根,求x 12+x 22的最大值和最小值

4.求函数x x x x y 243222-++-=

的最小值

函数的最大值与最小值

课题:函数的最大值和最小值 教学目的: ⒈使学生理解函数的最大值和最小值的概念,掌握可导函数)(x f 在闭区间[]b a ,上所有点(包括端点b a ,)处的函数中的最大(或最小)值必有的充分条件; ⒉使学生掌握用导数求函数的极值及最值的方法和步骤 教学重点:利用导数求函数的最大值和最小值的方法. 教学难点:函数的最大值、最小值与函数的极大值和极小值的区别与联系. 教学过程: 一、复习引入: 1.极大值: 一般地,设函数f(x)在点x 0附近有定义,如果对x 0附近的所有的点,都有 ,就说f(x 0)是函数f(x)的一个极大值,记作y 极大值=f(x 0),x 0是极大值点 2.极小值:一般地,设函数f(x)在x 0附近有定义,如果对x 0附近的所有的点,都有 .就说f(x 0)是函数f(x)的一个极小值,记作y 极小值=f(x 0),x 0是极小值点 3.极大值与极小值统称为极值 注意以下几点: (ⅰ)极值是一个局部概念由定义,极值只是某个点的函数值与它附近点的函数值比较是最大或最小并不意味着它在函数的整个的定义域内最大或最小 (ⅱ)函数的极值不是唯一的即一个函数在某区间上或定义域内极大值或极小值可以不止一个 即一个函数的极大值未必大于极小值, (ⅳ)函数的极值点一定出现在区间的内部,区间的端点不能成为极值点而使函数取得最大值、最小值的点可能在区间的内部,也可能在区间的端点 二、讲解新课: 1.函数的最大值和最小值 观察图中一个定义在闭区间[]b a ,上的函数)(x f 的图象.图中)(1x f 与3()f x 是极小值, 2()f x 是极大值.函数)(x f 在[]b a ,上的最大值 是)(b f ,最小值是3()f x . 一般地,在闭区间[]b a ,上连续的函数)(x f 在[]b a ,上必有最大值与最小值. 说明:

正弦函数的最大值与最小值

正弦函数的最大值与最 小值 Document serial number【UU89WT-UU98YT-UU8CB-UUUT-UUT108】

正弦函数的最大值与最小值: (1) 当sinx =1,即x =2k π+2 π(k ∈Z)时,y max =1; (2) 当sinx =-1,即x =2k π-2 π(k ∈Z)时,y max =-1。 余弦函数的最大值与最小值:——让学生研究得出结论。 (1) 当cosx =1,即x =2k π(k ∈Z)时,y max =1; (2) 当cosx =-1,即x =2k π+π(k ∈Z)时,y max =-1。 [例1] 求下列函数的定义域。 (1) y =12sin x 1 - 解:2sinx -1≠0,即sinx ≠12,则x ≠2k π+6π且x ≠2k π+56π(k ∈Z) 所求函数的定义域为{x| x ≠2k π+6π且x ≠2k π+56 π,k ∈Z} (2) y 解:cosx ≥0,则x ∈[2k π-2π,2k π+2 π],k ∈Z [例2] 求下列函数的值域。 (1) y =2sinx -3 解:∵-1≤sinx ≤1 ∴-5≤2 sinx -3≤-1,则所求函数的值域为[-5,-1] (2) y =sin 2 x -sinx -2 解:y =sin 2x -sinx -2=(sinx -12) 2-94 ∵-1≤sinx ≤1 ∴当sinx =12时,y min =-94 ;当sinx =-1时,y max =0。 则所求函数的值域为[-94 ,0] (3) y =cos 2x -4cosx -2 解:y =cos 2x -4cosx -2=(cos x -2) 2-6 ∵-1≤cosx ≤1 ∴当cosx =1时,y min =-5;当cosx =-1时,y max =3。 则所求函数的值域为[-5,3] [例3] 写出下列函数取到最大值与最小值时的x 值。 (1) y =cos (x -4 π) 解:① 当cos (x -4π)=1,即x -4π=2k π,得x =2k π+4 π(k ∈Z)时,y max =1; ② 当cos (x -4π)=-1,即x -4π=2k π+π,得x =2k π+54 π(k ∈Z)时,y min =-1。

导数运用最大值与最小值(含答案)

最大值与最小值 一、基础过关 1.函数f (x )=-x 2+4x +7,在x ∈[3,5]上的最大值和最小值分别是________,________. 2.f (x )=x 3-3x 2+2在区间[-1,1]上的最大值是________. 3.函数y =ln x x 的最大值为________. 4.函数f (x )=x e x 的最小值为________. 5.已知函数y =-x 2-2x +3在区间[a ,2]上的最大值为15 4 ,则a 等于________. 6.已知f (x )=-x 2+mx +1在区间[-2,-1]上最大值就是函数f (x )的极大值,则m 的取值范围是________. 7.求函数f (x )=1 3x 3-4x +4在[0,3]上的最大值与最小值. 二、能力提升 8.函数y =4x x 2+1 的值域为________. 9.设直线x =t 与函数f (x )=x 2,g (x )=ln x 的图象分别交于点M ,N ,则当MN 达到最小时t 的值为________. 10.已知函数f (x )=e x -2x +a 有零点,则a 的取值范围是________. 11.已知函数f (x )=2x 3-6x 2+a 在[-2,2]上有最小值-37,求a 的值及f (x )在[-2,2]上的最大值. 12.已知函数f (x )=x 3-ax 2+bx +c (a ,b ,c ∈R ). (1)若函数f (x )在x =-1和x =3处取得极值,试求a ,b 的值; (2)在(1)的条件下,当x ∈[-2,6]时,f (x )<2|c |恒成立,求c 的取值范围. 三、探究与拓展 13.已知函数f (x )=(x -k )e x . (1)求f (x )的单调区间; (2)求f (x )在区间[0,1]上的最小值.

