C语言关键字

auto;
C语言中提供了存储说明符auto,register,extern,static说明的四种存储类别。四种存储类别说明符有两种存储期:自动存储期和静态存储期。其中auto和register对应自动存储期。具有自动存储期的变量在进入声明该变量的程序块是被建立,它在该程序块活动时存在,退出该程序块时撤销。

在函数内部定义的变量成为局部变量。在某些C语言教材中,局部变量称为自动变量,这就与使用可选关键字a u t o定义局部变量这一作法保持一致。局部变量仅由其被定义的模块内部的语句所访问。换言之,局部变量在自己的代码模块之外是不可知的。切记:模块以左花
括号开始,以右花括号结束。
对于局部变量,要了解的最重要的东西是:它们仅存在于被定义的当前执行代码块中,即局部变量在进入模块时生成,在退出模块时消亡。
定义局部变量的最常见的代码块是函数。

整数变量x被定义了两次,一次在func1()中,一次在func2()中。func1()和func2()中的x互不相关。其原因是每个x作为局部变量仅在被定义的块内可知。
语言中包括了关键字auto,它可用于定义局部变量。但自从所有的非全局变量的缺省值假定为auto以来,auto就几乎很少使用了,

continue;
继续循环的意思,

enum;
声明枚举类型 用enum开头。
如 enum weekday{sun,mon,tue,wed,thu,fri,sat}
上面枚举的事一周有哪些天。

if:
如果,

restrict;【限制,约束】
restrict是c99引入的,它只可以用于限定指针,并表明指针是访问一个数据对象的唯一且初始的方式,

static;【静态】
static 出现在不同的地方含义不同的。
如果是在函数之外使用,表示该对像在此文件中是全局可访问的,在文件之外是不可访问的。
如果出现在函数内部,则表示该变量不是自动变量,它是一个可以初始化的变量(如果不进行显式初始化,默认值是0)。改变了它的值以后,函数结束时它的值也会保留。

inline;
关键字是C++的用来定义一个类的内联函数,引入它的主要原因是用它替代C中表达式形式的宏定义。

register;【登记】
修饰符暗示编译程序相应的变量将被频繁地使用,如果可能的话,应将其保存在CPU的寄存器中,以加快其存储速度,register修饰符
register修饰符暗示编译程序相应的变量将被频繁地使用,如果可能的话,应将其保存在CPU的寄存器中,以加快其存储速度。例如下面的内存块拷贝代码,





#ifdef NOSTRUCTASSIGN

memcpy (d, s, l)

{register char *d;

register char *s;

register int i;

while (i--)

*d++ = *s++;

}

#endif

但是使用register

修饰符有几点限制。

首先,register变量必须是能被CPU所接受的类型。这通常意味着register变量必须是一个单个的值,并且长度应该小于或者等于整型的长度。不过,有些机器的寄存器也能存放浮点数。

其次,因为register变量可能不存放在内存中,所以不能用“&”来获取register变量的地址。

由于寄存器的数量有限,而且某些寄存器只能接受特定类型的数据(如指针和浮点数),因此真正起作用的register修饰符的数目和类型都依赖于运行程序的机器,而任何多余的register修饰符都将被编译程序所忽略。

在某些情况下,把变量保存在寄存器中反而会降低程序的运行速度。因为被占用的寄存器不能再用于其它目的;或者变量被使用的次数不够多,不足以装入和存储变量所带来的额外开销。


unsigned;【无符号 未 签名的】
unsigned是用于修饰整数(int、long int、short int)和char数据类型的类型说明符,表示一个上述被修饰的数据类型是无符号数(第一个二进制位不代表符号的数)。
LS错误。设数据字长n,对于unsigned类型来说,取值范围为[0,2^n-1]之间的整数,而相应的signed类型取值范围为[-2^(n-1),2^(n-1)-1]之间的整数,注意取值个数没有变,只是前者的上限近似为后者的两倍。
举例来说,char为8位,signed char取值范围为[-128,127]共256个整数,unsigned char取值范围为[0,255]共256个整数。

complex,imaginary;
C99 新增了复数类型(_Complex)和虚数类型(_Imaginary)。简单来说,C99 提供了三种复数类型:float _Complex,double _Complex,和 long double _Complex。对于 float _Complex类型的变量来说,它包含两个 float类型的值,一个用于表示复数的实部(real part),另一个用于表示虚部(imaginary part)。类似地,double _Complex 包含两个 double类型的值。C99 也提供了三种虚数类型:float _Imaginary,double _Imaginary,以及 long double _Imaginary。虚数类型只有虚部,没有实部。
包含标准头文件 complex.h 后,我们就可以用 complex来代表 _Complex,用imaginary来代表 _Imaginary,以及用 I来代表虚数单位 i,也就是 -1的平方根。例如:

#include

double _Complex x = 5.2;

double complex y = 5.0 * I;

double complex z = 5.2 – 5.0 * I;

注意:_Complex类型对于独立式环境(freestanding environment)来说是可选的。可选的意思是,不强制必须支持这种类型。而所谓独立式环境,是指 C 程序可以在没有操作系统的情况下运行。_Imaginary类型在任何环境下都是可选的。目前的编译器对这两种类型的支持都不太好,在此就不对这两种类型进行更深入的讨论了

volatile;
volatile关键字

volatile总是与优化有关,

编译器有一种技术叫做数据流分析,分析程序中的变量在哪里赋值、在哪里使用、在哪里失效,分析结果可以用于常量合并,常量传播等优化,进一步可以死代码消除。但有时这些优化不是程序所需要的,这时可以用volatile关键字禁止做这些优化,volatile的字面含义是易变的,它有下面的作用:

1) 不会在两个操作之间把volatile变量缓存在寄存器中。在多任务、中断、甚至setjmp环境下,变量可能被其他的程序改变,编译器自己无法知道,volatile就是告诉编译器这种情况。
2)不做常量合并、常量传播等优化,所以像下面的代码:
volatile int i = 1;
if (i > 0) ...

if的条件不会当作无条件真。 意思i可能被其它程序所改变

3)对volatile变量的读写不会被优化掉。如果你对一个变量赋值但后面没用到,编译器常常可以省略那个赋值操作,然而对Memory Mapped IO的处理是不能这样优化的。

4)volatile变量能防止优化,比如说你在某个地方可能连续调用了好几次这个函数,于是编译器优化后,可能就调用一次,其他几次就采用这一次调用的返回值,而volatile修饰后,要让每一次都进行函数调用,而不采用暂存值。

break;
break在一些计算机语言中是保留字,其作用大多情况下是终止上一层的循环,以C语言来说,break在switch(开关语句)中在执行一条case后跳出语句的作用。
C语言中的break
break语句通常用在循环语句和开关语句中。当break用于开关语句switch中时, 可使程序跳出switch而执行switch以后的语句; 如果没有break语句, 则将成为一个死循环而无法退出。break在switch 中的用法已在前面介绍开关语句时的例子中碰到, 这里不再举例。
当break语句用于do-while、for、while循环语句中时, 可使程序终止循环
而执行循环后面的语句。通常break语句总是与if语句联在一起。
即满足条件时,便跳出循环

default;
default只用在switch语句中,代表默认处理如:
switch (i)
{
case 1:
DoSomething(); // 当i==1时运行。
break;
case 2:
//..........
break;
default:
DoOtherthing(); // 如果上面条件都不成立时运行。
break;
}

extern;
extern可以置于变量或者函数前,以表示变量或者函数的定义在别的文件中,提示编译器遇到此变量和函数时在其他模块中寻找其定义。另外,extern也可用来进行链接指定。;
return;
RETURN 形象点说就是一个函数的结束标志.
例如:

这是递归
#include
#include
int Factorial(int);
int main()
{
int n;
printf("请输入一个非负整数n:");
scanf("%d",&n);
if(n<0)
printf("n 不能为负!\n");
else
printf("%d的阶乘为%

d.\n",n,Factorial(n));
system("pause");
return 0;
}
int Factorial(int n)
{
if(n<=0)
return 1;
else
return n*Factorial(n-1);
}
在main函数中的return 0;是结束程序的,而Factorial函数中的return语句的作用就是结束Factorial函数并返回一个值
给main函数.

