天线射频接头的制作讲课教案

天线射频接头的制作讲课教案
天线射频接头的制作讲课教案

天线射频接头的制作

一、N型射频头的结构:射频头的结构为-9的外壳,-10的芯。如图,从右至

左为零件组装顺序。

二、漏泄天线:为煤矿用漏泄同轴电缆,规格型号为MSLYFVZ-50-9,其外

径规格为-9,与N型射频头配合构成天线射频接头组件。

制作工具如图:

三、制作方法:㈠首先剪除天线端部受潮部分,保持端部干燥清洁。然后从

距天线端部50mm处环割天线外皮。(如图)

㈡切除天线端部约10mm,但要保留屏蔽铜网。将屏蔽网端部绞拧在一起(如图)

㈢将N型射频头零件按组装顺序套入漏泄天线(如图)

㈣切除多余端部,使端部保留约8mm(如图)

射频实验报告二

实验二混频器实验 一、实验内容 1.连接混频器实验板,将混频器设置为下变频模式。 2.用射频连接线将信号加至实验电路板,观测本振信号与射频信号以及中 频输出得波形,记录并分析。 3.观测中频输出未经过滤波电路与经过滤波电路得输出信号,分别记录信 号得波形并进行分析。 4.保持本振不变,改变射频信号得功率,测量得出混频器得1dB压缩点 二、实验记录 1.记录信号源产生得信号波形。 2.用示波器在测量点3、测量点4观测本振信号与射频信号得波形,记录并分析。 测量点3:本振信号

测量点4:射频信号 分析:设本振信号为:,射频信号为:,图可知对于本振信号为15MHZ,本振信号峰峰值为380mv。 对于射频信号为20MHZ,峰峰值为52mv。 3.用示波器在测量点5与输出2端分别观测未经过滤波电路与经过滤波电路得输出信号,分别记录信号得波形并进行分析。

测量点5输出信号波形: 分析:测试点5输出信号为中频信号,从频域角度瞧,变频就是一种频谱得线性搬移,输出中频信号与输入射频信号得频谱结构相同,唯一不同得就是载频。从时域波形瞧,输出中频信号得波形与输入射频信号得波形相同,不同得也就是载波频率。 输出2端输出信号波形:

分析:滤波前得输出信号波形有毛刺,有失真,说明有噪声干扰;滤波后波形比较光滑。输出信号通过滤波器,利用电路得幅频特性,其通带得范围设为有用信号得范围,而把其她频谱成分过滤掉,从而滤除无用信号与噪声干扰。 4·改变射频信号得功率,在产生射频信号得信号源输出端与输出3端分别测量射频输入信号得幅度VRF与中频放大输出信号得幅度VIF,分析计算混频器得1dB压缩点。 输入信号幅度VRF(单位mV):100,200,300,400,500,600,700,800,900,1000,1100,1200,1300,1400,1500,1600,1700 对应输出信号幅度VIF(单位mV):66,124,176,230,278,320,365,388,408,416,445,448,456,464,464,464,472则计算可得 输入功率PRF(单位*10^4mW):1,4,9,16,25,36,49,64,81,100,121,144,169,196,225,256,289 输出功率PIF(单位*10^3mW):4、356,15、376,30、976,52、9,77、284,102、4,133、225,150、544,166、464,173、056,198、025,200、704,207、936,215、296,215、296,215、296,222、784对应图像:由于其电阻值相同,故功率可直接写成信号幅度得平方,对前四个值进行拟合后得函数为w=3、2414*x+1、1146 转换为dBm后得图像为(w=0、9011*x1+0、3469):

RFID读写器天线设计中比较实用的方法

RFID读写器天线设计中比较实用的方法 射频识别技术(Radio Frequency Identification,缩写RFID),射频识别技术是20世纪90年代开始兴起的一种自动识别技术,射频识别技术是一项利用射频信号通过空间耦合(交变磁场或电磁场)实现无接触信息传递并通过所传递的信息达到识别目的的技术。RFID应用将继续以供应物流领域为主,在这个领域用RFID 收发器进行包括各种各样的可移动货物/产品的记录和跟踪,在RFID收发器(信用卡大小的塑料/纸标签,内含芯片、射频部分和天线)上的必要存储将继续成为主要的应用。另外的一个可能应用就是将收发器标签贴到纺织品、药品包装或者甚至是单个药盒内。然而,未来RFID还将被用在如地方公共交通、汽车遥控钥匙、传送轮胎气压以及在移动电话等领域内。本文主要通过实际工作中对于各种RFID读写系统的对比,总结研究RFID读写器天线设计中比较实用的方法。 1 实际RFID天线设计主要考虑物理参量 磁场强度 磁场强度是线圈安匝数的一个表征量,反映磁场的源强弱。磁感应强度则表示磁场源在特定环境下的效果。打个不恰当的比方,你用一个固定的力去移动一个物体,但实际对物体产生的效果并不一样,比如你是借助于工具的,也可能你使力的位置不同或方向不同。对你来说你用了一个确定的力。而对物体却有一个实际的感受,你作用的力好比磁场强度,而物体的实际感受好比磁感应强度。它定义为磁通密度[1]B除以真空磁导率μ0再减去磁化强度μ,即-μH为矢量。这样,在恒定磁场中磁场强度的闭合环路积分仅与环路所链环的传导电流Ic有关而不含束缚分子电流。 运动的电荷或者说电流会产生磁场,磁场的大小用磁场强度来表示。RFID天线的作用距离,与天线线圈电流所产生的磁场强度紧密相关。 圆形线圈的磁场强度(在近场耦合有效的前提下,近场耦合有效与否的判断在节)可用式(1)进行计算: 式中:H是磁场强度;I是电流强度;N为匝数;R为天线半径;x为作用距离。

