混沌动力学导论第3章

混沌动力学导论第3章
混沌动力学导论第3章

第三章摆动力学的可视化描述

VISUALIZATION OF THE

PENDULUMˊS DYNAMICS

3-0 摆的数学描述和计算机仿真:

3-1对初始条件的敏感性:

3-2 摆的相图和蓬加莱截面:

3-4 时间序列和功率谱

3-5 吸引盆:

3-6分岔图(Bifurcation diagrams)

3-0摆的数学描述和计算机仿真:

在这一节我们将讨论下面4个问题:

1、驱动摆(driven pendulum)的运动方程:

2、产生混沌运动条件。

3、参数改变对驱动摆运动发生的影响。

4、一个有趣的问题。

1、驱动摆的运动方程:

摆的运动是一个十分古老的问题。物理学、数学都作了大量的研究,但它仍然是最具魅

力的研究课题。

首先我们写出驱动摆(driven pendulum ,也叫做“强迫振动摆”)的运动方程:

//sin cos d dt q g ωωθφ=--+

/d dt θω= (3-1) /D d dt φω=

方程组(3-1)中有3个状态变量:

θ—摆的角位移(angular displacement ); ω—摆的角速度(angular velocity ); φ—驱动力的相位角(drive phase angle )。

因此它的轨线在3维相空间描绘。

方程(3-1)中也有3个参数:

q —阻尼系数(damping factor );

g —驱动力幅值(driving force amplitude ); D ω—驱动力角频率(angular drive

frequency)。

同时考虑3个参数来研究驱动摆的性态,也就是说,在3维相空间和3维参数空间内考察摆的形态,将是一个十分困难、实际上不可能完成的任务。

我们把ωD固定,选择少数几个q值,让g 值在一定的区间充分变化,以观察系统的性态。

(在Appendix B(Page 207, Listing 4)中有描述摆运动的计算机程序(Title: Motion),可供参考。)

2、产生混沌运动的条件:

产生混沌的必要条件有2条(See: Page 2):

(1)系统至少要有3个独立的动力学变量;(2)系统至少要有1项包含了几个动力学变量的非线性项。

第(2)个条件是显而易见的,混沌系统是非线性系统,没有非线性项,就不成其为非线性系统。

那么,第(1)个条件为什么要求至少要有3个独力的动力学变量?

(请思考。See:Page3

“We shall see that three-dimension phase space is sufficient to allow for (a) divergence of trajectories, (b) confinement of the motion to a finite region of the phase space of

the dynamical variables, and (c) uniqueness of the trajectory.”)

方程(3-1)满足产生混沌的条件。

3、参数改变对驱动摆运动发生的影响。

我们已经说过,把角频率ωD固定,选取少数几个阻尼系数q值,然后让驱动力幅值g

充分地变化,来考察系统的动力学性态。

通过在计算机上的仿真,用下面的一组参数构成的摆可以产生混沌性态:

ωD=2/3,q=2,0.5≤g≤1.5。

前面提到Appendix B里的程序是用TrueBASIC语言编写的驱动摆的运动仿真程序,你能将其改写为C语言程序吗?(try please)。

4、一个有趣的问题。

对初始条件的敏感性是混沌的主要特性之一。而用计算机对混沌系统进行仿真(simulation),不可避免的从两方面引入误差:

(1)用数值积分法求解微分方程产生的微小不精确性;

(2)计算机的有效数字的有限长度引起的误差。

由于混沌系统对初始条件的敏感性,这两方面的误差应该很快被放大,从而导致每次计算结果应该完全不同。

事实上,同一个人用不同的计算机,或者不同的人用不同的计算机,或者在不同的地方用不同的计算机,求解同一个混沌系统,得到了十分类似的几何图形。对这个有趣的问题如何自圆其说?

3-0摆的数学描述和计算机仿真:

3-1 对初始条件的敏感性

(Sensitivity to initial conditions)

在这一节里,我们将讨论以下3个问题:

1、对初始条件敏感性的含义。

2、对初始条件敏感性的另一种描述方法。

3、发散与折叠。

1、对初始条件敏感性的含义:

我们已经多次提到混沌系统的基本特

征就是它对初始条件的敏感性。

这一敏感性的含义是:如果两个一样的力学系统分别从初始条件x和x+ε出发,尽管ε是一个微小量,在相空间里,两个系统的动力学演化将很快地相互发散(diverge),且发散速度的平均值是按指数规律增长。(see: Page 42,Fig.3.2(a))。

Fig.3.2

图中(a)在1个驱动力周期内发散的情形;

(b)在半个驱动力周期内发散的情形。

2、对初始条件敏感性的另一种描述方法:

观察相空间中混沌摆(chaotic pendulum)的一个状态块(a block of pendulum

states)。 Page 42, Fig.3.2(b)显示了“一块”初始相点的演化。在半个强迫摆动周期后,初始的“矩形块”演变成一个细长而弯曲的面目全非的形状。由于是耗散系统(dissipative system),块的面积随着时间在收缩。而且,这个块状的相点集合沿着一个方向拉伸(stretch),沿着另一个方向收缩(contract)。在相空间的不同点,其发散方向和收缩方向是不同的,其净结果是两个相距并不远的点变得相去甚远。

3、发散与折叠。

对混沌吸引子来说,相空间中相邻两点按指数速率发散有着更深刻的意义。两相邻相点的轨线为了保持接近而不相交,它们必须自身来回折叠,形成一个具有无限薄层的3维混沌吸引子。

我们可以想象:在一个有限空间内,轨线又要无限地伸展、发散;又要不能相交,唯一的办法就是拉伸和折叠。

在自然界里,蚕吐丝结茧就是在实现一个混沌吸引子过程。

3-0 摆的数学描述和计算机仿真:

3-1对初始条件的敏感性:

3-2 摆的相图和蓬加莱截面:

Fig.3.3

1、摆的相图:

我们在3维相空间(θ、ω、φ)中考察驱动摆的轨线。让ωD =2/3和q=2

固定不变,

使g取不同的值。如Fig.3.3所示。

当g=0.9时(图a),系统表现出周期性态。

当g=1.07和g=1.47时,出现了比较复杂的性态(图b,c)。但是,还是有某些简单性(规律性)。

当g=1.5时(Page45, Fig.3.3(d)),轨线极为复杂,简直可以说到了对描述系统特征没有用处的地步。驱动摆系统进入了“混沌”状态。

显然,用“轨线”方法来描述摆的动力学行为已经很不合适。得想另外的办法。

2、蓬加莱截面:

1)我们可以采用投影的方法或蓬加莱截面的方法来描述摆的动力学行为。如Fig.3.4所示。

在Fig. 3.4(Page46--52)的上半部分显示了摆的轨线在(θ、ω)相平面(Phase plane)上的投影。周期运动的轨线变成了一条“闭合轨道”(a closed orbit),似乎发生了轨线相交,这是由于从3维相空间(θ、ω、φ)“压缩”到2维相空间(θ、ω)的结果,实际上轨线并没有相交。在相空间中,动力学系统的运动轨线绝不可能相交。

