几个有趣的悖论的数学辨析

几个有趣的悖论的数学辨析
几个有趣的悖论的数学辨析

几个有趣的悖论的数学辨析

数学悖论是数学发展过程中的一个重要的存在形态, 它是数学体系中出现的一种尖锐的矛盾, 对于这一矛盾的处理与研究, 丰富了数学的容, 促进了数学的发展。作为一名数学教师, 学习有关这方面的知识, 并进行研究, 既能提高自己的专业水平, 又能使授课容生动有趣; 作为学生了解这方面的容,不但能扩大知识面, 而且能提高学习兴趣

1 芝诺悖论

在西方的数学史上有一个非常有名的数学悖论——芝诺悖论。芝诺是公元五世纪古希腊埃利亚学派的代表人物。芝诺本人既不是一位科学家, 更不是一位数学家, 芝诺的老师是埃利亚学派的创始人巴门尼德。巴门尼德是个一神论者, 他认为世界的本原是“不生不灭、完整、唯一和不动的”。但世界显然是丰富多彩、复杂纷繁的,怎么会是“唯一” 的呢?一个完全不动的世界怎么可能呢? 于是引起同时代人的反驳。芝诺为了捍为他老师的学说, 提出了一些论述。其中最有名的有四个, 历史上称为芝诺悖论。作为巴门尼德的继承人, 他力图证明, 如果承认“ 多” 和“ 运动” , 就会招致更加荒谬的结果。限于篇幅, 在此只辑录其二。

二分法: 你不能在有限的时间穿过无穷的点。在你穿过一定的距离的全部之前, 你必须穿过这个距离的一半。这样做下去就会陷入无止境, 所以在任何一定的空间中都有无穷个点, 你不能在有限的时间中一个接一个地接触无穷个点。

阿喀琉斯追不上大乌龟: 阿喀琉斯是古希腊《荷马史诗》中一个跑得最快的大英雄, 他怎么会跑不过大乌龟呢? 假定他的速度是乌

龟的10倍, 阿喀琉斯与乌龟赛跑的路程是1千米, 让乌龟先跑1

10

米, 然后让阿喀琉斯去追。于是问题来了。当阿喀琉斯追到1

10

米的地方, 乌龟又向前跑了

1

100千米, 当阿喀琉斯又追到

1

100

千米时, 乌龟又向前跑了

1

10000千米, … …, 这样一来, 一直追下

去, 阿喀琉斯会追上大乌龟吗?

之所以说这两个论证是悖论, 是因为我们知道, 无论是谁, 不管身高身低, 只要一迈步, 都可以在有限的时间越过无穷多个点; 无论是谁, 都不会相信大英雄阿喀琉斯竟会跑不过大乌龟。然而在当时的人们的知识围, 却找不出芝诺的论证错在什么地方。

1 . 1 芝诺悖论的数学意义

芝诺的“二分法” 和“ 阿喀琉斯追不上大乌龟”的论证, 本意是要用结论的荒谬性来否定其前提关于时空的可无限分割的观点, 该两个论证与另外两个论证(“ 飞箭” 与“ 运动场” ) 组合得出了时空既是不可无限分割, 又是可以无限分割的矛盾结论。“ 芝诺悖论” 促进了以严格的思维规律为研究对象的逻辑学和以严格的求证思想为基础的数学的发展。芝诺论证问题的方法是我们今天数学中仍在使用的反证法。可以说, 这是对反证法的最早的运用。大家知道, 当一个数学命题无法直接证明时, 我们就求助于反证法。

1. 2 “芝诺悖论” 的数学解释

芝诺关于“二分法”的实质问题是无穷多个无穷小之和是什么; “ 阿喀琉斯追龟”的实质是无穷级数求和的问题。

1 . 2. 1 关于“ 二分法” 的解释

“ 二分法” 的实质问题是无穷多个无穷小之和是什么的问题。这里我们对无穷小做一个讨论。若无穷小是0 , 则无穷多个0 之和仍为0。也就是说此时的无穷是所谓的实无穷。但若无穷小是一个变量, 即不是一个恒为0的数(称为潜无穷) , 亦即无穷多个无穷小的和。那么该问题相当于极限中的未定式, 该极限可能存在,也可能不存在; 可能等于0, 可能是一个常数, 或者是无穷大。但对同一个问题, 不可能既等于零又可为无穷大。确定该极限的方法, 就是用微分学中的罗必达法则。对于“ 二分法” , 如果给定的距离一

定, 不妨设为1 , 那么先走一半即1

2,再走剩下的一半即

1

4, 再走

剩下的一半的一半即1

8, … ,以此类推则在一定时间走的距离为:

显然n时, 该式的极限为1 , 那么只要距离一定, 人们可以在一定的时间穿过无穷个点。

1 . 2.

2 关于“ 阿喀琉斯追龟” 的解释

按照该问题的条件,让乌龟先跑1

10

千米, 那么阿喀琉斯要追上乌

龟, 得先跑110 千米,

由于乌龟的速度是阿喀琉斯的110 , 则在阿喀琉斯 追到110 千米时,乌龟又跑了1100 千米,当阿喀琉斯追到1100 千米时,乌

龟又跑了110000 千米, …, 这样一来 , 阿喀琉斯一共跑的距离是下列

无穷级数的和 :

对该式在n 时取极限, 显然其极限是19 , 所以只要阿喀琉跑够19 千米, 就能追上乌龟 。

2 贝特朗奇论

2 . 1 “贝特朗奇论” 的 数学表示 在单位圆随机取一条弦,弦 长超过3(单位圆 接等 边三角形的边长)的概率是多少? 这个问题有三种解法, 答案互相矛盾 。

解法一:设弦AB 的一端A 固定于圆周上,另一端B 任意(图1)。对于等边三角形ACD , 若B 落在劣弧CD 上,则AB > 3 ,

P = CD 弧长圆周长

= 13 解法二 : 设弦 AB 垂直于直径 EF , C D = DO( 图 2) , 若 AB

的中点落在线段 C D 上 , 则 AB> 3 , 故 P = CD EF = 12 。

解法三 : 作半径为 1/ 2 的 同心圆( 图 3) 。 若 A B 的中 点

落在此圆 , 则 AB> 3 , 故 P =小圆面积大圆面积

= 14 。

最新部编人教版三年级数学有趣经典的奥数题及答案解析

三年级数学有趣经典的奥数题及答案解析 一、还原问题 1、工程问题 绿化队4天种树200棵,还要种400棵,照这样的工作效率,完成任务共需多少天? 解答:200÷4=50 (棵) (200+400)÷50=12(天) 【小结】 归一思想.先求出一天种多少棵树,再求共需几天完成任务.单一数:200÷4=50 (棵),总共的天数是:(200+400)÷50=12 (天). 2.还原问题 3个笼子里共养了78只鹦鹉,如果从第1个笼子里取出8只放到第2个笼子里,再从第2个笼子里取出6只放到第3个笼子里,那么3个笼子里的鹦鹉一样多.求3个笼子里原来各养了多少只鹦鹉?