例说求函数的最大值和最小值的方法

例说求函数的最大值和最小值的方法 例1.设x 是正实数,求函数x x x y 32+ +=的最小值。 解:先估计y 的下界。 55)1(3)1(5)21(3)12(222≥+- +-=+-+ ++-=x x x x x x x y 又当x =1时,y =5,所以y 的最小值为5。 说明 本题是利用“配方法”先求出y 的下界,然后再“举例”说明这个下界是可以限到的。“举例”是必不可少的,否则就不一定对了。例如,本题我们也可以这样估计: 77)1(3)1(7)21(3)12(222-≥-+ +-=-++ ++-=x x x x x x x y 但y 是取不到-7的。即-7不能作为y 的最小值。 例2. 求函数1 223222++--=x x x x y 的最大值和最小值。 解 去分母、整理得:(2y -1)x 2+2(y +1)x +(y +3)=0. 当2 1≠y 时,这是一个关于x 的二次方程,因为x 、y 均为实数,所以 ?=[2(y +1)]2-4(2y -1)(y +3)≥0, y 2+3y --4≤0, 所以 -4≤y ≤1 又当3 1-=x 时,y =-4;x =-2时,y =1.所以y min =-4,y max =1.

说明 本题求是最值的方法叫做判别式法。 例3.求函数152++-=x x y ,x ∈[0,1]的最大值 解:设]2,1[1∈=+t t x ,则x =t 2-1 y = -2(t 2-1)+5t = -2t 2+5t +1 原函数当t =169,45=x 即时取最大值8 33 例4求函数22 3,5212≤≤+--=x x x x y 的最小值和最大值 解:令x -1=t ( 121≤≤t ) 则t t t t y 4142+=+= y min =5 1,172max =y 例5.已知实数x ,y 满足1≤x 2+y 2≤4,求f (x )=x 2+xy +y 2的最小值和最大值 解:∵)(2 122y x xy +≤ ∴6)(23 ),(2222≤+≤++=y x xy y x y x f 又当2==y x 时f (x ,y )=6,故f (x ,y )max =6 又因为)(2122y x xy +- ≥

导数在函数求最大值和最小值中的应用解读

导数在函数求最大值和最小值中的应用 例1.求函数f (x )=5x + . 解析:由3040x x +??-? ≥≥得f (x )的定义域为-3≤x ≤4,原问题转化为求f (x )在区间[-3, 4]上的最值问题。 ∵ y ’=f ’(x ) =5 在[-3,4]上f ’(x )>0恒成立, ∴ f (x )在[-3,4]上单调递增. ∴ 当x =-3时y min =-15-7, 当x =4时y max =20+27, ∴ 函数的值域为[-15-7,20+27]. 例2.设32f (a ),f (-1)0,∴ f (x )的最大值为f (0)=b -1, 又f (-1)-f (a )=21(a 3-3a -2)=21(a +1)2(a -)<0, ∴ f (x )|min =f (-1),∴ -23a -1+b =-23a = ∴ a b =1. 例3.若函数f (x )在[0,a ]上单调递增且可导,f (x )<0,f (x )是严格单调递增的,求 ()f x x 在(0,a ]上的最大值。 解析:2()'()()[]'f x f x x f x x x ?-=,∵ f (x )是严格单调递增的, ∴ f ’(x )>0,∵ f (x )<0,x >0,∴f ’(x )·x -f (x )>0, ∴ 2()'()()[ ]'f x f x x f x x x ?-=>0,∴ ()f x x 在(0,a ]上是增函数。 ∴ ()f x x 在(0,a ]上最大值为()f a a . 例4.设g (y )=1-x 2+4 xy 3-y 4在y ∈[-1,0]上最大值为f (x ),x ∈R , ① 求f (x )表达式;② 求f (x )最大值。 解析:g ’(y )=-4y 2(y -3x ), y ∈[-1, 0], 当x ≥0时,g ’(y )≥0,∴ g (y )在[-1, 0]上递增, ∴ f (x )=g (0)=1-x 2. 当-3 10,在[-1,3x ]上恒成立,在(3x ,0)上恒成立, ∴ f (x )=g (3x )=1-x 2+27x 4 .