Fig.3.4的下半部分显示了蓬加莱截面(PoincaréSection)。它们是一些垂直于3维相空间φ轴的“切片”(slices)。动力学系统的轨线与这些“切片”的交点同样“刻画”了动力学系统的特征。简洁明了,这是蓬加莱截面(Poincaré Section)的优点。图中的(a)、(b)、(d)、(e)和(f)显示出有限个点,刻画了运动轨线的“周期特征”;而图(c)和(g)则是一个无数点的“复杂集合”,它刻画出运动轨线的“混沌学特征”。

下面,我们分别讨论这些情况:

Fig. 3.4,(a) g=0.9,

上图是轨线在(θ、ω)平面上的投影;下图是蓬加莱截面, 截面上有一个点,说明是:周期1的——每经过1个循环后又回到原来的相位。

Fig. 3.4, (b) g=1.07, a period doubling 上图是轨线在(θ、ω)平面上的投影,有2个不重合的闭合轨线;下图是蓬加莱截面, 截面上有2个点,说明是:周期2的——每经过2个循环后又回到原来的相位,叫做:倍周期。

Fig. 3.4, (c)g=1.15,

上图是轨线在(θ、ω)平面上的投影,有无数个不重合的闭合轨线;下图是蓬加莱截面, 截面上有无数个

点,说明是:“混沌的”,意味着“周期无限长”,即“非

周期的”)。

Fig. 3.4,(d)g=1.35,

随着g值的增加,系统再次呈现出周期性。上图是在相平面(θ、ω)上的投影;下图是蓬加莱截面。显然是周期1的,但是与前一个周期有所不同。

Fig. 3.4,(e)g=1.45,

随着g值的增加,系统再次呈现出倍周期性。上图是在相平面(θ、ω)上的投影;下图是蓬加莱截面。显然是周期2的,但是与前一个倍周期有所不同——出现了另一个倍周期。

Fig. 3.4,(f) g=1.47,;

随着g值的增加,系统紧接着再次呈现出倍周期性。上图是在相平面(θ、ω)上的投影;下图是蓬加莱截面。显然是第2次倍周期,即“倍周期的倍周期”,——4倍周期,或简称:“周期4”)。

Fig. 3.4,(g) g=1.50,

随着g值的增加,系统再次呈现出混沌性态。上图是在相平面(θ、ω)上的投影;下图是蓬加莱截面。这是另一个“混沌状态”。

2)蓬加莱截面(Poincaré Sections)的形状是随着它在φ轴上的不同位置而变化的。这些蓬加莱截面的形状虽然不同,但是这些形状的“聚集程度”(aggregate)却是类似的,都反映了同一个混沌吸引子的动力学性态。

随着相位φ增加,在蓬加莱截面上呈现出,混沌吸引子被反复地拉伸(stretched)、折叠(folded),好象“揉搓”面团一样,做成一个“千层饼”。

在图3.5中,给出了当φ以Δφ= 2π/10增加时,蓬加莱截面的各种情形。φ= π时的蓬加莱截面是φ= 0时的反对称。对照一下图a 和图f,就可以看出这种反对称性。

机械系统动力学

机械系统动力学报告 题目:电梯机械系统的动态特性分析 姓名: 专业: 学号:

电梯机械系统的动态特性分析 一、课题背景介绍 随着社会的快速发展,城市人口密度越来越大,高层建筑不断涌现,因此,现在对电梯的提出了更高的要求,随着科技的进步,在满足客观需求的基础上,电梯向着舒适性,高速,高效的方向发展。在电梯的发展过程中,安全性和功能性一直是电梯公司首要考虑的因素,其中舒适性也要包含在电梯的设计中,避免出现速度或者加速度出现突变,或者电梯运行过程中的振动引起人们的不适。因此,在电梯的设计过程中,对电梯进行动态特性分析是十分必要的。 二、在MATLAB中编程、绘图。 通过同组小伙伴的努力,已经得到了该系统的简化模型与运动方程。因此进行编程: 该系统的微分方程:[][][]{}[]Q x k x c x M= + ? ? ? ? ? ? + ? ? ? ? ? ?? ? ? ,其中矩阵[M]、 [C]、[K]、[Q]都已知。 该系统的微分方程是一个二阶一元微分方程,在MATLAB中,提供有求解常微分方程数值解的函数,其中在MATLAB中常用的求微分方程数值解的有7个:ode45,ode23,ode113,ode15s,ode23s,ode23t,ode23tb 。 ode是MATLAB专门用于解微分方程的功能函数。该求解器有变步长(variable-step)和定步长(fixed-step)两种类型。不同类型有着不同的求解器,其中ode45求解器属于变步长的一种,采用Runge-Kutta

算法;和他采用相同算法的变步长求解器还有ode23。 ode45表示采用四阶,五阶Runge-Kutta单步算法,截断误差为(Δx)^3。解决的是Nonstiff(非刚性)常微分方程。 ode45是解决数值解问题的首选方法,若长时间没结果,应该就是刚性的,可换用ode23试试。 Ode45函数调用形式如下:[T,Y]=ode45(odefun,tspan,y0) 相关参数介绍如下: 通过以上的了解,并对该微分方程进行变换与降阶,得出程序。MATLAB程序: (1)建立M函数文件来定义方程组如下: function dy=func(t,y) dy=zeros(10,1); dy(1)=y(2); dy(2)=1/1660*(-0.006*y(2)+0.003*y(4)-0.0006*y(10)-1.27*10^7*y(1)+1.27*10^7*y (3)+2.54*10^6*y(9)); dy(3)=y(4); dy(4)=1/1600*(+0.03*y(2)-0.007*y(4)+0.003*y(6)+1.27*10^7*y(1)-7.274*10^8*y(3 )+1.27*10^7*y(5)); dy(5)=y(6);

机械设计基础第十四章 机械系统动力学

第十四章 机械系统动力学 14-11、在图14-19中,行星轮系各轮齿数为123z z z 、、,其质心与轮心重合,又齿轮1、2对质心12O O 、的转动惯量为12J J 、,系杆H 对的转动惯量为H J ,齿轮2的质量为2m ,现以齿轮1为等效构件,求该轮系的等效转动惯量J ν。 2222 2121221 12323121 13212 1 13222 12311212213121313 ( )()()()1()()()( )()()()o H H H o H J J J J m z z z z z z z z z O O z z z z z z z O O J J J J m z z z z z z z z νννωωω ωωωω ωω ωωωωνω=+++=-= += +=+-=++++++解: 14-12、机器主轴的角速度值1()rad ?从降到时2()rad ?,飞轮放出的功 (m)W N ,求飞轮的转动惯量。 max min 122 2 121 ()2 2F F Wy M d J W J ?ν??ωωωω==-=-? 解: 14-15、机器的一个稳定运动循环与主轴两转相对应,以曲柄和连杆所组成的转动副A 的中心为等效力的作用点,等效阻力变化曲线c A F S ν-如图14-22所示。等效驱动力a F ν为常数,等效构件(曲柄)的平均角速度值25/m rad s ?=, 3 H 1 2 3 2 1 H O 1 O 2