解答: 78÷3=26(只) 第1个笼子:26+8=34(只) 第2个笼子:26-8+6=24(只) 第3个笼子:26-6=20(只) 二、楼梯问题 1、上楼梯问题 某人要到一座高层楼的第8层办事,不巧停电,电梯停开,如从1层走到4层需要48秒,请问以同样的速度走到八层,还需要多少秒? 解答:上一层楼梯需要:48÷(4-1)=16(秒) 从4楼走到8楼共走:8-4=4(层)楼梯 还需要的时间:16×4=64(秒) 答:还需要64秒才能到达8层。 2.楼梯问题

晶晶上楼,从1楼走到3楼需要走36级台阶,如果各层楼之间的台阶数相同,那么晶晶从第1层走到第6层需要走多少级台阶? 解:每一层楼梯有:36÷(3-1)=18(级台阶)晶晶从1层走到6层需要走:18×(6-1)=90(级)台阶。答:晶晶从第1层走到第6层需要走90级台阶。 三、页码问题 1.黑白棋子 有黑白两种棋子共300枚,按每堆3枚分成100堆。其中只有1枚白子的共27堆,有2枚或3枚黑子的共42堆,有3枚白子的与有3枚黑子的堆数相等。那么在全部棋子中,白子共有多少枚? 解答:只有1枚白子的共27堆,说明了在分成3枚一份中一白二黑的有27堆;有2枚或3枚黑子的共42堆,就是说有三枚黑子的有42-27=15堆;所以三枚白子的是15堆:还剩一黑二白的是 100-27-15-15=43堆: 白子共有:43×2+15×3=158(枚)。 2.找规律

几个有趣的悖论的数学辨析

几个有趣的悖论的数学辨析 数学悖论是数学发展过程中的一个重要的存在形态, 它是数学体系中出现的一种尖锐的矛盾, 对于这一矛盾的处理与研究, 丰富了数学的容, 促进了数学的发展。作为一名数学教师, 学习有关这方面的知识, 并进行研究, 既能提高自己的专业水平, 又能使授课容生动有趣; 作为学生了解这方面的容,不但能扩大知识面, 而且能提高学习兴趣 1 芝诺悖论 在西方的数学史上有一个非常有名的数学悖论——芝诺悖论。芝诺是公元五世纪古希腊埃利亚学派的代表人物。芝诺本人既不是一位科学家, 更不是一位数学家, 芝诺的老师是埃利亚学派的创始人巴门尼德。巴门尼德是个一神论者, 他认为世界的本原是“不生不灭、完整、唯一和不动的”。但世界显然是丰富多彩、复杂纷繁的,怎么会是“唯一” 的呢?一个完全不动的世界怎么可能呢? 于是引起同时代人的反驳。芝诺为了捍为他老师的学说, 提出了一些论述。其中最有名的有四个, 历史上称为芝诺悖论。作为巴门尼德的继承人, 他力图证明, 如果承认“ 多” 和“ 运动” , 就会招致更加荒谬的结果。限于篇幅, 在此只辑录其二。 二分法: 你不能在有限的时间穿过无穷的点。在你穿过一定的距离的全部之前, 你必须穿过这个距离的一半。这样做下去就会陷入无止境, 所以在任何一定的空间中都有无穷个点, 你不能在有限的时间中一个接一个地接触无穷个点。

阿喀琉斯追不上大乌龟: 阿喀琉斯是古希腊《荷马史诗》中一个跑得最快的大英雄, 他怎么会跑不过大乌龟呢? 假定他的速度是乌 龟的10倍, 阿喀琉斯与乌龟赛跑的路程是1千米, 让乌龟先跑1 10 千 米, 然后让阿喀琉斯去追。于是问题来了。当阿喀琉斯追到1 10 千 米的地方, 乌龟又向前跑了 1 100千米, 当阿喀琉斯又追到 1 100 千米时, 乌龟又向前跑了 1 10000千米, … …, 这样一来, 一直追下 去, 阿喀琉斯会追上大乌龟吗? 之所以说这两个论证是悖论, 是因为我们知道, 无论是谁, 不管身高身低, 只要一迈步, 都可以在有限的时间越过无穷多个点; 无论是谁, 都不会相信大英雄阿喀琉斯竟会跑不过大乌龟。然而在当时的人们的知识围, 却找不出芝诺的论证错在什么地方。 1 . 1 芝诺悖论的数学意义 芝诺的“二分法” 和“ 阿喀琉斯追不上大乌龟”的论证, 本意是要用结论的荒谬性来否定其前提关于时空的可无限分割的观点, 该两个论证与另外两个论证(“ 飞箭” 与“ 运动场” ) 组合得出了时空既是不可无限分割, 又是可以无限分割的矛盾结论。“ 芝诺悖论” 促进了以严格的思维规律为研究对象的逻辑学和以严格的求证思想为基础的数学的发展。芝诺论证问题的方法是我们今天数学中仍在使用的反证法。可以说, 这是对反证法的最早的运用。大家知道, 当一个数学命题无法直接证明时, 我们就求助于反证法。