函数的最大值和最小值教案.doc

函数的最大值和最小值教案 1.本节教材的地位与作用本节主要研究闭区间上的连续函数最大值和最小值的求法和实际应用,分两课时,这里是第一课时,它是在学生已经会求某些函数的最值,并且已 经掌握了性质:“如果f(x)是闭区间[a,b]上的连续函数,那么 f(x)在闭区间[a,b]上有最大值和最小值” ,以及会求可导函数的极值之后进行学习的,学好这一节,学生将会求更多的函数的 最值,运用本节知识可以解决科技、经济、社会中的一些如何使成本最低、产量最高、效益最大等实际问题.这节课集中体现了数形结合、理论联系实际等重要的数学思想方法,学好本节,对于进一步完善学生的知识结构,培养学生用数学的意识都具有极为重要的意义. 2.教学重点会求闭区间上连续开区间上可导的函数的最值. 3.教学难点高三年级学生虽然已经具有一定的知识基础,但由于对求函数极值还不熟练,特别是对优 化解题过程依据的理解会有较大的困难,所以这节课的难点是理解确定函数最值的方法. 4.教学关键本节课突破难点的关键是:理解方程f′(x)=0的解,包含有指定区间内全部可能的极值点. 【教学目标】根据本节教材在高中数学知识体系中的地位和作用,结合学生已有的认知水平,制定本节如下的 教学目标: 1.知识和技能目标 (1)理解函数的最值与极 值的区别和联系. (2)进一步明确闭区间[a,b]上的连续函数

f(x),在[a,b]上必有最大、最小值. (3)掌握用导数法求上述 函数的最大值与最小值的方法和步骤. 2.过程和方法目标(1)了解开区间内的连续函数或闭区间上的不连续函数不一定有 最大、最小值. (2)理解闭区间上的连续函数最值存在的可能 位置:极值点处或区间端点处. (3)会求闭区间上连续,开区 间内可导的函数的最大、最小值. 3.情感和价值目标 (1) 认识事物之间的的区别和联系. (2)培养学生观察事物的能力,能够自己发现问题,分析问题并最终解决问题. (3)提高 学生的数学能力,培养学生的创新精神、实践能力和理性精神. 【教法选择】根据皮亚杰的建构主义认识论,知识是个体在 与环境相互作用的过程中逐渐建构的结果,而认识则是起源于主 客体之间的相互作用. 本节课在帮助学生回顾肯定了闭区间 上的连续函数一定存在最大值和最小值之后,引导学生通过观察 闭区间内的连续函数的几个图象,自己归纳、总结出函数最大值、最小值存在的可能位置,进而探索出函数最大值、最小值求解的 方法与步骤,并优化解题过程,让学生主动地获得知识,老师只是 进行适当的引导,而不进行全部的灌输.为突出重点,突破难点, 这节课主要选择以合作探究式教学法组织教学. 【学法指导】对于求函数的最值,高三学生已经具备了良好的知识基础,剩下 的问题就是有没有一种更一般的方法,能运用于更多更复杂函数 的求最值问题?教学设计中注意激发起学生强烈的求知欲望,使 得他们能积极主动地观察、分析、归纳,以形成认识,参与到课堂

函数的最大值与最小值练习题(3)

1 3.3.3 函数的最大值与最小值练习题 一、选择题(本大题共6小题,每小题3分,共18分) 1.下列说法正确的是 A.函数的极大值就是函数的最大值 B.函数的极小值就是函数的最小值 C.函数的最值一定是极值 D.在闭区间上的连续函数一定存在最值 2.函数y =f (x )在区间[a ,b ]上的最大值是M ,最小值是m ,若M =m ,则f ′(x ) A.等于0 B.大于0 C.小于0 D.以上都有可能 3.函数y = 234213141x x x ++,在[-1,1]上的最小值为 A.0 B.-2 C.-1 D.12 13 4.下列求导运算正确的是( ) A .211)1(x x x +='+ B .2ln 1)(log 2x x =' C .e x x 3log 3)3(?=' D .x x x sin 2)cos (2-=' 5.设y =|x |3,那么y 在区间[-3,-1]上的最小值是 A.27 B.-3 C.-1 D.1 6.设f (x )=ax 3-6ax 2+b 在区间[-1,2]上的最大值为3,最小值为-29,且a >b ,则 A.a =2,b =29 B.a =2,b =3 C.a =3,b =2 D.a =-2,b =-3 二、填空题(本大题共5小题,每小题3分,共15分) 7.函数y =2x 3-3x 2-12x +5在[0,3]上的最小值是___________. 8.已知函数f (x )=2-x 2,g (x )=x .若f (x )*g (x )=min{f (x ),g (x )},那么f (x )*g (x )的最大值是 . 9.将正数a 分成两部分,使其立方和为最小,这两部分应分成____和____. 10.使内接椭圆22 22b y a x +=1的矩形面积最大,矩形的长为_____,宽为______ 11.在半径为R 的圆内,作内接等腰三角形,当底边上高为______时,它的面积最大. 三、解答题(本大题共3小题,每小题9分,共27分) 12.有一边长分别为8与5的长方形,在各角剪去相同的小正方形,把四边折起作成一个无盖小盒,要使纸盒的容积最大,问剪去的小正方形的边长应为多少? 13.已知:f (x )=log 3x b ax x ++2,x ∈(0,+∞).是否存在实数a 、b ,使f (x )同时满足下列两个条件:(1)f (x )在(0,1)上是减函数,在[1,+∞)上是增函数;(2)f (x )的最小值是1,若存在,求出a ,b ,若不存在,说明理由. 14.一条水渠,断面为等腰梯形,如图所示,在确定断面尺寸时,希望在断面ABCD 的面积为定值S 时,使得湿周l =AB +BC +CD 最小,这样可使水流阻力小,渗透少,求此时的高h 和下底边长b . b

函数的最大值和最小值(教案与课后反思)