不均匀系数0.02δ=,曲柄长度0.5OA l m =,求装在主轴(曲柄轴)上的飞轮的转动惯量。 (a) W v 与时间关系图 (b )、能量指示图 a 2 24()2 3015m Wy=25N m 25 6.28250.02 c va OA vc OA OA va F W W F l F l l F N Mva N J kg m νν=∏?∏=∏+==∏= =?解:稳定运动循环过程 14-17、图14-24中各轮齿数为12213z z z z =、,,轮1为主动轮,在轮1上加力矩1M =常数。作用在轮 2 上的阻力距地变化为: 2r 22r 020M M M ??≤≤∏==∏≤≤∏=当时,常数;当时,,两轮对各自中心的转动惯量为12J J 、。轮的平均角速度值为m ω。若不均匀系数为δ,则:(1)画出以轮1为等效构件的等效力矩曲线M ν?-;(2)求出最大盈亏功;(3)求飞轮的转动惯量F J 。 图14-24 习题14-17图 40Nm 15∏ 12.5∏ 22.5∏ 15Nm ∏ 2∏ 2.5∏ 4∏ 25∏ 1 1 z 2 z 2 r M 2 M ∏ 2∏ 2?

混沌动力学导论第3章

第三章摆动力学的可视化描述 VISUALIZATION OF THE PENDULUMˊS DYNAMICS 3-0 摆的数学描述和计算机仿真: 3-1对初始条件的敏感性: 3-2 摆的相图和蓬加莱截面: 3-4 时间序列和功率谱 3-5 吸引盆: 3-6分岔图(Bifurcation diagrams) 3-0摆的数学描述和计算机仿真: 在这一节我们将讨论下面4个问题: 1、驱动摆(driven pendulum)的运动方程: 2、产生混沌运动条件。 3、参数改变对驱动摆运动发生的影响。 4、一个有趣的问题。 1、驱动摆的运动方程: 摆的运动是一个十分古老的问题。物理学、数学都作了大量的研究,但它仍然是最具魅

力的研究课题。 首先我们写出驱动摆(driven pendulum ,也叫做“强迫振动摆”)的运动方程: //sin cos d dt q g ωωθφ=--+ /d dt θω= (3-1) /D d dt φω= 方程组(3-1)中有3个状态变量: θ—摆的角位移(angular displacement ); ω—摆的角速度(angular velocity ); φ—驱动力的相位角(drive phase angle )。 因此它的轨线在3维相空间描绘。 方程(3-1)中也有3个参数: q —阻尼系数(damping factor ); g —驱动力幅值(driving force amplitude ); D ω—驱动力角频率(angular drive

frequency)。 同时考虑3个参数来研究驱动摆的性态,也就是说,在3维相空间和3维参数空间内考察摆的形态,将是一个十分困难、实际上不可能完成的任务。 我们把ωD固定,选择少数几个q值,让g 值在一定的区间充分变化,以观察系统的性态。 (在Appendix B(Page 207, Listing 4)中有描述摆运动的计算机程序(Title: Motion),可供参考。) 2、产生混沌运动的条件: 产生混沌的必要条件有2条(See: Page 2): (1)系统至少要有3个独立的动力学变量;(2)系统至少要有1项包含了几个动力学变量的非线性项。

能源动力导论课程报告

本科生课程考核试卷 科目:能源与动力工程导论教师: 姓名:学号: 专业: 上课时间: 考生成绩: 卷面成绩平时成绩课程综合成绩阅卷评语: 阅卷教师(签名)

摘要 能源问题是目前全世界范围面临的最为突出的问题之一,而太阳能是人类取之不尽、用之不竭的清洁能源。如今太阳能材料的研制和应用已取得显著进步。理想的新型太阳能功能材料不仅能够解决世界面临的能源短缺问题,而且还可以避免环境的污染。所以太阳能材料具有十分诱人的前景,并且可以预见在不久的将来,太阳能材料将在人类生活中扮演极为重要的角色。以重庆地区的气象资料为基础,从太阳月总辐射、日照时长、云量、太阳高度角等方面,对太阳能资源的分布特点、应用措施及潜力进行了分析。结果表明,重庆地区太阳能资源具有明显的季节性;5~9月份的太阳能热水可满足标准要求。 关键词:太阳能资源;重庆地区;太阳能热水系统;发展方向

ABSTRACT The energy problem is one of the most prominent issues facing worldwide solar energy is a human inexhaustible, inexhaustible source of clean energy. Today, significant progress has been made in the development and application of solar material. The the ideal new solar Functional Materials not only can solve the problems the world is facing energy shortages, but also to avoid environmental pollution. Solar material has a very attractive prospect, and can be expected in the near future, solar material will play an extremely important role in the life of mankind. Based, Chongqing meteorological data from the monthly total radiation of the sun, sunshine duration, cloud cover, solar elevation angle, etc., the characteristics of the distribution of solar energy resources, the application of measures and potential analysis. The results show that the solar energy resources of the Chongqing area has obvious seasonal; 5 to Sept. solar hot water to meet the standard requirements. Keywords:Solar energy resources; Chongqing area; solar water heating system; development direction

系统动力学(自己总结)

系统动力学 1.系统动力学的发展 系统动力学(简称SD—system dynamics)的出现于1956年,创始人为美国麻省理工学院的福瑞斯特教授。系统动力学是福瑞斯特教授于1958年为分析生产管理及库存管理等企业问题而提出的系统仿真方法,最初叫工业动态学。是一门分析研究信息反馈系统的学科,也是一门认识系统问题和解决系统问题的交叉综合学科。从系统方法论来说:系统动力学是结构的方法、功能的方法和历史的方法的统一。它基于系统论,吸收了控制论、信息论的精髓,是一门综合自然科学和社会科学的横向学科。 系统动力学的发展过程大致可分为三个阶段: 1)系统动力学的诞生—20世纪50-60年代 由于SD这种方法早期研究对象是以企业为中心的工业系统,初名也就叫工业动力学。这阶段主要是以福雷斯特教授在哈佛商业评论发表的《工业动力学》作为奠基之作,之后他又讲述了系统动力学的方法论和原理,系统产生动态行为的基本原理。后来,以福雷斯特教授对城市的兴衰问题进行深入的研究,提出了城市模型。 2)系统动力学发展成熟—20世纪70-80 这阶段主要的标准性成果是系统动力学世界模型与美国国家模型的研究成功。这两个模型的研究成功地解决了困扰经济学界长波问题,因此吸引了世界范围内学者的关注,促进它在世界范围内的传播与发展,确立了在社会经济问题研究中的学科地位。 3)系统动力学广泛运用与传播—20世纪90年代-至今 在这一阶段,SD在世界范围内得到广泛的传播,其应用范围更广泛,并且获得新的发展.系统动力学正加强与控制理论、系统科学、突变理论、耗散结构与分叉、结构稳定性分析、灵敏度分析、统计分析、参数估计、最优化技术应用、类属结构研究、专家系统等方面的联系。许多学者纷纷采用系统动力学方法来研究各自的社会经济问题,涉及到经济、能源、交通、环境、生态、生物、医学、工业、城市等广泛的领域。 2.系统动力学的原理 系统动力学是一门分析研究信息反馈系统的学科。它是系统科学中的一个分支,是跨越自然科学和社会科学的横向学科。系统动力学基于系统论,吸收控制论、信息论的精髓,是一门认识系统问题和解决系统问题交叉、综合性的新学科。从系统方法论来说,系统动力学的方法是结构方法、功能方法和历史方法的统一。 系统动力学是在系统论的基础上发展起来的,因此它包含着系统论的思想。系统动力学是以系统的结构决定着系统行为前提条件而展开研究的。它认为存在系统内的众多变量在它们相互作用的反馈环里有因果联系。反馈之间有系统的相