RFID通讯技术实验报告

· RFID通讯技术试验 专业: 物流工程 班级: 物流1201 学生: 学号: 指导教师:

一.前言 射频识别(RFID)是一种无线通信技术,可以通过无线电讯号识别特定目标并读写相关数据,而无需识别系统与特定目标之间建立机械或者光学接触。 无线电的信号是通过调成无线电频率的电磁场,把数据从附着在物品上的标签上传送出去,以自动辨识与追踪该物品。某些标签在识别时从识别器发出的电磁场中就可以得到能量,并不需要电池;也有标签本身拥有电源,并可以主动发出无线电波(调成无线电频率的电磁场)。标签包含了电子存储的信息,数米之都可以识别。与条形码不同的是,射频标签不需要处在识别器视线之,也可以嵌入被追踪物体之。 许多行业都运用了射频识别技术。将标签附着在一辆正在生产中的汽车,厂方便可以追踪此车在生产线上的进度。仓库可以追踪药品的所在。射频标签也可以附于牲畜与宠物上,方便对牲畜与宠物的积极识别(积极识别意思是防止数只牲畜使用同一个身份)。射频识别的身份识别卡可以使员工得以进入锁住的建筑部分,汽车上的射频应答器也可以用来征收收费路段与停车场的费用。 某些射频标签附在衣物、个人财物上,甚至于植入人体之。由于这项技术可能会在未经本人许可的情况下读取个人信息,这项技术也会有侵犯个人隐私忧患。 二.实验目的 1. 了解RFID相关知识,了解RFID模块读写IC卡数据的原理与方法(电子钱包试验);

2. 模拟企业生产线上的物料跟踪情况,掌握RFID的应用(企业物流采集跟踪系统演示)。 三.实验原理 1. 利用RFID模块完成自动识别、读取IC卡信息,实现RFID电子钱包的功能,给IC卡充值、扣款(电子钱包试验); 2.利用4个RFID模块代替4个工位,并与软件系统绑定(添加,删除),由IC卡模拟物料的移动,并对物料在生产线上所经过的工位的记录进行查询,而且可以对物料的当前工位定位。 四.实验设备 《仓库状态数据检测开发系统》试验箱、IC卡、、锂电池、ZigBee通讯模块、RFID阅读器,ID卡、条码扫描器。 五.实验过程 5.1电子钱包试验 (1)先用电源线将试验箱连上电源,打开电源开关,然后打开Contex-A8电源开关,如图1所示。

射频发射与接收机实验

射频发射与接收机实验 一、实验目的 1、学习掌握频谱仪的使用。 2、了解发射机、接收机的基本知识。 3、了解发射机、接收机的基本组成及其结构。 4、利用频谱仪测量发射机、接收机的主要技术指标;培养系统实验和测试技能 二、实验设备 GSP-810频谱分析仪1台 GRF-3100射频电路实验系统1套 函数信号发生器1台 示波器1台 二、实验原理 射频通信设备一般包括收发信机、天线设备、输入输出设备(如话筒、耳机等)、供电设备(如稳压电源、电池)等。其中发送机将电信号变换为足够强度的高频电振荡,发送天线则将高频电振荡变换为电磁波,向传输媒质辐射。接收机则是接收发送装置发送的高频调制信号,将其还原为消息或基带信号,完成通信功能。收信机与发信机在体制上(如频段划分、调制解调方式等)是相同的。在某些情况下,也允许收发信机存在着不相对应的差异。下面分别介绍发射机和接收机。 2.1、发射机的工作原理 射频发射机是无线系统的重要子系统,无论是话音、图像还是数据信号,要利用电磁波传送到远端,都必须使用发射机产生的信号,然后经调制放放大送到天线。发射机将电信号变换为足够强度的高频电振荡,天线则将高频电振荡变换为电磁波,向传输媒质辐射。 2.1.1、发射机的基本结构 要发射的低频信号与射频信号的调制方式有三种可能形式: 1)直接产生发射机输出的微波信号频率,再调制待发射信号。在雷达系统中常用脉冲调制

微波信号的幅度,即幅度键控。调制电路就是PIN开关。调制后信号经功放、滤波输出到天线。 2)将待发射的低频信号调制到发射中频(如70MHz)上,与发射本振混频得到发射机输出频率,再经功放、滤波输出到天线。图像通信中,一般先将图像信号先做基带处理(6.5MHz),再进行调制。 3)待发射的低频信号调制到发射中频(如70MHz)上,经过多次倍频得到发射机频率,然后再经过功放、滤波输出到天线。近代通信中常用此方案。 本系统中射频发射机模块主要由音频处理电路、PLL、前置放大器、功率放大器及天线组成,它的模块方框图如图1-1所示。其功能是将所要发送的信息(又称基带信号)经过调制后,将频谱搬移到射频上,再经过高频放大,达到额定功率之后,馈送到天线,发送到空间去。每一模块的具体原理在此就不一一赘述。 图1-1 发射机框图 2.1.2、发射机的重要参数 1)频率或频率范围:用来考查振荡器的频率及相关指标、温度频率稳定度、时间频率稳定性、频率负载牵引变化、压控调谐范围等,相关单位为MHz、GHz、ppm、MHz/V等。 2)功率:与功率有关的最大输出功率、频带功率波动范围、功率可调范围、功率的时间和温度稳定性,相关单位为mW、dBm、W、dBW等。 3)效率:供电电源到输出功率的转换效率。这一参数对于电池供电系统尤为重要。 4)噪声:包括调幅、调频和调相噪声,不必要的调制噪声将会影响系统的通信质量。 5)谐波抑制:工作频率的高次谐波输出功率大小。通过对二次、三次谐波抑制提出要求。 基波与谐波的功率比为谐波抑制指标。工程实际中,基本与谐波两个功率dBm的差为dBc。6)杂波抑制:除基波与谐波外的任何信号与基波信号的大小比较。直接振荡源的杂波就是本地噪声,频率合成器的杂波除本底噪声外,还有可能是参考频率及其谐波。 2.2、接收机的工作原理