3.8函数的最大值和最小值(第1课时) 嵊州市马寅初中学袁利江 【教学目标】 根据本节教材在高中数学知识体系中的地位和作用,结合学生已有的认知水平,制定本节如下的教学目标: 1.知识和技能目标 (1)理解函数的最值与极值的区别和联系. (2)进一步明确闭区间[a,b]上的连续函数f(x),在[a,b]上必有最大、最小值. (3)掌握用导数法求上述函数的最大值与最小值的方法和步骤. 2.过程和方法目标 (1)了解开区间内的连续函数或闭区间上的不连续函数不一定有最大、最小值. (2)理解闭区间上的连续函数最值存在的可能位置:极值点处或区间端点处. (3)会求闭区间上连续,开区间内可导的函数的最大、最小值. 3.情感和价值目标 (1)认识事物之间的的区别和联系. (2)培养学生观察事物的能力,能够自己发现问题,分析问题并最终解决问题. (3)提高学生的数学能力,培养学生的创新精神、实践能力和理性精神. 【教学重点】 会求闭区间上连续开区间上可导的函数的最值. 【教学难点】 高三年级学生虽然已经具有一定的知识基础,但由于对求函数极值还不熟练,特别是对优化解题过程依据的理解会有较大的困难,所以这节课的难点是理解确定函数最值的方法.【难点突破】 本节课突破难点的关键是:理解方程f′(x)=0的解,包含有指定区间内全部可能的极值点.【教法选择】 根据皮亚杰的建构主义认识论,知识是个体在与环境相互作用的过程中逐渐建构的结果,而认识则是起源于主客体之间的相互作用. 本节课在帮助学生回顾肯定了闭区间上的连续函数一定存在最大值和最小值之后,引导学生通过观察闭区间内的连续函数的几个图象,自己归纳、总结出函数最大值、最小值存在的可能位置,进而探索出函数最大值、最小值求解的方法与步骤,并优化解题过程,让学生主动地获得知识,老师只是进行适当的引导,而不进行全部的灌输.为突出重点,突破难点,这节课主要选择以合作探究式教学法组织教学. 【学法指导】 对于求函数的最值,高三学生已经具备了良好的知识基础,剩下的问题就是有没有一种更一般的方法,能运用于更多更复杂函数的求最值问题?教学设计中注意激发起学生强烈的求知欲望,使得他们能积极主动地观察、分析、归纳,以形成认识,参与到课堂活动中,充分发挥他们作为认知主体的作用.

导数及极值、最值练习题

三、知识新授 (一)函数极值的概念 (二)函数极值的求法:(1)考虑函数的定义域并求f'(x); (2)解方程f'(x)=0 ,得方程的根x0(可能不止一个) (3)如果在x0附近的左侧f'(x)>0, 右侧f'(x)<0, 那么f(x0)是 极大值;反之,那么f(x0)是极大值 y 题型一图像问题 y 1、函数f(x)的导函数图象如下图所示,则函数 f(x)在图示区间上() O x b a O x (第二题图) A.无极大值点,有四个极小值点 B .有三个极大值点,两个极小值点 C.有两个极大值点,两个极小值点 D .有四个极大值点,无极小值点 2、函数f(x)的定义域为开区间(a,b),导函数f(x)在(a,b)内的图象如图所示,则函数f(x)在 开区间(a,b)内有极小值点() A.1个B.2个C.3个D .4个 3、若函数f(x)x2bxc的图象的顶点在第四象限,则函数f(x)的图象可能为()

. y y y y O x O x O x O x A. B. C. D. 4、设f(x)是函数f(x)的导函数,y f(x)的图象如下图所示,则y f(x)的图象可能是() y y y y y O 2 12x O1 x O 12x O12x O 1 2 x -1 A. B. C. D. 5、已知函数fx的导函数f x的图象如右图所示,那么函数fx的图象最有可能的是() y f'(x) O 1 x -1 6、f(x)是f(x)的导函数,f(x)的图象如图所示,则f(x)的图象只可能是() y O 2x

.

. y y y y y -2 3 x O 24 O 2xO 2xO 2xO 2 x A. B. C. D. 7、如果函数y fx 的图象如图,那么导函数 yf(x)的图 象可能是( ) y -3 3 8、如图所示是函数yf(x)的导函数y f(x)图象, -2-1 1 0 12 45x 2 则下列哪一个判断可能是正确的( ) A .在区间(2,0)内y f(x)为增函数 B .在区间(0,3) 内y f(x)为减函数 C .在区间(4, )内y f(x)为增函数 y D .当x2时y f(x)有极小值 y=f (x) y y y y x x x x x A B C D 9、如果函数

二次函数的最大值和最小值问题

二次函数的最大值和最小值问题

————————————————————————————————作者: ————————————————————————————————日期:

二次函数的最大值和最小值问题 高一数学组主讲人---------蒋建平 本节课的教学目标: 重点:掌握闭区间上的二次函数的最值问题 难点:理解并会处理含参数的二次函数的最值问题 核心: 区间与对称轴的相对位置 思想: 数形结合、分类讨论 一、复习引入 1、二次函数相关的知识点回顾。 (1)二次函数的顶点式: (2)二次函数的对称轴: (3)二次函数的顶点坐标: 2、函数的最大值和最小值的概念 设函数)(x f 在0x 处的函数值是)(0x f ,如果不等式)()(0x f x f ≥对于定义域内任意x 都成立,那么)(0x f 叫做函数)(x f y =的最小值。记作)(0min x f y = 如果不等式)()(0x f x f ≤对于定义域内任意x 都成立,那么)(0x f 叫做函数)(x f y =的最小值。记作)(0max x f y = 二、新课讲解:二次函数最大值最小值问题探究 类型一:无限制条件的最大值与最小值问题 例1、(1)求二次函数322 ++-=x x y 的最大值 . (2)求二次函数x x y 422-=的最小值 . 本题小结:求无条件限制时二次函数最值的步骤 1、配方,求二次函数的顶点坐标。 2、根据二次函数的开口方向确定是函数的最大值还是最小值。 3、求出最值。