能源与动力工程专业导论论文

能源与动力工程专业导论论文 能动134班:文澜 2013年10月29日能源与动力工程致力于传统能源的利用及新能源的开发,和如何更高效的利用能源。能源既包括水、煤、石油等传统能源,也包括核能、风能、生物能等新能源,以及未来将广泛应用的氢能。动力方面包括内燃机、锅炉、航空发动机、制冷及相关测试技术。专业通过理论力学、材料力学、工程制图、机械设计、电工与电子技术、工程热力学、流体力学、传热学、控制理论、热工测试技术以及专业方向课程的学习,使我们具备工程热力学、流体力学、传热学和热工测试技术等能源与动力工程领域的基础理论、实验技能和基本专业知识,掌握制冷空调设备、制冷装置、动力机械与动力工程、流体机械等设计、制造和实验研究的基本技术。在此基础上,它是一个宽口径的专业,拓展空间很大,就业方向很广,目前我国有120多所院校开设有该专业,它由旧本科的九个相关专业合并而成,包括了原来的热力发动机、能源工程、流体机械及流体工程、能源工程与动力机械、制冷与低温技术、能源工程、工程热物理、水利水电动力工程、冷冻冷藏工程专业。同时,能动还是现代动力工程师的基本训练,可见能动是现代动力工程的基础。 能源问题在当今社会举足轻重,能能与动力工程专业在国民经济中的地位可想而知。改革开放以来,国民经济呈现出增长较快、结构优化、效益提高、民生改善的良好运行态势,同时,随着国民经济的发展,对能源的需求也日益增大。高耗能产品产量大幅增长,从而造成能源消费量增长过快。 在能源日益紧迫的当代社会中,能源与动力工程专业应运而生,半个世纪以来,能源与动力工程专业教育为社会输送了大量的高级技术人才和其他各类人才,是我国国家建设尤其是能源动力建设领域的中坚力量,为我国小康社会的建设和自立于世界民族之林作出了重大的贡献。 热模块 热模块,通俗地讲,就是发电、做功部分。主要研究锅炉、汽轮机、燃气轮机热端、内燃机、电厂运行及调控。它们都是依靠一定的能源来发电和做功的,也就是产生动力。 动力工程发电技术是电力生产的灵魂,它在国家发展中具有不可替代的作用。由于电能具有输送及使用方便,易于转变成其他形式的能量等优点,故已成为发展现代社会物质文明的重要条件。电力生产能力是一个国家发展水平的重要指标之一,工农生产及日常生活所需的电能,都是由发电厂集中生产和供应的。电力生产的主要方式有火力发电,水力发电及核能发电等。另外还有风力发电,太阳能发电,地热发电,潮汐发电,磁流体发电及燃料电池等辅助方式,因此,能源动力工程发电技术包括范围极广,有着多样性的特点。

系统动力学模型案例分析

系统动力学模型介绍 1.系统动力学的思想、方法 系统动力学对实际系统的构模和模拟是从系统的结构和功能两方面同时进行的。系统的结构是指系统所包含的各单元以及各单元之间的相互作用与相互关系。而系统的功能是指系统中各单元本身及各单元之间相互作用的秩序、结构和功能,分别表征了系统的组织和系统的行为,它们是相对独立的,又可以在—定条件下互相转化。所以在系统模拟时既要考虑到系统结构方面的要素又要考虑到系统功能方面的因素,才能比较准确地反映出实际系统的基本规律。系统动力学方法从构造系统最基本的微观结构入手构造系统模型。其中不仅要从功能方面考察模型的行为特性与实际系统中测量到的系统变量的各数据、图表的吻合程度,而且还要从结构方面考察模型中各单元相互联系和相互作用关系与实际系统结构的一致程度。模拟过程中所需的系统功能方面的信息,可以通过收集,分析系统的历史数据资料来获得,是属定量方面的信息,而所需的系统结构方面的信息则依赖于模型构造者对实际系统运动机制的认识和理解程度,其中也包含着大量的实际工作经验,是属定性方面的信息。因此,系统动力学对系统的结构和功能同时模拟的方法,实质上就是充分利用了实际系统定性和定量两方面的信息,并将它们有机地融合在一起,合理有效地构造出能较好地反映实际系统的模型。 2.建模原理与步骤

(1)建模原理 用系统动力学方法进行建模最根本的指导思想就是系统动力学的系统观和方法论。系统动力学认为系统具有整体性、相关性、等级性和相似性。系统内部的反馈结构和机制决定了系统的行为特性,任何复杂的大系统都可以由多个系统最基本的信息反馈回路按某种方式联结而成。系统动力学模型的系统目标就是针对实际应用情况,从变化和发展的角度去解决系统问题。系统动力学构模和模拟的一个最主要的特点,就是实现结构和功能的双模拟,因此系统分解与系统综合原则的正确贯彻必须贯穿于系统构模、模拟与测试的整个过程中。与其它模型一样,系统动力学模型也只是实际系统某些本质特征的简化和代表,而不是原原本本地翻译或复制。因此,在构造系统动力学模型的过程中,必须注意把握大局,抓主要矛盾,合理地定义系统变量和确定系统边界。系统动力学模型的一致性和有效性的检验,有一整套定性、定量的方法,如结构和参数的灵敏度分析,极端条件下的模拟试验和统计方法检验等等,但评价一个模型优劣程度的最终标准是客观实践,而实践的检验是长期的,不是一二次就可以完成的。因此,一个即使是精心构造出来的模型也必须在以后的应用中不断修改、不断完善,以适应实际系统新的变化和新的目标。 (2)建模步骤 系统动力学构模过程是一个认识问题和解决问题的过程,根据人们对客观事物认识的规律,这是一个波浪式前进、螺旋式上升的过程,因此它必须是一个由粗到细,由表及里,多次循环,不断深化的过程。系统动力学将整个构模过程归纳为系统分析、结构分析、模型建立、模型试验和模型使用五大步骤这五大步骤有一定的先后次序,但按照构模过程中的具体情况,它们又都是交叉、反复进行的。 第一步系统分析的主要任务是明确系统问题,广泛收集解决系统问题的有关数据、资料和信息,然后大致划定系统的边界。 第二步结构分析的注意力集中在系统的结构分解、确定系统变量和信息反馈机制。 第三步模型建立是系统结构的量化过程(建立模型方程进行量化)。 第四步模型试验是借助于计算机对模型进行模拟试验和调试,经过对模型各种性能指标的评估不断修改、完善模型。 第五步模型使用是在已经建立起来的模型上对系统问题进行定量的分析研究和做各种政策实验。 3.建模工具 系统动力学软件VENSIM PLE软件 4.建模方法 因果关系图法 在因果关系图中,各变量彼此之间的因果关系是用因果链来连接的。因果链是一个带箭头的实线(直线或弧线),箭头方向表示因果关系的作用方向,箭头旁标有“+”或“-”号,分别表示两种极性的因果链。