《四次数学危机与世界十大经典数学悖论》

《“四次”数学危机与世界十大经典数学悖论》 “四次”数学危机 第一次危机发生在公元前580~568年之间的古希腊,数学家毕达哥拉斯建立了毕达哥拉斯学派。这个学派集宗教、科学和哲学于一体,该学派人数固定,知识保密,所有发明创造都归于学派领袖。当时人们对有理数的认识还很有限,对于无理数的概念更是一无所知,毕达哥拉斯学派所说的数,原来是指整数,他们不把分数看成一种数,而仅看作两个整数之比,他们错误地认为,宇宙间的一切现象都归结为整数或整数之比。该学派的成员希伯索斯根据勾股定理(西方称为毕达哥拉斯定理)通过逻辑推理发现,边长为1的正方形的对角线长度既不是整数,也不是整数的比所能表示。希伯索斯的发现被认为是“荒谬”和违反常识的事。它不仅严重地违背了毕达哥拉斯学派的信条,也冲击了当时希腊人的传统见解。使当时希腊数学家们深感不安,相传希伯索斯因这一发现被投入海中淹死,这就是第一次数学危机。 最后,这场危机通过在几何学中引进不可通约量概念而得到解决。两个几何线段,如果存在一个第三线段能同时量尽它们,就称这两个线段是可通约的,否则称为不可通约的。正方形的一边与对角线,就不存在能同时量尽它们的第三线段,因此它们是不可通约的。很显然,只要承认不可通约量的存在使几何量不再受整数的限制,所谓的数学危机也就不复存在了。 我认为第一次危机的产生最大的意义导致了无理数地产生,比如说我们现在说的,都无法用来表示,那么我们必须引入新的数来刻画这个问题,这样无理数便产生了,正是有这种思想,当我们将负数开方时,人们引入了虚数i(虚数的产生导致复变函数等学科的产生,并在现代工程技术上得到广泛应用),这使我不得不佩服人类的智慧。但我个人认为第一次危机的真正解决在1872年德国数学家对无理数的严格定义,因为数学是很强调其严格的逻辑与推证性的。 第二次数学危机发生在十七世纪。十七世纪微积分诞生后,由于推敲微积分的理论基础问题,数学界出现混乱局面,即第二次数学危机。其实我翻了一下有关数学史的资料,微积分的雏形早在古希腊时期就形成了,阿基米德的逼近法实际上已经掌握了无限小分析的基本要素,直到2100年后,牛顿和莱布尼兹开辟了新的天地——微积分。微积分的主要创始人牛顿在一些典型的推导过程中,第一步用了无穷小量作分母进行除法,当然无穷小量不能为零;第二步牛顿又把无穷小量看作零,去掉那些包含它的项,从而得到所要的公式,在力学和几何学的应用证明了这些公式是正确的,但它的数学推导过程却在逻辑上自相矛盾.焦点是:无穷小量是零还是非零?如果是零,怎么能用它做除数?如果不是零,又怎么能把包含着无穷小量的那些项去掉呢? 直到19世纪,柯西详细而有系统地发展了极限理论。柯西认为把无穷小量作为确定的量,即使是零,都说不过去,它会与极限的定义发生矛盾。无穷小量应该是要怎样小就怎样小的量,因此本质上它是变量,而且是以零为极限的量,至此柯西澄清了前人的无穷小的概念,另外Weistrass创立了极限理论,加上实数理论,集合论的建立,从而把无穷小量从形而上学的束缚中解放出来,第二次数学危机基本解决。 而我自己的理解是一个无穷小量,是不是零要看它是运动的还是静止的,如果是静止的,我们当然认为它可以看为零;如果是运动的,比如说1/n,我们说,但n个1/n相乘就为1,这就不是无穷小量了,当我们遇到等情况时,我们可以用洛比达法则反复求导来考查极限,也可以用Taylor展式展开后,一阶一阶的比,我们总会在有限阶比出大小。 第三次数学危机发生在1902年,罗素悖论的产生震撼了整个数学界,号称天衣无缝,绝对正确的数学出现了自相矛盾。 我从很早以前就读过“理发师悖论”,就是一位理发师给不给自己理发的人理发。那

小学生有趣的数学题知识讲解

小学生有趣的数学题 1、文字算式游戏: 例如:(十)拿(九)稳一(七)上(八)下=(三)位(一)体 对应的算式为:109–78=31 (1)( ) 光 ( )色×不( )价=( )货公司 (2)( )( )火 急 ×( )指 连 心=( )( )富翁 (3)( )( )生 肖 ×( )级 跳=( )( )( )计 (4)( )( )面 威 风 ×( )窍生烟=( )颜( )色 (5)( )天 打 鱼 ×( )天 晒 网=( )亲不认 答案:(1)五、十、二、百;(2)十、万、十、百、万;(3)十、二、三、三、十、六; (4)八、七、五、六;(5)三、两、六. 2、按规律填数:1,1,2,3,5, , , . 答案:8,13,21 3、在横线上填上运算符号或括号,使等式成立. 4__4 4__4=1, 4__4__4___4=2, 4 4 4 4=3, 4 4 4 4=4 答案:(4÷4)×(4÷4)=1 4÷4+4÷4=2 (4+4+4)÷4=3 4×(4–4)+4=4 4、长方形剪去一角,它可能是 边形 答案:三、四、五 5、有50个同学,头上分别戴有编号1,2,3,……,49,50的帽子.他们按编号从小到大的顺序,顺时针方向围成一圈做游戏:从1号开始按顺时针方向“1,2,1,2……”报数,报到奇数的同学退出圈子,一圈下来后,接着又从编号最小的人重新开始“1,2,1,2,……”报数,报到奇数的同学退出圈子,经过了若干轮后,圆圈上只剩下了一个人,那么,这位同学原来的编号是 . 答案:32 6、有一个正方体,将它的各个面上分别标上字母a 、b 、c 、d 、e 、f .有甲、乙、丙三个同学站在不同的角度观察,结果如图.问这个正方体各个面上的字母各是什么字母.即: a 对面是 ; b 对面是 ; c 对面是 ; d 对面是 ; e 对面是 ; f 对面是 . 答案:e,d ,f,b ,a ,c 7、张老师工作很忙,5天没有回家,回家后一次撕下这5天的日历,这5天日期的数字相加的和是45,问张老师回家这天是几号? 答案:12号 8、根据下面的等式,求出妈妈买回来的鱼、鸡、菜各花了多少钱? 鸡+鸭+鱼+菜=35.4元 鸡+鱼+菜=20.4元 鸭+鱼+菜=21.4元 鸭+菜=17元 答案:鱼:4.4元;鸭:15元;鸡:14元;菜:2元. a d f b a c e d c

拥有多个A的概率:又一个条件概率悖论

拥有多个A的概率:又一个条件概率 悖论 概率论给我们带来了很多匪夷所思的反常结果,条件概率尤其如此。网络上每一次有人发帖提出与条件概率有关的悖论时,总会引来无数人的围观和争论,哪怕这些问题的实质都是相同的。 来看两道简单的组合数学问题: 1. 四个人打桥牌。其中一个人说,我手上有一个A。请问他手上有不止一个A的概率是多少? 2. 四个人打桥牌。其中一个人说,我手上有一个黑桃A。请问他手上有不止一个A的概率是多少? 这两个问题看起来很像,实际算法大不相同。在第一题问题中, 手上一个A也没有有 C(48,13) 种情况 手上有至少一个A 有 C(52,13) - C(48,13) 种情况 手上恰好有一个A 有 C(48,12) * 4 种情况 手上有至少两个A 有 C(52,13) - C(48,13) - C(48,12) * 4 种情况 根据条件概率公式,手上有超过一个A的概率为(C(52,13) - C(48,13) - C(48,12) * 4) / (C(52,13) - C(48,13)) = 5359/14498 ≈ 37% 在第二个问题中, 手上有黑桃A 有 C(51,12) 种情况 手上没有其它花色的A 有 C(48,12) 种情况 手上还有其它花色的A 有 C(51,12) - C(48,12) 种情况 根据条件概率公式,手上有超过一个A的概率为(C(51,12) - C(48,12)) / C(51,12) = 11686/20825 ≈ 56% 有趣的事情出来了:如果这个人宣布了手中A的花色,他手中有一个以上A 的概率竟然会大大增加。 这怎么可能呢?难道我们上面的计算结果是错误的?事实上,上面的计算并没有错:

世界十大著名悖论

世界十大著名悖论。 来自: 哔。黑猫警嫂。(Dream maker, heart breaker.) 2011-11-30 18:34:34 十个著名悖论的最终解答 (一)电车难题(The Trolley Problem) 引用: 一、“电车难题”是伦理学领域最为知名的思想实验之一,其内容大致是:一个疯子把五个无辜的人绑在电车轨道上。一辆失控的电车朝他们驶来,并且片刻后就要碾压到他们。幸运的是,你可以拉一个拉杆,让电车开到另一条轨道上。但是还有一个问题,那个疯子在那另一条轨道上也绑了一个人。考虑以上状况,你应该拉拉杆吗? 解读: 电车难题最早是由哲学家Philippa Foot提出的,用来批判伦理哲学中的主要理论,特别是功利主义。功利主义提出的观点是,大部分道德决策都是根据“为最多的人提供最大的利益”的原则做出的。从一个功利主义者的观点来看,明显的选择应该是拉拉杆,拯救五个人只杀死一个人。但是功利主义的批判者认为,一旦拉了拉杆,你就成为一个不道德行为的同谋——你要为另一条轨道上单独的一个人的死负部分责任。然而,其他人认为,你身处这种状况下就要求你要有所作为,你的不作为将会是同等的不道德。总之,不存在完全的道德行为,这就是重点所在。许多哲学家都用电车难题作为例子来表示现实生活中的状况经常强迫一个人违背他自己的道德准则,并且还存在着没有完全道德做法的情况。 引用完毕。 Das曰: 人,应当为自己的行为负责,这里的“行为”是什么意思?人为自己的行为负责的理论依据是什么? 承认人具有自由意识——这是法律和道德合理化的基础。不承认自由意识存在,也就否认了一切法律和道德的合理性。如果一个人杀人放火是由于童年的遭遇、社会的影响、政府的不公正待遇等外界客观因素所决定的——罪犯本身的原因不是决定性因素——我们就没有权利依据任何法律对这个人进行惩罚。他杀人放火是由于其他原因,是他本身不可改变的,惩罚这个人显然是不合理的,惩罚他也于事无补、毫无用处。 人具有自由意识,可以做出自由选择,并且他应当对自己的选择负责任——这是一切法律和道德合理化的最根本基础。 那么,我们现在可以解释“行为”是什么意思:行为,是人在所有可能性中做出的一个唯一的选择。 今天早晨你可以选择吃包子,也可以选择吃油条。结果你吃了包子,这是你的行为、你选择的结果。问题是吃包子或者吃油条,这并不是“所有可能性”,你也可以选择什么也不吃,选择饿肚子减肥。作为一个理性人,你应当预见到饿肚子减肥可能造成身体伤害,你选择了饿肚子减肥这种行为,就应

一些很有趣的概率学问题

一些很有趣的概率学问题 说到概率,有些好玩的东西不得不提。比如,你知道吗,23个人中至少两个人生日相同的概率竟然超过了1/2;假如你们班上有50个人的话,那更不得了,至少两人生日相同的概率达到97% !如果你会计算这个概率问题的话,你可以亲自证实这一点。本文适宜的读者是知道上述问题怎么算的高中朋友,上述问题也是高中阶段学的一些基本概率知识。 上面的问题都是简单概率,它包含了一个最基本的原则,即使没有系统地学习过,平常人们也都在无形之中使用它:概率等于你要算的东西除以总的数目。比如。我们要计算23个人中任何两个人都不在同一天生的概率。假设2月29 日与其它日期出现概率相同的话(这是为了便于计算我们做出的假设,它有悖于常理),那么它的概率为A(366,23)/366^23。它约为0.493677。因此,至少两人在同一天生的概率为1-0.493677=0.506323。当然,对于“你要算的东西除以总的数目”的认识是片面的,比如“投两个骰子出现的数字和从2到12共有11种可能,问数字和大于10的概率”这一问题的答案并不是2/11,因为这11个点数和出现的概率不是相等的,我们只能从投出的两个数字共6*6=36种情况中进行统计,可能的情况只有(5,6)、(6,5)和(6,6) (不会有人说还有(6,7)之类的吧),答案应该是3/36=1/12。这些都是废话,我不细说了。 但是,你有想过这个问题吗:要是这些数目是无穷的怎么办?换句话说,统计的东西不是“离散”的怎么办?比如看这样一个问题。明天早上我要和MM约会,但是具体见面时间我忘了,好像是8:00-9:00的某个时候。那么我随便在这个时段中选一个时间去等MM,最多等她半个小时,正好能见到MM的概率是多少(假设MM先到的话不会等我)。这个问题和我们平时见到的问题不同的地方在于,它的“情况”是连续的,不是离散的,不能逐一统计数目。咋办呢?我们注意到,我的时间随机取一个,MM的时间随机取一个,对于某些组合我们是有缘分的(这些组合无穷多)。这些组合正好对应了平面区域上的点。就是说,搞一个横坐标表示我的时间,纵坐标表示MM的时间,那么肯定能画出那么一块区域,区域里的所有点(x,y)对应所有我和MM可能相见的组合。任何一个时间组合有多大的可能落在这个区域呢?由于在矩形区域内点(x,y)是均匀分布的,我们只需要计算一个面积之比就行了。下图中显而易见,答案是3/8。 一个类似的问题是Buffon投针实验。有一个人,叫Buffon。他在地板上画了很多间隔相同的平行线,然后叫了一帮狐朋狗友来,把一些长度相同的针扔在地上。然后,他统计有多少针和地板上的线相交,并宣称可以得到圆周率π的值。换句话说,一根针投到间隔相同的平行线中,与平行线相交的概率和π有关。我们时常感到数学的神奇之处,比如当这个π在很多不该出现的场合莫明