类型二:轴定区间定的最大值与最小值问题 例2、(1)求函数])1,3[(,232-∈-+=x x x y 的最大值 ,最小值 . (2)求函数])3,1[(232∈-+=x x x y 的最大值 ,最小值 . (3)求函数])2,5[(232 --∈-+=x x x y 的最大值 与最小值 . 本题小结:求轴定区间定时二次函数最值的步骤 1、配方,求二次函数的顶点坐标或求对称轴,画简图。 2、判断顶点的横坐标(对称轴)是否在闭区间内。 3、计算闭区间端点的值,并比较大小。 类型三:轴动区间定的最大值与最小值问题 例3、求函数)(32R a ax x y ∈++=在]1,1[-上的最大值。

函数的最大值和最小值时

函数的最大值和最小值时 Revised by BLUE on the afternoon of December 12,2020.

2006年江西省高中青年教师优质课比赛参赛教案§函数的最大值和最小值(第1课时)江西省临川第一中学游建龙(344100) 二OO六年九月十三日

§函数的最大值和最小值 【教材分析】 1.本节教材的地位与作用 本节是在学生已经会求某些函数的最值,并且已经掌握了性质:“如果f(x)是闭区间[a,b]上的连续函数,那么f(x)在闭区间[a,b]上有最大值和最小值”,以及会求可导函数的极值之后进行学习的,学好这一节,学生将会求更多的函数的最值,运用本节知识可以解决科技、经济、社会中的一些如何使用料最省、效益最大等实际问题.这节课集中体现了数形结合、理论联系实际等重要的数学思想方法,对于完善学生的知识结构,培养学生用数学的意识都具有极为重要的意义. 2.教学重点 会求闭区间上连续开区间上可导的函数的最值. 3.教学难点 确定函数最值的方法,并会求函数的最值. 【教学目标】 根据本节教材在高中数学知识体系中的地位和作用,结合学生已有的认知水平,制定本节如下的教学目标: 1.知识和技能目标 (1)理解函数的最值与极值的区别和联系. (2)进一步明确闭区间[a,b]上的连续函数f(x),在[a,b]上必有最大、最小值. (3)掌握用导数法求上述函数的最大值与最小值的方法和步骤. 2.过程和方法目标 (1)了解开区间内的连续函数不一定有最大、最小值. (2)会求闭区间上连续,开区间内可导的函数的最大、最小值. 3.情感和价值目标 (1)认识事物之间的的区别和联系. (2)培养学生观察事物的能力,能够自己发现问题,分析问题并最终解决问题. 【教法选择】 根据皮亚杰的建构主义认识论,知识是个体在与环境相互作用的过程中逐渐建构的结果,而认识则是起源于主客体之间的相互作用. 本节课引导学生自己通过观察函数的图象,归纳、总结出最大值、最小值求解的方法与步骤,让学生自己主动地获得知识,老师只是进行适当的引导,而不是进行全部的灌输.【学法指导】 对于求函数的最值,高三学生已经具备了良好的知识基础,剩下问题是有没有一种更一般的方法,能运用于更多更复杂的函数求最值问题教学设计中注意激发起学生强烈的求知欲望,使得他们能积极主动地观察、分析、归纳,以形成认识,参与到课堂活动中,充分发挥他们作为认知主体的作用.

用导数法求函数的最值的练习题解析

用导数法求函数的最值的练习题解析 一、选择题 1.函数y =f (x )在区间[a ,b ]上的最大值是M ,最小值是m ,若 M =m ,则f ′(x )( ) A .等于0 B .大于0 C .小于0 D .以上都有可能 [答案] A [解析] ∵M =m ,∴y =f (x )是常数函数 ∴f ′(x )=0,故应选A. 2.设f (x )=14x 4+13x 3+1 2x 2在[-1,1]上的最小值为( ) A .0 B .-2 C .-1 D.13 12 [答案] A [解析] y ′=x 3+x 2+x =x (x 2+x +1) 令y ′=0,解得x =0. ∴f (-1)=5 12,f (0)=0,f (1)=13 12 ∴f (x )在[-1,1]上最小值为0.故应选A.