级联混沌及其动力学特性研究_王光义

级联混沌及其动力学特性研究* 王光义?袁方 (杭州电子科技大学电子信息学院,杭州310018) (2012年7月21日收到;2012年8月18日收到修改稿) 初值敏感性是混沌的本质,混沌的随机性来源于其对初始条件的高度敏感性,而Lyapunov指数又是这种初值敏感性的一种度量.本文的研究发现,混沌系统的级联可明显提高级联混沌的Lyapunov指数,改善其动力学特性.因此,本文研究了混沌系统的级联和级联混沌对动力学特性的影响,提出了混沌系统级联的定义及条件,从理论上证明了级联混沌的Lyapunov指数为各个级联子系统Lyapunov指数之和;适当的级联可增加系统参数、扩展混沌映射和满映射的参数区间,由此可提高混沌映射的初值敏感性和混沌伪随机序列的安全性.以Logistic映射、Cubic映射和Tent映射为例,研究了Logistic-Logistic级联、Logistic-Cubic级联和Logistic-Tent级联的动力学特性,验证了级联混沌动力学性能的改善.级联混沌可作为伪随机数发生器的随机信号源,用以产生初值敏感性更高、安全性更好的伪随机序列. 关键词:混沌,级联,离散映射,Lyapunov指数 PACS:05.45.–a,05.45.Ac,05.45.Xt DOI:10.7498/aps.62.020506 1引言 伪随机序列在数字通信、密码系统、计算机仿真等领域有着广泛的应用.一个伪随机序列发生器包括随机信号源(种)和一系列的量化及其实现技术,其中良好的随机信号源是伪随机序列设计的关键问题.混沌与传统密码学之间存在着一种自然的联系,混沌动力学特性基本对应着高强度密码系统的某些安全特征,以混沌作为随机信号源为伪随机序列发生器的设计提供了一种新的途径. 一般而言,对混沌伪随机序列或混沌系统的要求是随机性好、安全性高.混沌信号的随机性依赖于混沌的初值敏感性,这是混沌的本质[1].虽然目前文献中未对混沌初值敏感性的度量做出明显的说明,但根据Lyapunov指数的定义我们完全有理由说Lyapunov指数就是初值敏感性的一种度量,或可直接说Lyapunov指数越大,表明系统对初值越敏感.因此,提高混沌系统的Lyapunov指数是改善其伪随机序列随机性的一种直接方法.而混沌序列的安全性则主要依赖于由系统初值和系统参数构成的密钥空间的大小,即保证出现混沌时的初值范围和参数范围的大小. 利用连续和离散混沌系统进行伪随机序列发生器的设计已有不少研究[2?5].连续混沌的数学模型为多变量耦合的微分方程组,其系统参数和初始条件较多,产生伪随机序列的密钥空间较大,但由于其算法复杂导致运算速率较慢,产生的序列码率较低.而离散混沌由于算法简单使其运算速率快、序列码率高,且其序列的复杂度好[6],因此目前混沌应用中首选离散混沌产生伪随机序列[7?10],应用最多的是Logistic映射、Tent映射(分段线性映射)及其他们的改进形式,并且目前对此类离散映射仍做持续的研究[11?19].但离散系统缺点是Lyapunov 指数小、初值条件和系统参数较少,其密钥空间较小从而导致序列的安全性降低. 为了提高离散混沌的随机性和安全性,即提高混沌系统的Lyapunov指数和混沌映射参数区间,本文提出了离散混沌的一种级联方案.在定义混沌级联之后给出了级联混沌可提高其Lyapunov指 *国家自然科学基金(批准号:60971046)资助的课题. ?通讯作者.E-mail:wanggyi@https://www.360docs.net/doc/1215602135.html, c?2013中国物理学会Chinese Physical Society https://www.360docs.net/doc/1215602135.html,

研究生《机械系统动力学》试卷及答案

太原理工大学研究生试题 姓名: 学号: 专业班级: 机械工程2014级 课程名称: 《机械系统动力学》 考试时间: 120分钟 考试日期: 题号 一 二 三 四 五 六 七 八 总分 分数 1 圆柱型仪表悬浮在液体中,如图1所示。仪表质量为m ,液体的比重为ρ,液体的粘性阻尼系数为r ,试导出仪表在液体中竖直方向自由振动方程式,并求固有频率。(10分) 2 系统如图2所示,试计算系统微幅摆动的固有频率,假定OA 是均质刚性杆,质量为m 。(10分) 3 图3所示的悬臂梁,单位长度质量为ρ,试用雷利法计算横向振动的周期。假定梁的 变形曲线为?? ? ?? -=x L y y M 2cos 1π(y M 为自由端的挠度)。(10分) 4 如图4所示的系统,试推导质量m 微幅振动的方程式并求解θ(t)。(10分) 5 一简支梁如图5所示,在跨中央有重量W 为4900N 电机,在W 的作用下,梁的静挠度δst=,粘性阻尼使自由振动10周后振幅减小为初始值的一半,电机n=600rpm 时,转子不平衡质量产生的离心惯性力Q=1960N ,梁的分布质量略去不计,试求系统稳态受迫振动的振幅。(15分) 6 如图6所示的扭转摆,弹簧杆的刚度系数为K ,圆盘的转动惯量为J ,试求系统的固有频率。(15分) 7如图7一提升机,通过刚度系数m N K /1057823?=的钢丝绳和天轮(定滑轮)提升货载。货载重量N W 147000=,以s m v /025.0=的速度等速下降。求提升机突然制动时的钢丝绳最大张力。(15分) 8某振动系统如图8所示,试用拉个朗日法写出动能、势能和能量散失函数。(15分) 太原理工大学研究生试题纸

飞行器动力工程导论

飞行器动力工程导论 ————课程作业 姓名:学号: 学院:专业:

1、谈谈你对我校飞行器动力工程专业的认识 (1)作为我校在网络上推荐指数较高的专业之一的飞行器动力工程专业,是我校的特色专业,同时作为天津市的品牌专业,它以航空维修工程为特色,培养适应国内外现代民航发展需求,具备较高思想政治素质,掌握系统的航空发动机专业知识和扎实的航空维修及管理理论基础,具有较强的实际操作能力和严谨的工作作风,了解民航发展动态,能够从事航空发动机的运行监控、故障诊断、维护修理及维修管理等相关技术、管理工作,宽口径、厚基础、强能力、高素质,具有创新精神,德、智、体、美全面发展的应用型高级工程技术人才和管理人才。(2)飞行器动力工程专业属于典型的工科专业,它分为两个方向:航空动力工程专业方向和航空器工程专业方向。其所涉及的课程包括:电工学、机械设计基础、工程热力学、气体动力学、航空发动机原理、航空发动机构造、航空发动机控制、机务工程英语、航空维修工程管理、发动机机队管理、航空发动机强度与振动、发动机状态监控与故障诊断、航空发动机维修技术、发动机失效分析、飞机结构与系统等。 (3)飞行器动力工程专业前景:中国的航空科学发展较晚,飞行器知识大部分源于国外,中国的航空技术还有许多不完善、有待改进或者创造的地方。中国急需航空技术人才,尤其是经过系统培训的高级应用型国际人才。因此航空技术职业市场广阔 (4)飞行器动力工程专业所培养的人才目标:了解民用航空科学与技术的前沿及发展趋势,具备较强的工程实践能力和严谨的工作作风。通过本专业的培养,使学生能够胜任民用航空器维修、制造、运行监控、故障诊断及维修管理等相关工程技术和管理工作,成为宽口径、厚基础、强能力、高素质,具有创新精神,德、智、体、美全面发展的高级工程技术人才和管理人才。为中国民航业培养和提供大批优秀的机务工程和管理人才,不断为民航业输送新鲜血液,推进中国民航业的快速发展。 (5)飞行器动力工程专业就业方向:航空公司运行、维护和技术管理部门、机场、航空器维修企业、适航管理部门以及高校、飞行器设计与制造与航空科研院所等单位,也可以继续攻读本专业或相关交叉学科的硕士学位。

系统动力学定义(精)

系统动力学定义 系统动力学出现于1956年,是美国麻省理工学院JayW.Forrester福瑞斯特教授最早提出的一种对社会经济问题进行系统分析的方法论和定性与定量相结合的分析方法,是一门以系统反馈控制理论为基础,以计算机仿真技术为主要手段,定量地研究系统发展的动态行为的一门应用学科,属于系统科学的一个分支。复旦大学管理学院王其藩教授在他所著的《高级系统动力学》中给出了系统动力学的内涵曰:系统动力学是一门研究信息反馈系统的学科,是一门探索如何认识和解决系统问题的科学,是一门交叉、综合性的学科。系统动力学认为,系统的行为模式与特性主要地取决于其内部的动态结构与反馈机制,系统在内外动力和制约因素的作用下按一定的规律发展和演化。系统动力学是从运筹学的基础上改进发展起来的。鉴于运筹学太拘泥于“最优解”这一不足,系统动力学从观点上做了基本的代写硕士论文改变,它不依据抽象的假设,而是以现实存在的世界为前提,不追求“最佳解”,而是寻求改善系统行为的机会和途径。由此,系统动力学在传统管理程序的背景下,引进信息反馈和系统力学理论,把社会问题流体化,从而获得描述社会系统构造的一般方法,并且通过电子计算机强大的记忆能力和高速运算能力而获得对真实系统的跟踪,实现了社会系统的可重复性实验。不同于运筹学侧重于依据数学逻辑推演而获得解答,系统动力学是依据对系统实际的观测所获得的信息建立动态仿真模型,并通过计算机实验室来获得对系统未来行为的描述。当然,系统动力学建立的规范模型也只是实际系统的简化与代表。一个模型只是实际系统一个断面或侧面,系统动力学认为,不存在终极的模型,任何模型都只是在满足预定要求的条件下的相对成果。模型与现实系统的关系可用下图形象地加以说明。

(完整word版)系统动力学步骤

系统动力学分析步骤 (1)系统分析(分析问题,剖析要因) 1)调查收集有关系统的情况与统计数据 2)了解用户提出的要求、目的与明确所要解决的问题 3)分析系统的基本问题与主要问题、基本矛盾与主要矛盾、变量与主要变 量 4)初步划分系统的界限,并确定内生变量、外生变量和输入量 5)确定系统行为的参考模式 (2)系统的结构分析(处理系统信息,分析系统的反馈机制) 1)分析系统总体的与局部的反馈机制 2)划分系统的层次与子块 3)分析系统的变量、变量之间的关系,定义变量(包括常数),确定变量的 种类及主要变量。 4)确定回路及回路间的反馈耦合关系,初步确定系统的主回路及它们的性 质,分析主回路随时间转移的可能性 (3)确定定量的规范模型 1)确定系统中的状态、速率、辅助变量和建立主要变量之间的关系; 2)设计各非线性表函数和确定、估计各类参数; 3)给所有N方程、C方程与表函数赋值; (4)模型模拟与政策分析 1)以系统动力学的理论为指导进行模型模拟与政策分析,进而更深入地剖 析系统的问题; 2)寻找解决问题的决策,并尽可能付诸实施,取得实践结果,获取更丰富 的信息,发现新的矛盾与问题; 3)修改模型,包括结构与参数的修改; (5)模型的检验和评估 这一步骤的任务不是放在最后一起来做的,其中相当一部分是在上述过程中分散进行的。 参考模式:用图形表示重要变量,并推论和绘出与这些最有关的其他重要的两,从而突出、集中的勾画出有待研究的问题的发展趋势和轮廓,我们称这类随时间变化的变量图形为行为参考模式。在建模的过程中,要反复地参考这些模式。当系统的模型建成后,检验其有效性标准之一就是看模型产生的行为模式与参考模式是否大体一致。

机械系统动力学试题

机械系统动力学试题 一、 简答题: 1.机械振动系统的固有频率与哪些因素有关?关系如何? 2.简述机械振动系统的实际阻尼、临界阻尼、阻尼比的联系与区别。 3.简述无阻尼单自由度系统共振的能量集聚过程。 4. 简述线性多自由度系统动力响应分析方法。 5. 如何设计参数,使减振器效果最佳? 二、 计算题: 1、 单自由度系统质量Kg m 10=, m s N c /20?=, m N k /4000=, m x 01.00=, 00=? x ,根据下列条件求系统的总响应。 (a ) 作用在系统的外激励为t F t F ωcos )(0=,其中N F 1000=, s rad /10=ω。 (b ) 0)(=t F 时的自由振动。 2、 质量为m 的发电转子,它的转动惯量J 0的确定采用试验方法:在转子径向R 1的地方附加一小质量m 1。试验装置如图2所示,记录其振动周期。 a )求发电机转子J 0。 b )并证明R 的微小变化在R 1=(m/m 1+1)·R 时有最小影响。 3、 如图3所示扭转振动系统,忽略阻尼的影响 J J J J ===321,K K K ==21 (1)写出其刚度矩阵; (2)写出系统自由振动运动微分方程; (2)求出系统的固有频率; (3)在图示运动平面上,绘出与固有频率对应的振型图。 1 θ(图2)