根据最新C99标准RETURN必须带一个返回值;
一定要注意这一点...
struct;
结构类型定义和结构变量说明C语言中给出了一种构造数据类型——“结构”。 它相当于其它高级语言中的记录。
“结构”是一种构造类型,它是由若干“成员”组成的。 每一个成员可以是一个基本数据类型或者又是一个构造类型。 结构既是一种“构造”而成的数据类型, 那么在说明和使用之前必须先定义它,也就是构造它。如同在说明和调用函数之前要先定义函数一样。
一、结构类型的定义
定义一个结构的一般形式为:
struct 结构名
{
成员表列
};
成员表由若干个成员组成, 每个成员都是该结构的一个组成部分。对每个成员也必须作类型说明,其形式为:
类型说明符 成员名;
成员名的命名应符合标识符的书写规定。
例如:
struct stu
{
int num;
char name[20];
char sex;
float score;
};
在这个结构定义中,结构名为stu,该结构由4个成员组成。 第一个成员为num,整型变量;第二个成员为name,字符数组;第三个成员为sex,字符变量;第四个成员为score,实型变量。 应注意在括号后的分号是不可少的。
二、结构变量的说明
结构定义之后,即可进行变量说明。 凡说明为结构stu的变量都由上述4个成员组成。由此可见, 结构是一种复杂的数据类型,是数目固定,类型不同的若干有序变量的集合。
请看下面的结构:
struct MyStruct
{
double dda1;
char dda;
int type
};
对结构MyStruct采用sizeof会出现什么结果呢?sizeof(MyStruct)为多少呢?也许你会这样求:
sizeof(MyStruct)=sizeof(double)+sizeof(char)+sizeof(int)=13
但是当在VC中测试上面结构的大小时,你会发现sizeof(MyStruct)为16。你知道为什么在VC中会得出这样一个结果吗?
其实,这是VC对变量存储的一个特殊处理。为了提高CPU的存储速度,VC对一些变量的起始地址做了“对齐”处理。在默认情况下,VC规定各成员变量存放的起始地址相对于结构的起始地址的偏移量必须为该变量的类型所占用的字节数的倍数。下面列出常用类型的对齐方式(vc6.0,32位系统)。
类型
对齐方式(变量存放的起始地址相对于结构的起始地址的偏移量)
Char
偏移量必须为s

izeof(char)即1的倍数
int
偏移量必须为sizeof(int)即4的倍数
float
偏移量必须为sizeof(float)即4的倍数
double
偏移量必须为sizeof(double)即8的倍数
Short
偏移量必须为sizeof(short)即2的倍数
1、默认的对齐方式
各成员变量在存放的时候根据在结构中出现的顺序依次申请空间,同时按照上面的对齐方式调整位置,空缺的字节VC会自动填充。同时VC为了确保结构的大小为结构的字节边界数(即该结构中占用最大空间的类型所占用的字节数)的倍数,所以在为最后一个成员变量申请空间后,还会根据需要自动填充空缺的字节。
下面用前面的例子来说明VC到底怎么样来存放结构的。
struct MyStruct
{
double dda1;
char dda;
int type
};
为上面的结构分配空间的时候,VC根据成员变量出现的顺序和对齐方式,先为第一个成员dda1分配空间,其起始地址跟结构的起始地址相同(刚好偏移量0刚好为sizeof(double)的倍数),该成员变量占用sizeof(double)=8个字节;接下来为第二个成员dda分配空间,这时下一个可以分配的地址对于结构的起始地址的偏移量为8,是sizeof(char)的倍数,所以把dda存放在偏移量为8的地方满足对齐方式,该成员变量占用sizeof(char)=1个字节;接下来为第三个成员type分配空间,这时下一个可以分配的地址对于结构的起始地址的偏移量为9,不是sizeof(int)=4的倍数,为了满足对齐方式对偏移量的约束问题,VC自动填充3个字节(这三个字节没有放什么东西),这时下一个可以分配的地址对于结构的起始地址的偏移量为12,刚好是sizeof(int)=4的倍数,所以把type存放在偏移量为12的地方,该成员变量占用sizeof(int)=4个字节;这时整个结构的成员变量已经都分配了空间,总的占用的空间大小为:8+1+3+4=16,刚好为结构的字节边界数(即结构中占用最大空间的类型所占用的字节数sizeof(double)=8)的倍数,所以没有空缺的字节需要填充。所以整个结构的大小为:sizeof(MyStruct)=8+1+3+4=16,其中有3个字节是VC自动填充的,没有放任何有意义的东西。
下面再举个例子,交换一下上面的MyStruct的成员变量的位置,使它变成下面的情况:
struct MyStruct
{
char dda;
double dda1;
int type
};
这个结构占用的空间为多大呢?在VC6.0环境下,可以得到sizeof(MyStruc)为24。结合上面提到的分配空间的一些原则,分析下VC怎么样为上面的结构分配空间的。(简单说明)
struct MyStruct
{
char dda;//偏移量为0,满足对齐方式,dda占用1个字节;
double dda1;//下一个可用的地址的偏移量