虚拟仪器技术实验报告

成都理工大学工程技术学院 虚拟仪器技术实验报告 专业: 学号: 姓名: 2015年11月30日

1 正弦信号的发生及频率、相位的测量实验内容: ●设计一个双路正弦波发生器,其相位差可调。 ●设计一个频率计 ●设计一个相位计 分两种情况测量频率和相位: ●不经过数据采集的仿真 ●经过数据采集〔数据采集卡为PCI9112〕 频率和相位的测量至少有两种方法 ●FFT及其他信号处理方法 ●直接方法 实验过程: 1、正弦波发生器,相位差可调 双路正弦波发生器设计程序:

相位差的设计方法:可以令正弦2的相位为0,正弦1的相位可调,这样调节正弦1的相位,即为两正弦波的相位差。 2设计频率计、相位计 方法一:直接读取 从调节旋钮处直接读取数值,再显示出来。 方法二:直接测量 使用单频测量模块进行频率、相位的测量。方法为将模块直接接到输出信号的端子,即可读取测量值。 方法三:利用FFT进行频率和相位的测量 在频率谱和相位谱上可以直接读取正弦信号的主频和相位。 也可通过FFT求得两正弦波的相位差。即对信号进行频谱分析,获得信号的想频特性,两信号的相位差即主频率处的相位差值,所以这一方法是针对单一频率信号的相位差。 前面板如下:

程序框图: 2幅频特性的扫频测量 一、实验目的 1、掌握BT3 D扫频仪的使用方法。 2、学会用扫频法测量放大电路的幅频特性、增益及带宽。 二、工作原理 放大电路的幅频特性,一般在中频段K中最大,而且基本上不随频率而变化。在中频段以外随着频率的升高或降低,放大倍数都将随之下降。一般规定放大电路的频率响应指标为3dB,即放大倍数下降到中频放大倍数的70.7%,相应的频率分别叫作下限频率和上限频率。上下限频率之间的频率范围称为放大电路的通频带,它是表征放大电路频率特性的主要指标之一。如果放大电路的性能很差,在放大电路工作频带内的放大倍数变化很大,则会产生严重的频率失真,相应的

哈工大天线原理实验报告

Harbin Institute of Technology 天线原理实验报告 课程名称:天线原理 院系:电信学院 班级: 姓名: 学号: 指导教师: 实验时间: 实验成绩: 哈尔滨工业大学 一、实验目的 1.掌握喇叭天线的原理。

2.掌握天线方向图等电参数的意义。 3.掌握天线测试方法。 二、实验原理 1.天线电参数 (1).发射天线电参数: a.方向图:天线的辐射电磁场在固定距离上随空间角坐标分布的图形。 b.方向性系数:在相同辐射功率,相同距离情况下,天线在该方向上的辐射功率密度Smax与无方向性天线在该方向上的辐射功率密度S0之比值。 c.有效长度:在保持该天线最大辐射场强不变的条件下,假设天线上的电流均匀分布时的等效长度。 d.天线效率:表征天线将高频电流或导波能量转换为无线电波能量的有效程度。 e.天线增益:在相同输入功率、相同距离条件下,天线在最大辐射方向上的功率密度Smax与无方向性天线在该方向上的功率密度S0之比值。 f.输入阻抗:天线输入端呈现的阻抗值。 g.极化:天线的极化是指该天线在给定空间方向上远区无线电波的极化。 h.频带宽度:天线电参数保持在规定的技术要求范围内的工作频率范围。 (2).接收天线电参数: 除了上述参数以外,接收天线还有一些特有的电参数:等效面积和等效噪声温度。 a.等效面积:天线的极化与来波极化匹配,且负载与天线阻抗共轭匹配的最佳状态下,天线在该方向上所接收的功率与入射电波功率密度之比。 b.等效噪声温度:描述天线向接收机输送噪声功率的参数。 2.喇叭天线 由逐渐张开的波导构成,是一种应用广泛的微波天线。按口径形状可分为矩形喇叭天线与圆形喇 叭天线等。波导终端开口原则上可构成波导辐射器,由于口径尺寸小,产生的波束过宽;另外, 波导终端尺寸的突变除产生高次模外,反射较大,与波导匹配不良。为改善这种情况,可使波导 尺寸加大,以便减少反射,又可在较大口径上使波束变窄。 (1).H面扇形喇叭:若保持矩形波导窄边尺寸不变,逐渐张开宽边可得H面扇形喇叭。

射频实验报告一

电子科技大学通信射频电路实验报告 学生姓名: 学号: 指导教师:

实验一选频回路 一、实验内容: 1.测试发放的滤波器实验板的通带。记录在不同频率的输入下输出信号的 幅度,并绘出幅频响应曲线。 2.设计带宽为5MHz,中心频率为39MHz,特征阻抗为50欧姆的5阶带 通滤波器。 3.在ADS软件上对设计出的带通滤波器进行仿真。 二、实验结果: (一)低通滤波器数据记录及幅频响应曲线 频率 1.0k 500k 1M 1.5M 2.0M 2.5M 3.0M 3.5M 4..0M 4.5M 5.0M /Hz Vpp/mv 1000 1010 1020 1020 1020 1050 952 890 832 776 736 频率/Hz 5.5M 6.0M 6.2M 6.4M 6.6M 6.8M 7.0M 7.2M 7.4M 7.6M 7.8M Vpp/mv 704 672 656 640 624 592 568 544 512 480 448 频率/Hz 8.0M 8.2M 8.4M 8.6M 8.8M 9.0M 9.2M 9.4M 9.6M 9.8M 10.0M Vpp/mv 416 400 368 376 320 288 272 256 224 208 192

(二)带通滤波器数据记录及幅频响应曲线 频率 /MHz 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0 4.5 5.0 5.5 6.0 6.5 Vpp/mv 0.4 0.8 0.4 0.6 0.8 0.6 0.8 0.8 1.4 1.1 6.0 4.0 23. 8 频率 /MHz 7.0 7.2 7.4 7.6 7.8 8.0 8.2 8.4 8.6 8.8 9.0 9.2 9.4 Vpp/mv 79. 2 72. 8 66. 4 69. 6 77. 6 90. 4 108. 8 137. 6 183. 2 260 364 442 440 频率/MHz 9.6 9.8 10. 10. 2 10. 4 10. 6 10.8 11.0 11.2 11. 4 11. 6 11. 8 12. Vpp/mv 440 403 378 378 406 468 468 548 548 484 412 356 324 频率/MHz 12. 2 12. 4 12. 6 12. 8 13. 13. 2 13.4 13.6 13.8 14.

馈线接头制作方法优选稿

馈线接头制作方法集团公司文件内部编码:(TTT-UUTT-MMYB-URTTY-ITTLTY-

馈线接头制作方法 (撰稿:黄俊伟摄影:黄俊伟7月16日) 在地铁施工过程中,为了使地铁内部有信号,需要要天线来传输电磁波,而馈线就是给天线提供电磁通道,馈线的接头质量指标直接影响到共用天馈线系统的各微波波道的通信质量。今天做一个小教程,简述一下馈线接头的制作方法和大家一起学习下。 上面三个从左到右依次是7/8馈线的警用、专用和公用接头;下面是1/2馈线的警用、专用和公用接头。其中7/8馈线是主通道使用,1/2馈线是经耦合器或公分器或终端出天线使用的连接跳线。 各个厂家提供的接头不一样,但接头方法大致相同。 7/8切割刀,上面是刀口用于切割馈线,下面的半圆型槽刚好可以把7/8馈线卡进去。下面有两根圆柱形钢柱,一长一短,短的带尖,用于将7/8的馈线里面的铜皮往外扩,可以更好的接头接触。长的则用于放进馈线中心的铜管里,给外面的短的受力转动。 反过来看一下可以看到那两根钢柱型突起。其中外面的带尖。 这个是1/2馈线切割刀,使用方法和7/8相同。切割时先将馈线头的外皮用切割刀环切一下,然后用美工刀纵剖开将外皮去掉,露出里面的铜皮,这时用切割刀在适当距离处(本次距离以公网接头为例,外皮与铜皮起始凹陷处到旁边凸起处为一个丝,切割刀刀片的位置放在两个丝半处)开始顺时针转动,均匀用力,一般转至6-9圈处就可以把断面切开。 切割完之后断面要保持平整。

套上防水圈。起防水进入和牢固接头的作用。 套上接头底部。 再将钢圈儿套至端面下的第一个凹陷处,然后底部往上转动至与端面一样齐。 套上之后开始向上转动于与端面一样齐。 用7/8切割刀的底部的两条柱形物外扩外面的铜皮,与接头紧密接触。再反沾胶布的丝刀把里面的铜屑给清除干净,外面用胶布把端面上的杂质清除掉。 将头儿套上之后拿两个扳手将接头拧紧。 再拿热缩管将头儿保护好。这样一个接头便做好了,之后就开始连耦合器或公分或跳线或 终端了。 中间的为耦合器,两边两个接头,信号从左边进右边出,左面下面还有一个接头通过90度的连接器连接,那根馈线是连接天线的。馈线的接头方法大致如上,至于其他不同型号接头区别之处大多是裸露铜片丝的长短问题,一般为两个半或三个半,1/2的也是如此。借本教程抛砖引玉,师傅们在施工过程中如果有好的方法和技巧,可以一起学习!

射频技术RFID实验报告-wen

射频技术 RFID实训报告 班级: 指导老师: 实训课题: 组员: 实训时间: 实训地点:

一、实验目的 1、了解 RFID 的基本概念 2、掌握 RFID 系统硬件射频设计技术 3、了解防碰撞算法 4、熟练掌握 RFID应用系统设计技术 二、RFID系统组成和工作原理 RFID 技术利用无线射频方式在阅读器和射频卡之间进行非接触双向数据传输,以达到目标识别和数据交换的目的。最基本的 RFID 系统由三部分组成: 1. 标签(Tag,即射频卡):由耦合元件及芯片组成,标签含有内置天 线,用于和射频天线间进行通信。 2. 阅读器:读取(在读写卡中还可以写入)标签信息的设备。 3. 天线:在标签和读取器间传递射频信号。 三、实验器材: 标签若干、计算机、工具箱、示波器,接线 四、实验步骤: 连接电源线及串口通讯连线。听到一声蜂鸣器响后,可进行如下操作: 1、打开 PC_Software_Setup 文件夹,按照里面的安装说明操作后,运行 Tag-Reader.exe打开操作界面,设置好本机正确的端口,这也可以根据情况在安装时进行设置。 软件操作界面如下图所示:

2、查询标签 ID 将标签放于仪器天线之上,或拿在手里离天线 30CM 之内处。确认系统已经和计算机连 接好,串口设置界面如下图所示: 选中“Inventory”command,点击“Run”,即可得到正常标签的UID。 UHF 900MHz module 的操作界面如下图所示:

3、通过示波器观测输出的编码信号:连接示波器,使用CH2 探头,地接到XP505,探针接到XP503的Pin2 ;设置示波器:触发源选择CH2,其它的按照指导书设置,观察示波器出现的波形。 4、观测系统产生的载波信号:使用CH1 探头,地接到XP500的Pin2,探针接到XP500的Pin1,触发源选择CH1,其他设置参考指导书,启动连续Inventory测量,观察输出波形

RF电路设计-射频、微波天线技术探微

RF电路设计-射频、微波天线技术探微 RF电路设计-射频、微波天线技术探微 天线在无线电系统里的功能是什么呢?答案是,它是一个「门」、一个接口,透过它,射频能量可以从发射机辐射到外面世界;或从外面世界到达接收机。底下将讨论各种天线系统的技术。 天线特性 天线具有以下的特性和参数: 1. 辐射极场图型(radiation polar pattern):天线会向四周辐射电磁波,以天线为中心,电磁场在各方向的强度可以用图形描绘出来。 2. 指向性(directivity) 3. 效率 4. 增益 5. 等效面积 6. 相互性(reciprocity):也叫作Rayleigh-Carson定理。当电压E作用在A天线上,促使B天线产生电流I。此时,使用相同的电压E作用在B天线上,会在A天线上产生振幅和相位都相同的电流I。 7. 接收的噪声功率 8. 终端阻抗,包括辐射电阻。 9. 接收系统的效益指数(G/T):G是天线的增益,T是噪声温度(noise temperature)。天线的接收灵敏度和G/T值大小有关,若G/T愈高,表示天线对微弱讯号愈敏感,接收效果也愈好。「噪声温度」是很抽象的观念,它的定义应该用数学公式表示。但若要以纯文本描述的话,可以这么说:在一个通讯系统或被测组件里,当频率不变时,被动组件系统的温度会使每单位带宽的噪声功率(noise power)ρ增加,当被动组件系统的ρ值等于此通讯系统的ρ值时,所得到的温度就是「噪声温度」。请注意,被动组件是包含在此通讯系统或被测组件里面,有时此被测组件也被称作「网络的真正终端装置(actual terminals of a network)」。例如:一个单纯电阻的「噪声温度」就是此电阻的真正温度;但是,一颗二极管的「噪声温度」可能是此二极管(真正的终端装置)的真正温度(接脚测量到的温度)之数倍之多。噪声温度是以绝对温度(-273oC)为零度,单位是K(Kelvin )。 天线类型 辨别下列数种分类法有助于为天线分类: *辐射元素 *反射器天线 *辐射元素数组 辐射元素包括:

(完整版)射频微带阵列天线设计毕业设计

射频微带阵列天线设计 摘要 微带天线是一种具有体积小、重量轻、剖面低、易于载体共形、易于与微波集成电路一起集成等诸多优点的天线形式,目前已在无线通信、遥感、雷达等诸多领域得到了广泛应用。同时研究也发现由于微带天线其自身结构特点,存在一些缺点,例如频带窄、增益低、方向性差等。通常将若干单个微带天线单元按照一定规律排列起来组成微带阵列天线,来增强天线的方向性,提高天线的增益。 本文在学习微带天线和天线阵的原理和基本理论,加以分析,利用Ansoft 公司的高频电磁场仿真软件HFSS,设计了中心频率在10GHz的4元均匀直线微带阵列,优化和调整了相关参数,然后分别对单个阵元和天线阵进行仿真,对仿真结果进行分析,对比两者在相关参数的差异。最后得到的研究结果表明,微带天线阵列相较于单个微带天线,由于阵元间存在互耦效应以及存在馈电网络的影响,微带阵列天线的回波损耗要大于单个阵元。但是天线阵列增益明显大于单个微带天线,且阵列天线比单个阵元具有更好的方向性。

关键词:微带天线微带阵列天线方向性增益 HFSS仿真 Design of Radio-Frequency Microstrip Array Antenna ABSTRACT Microstrip antenna is a kind of antenna form with many advantages like,small size, light weight, low profile, easy-to-carrier conformal, easy integration with many other of microwave integrated circuits and so on. Now microstrip array wildly applied in the filed of wireless