(图3) 4、求汽车俯仰振动(角运动)和跳振(上下垂直振动)的频率以及振 动中心(节点)的位置(如图4)。参数如下:质量m=1000kg,回转半径r=0.9m,前轴距重心的距离l1=0.1m,后轴距重心的距离l2=1.5m,前弹簧刚度k1=18kN/m,后弹簧刚度k2=22kN/m (图4) 5、如5图所示锻锤作用在工件上的冲击力可以近似为矩形脉冲。已知 工件,铁锤与框架的质量为m1=200 Mg,基础质量为m2=250Mg,弹簧垫的刚度为k1=150MN/m,土壤的刚度为k2=75MN/m.假定各质量的初始位移与速度均为零,求系统的振动规律。

机器人学导论复习试题与参考答案新

中南大学网络教育课程考试复习题及参考答案 机器人学导论 一、名词解释题: 二、简答题: 1.机器人学主要包含哪些研究容? 2.机器人常用的机身和臂部的配置型式有哪些? 3.拉格朗日运动方程式的一般表示形式与各变量含义? 4.机器人控制系统的基本单元有哪些? 三、论述题: 1.试论述机器人技术的发展趋势。 2.试论述精度、重复精度与分辨率之间的关系。 4.试论述机器人静力学、动力学、运动学的关系。 四、计算题:(需写出计算步骤,无计算步骤不能得分): 1.已知点u的坐标为[7,3,2]T,对点u依次进行如下的变换:(1)绕z轴旋转90°得到点v;(2)绕 y轴旋转90°得到点w;(3)沿x轴平移4个单位,再沿y轴平移-3个单位,最后沿z轴平移7个单位得到点t。求u, v, w, t各点的齐次坐标。 2.如图所示为具有三个旋转关节的3R机械手,求末端机械手在基坐标系{x0,y0}下的运动学方程。 3.如图所示为平面的两旋转关节机械手,已知机器人末端的坐标值{x,y},试求其关节旋转变量θ1和 θ2.

P 4.如图所示两自由度机械手在如图位置时(θ1= 0 , θ2=π/2),生成手爪力 F A = [ f x 0 ]T 或F B = [ 0 f y ]T 。求对应的驱动力 τA 和τB 。 0x f ??? 5.如图所示的两自由度机械手,手部沿固定坐标系在手上X 0轴正向以 1.0m/s 的速度移动,杆长 l 1=l 2=0.5m 。设在某时刻θ1=30°,θ2=-60°,求该时刻的关节速度。已知两自由度机械手速度雅 可比矩阵为 1121221211212 212l s l s l s l c l c l c θθ---?? =? ?+?? J

暂态混沌动力学在神经网络优化计算中的应用

暂态混沌动力学在神经网络优化计算中的应用 ⒇ 杨立江 陈天仑 黄五群 (南开大学物理科学学院,天津,300071)摘 要 通过在神经网络状态空间演化方程中引入一个非线性反馈项,使神经网络系统的动力学表现出混沌特性. 为将混沌动力学作为搜索机制应用于优化问题,又引入一个调节机制构成了暂态混沌神经网络模型.本文着重 分析了暂态混沌神经网络动力学行为,并将其应用于旅行推销员问题.实现了全局优化且有较快的收敛速度. 关键词:神经网络;暂态混沌动力学;组合优化;T SP 0 引 言 神经网络是一个非常复杂的非线性巨系统,存在各种复杂动力学行为.在生物学实验中人们已观察到人脑和动物神经系统中的各种混沌行为,因此在人工神经网络中引入和讨论混沌动力学必将提高人工神经网络的智能化程度,使人工神经网络具有更为广阔的应用前景.迄今已提出了许多具有混沌动力学的神经网络模型[1~3],本文通过在神经网络演化方程中引入一个非线性自反馈项,提出了一个混沌神经网络模型.为了利用混沌动力学作为优化问题中的搜索机制,我们进一步讨论了暂态混沌神经网络模型,预期能在优化问题中获得更好的跳出局域坑并收敛到全局最小的能力.在旅行推销员问题的应用中,也确实验证了本文提出的暂态混沌神经网络具有较好的收敛结果和速度. 1 暂态混沌神经网络模型 首先引入非线性自反馈项构成了混沌神经网络模型(CNN),在此基础上,通过一个调节机制又构成了暂态混沌神经网络模型. 1.1 混沌神经网络模型 混沌神经网络模型可描述如下[1,3] V i (t )=11+e -U i /X (1) U i (t +1)=KU i (t )+T ∑N j =1W ij V i (t )+I i +g [U i (t )-U i (t -1)],i =1,2,…,n (2) 其中U i 为第i 个神经元的内部状态;V i 为第i 个神经元的输出;W ij 为神经元j 到i 的互连权重;I i 为第i 个神经元的输入偏置;k 为神经膜阻尼系数(0≤k ≤1);X 是输出函数的陡度参数. 混沌神经网络模型与一般的神经网络模型的重要区别在于演化方程(2)式右端的自反馈项g [U i (t )-U i (t -1)].正是由于这个自反馈项的引入.才使混沌神经网络具有更加丰富的时空动力学行为,而一般的神经网络系统则仅仅通过梯度下降收敛到一个稳定状态. 通常自反馈项的函数g (x )取为非线性函数,非线性函数的具体形式在问题中至关重要.本文中,第32卷 第3期 南开大学学报(自然科学) V o l.32 №3 1999年9月Acta Scientiarum N aturalium Universitatis N ankaiensis Sep.1999 ⒇收稿日期:1999-06-10*国家九五攀登计划非线性科学项目资助课题

系统动力学

目录 第一章绪论 1.1问题的提出 1.2研究的目的及意义 1.3国内外研究现状 第二章系统动力学及库存控制基本理论分析 2.1系统动力学的基本概念 2.1.1系统的概念 2.1.2系统动力学中系统的概念 2.2系统动力学模型结构 2.2.1反馈系统、因果关系图和反馈回路 2.2.2系统动力学流图 2.2.3系统变量 2.2.4系统动力学模型特点 2.3系统动力学建模 2.3.1系统动力学建模原则 2.4库存管理基础理论 2.4.1库存 2.4.2库存的作用 2.5库存控制理论及其模型 2.5.1库存控制 第三章系统动力学模型建立与分析 第四章模型仿真运行及结果分析 4.1系统动力学仿真设计 4.2仿真结果输出 致谢 参考文献