有趣的数学问题

篇七:迷惑人的数学题 昨天,我翻开了《三年级数学提高班试题》,看到了一个题目:平平一家三口人,爸爸比妈妈大3岁,今年全家三口年龄和是71岁,八年前全家年龄和是49岁。今年平平多少岁?爸爸、妈妈分别是多少岁? 我一看,想:哇,这太简单了!于是就3×8=24(年)71-24=……唉,不对劲儿!我左思右想,可还是不明白。爸爸看看这题,说:“我以前也碰过这种题。71-24=47而不是49我知道,说明了平平8年前还没有出生!这样想多好!” 我听了爸爸的提示,拿起笔便兴奋地做了起来:那么平平今年是6岁,爸爸的年龄是(71-6+3)÷2=34(岁)妈妈的年龄:34-3=3(岁)。 我验算了一下,哇,没错,果然是对的。 我想:这些类似的数学题很容易迷惑人,所以我们一定要记住它,以防被“骗”。 篇八:24点游戏 星期天,我和扬文一起玩了24点游戏。游戏规则很简单:每人分别抽四张牌,然后用“+、-、×、÷”这几种计算方法最后得数一定要得24,就行了。 游戏开始了,我们各抽了四张牌。唉!我的牌怎么这么糟呀!你看,四张都是A。这时,只听扬文说:“我可以了,你看,5+5=10,10×2=20,20+4=24。”第一轮,我输了。但我并没有灰心丧气,因为后面还有机会,我一定要把握机会,好好赢一把。我又抽了四张牌“6、5、8、3”。我激动得马上脱口而出:“6-5=1,8×3=24,24÷1=24。现在是1比1平了。” 扬文说:“有什么的,我一定会在下一回合胜过你的。”第三回合到了,我又抽了四张牌“10、9、6、10”。我一看傻眼了。突然,只听扬文大声地喊道:“6×4=24,24+1-1=24。2 比1我赢了。”我看着他那得意的样子,无计可施。 虽然这次游戏我输了,但是我觉得24点真有趣,同时也感到数学真的很奇妙。我今后一定要努力学习数学,灵活运用“+、-、×、÷”的混合运算,在下一次的24点游戏中,一定要用得得心应手,当个高手。 篇九:有趣的数学游戏 昨天,我看了《四年级提高班》上的巧猜年龄与口袋中的钱,它马上把我吸引过去。 上面说了,把你的年龄乘以2,加上5,所得的数乘以50,加上口袋的钱数(不超过十元,要以角为单位),再减去一年(平年)的天数,加长115就可以了。 我看了这个题目,有点儿不相信,于是我就试一试,我的年龄:9岁,口袋里的钱5元5角。我先把9×2=18,18+5=23,23×50=1150,1150+55=1205,1205-365=840,840+115=955。 这样,我把955拆分两段是9和55,9是我的年龄,55是我口袋里的钱。 怎么样?这个数学游戏也挺好玩吧!请你也来试一试,看看是不是对的。

贝特朗概率悖论的解释

贝特朗概率悖论的解释 贝特朗概率悖论是一个著名的悖论题,与其他的集合悖论不一样,这个悖论只是我们看起来“错”而已,也并没有像集合悖论一样带来一次数学危机,正确审视它,就是让我们对“几何概型”这一概念更加地深入了解而已。 我就不废话,我们直接来看什么是贝特朗概率悖论,百度上有很多,随便一搜就到处都是题目是这样子滴:在圆中做弦MN,求使MN的长大于圆内接正三角形边长的概率。 这道题若从不同的角度看,就有几种不同的答案,百度百科里有,我就不想在这里多费口舌,希望各位先到那里去看看具体的答案,我把图片下载下来,大家可以自己看:百度百科词条解释 虽然这多种解法各有各得说法,似乎每一个都对,但是悖论毕竟是悖论,他终究是错的。概率问题一个基本的原则就是,不管从哪个角度看,答案只能有一个,否则一件事情的概率都不一致,这问题要么就是本身就有问题,要么就是条件不够。而对于贝特朗概率悖论所涉及到的问题,正是如此,因为其条件不够。 首先我们看第一种“解法”。 解法1的思路是,在于AB平行的弦中,只有与PQ交点落在MN上的,弦长才大于根号3。弦与PQ的交点肯定就是落在PQ上的,而NM=1/2PQ,所以此时概率为1/2.

这个解法其实有一个重要前提,那就是弦与PQ的交点在PQ上是均匀分布的。正正是题目中所缺乏的条件,因为圆中任意的弦,这到底怎么个做法?是像这种解法所说的,使其与PQ 交点在PQ上均匀分布么?还是使弦与圆周的交点是任意分布?如果满足后者,就不可能满足前者,满足前者,就不可能满足后者。一个比较明显的说法就是:做几条平行弦,使其在PQ上均匀分布,也就是相互之间的距离相等,我们可以看见,这些弦之间的弧长并不相等,也就是说,在PQ上均匀分布,一定不会在圆周上均匀分布。原题中没有给出这样的条件,解法1加了这么一个条件,显然就有不一样的结果了。 再看解法2. 解法2的思路是,链接OA,在OA两边做弦AM和AN,使其和AO的夹角为30°。在圆中所有的弦中,只有当B点落在弧MN上时,才满足条件,而MN的弧长占据整个弧长的1/3,所以概率为1/3 看了解法1,你就知道这个解法的原因所在了,他正是采用了在圆周上均匀分布这一条件得出的结果。 最后看解法3

十个著名悖论的最终解答

(一)电车难题(The Trolley Problem) 引用: 一、“电车难题”是伦理学领域最为知名的思想实验之一,其内容大致是:一个疯子把五个无辜的人绑在电车轨道上。一辆失控的电车朝他们驶来,并且片刻后就要碾压到他们。幸运的是,你可以拉一个拉杆,让电车开到另一条轨道上。但是还有一个问题,那个疯子在那另一条轨道上也绑了一个人。考虑以上状况,你应该拉拉杆吗? 解读: 电车难题最早是由哲学家Philippa Foot提出的,用来批判伦理哲学中的主要理论,特别是功利主义。功利主义提出的观点是,大部分道德决策都是根据“为最多的人提供最大的利益”的原则做出的。从一个功利主义者的观点来看,明显的选择应该是拉拉杆,拯救五个人只杀死一个人。但是功利主义的批判者认为,一旦拉了拉杆,你就成为一个不道德行为的同谋——你要为另一条轨道上单独的一个人的死负部分责任。然而,其他人认为,你身处这种状况下就要求你要有所作为,你的不作为将会是同等的不道德。总之,不存在完全的道德行为,这就是重点所在。许多哲学家都用电车难题作为例子来表示现实生活中的状况经常强迫一个人违背他自己的道德准则,并且还存在着没有完全道德做法的情况。 引用完毕。 Das曰: 人,应当为自己的行为负责,这里的“行为”是什么意思?人为自己的行为负责的理论依据是什么? 承认人具有自由意识——这是法律和道德合理化的基础。不承认自由意识存在,也就否认了一切法律和道德的合理性。如果一个人杀人放火是由于童年的遭遇、社会的影响、政府的不公正待遇等外界客观因素所决定的——罪犯本身的原因不是决定性因素——我们就没有权利依据任何法律对这个人进行惩罚。他杀人放火是由于其他原因,是他本身不可改变的,惩罚这个人显然是不合理的,惩罚他也于事无补、毫无用处。 人具有自由意识,可以做出自由选择,并且他应当对自己的选择负责任——这是一切法律和道德合理化的最根本基础。 那么,我们现在可以解释“行为”是什么意思:行为,是人在所有可能性中做出的一个唯一的选择。 今天早晨你可以选择吃包子,也可以选择吃油条。结果你吃了包子,这是你的行为、你选择的结果。问题是吃包子或者吃油条,这并不是“所有可能性”,你也可以选择什么也不吃,选择饿肚子减肥。作为一个理性人,你应当预见到饿肚子减肥可能造成身体伤害,你选择了饿肚子减肥这种行为,就应当为这种行为负责。 行为并不是行动,你什么也不干也是一种选择,因而也是一种行为。 我们将这个思想实验稍作修改,就可以看到什么也不干确实是一种实实在在的行为: 假如电车的前方帮着5个人,你拉动一下拉杆就能使将电车驶向岔道——而岔道上什么也没有,不会造成任何危害。这时候你动不动拉杆呢?如果你不拉,你什么也不干,眼睁睁看着五个人被轧死,这显然是不道德行为——你本来有选择的余地,轧死五个人并不是唯一可能的结果,你只要举手之劳就能挽救五个人的生命,但是你选择了什么也不干,你就应当为你的行为负责任,即使法律不去惩罚你,你的行为最起码也是不道德的。 现在我们可以理清这个悖论的条理了: 一、对于这一事件,你只有两种选择的可能性:动拉杆或者不动拉杆。你必须在这两种行为中选择一