为1,不是sizeof(double)=8
//的倍数,需要补足7个字节才能使偏移量变为8(满足对齐
//方式),因此VC自动填充7个字节,dda1存放在偏移量为8
//的地址上,它占用8个字节。
int type;//下一个可用的地址的偏移量为16,是sizeof(int)=4的倍
//数,满足int的对齐方式,所以不需要VC自动填充,type存
//放在偏移量为16的地址上,它占用4个字节。
};//所有成员变量都分配了空间,空间总的大小为1+7+8+4=20,不是结构
//的节边界数(即结构中占用最大空间的类型所占用的字节数sizeof
//(double)=8)的倍数,所以需要填充4个字节,以满足结构的大小为
//sizeof(double)=8的倍数。
所以该结构总的大小为:sizeof(MyStruc)为1+7+8+4+4=24。其中总的有7+4=11个字节是VC自动填充的,没有放任何有意义的东西。
2、n字节的对齐方式
VC对结构的存储的特殊处理确实提高CPU存储变量的速度,但是有时候也带来了一些麻烦,我们也屏蔽掉变量默认的对齐方式,自己可以设定变量的对齐方式。
VC中提供了#pragma pack(n)来设定变量以n字节对齐方式。n字节对齐就是说变量存放的起始地址的偏移量有两种情况:第一、如果n大于等于该变量所占用的字节数,那么偏移量必须满足默认的对齐方式,第二、如果n小于该变量的类型所占用的字节数,那么偏移量为n的倍数,不用满足默认的对齐方式。结构的总大小也有个约束条件,分下面两种情况:如果n大于所有成员变量类型所占用的字节数,那么结构的总大小必须为占用空间最大的变量占用的空间数的倍数;
否则必须为n的倍数。下面举例说明其用法。
#pragma pack(push) //保存对齐状态
#pragma pack(4)//设定为4字节对齐
struct test
{
char m1;
double m4;
int m3;
};
#pragma pack(pop)//恢复对齐状态
以上结构的大小为16,下面分析其存储情况,首先为m1分配空间,其偏移量为0,满足我们自己设定的对齐方式(4字节对齐),m1占用1个字节。接着开始为m4分配空间,这时其偏移量为1,需要补足3个字节,这样使偏移量满足为n=4的倍数(因为sizeof(double)大于n),m4占用8个字节。接着为m3分配空间,这时其偏移量为12,满足为4的倍数,m3占用4个字节。这时已经为所有成员变量分配了空间,共分配了16个字节,满足为n的倍数。如果把上面的#pragma pack(4)改为#pragma pack(16),那么我们可以得到结构的大小为24。(请读者自己分析)

void;

定义意思
c语言中,void是空的意思,代表函数类型是无返回值类型,免用return语句赞同12| 评论(1)

case;
用于swwitch语句!case后

面的是常量表达式又成为开关常量。你不需要追求case是什么意思,只需要看它后面的常量是否满足,是否是一个能够匹配的值,是就执行case后面的语句序列,直到遇到break语句为止.如果case中的常量值都不匹配,则执行defult后面的语句序列

do;
循环语句,for循环
for(初始变量;循环条件;计数器)
{
循环语句;
}
初始变量为for循环提供循环控制变量的初始值,然后判断循环条件是否满足。满足执行循环语句,计数,并继续判断循环条件;不满足,则终止for循环

float;
float是实型也称为浮点型。实型常量也称为实数或者浮点数。在C语言中,实数只采用十进制。它有二种形式: 十进制数形式指数形式
1.十进制数形式
由数码0~ 9和小数点组成。例如:0.0,.25,5.789,0.13,5.0,300.,-267.8230等均为合法的实数。
2.指数形式
由十进制数,加阶码标志“e”或“E”以及阶码(只能为整数,可以带符号)组成。其一般形式为a E n (a为十进制数,n为十进制整数)其值为 a*10,n 如: 2.1E5 (等于2.1*10,5), 3.7E-2 (等于3.7*10,)-2*) 0.5E7 (等于0.5*10,7), -2.8E-2 (等于-2.8*10,)-2*)以下不是合法的实数 345 (无小数点) E7 (阶码标志E之前无数字) -5 (无阶码标志) 53.-E3 (负号位置不对) 2.7E (无阶码)
标准C允许浮点数使用后缀。后缀为“f”或“F”即表示该数为浮点数。如356f和356.是等价的。

int;


相关主题
相关文档
最新文档