第一章绪论 1.1问题的提出 当今管理问题日益复杂化,促使人们认识、分析、研究、解决问题的思想方法开始从点与线的思考慢慢面向思考和系统化的思考转变。在此背景下,出现了以供应链管理(Supply Chain Management,SCM)为代表的新的管理理论与方法。供应链管理是当前管理学界研究的热点与难点问题,国际上一些著名的企业如IBM、戴尔、海尔等在供应链管理的实践中取得了巨大成就,因而受到管理学家和公司管理人员的极大的推崇。 供应链系统包括原材料供应商、制造商、分销商、零售商、最终客户等。每个组织内部又包含若干职能部门,如产品研发、生产制造、市场营销、人力资源、财务会计、物流运输等。这些职能部门可以看作是相互联系的子系统,他们之间是相互联系,相互制约的关系,而不是独立存在的。推而广之,供应链中的各个组织都具有这种交互关系。子系统与子系统之间的交互关系、系统与外部环境之间的交互关系,决定了供应链系统的复杂性、开放性、动态性和突变性。 供应链库存管理的目的就是使整个供应链系统中各个节点企业的库存波动控制在合理的范围并且使库存水平最小。库存的优化管理可以为企业带来比如减弱牛鞭效应、降低成本、加快资金周转等诸多好处,因此可以说是实现价值链增值的重要环节。但是由于供应链系统的非线性、复杂性以及动态性等特征,库存管理的科学决策很难由以往的直观经验和数学模型获得。系统动力学(System Dynamics,SD)是由美国麻省理工大学的J.W.福瑞斯特(J.W.Forrester)教授于20世纪50年代中期利用系统信息反馈理论为解决社会经济问题而开创的新学科。系统动力学可以根据系统内部各子系统的因果关系构造出具有多重反馈、非线性和时滞性的模型,并可利用计算机仿真来模拟系统的动态变化过程,分析关键因素对系统整体及其内部变量的影响。因此系统动力学方法是研究供应链库存问题行之有效的科学方法。 1.2研究的目的及意义 供应链库存管理不仅仅是一种新型的供应链库存管理模式,更是一

非线性动力学与混沌理论

非线性动力学和混沌理论 非线性动力学 随着科学技术的发展,非线性问题出现在许多学科之中,传统的线性化方法已不能满足解决非线性问题的要求,非线性动力学也就由此产生。 非线性动力学联系到许多学科,如力学、数学、物理学、化学,甚至某些社会科学等。非线性动力学的三个主要方面:分叉、混沌和孤立子。事实上,这不是三个孤立的方面。混沌是一种分叉过程,孤立子有时也可以和同宿轨或异宿轨相联系,同宿轨和异宿轨是分叉研究中的两种主要对象。 经过多年的发展,非线性动力学已发展出了许多分支。如分叉、混沌、孤立子和符号动力学等。然而,不同的分支之间又不是完全孤立的。非线性动力学问题的解析解是很难求出的。因此,直接分析非线性动力学问题解的行为(尤其是长时期行为)成为研究非线性动力学问题的一种必然手段。 混沌理论是谁提出的? 混沌理论,是系统从有序突然变为无序状态的一种演化理论,是对确定性系统中出现的内在“随机过程”形成的途径、机制的研讨。 美国数学家约克与他的研究生李天岩在1975年的论文“周期3则乱七八糟(Chaos)”中首先引入了“混沌”这个名称。 美国气象学家洛伦茨在2O世纪 6O年代初研究天气预报中大气流动问题时,揭示出混沌现象具有不可预言性和对初始条件的极端敏感依赖性这两个基本特点,同时他还发现表面上看起来杂乱无章的混沌,仍然有某种条理性。 1971年法国科学家罗尔和托根斯从数学观点提出纳维-斯托克司方程出现湍流解的机制,揭示了准周期进入湍流的道路,首次揭示了相空间中存在奇异吸引子,这是现代科学最有力的发现之一。 1976年美国生物学家梅在对季节性繁殖的昆虫的年虫口的模拟研究中首次揭示了通过倍周期分岔达到混沌这一途径。 1978年,美国物理学家费根鲍姆重新对梅的虫口模型进行计算机数值实验时,发现了称之为费根鲍姆常数的两个常数。这就引起了数学物理界的广泛关注。 与此同时,曼德尔布罗特用分形几何来描述一大类复杂无规则的几何对象,使奇异吸引子具有分数维,推进了混沌理论的研究。20世纪70年代后期科学家们在许多确定性系统中发现混沌现象。作为一门学科的混沌学目前正处在研讨之中,未形成一个完整的成熟理论。混沌的理论 要弄明白不可预言性如何可以与确定论相调和,可以来看看一个比整个宇宙次要得多的系统——水龙头滴下的水滴。这是一个确定性系统,原则上流入水龙头中的水的流量是平稳、均匀的,水流出时发生的情况完全由流体运动定律规定。但一个简单而有效的实验证明,这一显然确定性的系统可以产生不可预言的行为。这使我们产生某种数学的“横向思维”,它向我们解释了为什么此种怪事是可能的。 假如你很小心地打开水龙头,等上几秒钟,待流速稳定下来,通常会产生一系列规则的水滴,这些水滴以规则的节律、相同的时间间隔落下。很难找到比这更可预言的东西了。但假如你缓缓打开水龙头,使水流量增大,并调节水龙头,使一连串水滴以很不规则的方式滴落,这种滴落方式似乎是随机的。只要做几次实验就会成功。实验时均匀地转动水龙头,别把龙头开大到让水成了不间断的水流,你需要的是中速滴流。如果你调节得合适,就可以在好多分钟内听不出任何明显的模式出现。 1978年,加利福尼亚大学圣克鲁斯分校的一群年青的研究生组成了一个研究动力学系统的小组。他们开始考虑水滴系统的时候,就认识到它并不像表现出来的那样毫无规则。他们用话筒记录水滴的声音,分析每一滴水与下一滴水之间的间隔序列。他们所发现的是短期的可预言性。要是我告诉你3个相继水滴的滴落时刻,你会预言下一滴水何时落下。例如,假如水滴之间最近3个间隔是0.63秒、1.17秒和0.44秒,则你可以肯定下一滴水将在0.82秒后落下这些数只是为了便于说明问题。事实上,如果你精确地知道头3滴水的滴落时刻,你就可以预言系统的全部未来。 那么,拉普拉斯为什么错了? 问题在于,我们永远不能精确地测量系统的初始状态。我们在任何物理系统中所作出的最精确的测量,对大约10位或12位小数来说是正确的。 但拉普拉斯的陈述只有在我们使测量达到无限精度即无限多位小数,当然那是办不到的时才正确。 在拉普拉斯时代,人们就已知道这一测量误差问题,但一般认为,只要作出初始测量,比如小数点后10位,所有相继的预言也将精确到小数点后10位。误差既不消失,也不放大。 不幸的是,误差确实放大,这使我们不能把一系列短期预言串在一起,得到一个长期有效的预言。例如,假设我知道精确到小数点后10位的头3滴水的滴落时刻,那么我可以精确到小数点后9位预言下一滴的滴落时刻,再下一滴精确到8位,以此类推。 误差在每一步将近放大10倍,于是我对进一步的小数位丧失信心。所以,向未来走10步,我对下一滴水的滴落时刻就一无所知

相关文档
最新文档