12个有趣的数学思维题

12个有趣的数学思维题 1:时间问题 四个青年人一起玩扑克,玩了40分钟。他们每一个人玩了多长时间? 答案:每个人都玩了40分钟 2:牧马人的故事 有一个牧马人共有48匹马。放牧回来时,他骑着一匹马,边走边数,发现少了一匹马。他急忙跳下马来,又数了一遍整好48匹。待骑上马又数时,还是少一匹,这是怎么一回事? 答案:在马上数时没有把自己的马算在内,所以少了一匹 3:聪明人如何过桥 大河上有一座东西向横跨江面的侨,人通过需要五分钟。桥中间有一个亭子。亭子里有一个看守者,他每隔三分钟出来一次。看到有人通过,就叫他回去,不准通过。有一个从东向西过桥的聪明人,想了一个巧妙的办法,终于通过了大桥。 请问:这个聪明人想了什么办法通过这座大桥的。 答案:聪明人想的办法是:从东往西过桥, 走了两分半种就掉头往东走,当看守出来时就命令他往回走,这样他就可以掉头往西走,这样他就通过了大桥. 4:书的价钱 小美和小丽两个好朋友到新华书店看书,两人都想买《趣味数学》这本书,但钱都不够,小美缺1.15元,小丽缺0.01元,用两个人合起来的钱买一本,仍然不够。试问,这本书的价钱是多少? 答案:1.15元 5:还有几只活兔 某人为打扫兔笼子,将4只活兔子放进装有4只老虎的笼子里,打扫出2个兔笼子后,想把兔子放回兔笼里。这时还有几只活兔子? 答案:因为老虎吃兔子,所以没有兔子活着 6:怎样寄名画 爷爷有一幅名画,卷起来长110厘朱,想寄给远方的伯父,但邮局只准寄长度不超过一米的

物品。你能想个办法把这幅名画寄出去吗? 答案: 做一个长一米(宽和高适当)的盒子,把画斜着放进去. 7:每人几张照片 小学毕业时,阿庆、阿立、阿福三人互相赠照片一张,他们一共互赠了多少张照片?答案:6张 8:一共握了几次手 在科技大会上,三位老科学家相遇,亲热地互相握手,他们一共握了几次手?答案: 一共握了三次 9:比蒂的年龄 比蒂对自己的年龄非常敏感。40年前,当人们问她来到人间已有多少年时,她总是一成不变地背诵下面的诗句作为回答: 五乘七加七乘三,加上我的年龄,此数比我年龄的两倍减二十,还大六乘九加四。 当比蒂第一次背诵这苜诗时,她无疑是说得很准的。可是你能说出她现在的年龄是多大吗? 答案:40年前,比蒂是18岁,所以现在她已经58岁了。 10:市内购物 鲁本叔叔同辛西娅婶婶到市里买东西。鲁本买了一套衣服、一顶帽子,用去15美元。辛西娅买了顶帽子,她所花的钱同鲁本买衣服的钱一样多。然后她买了一件新衣,把他们的余钱统统用光。 回家途中,辛西娅要鲁本注意,他的帽子要比她的衣服贵1美元。然后她说道:"如果我们把买帽子的钱另作安排,去买进另外的帽子,使我的帽子钱是你买帽子钱的1又1/2倍,那么我们两人所花的钱就一样多了。" 鲁本叔叔说:"在那种情况下,我的帽子要值多少钱呢?"你能回答鲁本的问题吗?还要告诉我:这对夫妻一共花了多少钱? 答案: (设x表示鲁本叔叔实际所买帽子的价钱,y表示他的衣服的价钱,则辛西娅所买帽子的价钱也是y,而其衣服的价钱为,x-1。我们知道,x+y等于15美元,所以如果将他们所花费的15美元分作两份,而其中一份是另一份的一倍半的话,则一份必然是6美元,另一份必然是9美元。利用这些数据即可列出下列方程: 9+x-1=6+15-x。

概率论中几个有趣的例子

转载】概率论中几个有趣的例子 [ 2007-6-3 13:06:00 | By: Byron ] 推荐 作者: ni1985 (妮子||从东方席地卷来一团野火), 原发新水木Mathematics 已经酝酿很长时间的本文终于出场了。 写本文的主要目的:1 很多人看了我前面大量的历史日志后,对我的数学水平产生了怀疑;2 有高中的校友师妹咨询关于大学数学学习的问题;3 概率论是数学中一个重要而美的分支,可惜多数同学尚没有机会看到其冰山一角。 本文的读者适用范围:最低标准是学过工科专业的高等数学和概率论,最高标准不清楚(也许水平比我高的人就不屑于读了) 当我跟皇上提到要写这篇文章的想法时,我提到:试图用比较短的篇幅让只要有初等概率论基础的人,也能看懂,从而对较深的概率论的研究对象和有趣的结论有一个初步的了解,激发其进一步深入学习概率论的兴趣。皇上说:那可不容易,相当于一个毕业设计了。我觉得,确实如此,本文是基本失败还是基本成功,还要看读者的评价。 要想引入本文的内容,首先从数学美的定义说起。关于数学美,我比较欣赏的有两种观点,一是Birkhoff 的观点,数学美=逻辑的复杂程度/表述的复杂程度;二是Von Neumann的观点,数学的活力依赖于与它有联系的科学分支的多寡与分支的活力。也许做应用的人更喜欢后者,但我是比较喜欢前者的。因此,我下面的主要内容就是介绍一些概率论中的基本例子,这些例子的表述是相当简单的,但得到这些例子的手段却比较复杂。我将试图把每个例子表述清楚,让只要有初等概率论基础的读者就知道在说什么,但对得到这些结果的证明过程则一律省略,只简要提出涉及的基本工具,但其中有些比较简单的细节会给大家留为习题。这些例子一律来自伟大的Durrett的著作:Probability theory and examples——我认为最优秀的概率论教材。 例1. Coupon collector问题:X1,X2,…是独立同分布,均匀的取自集合{1,…,n}的随机变量序列。大家把集合{1,…,n}想象为若干张扑克牌,每次我们等概率的取一张扑克牌,取完放回。 ,意思就是手中取过k种不同的扑克牌所需的次数。T(n) =t(n,n)表示取过所有扑克牌所需的次数。X(n,k)=t(n,k)-t(n,k-1),则X(n,k)服从参数是1-(k-1)/n的几何分布(思考题!),它的期望和方差可求,且容易发现X(n,1),…,X(n,n)相互独立,从而可以求出E T(n),Var T(n)(习题!)。且去证明依概率趋近于0.(数学基础稍微深一些的同学都知道,L2收敛蕴含依概率收敛)最终得到一个漂亮的结论: 依概率收敛于1.