自制2.4G全向天线的制作方法

自制2.4G全向天线的制作方法 本文介绍一个容易制作的802.11b/g垂直极化全向天线,该天线非常坚固耐用,大约有5-6dBi的增益。 很多网站都有制作2.4GHz全向天线的详细说明,但是,这些天线做起来相当复杂,要用很多切割非常精确的小段同轴电缆。同时你还必须知道所使用的同轴电缆的数据,因为大部分尺寸要以此为依据。 有些改进的同轴电缆全向天线是用黄铜棒和黄铜管制造的,但是它同样需要高精度的工艺。 不久前,做了一个8单元的同轴电缆天线。经测试有将近8dBi增益。制作花了N多个小时,但是机械强度却不很理想。于是我就给同轴电缆天线缠上加固木条,并把它装进25mm的电线导管。当一个朋友告诉我,有人把一段铜线弯曲成一个简单的天线,就有6dBi的增益,我的好奇心被激发起来了。 这个天线有一些超越同轴电缆天线的优点,降低了制作难度,天线更小、更坚固。 虽然6dBi的增益小于8单元的同轴电缆天线,但是可以通过增加元件的数量来改进。每两个单元可以增加3dBi的增益。 所需器件: 需要的原料 .. 大约300mm长,截面2.5平方毫米的铜线 .. N型母接头 .. 长250mm ,外径20mm的轻型电线导管 .. 2 个适用于20mm电线导管的端盖 当然,装配天线还需要: .. 2 个适用于20mm 电线导管的夹具 或者: .. 金属支架 我用的是一段截面2.5平方毫米的废旧铜线。这种铜线的直径大约是1.6mm,不需要借助任何特殊工具就能弯曲到需要的形状。 还需要用N型母接头把天线和无线装置连接起来。也可以用其它接头(比如:TNC,SMA等等),这取决于你的连接线端的接头。我用的是下面的这种

射频技术实验报告

传输线理论 一:试验目的 1.了解基本传输线、微带线及史密斯圆的特性。 2.学习微带线的设计方法。 3.利用实验模块进行测量,以掌握微带线的特性。 二、实验内容 1、完成开路传输线的S11的测量,记录数据;并与示波器观察的结果比较。 2、完成短路传输线的S11的测量,记录数据;并与示波器观察的结果比较。 3、完成50Ω微带传输线的S11、S21的测量,记录数据;并与示波器观察的结果比较。 三、实验设备 1、ZY12RFSys32BB1射频训练系统:1台。 2、实验模块:传输线模块1个。 3、示波器(20MHz,双踪,X-Y模式):1台。 4、50ΩBNC连接线(浅色、长线):2条。 5、1MΩBNC连接线(黑色):2条。 6、50Ω匹配负载:4个。 四、实验步骤 1、开路P1端口的S11测量 P1端口S11与频率曲线图如下:

2、短路P2端口的S11测量: P2端口S11与频率曲线图如下: 3、传输的测量: P3端口S11与频率曲线图如

(2).传输P3、P4端口的S21测量: P4端口S21与频率曲线图如下: 五、实验总结 1、开路:开路对应全反射状态,此时的反射S11最大,理想情况下等于零dB。 2、短路:短路对应全反射状态,此时的反射S11最大,理想情况下等于零dB。 3、传输:模块的传输是匹配状态下的微带传输,此时的反射S11最小;传输S21最大, 理想情况下等于零dB。 但实际上由于仪器本身的误差,大多数情况下不为0dB。

微带天线 一:试验目的 1、了解天线的基本原理。 2、学习微带天线的设计方法。 3、利用实验模块进行实际测量,以掌握微带天线的特性 二、实验内容 1、微带天线S11测量。 2、根据距离不同和方向不同,测量微带天线用作发射和接收时的S21值。 三、实验设备 1、射频训练系统主机:一台 2、示波器:一台 3、实验模块:微带天线模块2个 4、50ΩBNC连接线(浅色长线):2条 5、50Ω匹配负载:3个 6、1MΩBNC连接线(黑色):2条 四、实验步骤 1、圆形微带贴片天线的S11测量: S11与频率曲线图如下: 2、圆形微带贴片天线的S21测量: S21与频率曲线图如下:

第六讲 手机天线类型比较和结构射频规则

第六讲手机天线类型比较和结构射频规则 一、各种手机内置天线的特点和演变过程 在常见的手机天线结构中,陶瓷介质天线由于Q值很高,带宽窄,损耗大,并且易受环境的影响而产生频率漂移,因此不推荐作为手机主天线使用,但由于其尺寸小的优势,可以用作对接收灵敏度要求不高的蓝牙天线。PCB板天线也一般仅仅是通过将外置单极子天线通过PCB过孔和PCB走线将辐射体做在PCB板上,并利用介质板的介电常数在一定程度上减小天线尺寸的形式,这种天线也由于介质板的损耗常数而产生一定的损耗,所以在大多数高端机情况下也不推荐使用,仅在少数低端机和工作频点较少的情况下才为节约成本而使用。PCB天线可作外置天线也可作内置天线。 PIFA天线自产生以来,一直到今天都一直是内置天线的主要形式,因为它尺寸较小,可以充分利用PCB板作为接地面,并通过接地片将谐振长度缩小为四分之一波长。但是随着手机小型化和集成度更高的发展要求,原有PIFA天线逐渐显示出一些对结构方面的严格限制。于是有不少业界领先的手机制造商Motorola、Samsung、Sony-Ericsson等公司逐渐改变手机天线的设计风格,改用各种变形的单极子天线设计,这样就减小了结构对天线的依赖性,增加了手机外观的灵活性。比如索爱E908的菱形天线设计,Samsung E708的城墙线(Meander)天线设计,以及Motorola V3中使用的一个金属铜棒作为天线的设计。这些新型的天线设计显示了高超的设计技巧,它们往往不易被天线其他天线厂家和手机厂家模仿,并逐渐发展成手机天线厂家之间和手机厂商之间竞争的一项核心技术。 二、PIFA天线和单极子天线的性能比较 前面我们已经分别对单极子天线和PIFA天线的一般特性进行过分析,下面我们在几种重要的特性方面比较一下两种天线性能的优劣。 1.空间结构要求 两种天线的设计对空间的预留都必须考虑Chu极限定理,但在组成上,PIFA要求必须有一个辐射单元和一个大的接地面,两者互相平行,并且辐射体和接地面之间必须有一个不小的间距。接地面和辐射体都是物理实体,它们必须位于手机上,所以对结构限制较大。采用PIFA天线手机不可能做得很薄。 而采用单极子天线进行设计,则天线仅有一个辐射体而没有地面,因此它对辐射空间的要求就仅仅是天线辐射体周围的空间而没有地面的限制,天线占用的辐射空间可以不在手机体上而在手机周围的外界空间。因此对结构的限制较小。