3.函数y =x 3+x 2-x +1在区间[-2,1]上的最小值为( ) A.22 27 B .2 C .-1 D .-4 [答案] C [解析] y ′=3x 2+2x -1=(3x -1)(x +1) 令y ′=0解得x =1 3 或x =-1 当x =-2时,y =-1;当x =-1时,y =2; 当x =13时,y =22 27;当x =1时,y =2. 所以函数的最小值为-1,故应选C. 4.函数f (x )=x 2-x +1在区间[-3,0]上的最值为( ) A .最大值为13,最小值为34 B .最大值为1,最小值为4 C .最大值为13,最小值为1 D .最大值为-1,最小值为-7 [答案] A [解析] ∵y =x 2-x +1,∴y ′=2x -1,

函数的最大值最小值问题

§ 4函数的最大值最小值问题 最值与极值的重要区别: 极值是一点X 。局部的形态; 最值是某区间整体的形态。 先讨论必要 性: X 。是f (x)在(a b 内的最大(小)值, =X 。必是f (x)在(a,b)的极大(小)值点, =X 。是f (x)的稳定点或不可导点. 稳定点 f(x)在[a,b ]的可能的最值点:S 不可导点 ,区间端点 F 面就两种常见的情形给出判别法,以最大值为例说明. 1 ?闭区间情形 设f (x)在a,b 1连续,这时f (x)在l.a, b 1必有最大值. 则将所有稳定点、不可导点和区间端点的函数值进行比较 (如果可能的 话),最大者即是最大值. 2.开区间情形 设f(x)在(a,b)可导,且在(a,b)有最大值.若在(a,b)内有唯一的 稳定点X 。,则X 。是最大值点. 注意强调最值的存在性 例1 一块边长为a 的正方形,在四个角上截去同样大小的正方形, 做成无盖的盒,问截去多大的小方块能使盒的容积最大?

图5-13 解设x为截去的小方块的边长,则盒的容积为 V(x)二x(a 2,) ,x 100,) 显然,V(x)在(0,a)可导,且 2 ' 2 V (x) =(a _2x) _4x(a _2x) =(a_2x)(a _6x) 令V (x) = 0得x =—或x =—。因此在(0,—)中有唯一一的稳定点—o 2 6 2 6 由实际问题本身知V(x)在(0,-)中必有最大值,故知最大值为 2 V(—) -a3。即截去的小的方块边长为-时,盒的容积最大。 6 2 7 6 例2求函数f (x) = 2x3 -9x2 +12x在1-1,3】的最大值和最小值 解2x3-9x212x =x 2(x-9)2 15, IL 4 8 因此f(x) =(2x3-9x2 12x)sgnx,x 〔-1,3 1, f (x) =(6x2-18x 12)sgn x = 6(x-1)(x -2)sgn x, x (T,0) _? (0,3) 故f (x)的稳定 点为x=1,x=2,不可导为x=0。 比较所有可能的最值点的函数值: f(-1)= 2 3f, (0) f 0, =(1f) 5〒(f2) =4, 即得最大值为f(-1) = 23,最小值为f(0)=0。 例3 在正午时,甲船恰在乙船正南82处,以速度V1=20km h向正东开出;乙船也正以速度v =16km h向正南开去(图5—15).已知两船航向不变,试证:下午二时,两船相距最近.

导数--函数的最大值与最小值练习题

导数--函数的最大值与最小值练习题 【典型例题】 例1:求下列各函数的最值: (1)()[]32362,1,1f x x x x x =-+-∈-;(2)( )[]0,4f x x x =+∈。 例2:设 213a <<,函数()3232f x x ax b =-+在区间[]1,1-上的最大值为1 ,最小值为数的解析式。 【当堂练习】 1、函数()3223125f x x x x =--+在区间[]0,3上的最大值和最小值分别是( ) A 、5,15- B 、5,4- C 、4,15-- D 、5,15-- 2、函数()[],0,4x f x x e x -=?∈的最大值为( ) A 、0 B 、 1 e C 、 4 4e D 、 2 2e 3、已知函数()2 23f x x x =--+在[],2a 上的最大值为154 ,则a =( ) A 、32- B 、12 C 、12- D 、12-或32 - 4、若函数()1sin sin 33f x a x x =+在3 x π =处有最值,则a =( ) A 、2 B 、1 C D 、0 5、当0,2x π?? ∈ ???时,函数()()sin f x tx x t R =-∈的值恒小于零,则t 的取值范围是( ) A 、2t π≤ B 、2t π≤ C 、2t π≥ D 、2 t π< 6、点P 是曲线2ln 2y x =-上任意一点,则点P 到直线y x =-的最小距离为( ) A 、 4 B 、 4 C D 7.下列说法正确的是 A.函数的极大值就是函数的最大值 B.函数的极小值就是函数的最小值 C.函数的最值一定是极值 D.在闭区间上的连续函数一定存在最值 8.函数y =f (x )在区间[a ,b ]上的最大值是M ,最小值是m ,若M =m ,则f ′(x ) A.等于0 B.大于0 C.小于0 D.以上都有可能 9.函数y = 2 342 13141x x x ++,在[-1,1]上的最小值为( ) A.0 B.-2 C.-1 D.12 13 10.函数y =1 22+-x x x 的最大值为( )A.33 B.1 C.21 D. 2 3 11.设y =|x |3,那么y 在区间[-3,-1]上的最小值是( )A.27 B.-3 C.-1 D.1 12.设f (x )=ax 3-6ax 2+b 在区间[-1,2]上的最大值为3,最小值为-29,且a >b ,则( ) A.a =2,b =29 B.a =2,b =3 C.a =3,b =2 D.a =-2,b =-3 二、填空题 13.函数y =2x 3-3x 2-12x +5在[0,3]上的最小值是___________. 14.函数f (x )=sin2x -x 在[- 2π,2 π ]上的最大值为_____;最小值为____ 15.将正数a 分成两部分,使其立方和为最小,这两部分应分成____和____. 16.使内接椭圆22 22b y a x +=1的矩形面积最大,矩形的长为_____,宽为______ 17.在半径为R 的圆内,作内接等腰三角形,当底边上高为______时,它的面积最大. 18、函数()3 2 43365f x x x x =+-+在[)2,-+∞上的最大值为 ,最小值为 。 19、若函数()3 32f x x x m =+ +在[]2,1-上的最大值为9 2,则m = 。 20、设函数()3 31f x ax x =-+对于任意[]1,1x ∈-,都有()0f x ≥成立,则a = 。 21、已知()()()2 4 f x x x a =--,若()10f '-=,求()f x 在[]2,2-上的最大值和最小值。 三、解答题 22、已知0a >,函数()ln f x x ax =-。 (1)设曲线()y f x =在点()( ) 1,1f 处的切线为l ,若l 与圆()2 2 11x y ++=相切,求a 的值;(2) 求()f x 的单调区间;(3)求函数()f x 在(]0,1上的最大值。 23.一条水渠,断面为等腰梯形,如图所示,在确定断面尺寸时,希望在断面ABCD 的面积为定值S 时,使得湿周l =AB +BC +CD 最小,这样可使水流阻力小,渗透少,求此时的高h 和下底边长b . b