十大数学悖论

… 十大数学悖论 1.理发师悖论(罗素悖论):某村只有一人理发,且该村的人都需要理发,理发师规定,给且只给村中不自己理发的人理发。试问:理发师给不给自己理发? 如果理发师给自己理发,则违背了自己的约定;如果理发师不给自己理发,那么按照他的规定,又应该给自己理发。这样,理发师陷入了两难的境地。 2.说谎者悖论:公元前6世纪,古希腊克里特岛的

哲学家伊壁门尼德斯有如此断言:“所有克里特人所说的每一句话都是谎话。” 如果这句话是真的,那么也就是说,克里特人伊壁门尼德斯说了一句真话,但是却与他的真话——所有克里特人所说的每一句话都是谎话——相悖;如果这句话不是真的,也就是说克里特人伊壁门尼德斯说了一句谎话,则真话应是:所有克里特人所说的每一句话都是真话,两者又相悖。 所以怎样也难以自圆其说,这就是著名的说谎者悖论。:

公元前4世纪,希腊哲学家又提出了一个悖论:“我现在正在说的这句话是假的。”同上,这又是难以自圆其说! 说谎者悖论至今仍困扰着数学家和逻辑学家。说谎者悖论有许多形式。如:我预言:“你下面要讲的话是‘不’,对不对用‘是’或‘不是’来回答。” 又如,“我的下一句话是错(对)的,我的上一句话是对(错)的”。 3.跟无限相关的悖论: {1,2,3,4,5,…}

是自然数集: {1,4,9,16,25,…}是自然数平方的数集。 这两个数集能够很容易构成一一对应,那么,在每个集合中有一样多的元素吗 4.伽利略悖论:我们都知道整体大于部分。由线段BC上的点往顶点A连线,每一条线都会与线段DE(D点在AB 上,E点在AC上)相交,因此可得DE与BC一样长,与图矛盾。为什么 5.预料不到的考试的悖论:一位老师宣布说,在下一星期的五天

战略管理十大悖论(doc5)

战略管理十大悖论 一、理论VS创造性 战略思维的本质应该是什么?无论是战略实践者还是战略理论研究人员对这一问题都存在着截然不同的认识。有人认为,战略思维是一种最为复杂的分析推理方式,它表现出建立在严谨推理基础上的理性;而另一些人则认为战略思维从本质上来讲就是打破正统的信条和思维模式,进行富有创造性和非常规的思维。因此对战略思维的不同认识便产生了理性与创造性之间的悖论。 基于理性的战略思维的认知模式是分析性的,其推理过程依赖于正式和固定的规则,表现出了计算的性质,同时强调严谨和一致性,对于现实的假设是客观和可认知的,战略决策完全基于计划,因此从这些方面来看,战略可以被认为是一门科学。 而与此相对应,基于创造性的战略思维的认知模式是直觉性的,其推理过程依赖于非正式和可变的规则,表现出了想象的性质,它强调的是非正统和洞察力,对于现实的假设则是主观和可创造性的,战略决策完全基于判断,因此在这里,战略变成了一门艺术。 二、深思熟虑VS随机应变 第一个悖论体现了表现在个体上的战略思维过程,而第二个悖论则反映了组织中的战略是如何形成的,以及形成过程的本质是什么。一方面,有人认为组织是以一种深思熟虑的方式来制定战略,即首先制定明晰的、综合全面的计划,然后再逐一实施而也有人认为现实中的大部分战略是在一段时间中实时出现的,它们之间呈现出一种不连续变化,甚至更有人极端地提出组织中事实上存在着“战略缺失”。 视战略形成的过程为深思熟虑的一派认为,战略是刻意设计的,而战略的形成是计算出来的,因此形成的过程是规范化和结构化的,其步骤是先思考后行动,因此他们视战略为一系列决策,强调资源的最优配置和协调,对未来的发展视为可预测的,因此对于未来的工作是积极投入,做好准备,战略实施则强调程序化和组织的效率。 与此相对应,视战略形成过程为随机应变的一派认为,战略是逐渐形成的,而战略的形成是发现出来的,形成的过程则是非结构化和分散的,其步骤是思考和行动结合在一起,他们视战略为一系列行动,强调不断的试验和首创行动,对未来的发展视为不可知和难以预测的,因此对于未来的工作是保持战略的柔性而非积极投人,战略实施则强调学习和组织的发展。 三、突变VS渐变 随着科技的迅速发展、竞争程度的不断加剧以及消费者偏好等的快速变化,企业所处的环境日益呈现出动态化的特征,因此企业的战略也不得不进行动态调整和更新,战略更新的方式便成了一个重要的研究内容。战略更新应该在企业现有的状态上逐渐演变还是进行脱胎换骨的突变?战略更新应该是逐渐的、连续的还是大幅度的、不连续的?对于战略更新的形式和性质存在着不同的看法和观点。 一部分战略学者认为,企业中的战略更新应该以一种突变的方式推进,通过采取激进的、快速的和全面的措施来实施战略更新;而另一部分战略学者认为,战略更新应该通过渐变的方式加以实施,更多地强调持续性的学习和连续性的改善,因此采用的是一种持续变化的方式。由此产生了战略更新的突变和渐变之间的悖论。 采用非连续变化视角的观点视战略更新为破坏性的创新和转折,因此战略更新过程就是