射频文献综述

射频识别技术 摘要: 射频识别作为一种新兴的自动识别技术,在中国拥有巨大的发展潜力。本文简单介绍射频识别技术及其分类,以及目前射频识别技术在我国几个代表性领域的发展情况。Abstract: Radio Frequency Identification as a new automatic identification technology in China has huge potential for development. This paper briefly describes radio frequency identification technology and its classification, and the current radio frequency identification technology in several representative areas of our country's development. 引言: 射频识别技术(RFID,Radio Frequency Identification)实际上是自动识别技术(AEI,Automatic Equipment Identification)在无线电技术方面的具体应用与发展。该项技术的基本思想是,通过采用一些先进的技术手段,实现人们对各类物体或设备 (人员、物品) 在不同状态(移动、静止或恶劣环境)下的自动识别和管理。本文讨论了射频识别技术目前发展的相关问题。 Introduction: Radio frequency identification technology (RFID, Radio Frequency Identification) is actually automatic identification technology (AEI, Automatic Equipment Identification) radio technology in the specific application and development. The basic idea of 窶銀 逆his technology is that by using some advanced techniques to achieve the various objects, people or equipment (personnel, materials) in different states (mobile, stationary or harsh environments) and automatic identification and management.This article discusses the development of RFID technology in China-related issues.

天线实验报告(DOC)

实验一 半波振子天线的制作与测试 一、实验目的 1、掌握50欧姆同轴电缆与SMA 连接器的连接方法。 2、掌握半波振子天线的制作方法。 3、掌握使用“天馈线测试仪”测试天线VSWR 和回波损耗的方法。 4、掌握采用“天馈线测试仪” 测试电缆损耗的方法。 二、实验原理 (1)天线阻抗带宽的测试 测试天线的反射系数(S 11),需要用到公式(1-1): )ex p(||0 11θj Z Z Z Z S A A Γ=+-= (1-1) 根据公式(1-1),只要测试出来的|Γ|值低于某个特定的值,就可以说明在此条件下天线的阻抗Z A 接近于所要求的阻抗Z 0(匹配),在天线工程上,Z 0通常被规定为75Ω或者50Ω,本实验中取Z 0=50Ω。天线工程中通常使用电压驻波比(VSWR )ρ以及回波损耗(Return Loss ,RL )来描述天线的阻抗特性,它们和|Γ|的关系可以用公式(1-2)和(1-3)描述: | |1| |1Γ-Γ+= ρ (1-2) |)lg(|20Γ-=RL [dB] (1-3) 对于不同要求的天线,对阻抗匹配的要求也不一样,该要求列于表1-1中。 表1-1 工程上对天线的不同要求(供参考) 天线带宽 驻波系数ρ的要求 反射系数|Γ|的要求 反射损耗RL 的要求 窄带(相对带宽5%以下) ρ≤1.2或1.5 |Γ|≤0.09或0.2 ≥21dB 或14dB 宽带(相对带宽20%以下) ρ≤1.5或2 |Γ|≤0.2或0.33 ≥14dB 或10dB 超宽带 ρ≤2或2.5,甚至更大 |Γ|≤0.33或0.43 ≥10dB (2)同轴电缆的特性阻抗 本实验采用50欧姆同轴电缆,其外皮和内芯为金属,中间填充聚四氟乙烯介质(相对介电常数 2.2r ε=)。其特性阻抗计算公式如下: 060ln r b Z a ε?? = ??? (1-4) 式中 a ——内芯直径; b ——外皮内直径。

射频电路与天线 教学大纲

射频电路 课程名称:射频电路 英文名称:Radio Frequency Circuits 学分:3 课程总学时:48 课程性质:?必修□选修 是否独立设课:?是□否 课程类别:□基础课□专业基础课?专业课 面向专业:信息工程、电子科学与技术(物理电子学)、电子科学与技术(微电子技术) 、集成电路设计与系统集成 先修课程:电磁场与电磁波 一、教学信息 课程的性质: 《射频电路》课程是电子与通信工程等专业的一门重要的专业课。其任务是学习射频信号的产生、传输、变换、检测、测量技术及电磁波的辐射与接收。《射频电路》主要讲述射频电路的内容。 课程的目的与教学基本要求: 课程的目的是通过这门课程的学习,学生可以掌握射频电路与天线的基本原理,并具备分析能力与初步的设计能力,为无线通信、光纤通信、移动通信等课程提供技术基础。 通过这门课的学习,要求学生熟练掌握传输线理论,了解波导和谐振腔的基本知识,掌握微波网络理论,了解各种射频电路的工作原理,掌握天线的辐射原理和天线的基本参数,了解各种线天线和面状天线的工作原理。 考核方式: 总分数100分,平时作业考勤占总分数30% ,期末闭卷考试占总分数70%。 二、教学资源