导数求最值(含参)

含参导数求最值问题(1—2) 编制人:闵小梅审核人:王志刚 【使用说明及学法指导】 1.完成预习案中的相关问题; 2.尝试完成探究案中合作探究部分,注意书写规范; 3.找出自己的疑惑和需要讨论的问题准备课堂讨论质疑。 【学习目标】 1.掌握利用导数求函数最值的方法 2.会用导数解决含参函数的综合问题 【预习案】 一、知识梳理 函数的最值与导数 (1)函数f(x)在[a,b]上有最值的条件 如果在区间[a,b]上函数y=f(x)的图象是一条连续不断的曲线,那么它必有最大值和最小值. (2)求y=f(x)在[a,b]上的最大(小)值的步骤 ①求函数y=f(x)在(a,b)内的极值. ②将函数y=f(x)的各极值与端点处的函数值f(a),f(b)比较,其中最大的一个是最大值,最小的一个是最小值. 二、尝试练习 1.设函数f(x)=x3-x2 2 -2x+5,若对任意的x∈[-1,2],都有f(x)>a,则实 数a的取值范围是________ (-∞,7 2) 2.已知函数f(x)=ax3-3x+1对x∈(0,1]总有f(x)≥0成立,则实数a的取值范围是________ [4,+∞)

【探究案】 一、合作探究: 例1. 设函数f (x )=ln x +ln(2-x )+ax (a >0). (1)当a =1时,求f (x )的单调区间; 增(0,2),减(2,2) (2)若f (x )在(0,1]上的最大值为12,求a 的值. a =1 2 二、拓展探究: 例2. 已知函数f(x)=lg(x +a x -2),其中a >0且为常数. (1)当a∈(1,4)时,求函数f(x)在[2,+∞)上的最小值;ln a 2 (2)若对任意x∈[2,+∞)恒有f(x)>0,试确定实数a 的取值范围.(2,+∞) 三、深层探究:单调性的应用 例3.求f (x )=ax x e -? (a >0)在x ∈[1,2]上的最大值

函数的最大值和最小值

函数的最大值和最小值 教材分析 函数的最大(小)值是函数的一个重要性质。它和求函数的值域有密切的关系,对于在闭区间上连续的函数,只要求出它的最值,就能写出这个函数的值域。通过对本课的学习,学生不仅巩固了刚刚学过的函数单调性,并且锻炼了利用函数思想解决实际问题的能力;同时在问题解决的过程中学生还可以进一步体会数学在生活、实际中的应用,体会到函数问题处处存在于我们周围。 学情分析在初中学生对已经经历了中学函数学习的第一阶段,学习了函数的描述性概念接触了正比例函数,反比例函数一次函数二次函数等最简单的函数,了解了他们的图像和性质。鉴于学生对二次函数已经有了一个初步的了解。因此本节课从学生接触过的二次函数的图象入手,这样能使学生容易找出最高点或最低点。但这只是感性上的认识。为了让学生能用数学语言描述函数最值的概念,先从具体的函数y=x2入手,再推广到一般的函数y=ax2+bx+c (a≠0)。让学生有一个从具体到抽象的认识过程。对于函数最值概念的认识,学生的理解还不是很透彻,通过对概念的辨析,让学生真正理解最值概念的内涵。例1与它的变式是本节的重点,通过对区间的改变,让学生对求二次函数的最值有一个更深的认识。同时让学生体会到数形结合的魅力。 教学目标分析 1、知识与技能目标:掌握函数最大、最小值的概念,能够解决与二次函数有关的最值问题,以及利用函数单调性求最值,会用函数的思想解决一些简单的实际问题。 2、过程与方法目标:通过函数最值的学习进一步研究函数,感悟函数的最值对于函数研究的作用。 3、情感态度、价值观目标:培养学生积极进行数学交流,乐于探索创新的科学精神。 教学重点和难点 教学重点:函数的最大(小)值及其几何意义 教学难点:利用函数的单调性求函数的最大(小)值. 四、教学方法 本节课在帮助学生回顾肯定了闭区间上的连续函数一定存在最大值和最小值之后,引导学生通过观察闭区间内的连续函数的图象,自己归纳、总结出函数最大值、最小值存在的可能位置,进而探索出函数最大值、最小值求解的方法与步骤,并优化解题过程,让学生主动地获得知识,老师只是进行适当的引导,而不进行全部的灌输.为突出重点,突破难点,这节课主要选择以合作探究式教学法组织教学. 五、学习方法