数学题目-逻辑题-有趣的数学逻辑题-

1、S先生、P先生、Q先生他们知道桌子的抽屉里有16张扑克牌:红桃A、Q、4,黑桃J、8、4、 2、7、3,草花K、Q、5、4、6,方块A、5。约翰教授从这16张牌中挑出一张牌来,并把这张牌的点数告诉P先生,把这张牌的花色告诉Q先生。这时,约翰教授问P先生和Q先生:你们能从已知的点数或花色中推知这张牌是什么牌吗于是,S先生听到如下的对话: P先生:我不知道这张牌。 Q先生:我知道你不知道这张牌。 P先生:现在我知道这张牌了。 Q先生:我也知道了。 听罢以上的对话,S先生想了一想之后,就正确地推出这张牌是什么牌。请问:这张牌是什么牌 2、有A、B、C、D、E、F和G等七位国务议员能参加Ⅰ号、Ⅱ号、Ⅲ号议案的表决。按照议会规定,有四位或者四位以上议员投赞成票时,一项议案才可以通过。并且每个议员都不可弃权,必须对所有议案作出表决。已知: (1)A反对这三项议案 (2)其他每位议员至少赞成一项议案,也至少反对一项议案 (3)B反对Ⅰ号议案 (4)G反对Ⅱ号和Ⅲ号议案 (5)D和C持同样态度 (6)F和G持同样态度 问题: (1)赞成Ⅰ号议案的议员是哪一位 A.B B.C C.D D.E E.G (2)Ⅱ号议案能得到的最高票数是: A.2 B.3 C.4 D.5 E.6 (3)下面的断定中,哪一个是错的: A.B和C同意同一议案; B.B和G同意同一议案; C.B一票赞成,两票反对; D.C两票赞成,一票反对; E.F一票赞成,两票反对。 (4)如果三个议案中某一个议案被通过,下列哪一位议员肯定投赞成呢: A.B B.C C.E D.F E.G (5)如果E的表决跟G一样,那么,我们可以确定: A.Ⅰ号议案将被通过; B.Ⅰ号议案将被否决; C.Ⅱ号议案将被通过; D.Ⅱ号议案将被否决; E.Ⅲ号议案将被通过。 (6)如果C赞成Ⅱ号和Ⅲ号议案,那么,我们可以确定: A.Ⅰ号议案将被通过; B.Ⅰ号议案将被否决; C.Ⅱ号议案将被通过; D.Ⅱ号议案将被否决; E.Ⅲ号议案将被通过。 3、假设有一个池塘,里面有无穷多的水。现有2个空水壶,容积分别为5升和6升。问题是如何只用这2个水壶从池塘里取得3升的水。请写出过程

数学上的悖论谬论

这篇关于数学上的悖论谬论的论证的文章是由北大中文系Matrix67所写,读来感觉很有意思,和大家一起分享,来一场头脑风暴。 1=2?史上最经典的“证明” 设a = b,则a·b = a^2,等号两边同时减去b^2就有a·b - b^2 = a^2 - b^2。注意,这个等式的左边可以提出一个b,右边是一个平方差,于是有b·(a - b) = (a + b)(a - b)。约掉(a - b)有b = a + b。然而a = b,因此b = b + b,也即b = 2b。约掉b,得1 =2。 这可能是有史以来最经典的谬证了。TedChiang在他的短篇科幻小说DivisionbyZero中写到: 引用 There is a well-known “proof” that demonstrates that one equals two. It begins with somedefinitions: “Let a = 1; let b = 1.” It ends with the conclusion “a = 2a,” that is, one equalstwo. Hidden inconspicuously in the middle is a division by zero, and at that point the proofhas stepped off the brink, making all rules null and void. Permitting division by zero allowsone to prove not only that one and two are equal, but that any two numbers at all—real orimaginary, rational or irrational—are equal. 这个证明的问题所在想必大家都已经很清楚了:等号两边是不能同时除以a - b的,因为我们假设了a = b,也就是说a - b是等于0的。 无穷级数的力量(1) 小学时,这个问题困扰了我很久:下面这个式子等于多少? 1 + (-1) + 1 + (-1) + 1 + (-1) + … 一方面: 1 + (-1) + 1 + (-1) + 1 + (-1) + … = [1 + (-1)] + [1 + (-1)] + [1 + (-1)] + … = 0 + 0 + 0 + …

(完整版)解读战略管理的十大流派

解读战略管理的十大流派 明茨伯格(H.Mingt zberg)、阿尔斯特朗(BruceAhl strand)和拉蒙珀(Joseph Lampel)等,将战略管理的各种理论梳理成十大学派,即设计学派、计划学派、定位学派、企业家学派、认识学派、学习学派、权势学派、文化学派、环境学派和结构学派。各学派的代表人物都从不同视角,对战略管理提出了各自的主张,见仁见智,莫衷一是。明茨伯格认为,战略管理的真谛其实就象一头大象,十大流派只是从不同的侧面看到大象的局部,只有综合集成各派的观点,才能对大象有整体的认识和体悟。 一、设计学派(Design School) 设计学派把战略形成看作是一个主观概念作用的过程,主张战略形成应当深思熟虑,严谨缜密;同时,战略应该简明清晰,易于理解和传达,便于执行、检验和不断改进。事实上,设计学派的代表人物安德鲁斯(K.Andrews)提出的著名SWOT战略分析模型,就很好地体现了这些要求。设计学派强调,战略管理者应当是整个战略计划的顶层设计者,应切实地承担起应尽的责任,但不必承担具体战略计划的制定工作。设计学派的代表作包括菲利浦·塞兹尼克(P.Selznick)1957年出版的《经营管理中的领导力》、阿尔弗雷德·钱德勒(A.Chandler)1962年出版的《战略与结构》,以及肯尼斯·安德鲁斯1965出版的《经营策略:内容与案例》和1972年出版的《公司战略概念》。 二、计划学派(Planning School) 计划学派认为,战略的形成应当是一个受到控制的、有意识的、详细具体而正规化的过程。原则上,决策者对整个过程承担责任,并尽可能详尽清楚地阐明这一过程形成的战略,以便具体地落实战略目标、预算程序和各种运作计划。计划学派继承了设计学派SWOT分析的思想,但克服了设计学派过于主观的分析方法,引进了以决策科学为代表的数量分析方法,提出了许多制定企业战略的数学模型和定量分析工具。计划学派代表人物安索夫(Ansoff)1965年出版的《企业战略》堪称经典,申德尔和霍夫的《战略管理》(1979)亦是重要文献。此外,在斯坦纳(Steiner)、艾考夫(Ackoff)等人的推动下,计划学派的理论与实践紧密结合,产生了如经验曲线、增长-份额矩阵、市场份额与获利能力关系PIMS(Prof it impacto n market share)(PIMS)等概念和研究方法,进一步丰富了战略管理理论。 三、定位学派(Positioning School) 波特1980年出版的《竞争战略》,以及随后于1985年、1990年分别出版的《竞争优势》(和《国家竞争优势》,不仅使他本人声名远播,赢得了定位学派掌门人和“竞争战略之父”的美誉,同时也正是由于波特的这“三部曲”,确立了定位学派在整个战略管理理论中的占优地位。定位学派把战略形成看作是一个分析的过程,强调外部环境分析的重要性。波特指出,企业在考虑竞争战略时,必须将企业与所处的环境相联系;行业是企业经营的最直接的环境;行业的结构决定了企业的竞争范围,从而决定了企业的潜

相关文档
最新文档