教材 [1]李绪益著,《微波技术与微波电路》,广州:华南理工大学出版社,2007.3。 [2]褚庆昕著,《射频电路与天线》(讲义),2008。 多媒体教学资源(课程网站、课件等资料) 教学课件,教学视频,精品课程网站http://202.38.193.234/rf1/。 三、教学内容、要求与学时分配 按各章节列出主要内容,注明课程教学的难点和重点,对学生掌握知识的要求,以及学时的分配 1 第一部分、传输线理论 (1)传输线的纵向问题-传输线理论(8学时) 主要内容:传输线方程及其解、无耗传输线上的行波与驻波、驻波比、反射系数、不同负载时无耗传输的工作状态、圆图及其应用。 基本要求:理解长线的概念,理解传输线方程及其解的意义,熟练掌握传播常数、特性阻抗、反射系数、驻波比的物理意义,熟练掌握无耗传输线上反射系数、驻波比、输入阻抗的特点与相互关系,掌握不同负载时无耗传输线的工作状态,掌握阻抗圆图和导纳圆图的构成,熟练应用传输线理论解决传输线问题,熟练应用圆图求解传输线问题。 重点:无耗传输线上反射系数、驻波比、输入阻抗的意义、特点和相互关系,无耗传输线问题的求解,圆图计算。 (2)传输线的横向问题(8学时) 主要内容:传输线横向问题与纵向问题的分解,几种常用传输线的横向问题分析方法和特征参数公式,包括矩形波导、圆波导、同轴线、带状线、微带线等。 基本要求:了解等效电压、等效电流的意义,了解横向问题的场方程,了解纵向分量法,掌握导波系统中模式、传播常数、相位常数和传输条件,掌握导波系统截止波长、波导波长、相速度、群速度、波阻抗的概念及其特点,了解矩形

射频实验指导书20182

实验一、认识RFID标签(2学时) RFID标签作为直接交由用户使用的产品,需要对它的各种形式有足够的认识。 预习内容:射频标签的结构和分类。 、实验目的和意义: 1. 从应用的角度认识现实生活中的各种RFID标签的存在形式,以便今后能更 好设计和使用射频标签技术。 2. 了解标签的各种协议,并且对标签协议的安全性和唯一性有一个初步的认识。 、实验基本原理与方法: 1. 原理:标签的封装一般要考虑几个因素。 1)标签的保管和形状尺寸; 2)标签的天线和芯片的尺寸; 3)标签的抗干扰能力; 4)标签的安装。 2. 方法:收集射频标签的实物或图片 3. 女口:校园卡、宾馆客房卡、超市防盗标签等,同学之间互相协作调查射 频标签的种类。 三、主要仪器设备及耗材: 1. 身份证识读器、IF4、LH频段阅读器、LF频段阅读器、PC机

2. 身份证、各类射频卡。 四、实验方案与技术路线 (一)、实验方案 1. 展示实验室中的射频识别设备:阅读器和标签,并记录相关数据; 2. 由学生到生活中搜集射频识别应用的范例; 3. 每名同学搜集两枚射频标签,能搜集实物射频标签要搜集实物,不能收集的 要用现场照片来搜集,并在照片上加以说明; 4. 由老师连接射频识别阅读器等设备,演示工作过程,然后知道学生操作,观 察射频标签的识读过程。 (二)技术路线 1. 学生首先要认识射频和原有条码识别之间的区别,从而在生活中哪些领域 适合用射频识别技术。 2. 让学生掌握射频标签外观上与其它识别标签的区别,并且了解射频识读器 对不同标签识读。 3. 识读范围(距离)的问题。由同学拿射频标签由远至近接近识读器注意观 察二点: 1)第一点身份证识读器读射频卡的距离是否与IF4识读的距离一致。 2)第二点IF4射频识读器读卡的距离有多远。 4. 标签信息存储问题。比较身份证和一般射频卡在识读产生的结果来分析 标签上信息的存储的二种情况。

射频实验一实验报告

实验一 匹配网络的设计与仿真 一、实验目的 1. 掌握阻抗匹配、共轭匹配的原理 2. 掌握集总元件L 型阻抗抗匹配网络的匹配机理 3. 掌握并(串)联单支节调配器、λ/4阻抗变换器匹配机理 4. 了解ADS 软件的主要功能特点 5. 掌握Smith 原图的构成及在阻抗匹配中的应用 6. 了解微带线的基本结构 二、实验原理 信号源的输出功率取决于U s 、R s 和R L 。在信号源给定的情况下,输出功率取决于负载电阻与信号源内阻之比k 。当R L =R s 时可获得最大输出功率,此时为阻抗匹配状态。无论负载电阻大于还是小于信号源内阻,都不可能使负载获得最大功率,且两个电阻值偏差越大,输出功率越小。 1.共轭匹配 2 2 2 ()s o L L s L U P I R R R R ==+2,s L s i s U R kR P R ==2(1) o i k P P k =+

时,源输出功率最大,称作共轭匹配。此时需在负载和信号源之间加一个阻抗变换网络 ,将负载阻抗变换为信号源阻抗的共轭。 2.阻抗匹配 λ/4阻抗变换器 三、用T 型匹配网络设计阻抗匹配网络 要求:源阻抗(480-j 732) Ohm ,频率400MHz ,负载Z L =(20+j ×100) Ohm 1.原理图 2.采用T 型匹配网络匹配过程 * g Z =L Z ≠

3.匹配结果 4.相应的电路

5.仿真结果 四、设计微带单枝短截线匹配电路 要求:源阻抗(480-j732) Ohm,频率400MHz,负载Z L=(69+j×81) Ohm 微带线板材参数: 相对介电常数:2.65

相关文档
最新文档