《函数的最大值和最小值》说课稿

《函数的最大值和最小值》说课稿 《函数的最大值和最小值》说课稿范文 【教材分析】 1、本节教材的地位与作用 本节主要研究闭区间上的连续函数最大值和最小值的求法和实际应用,分两课时,这里是第一课时,它是在学生已经会求某些函数的最值,并且已经掌握了性质:“如果f(x)是闭区间[a,b]上的连续函数,那么f(x)在闭区间[a,b]上有最大值和最小值”,以及会求可导函数的极值之后进行学习的,学好这一节,学生将会求更多的函数的最值,运用本节知识可以解决科技、经济、社会中的一些如何使成本最低、产量最高、效益最大等实际问题、这节课集中体现了数形结合、理论联系实际等重要的数学思想方法,学好本节,对于进一步完善学生的知识结构,培养学生用数学的意识都具有极为重要的意义。 2、教学重点 会求闭区间上连续开区间上可导的函数的最值。 3、教学难点 高三年级学生虽然已经具有一定的知识基础,但由于对求函数极值还不熟练,特别是对优化解题过程依据的理解会有较大的困难,所以这节课的难点是理解确定函数最值的方法。 4、教学关键

本节课突破难点的关键是:理解方程f′(x)=0的解,包含有指定区间内全部可能的极值点。 【教学目标】 根据本节教材在高中数学知识体系中的地位和作用,结合学生已有的认知水平,制定本节如下的教学目标: 1、知识和技能目标 (1)理解函数的最值与极值的区别和联系。 (2)进一步明确闭区间[a,b]上的连续函数f(x),在[a,b]上必有最大、最小值。 (3)掌握用导数法求上述函数的最大值与最小值的'方法和步骤。 2、过程和方法目标 (1)了解开区间内的连续函数或闭区间上的不连续函数不一定有最大、最小值。 (2)理解闭区间上的连续函数最值存在的可能位置:极值点处或区间端点处。 (3)会求闭区间上连续,开区间内可导的函数的最大、最小值。 3、情感和价值目标 (1)认识事物之间的的区别和联系、 (2)培养学生观察事物的能力,能够自己发现问题,分析问题并最终解决问题。 (3)提高学生的数学能力,培养学生的创新精神、实践能力和理性精神。

《函数的最大值和最小值与导数》教学设计说明书

《函数的最大值和最小值与导数》教学设计 【课本教材内容分析】 本节教材知识间的前后联系,以及在课堂教学中的地位与作用: 导数(导函数的简称)是一个特殊函数,它的引出和定义始终贯穿着函数思想。 新课程增加了导数的内容,随着课改的不断深入,导数知识考查的要求逐渐加强,而且导数已经由前几年只是在解决问题中的辅助地位上升为分析和解决问题时的不可缺少的工具。众所周知,函数又是中学数学研究导数的一个重要载体,因此函数问题涉及高中数学比较多的知识点和数学思想方法。 导数作为研究函数的一种重要工具,在宁夏高考进入新课标实验区之后,不但成为宁夏高考文理科数学的必考题,而且也逐渐成为高考试卷中起到拔高作用的热点难题。在学习时应引起我们教师和学生的充分重视。 本节主要研究闭区间上的连续函数最大值和最小值的求法与函数导数之间的关系及其简单的应用问题,分两课时,这里是第一课时,它是在学生已经会求可导函数的极值之后进行学习的,学好这一节,学生将会求更多的函数的最值,并且以本节知识为基础,可以解决科技、经济、社会中的一些如何使成本最低、产量最高、效益最大等实际问题.为下一节“生活中的优化问题”的教学打下坚实的基础。这节课集中体现了数形结合、理论联系实际等重要的数学思想方法,学好本节,对于进一步完善学生的知识结构,培养学生用数学的意识都具有重要的理论价值和现实价值. 高中阶段对用导数求可导函数在闭区间上的最值的方法不要求作严密的理论推导,这一方法完全可以由学生通过对函数图象的观察、归纳得到,所以本节教材还有一个重要的教育功能,那就是培养学生的探索精神,体验自主学习的成功愉悦. 【课堂教学三维目标】 根据本节教材特点,结合学生已有的认知水平,制定本节如下的三维教学目标: 1.知识和技能目标 (1).使学生理解函数的最大值和最小值的概念,掌握可导函数在闭区间上所有点(包括端点)处的函数中的最大(或最小)值必有的充分条件;并且能理解函数最值与极值的区别和联系 (2)理解可导函数的最值存在的可能位置. (3)掌握用导数法求上述函数的最大值与最小值的方法和步骤. 2.过程和方法目标 (1)通过函数图象的直观,让学生发现函数极值与最值的关系,掌握利用导数求函数最值的方法。 (2) 在学习过程中,观察、归纳、表述、交流、合作,最终形成认识. (3) 培养学生的数学能力,能够自己发现问题,分析问题并最终解决问题. 3.情感态度和价值观目标 (1) 渗透数形结合的思想,体会导数在求函数最值中的优越性,优化学生的思维品质。 (2) 认识事物之间的的区别和联系,体会事物的变化是有规律的唯物主义思想.

相关文档
最新文档