烷基化反应的机理

烷基化反应的机理
烷基化反应的机理

烷基化反应的机理

石油炼制过程中的烷基化反应是指在酸性催化剂的作用下,烷烃分子与烯烃分子的化学加成反应,在反应过程中烷烃分子中的活泼氢原子的位置被烯烃所取代。由于异构烷烃中叔碳原子上的氢原子比正构烷烃中伯碳原子上的氢原子活泼得多,因此参加烷基化反应的烷烃为异构烷烃,一般特指异丁烷。

烷基化原料是以催化裂化液化气中异丁烷和异丁烯、丁烯-1为主。烷基化常用的酸性催化剂有硫酸、氢氟酸、三氯化铝等,本装置使用的催化剂为硫酸。 正碳离子的概念

在研究各种有机化学反应的时候,人们发现各种有机反应中间产物大体可以分为3种类型:自由基、阳离子、阴离子。烷基化反应属于其中的阳离子反应,即生成了正碳离子。随着人们对烷基化反应机理的不断探索与认识的日渐成熟,人们普遍接收的是正碳离子——链式反应机理。

所谓正碳离子是一个带正电荷的碳原子,它只有6个外层电子,是缺电荷的,其通式可以写为:

围绕正碳离子的取代物可以是氢原子,也可以是甲基基团,其四种形式分别为:

其稳定性从左到右依次增大,也就是说叔碳原子的正碳离子是最稳定的。这里所说的稳定性是相对而言的,总体来说,各种正碳离子都是极不稳定的,很容易进一步参与反应。只有当其与另一对电子成键以后,也就是说,当这个碳原子周围有了8个电子以后,它才能说是真正稳定了。

正碳离子与另一对电子成键的最常见的形式是加合一个负离子。这是正碳离子的最后一步反应,但却开始了另一个正离子的进程。 正碳离子的化学行为

以酸为催化剂的烷基化反应中,酸所提供的氢质子与烯烃的加成反应是产生正碳离子的主要反应。

C

H H

H CH 3

CH 3

CH 3CH 3

CH 3

CH 3

H H

H

C

C

C

C

如果烯烃与氢质子反应生成的了伯碳原子或仲碳原子上的正碳离子,它们有可能重排或异构化为稳定性相对较高的正碳离子。

如:

烯烃与质子发生加成反应能够生成正碳离子,反过来正碳离子也能失去质子再生成烯烃,而且不仅可能生成原来的烯烃,生成更稳定的烯烃的可能性更大。

正碳离子能够进一步与碳碳双键发生亲电加成反应,这是烷基化反应链增长的主要步骤:

要结束C 8+

的继续增长,需要提供负离子。由于异丁烷分子仲叔碳原子上连接着3个甲基基团,使得这个叔碳原子上的氢原子很可能以氢负离子的形式失去,异丁烷变成叔丁基正碳离子,C 8+

则接受氢负离子生成烷基化反应的主要产物异辛烷。

H

C C C

C H CH 3

CH 3

CH 3

CH 3

C CH 3CH 2CH 2CH 2

CH 3CH 2CH CH 3

CH

CH 3

CH 3

CH 3

CH 3

C

CH

CH 3CH 2CH CH 2CH 3

CH 2CH CH 3H CH 3CH 2CH CH 2CH 3

CH

CH 3

CH H

很少

主要产物(CH 3)

3C (CH 3)

2C CH 2

(CH 3)3C CH 2C CH 3

CH 3

烷基化反应的产物分布

以异丁烷和异丁烯、1-丁烯、2-丁烯等3种不同的烯烃为原料,以硫酸为催化剂,所得到的烷基化产物见下表:

H CH 3

CH 3(CH 3)

3C CH 2

C

CH 3CH 3

(CH 3)

C 3(CH 3)

3C CH 2H C (CH 3)3C

由上表看出:

1)异丁烷与碳四烯烃的烷基化反应不仅生成C8化合物,还生成C6、C7以及C9以上重组分,由此可以推断其反应机理是比较复杂的;

2)烷基化反应产物的分布中,C8化合物占大多数,C8化合物中又以2,2,4-三甲基戊烷所占的比例最大,其次为2,3,4-三甲基戊烷和2,3,3-三甲基戊烷;

3)硫酸烷基化反应产物的种类多于氢氟酸烷基化,可能是因为硫酸烷基化涉及到更多的反应过程。 烷基化链式反应机理

各种丁烯——异丁烷烷基化反应的主要产物是2,2,4-三甲基戊烷,在丙烯异丁烷的烷基化反应中,三甲基戊烷在反应产物中也占有相当数量。

以正碳离子理论为基础的烷基化反应,可以归纳为以下链式反应机理。 任何链式反应一般均包括3个步骤,即链的引发、链的增长、链的终止。 1)链的引发

在异丁烷与烯烃的烷基化反应过程中,烯烃得到氢质子H+形成正碳离子为链的引发过程,如下图中所生成的叔丁基上的正碳离子对烷基化反应起着至关重要的作用。

CH 3

CH 3

C (CH 3)

CH 2

H

3

C CH 3CH 3CH

3

(CH 3)CH 2CH 3CH

3C

2CH 3

(CH 2)CH

H CH CH

3

C

CH 2

CH 3

CH 3

C H

H C

R

CH 3CH 3CH

CH R

R CH 3

CH 3

R CH 3

CH 2

C CH 3

关于链的引发,有几点需要说明:

● 硫酸或氢氟酸的离解生成了氢质子,从而为正碳离子提供了正离子源,但当酸

处于完全不能离解的状态时,如在相当干燥的条件下,也就是说没有极性很大的水分子时,酸不能离解,烷基化反应则不能发生。

● 只有叔丁基正碳离子能够担任载链的功能,如果其他直链烯烃接受了氢质子,

则情况比较复杂:或者直链烯烃本身异构化为叔丁基正碳离子;或者直链烯烃的正碳离子摘取异丁烷的氢负离子,使异丁烷变为叔丁基正碳离子来引发烷基化反应。

● 大分子正碳离子(可用R+表示),特别是酸溶性烃类,是高度离子化的,能够

摘取烯烃或异丁烷的氢负离子,生成新的叔丁基正碳离子。

叔丁基正碳离子的主要来源是异丁烯,正丁烯得到质子形成的正碳离子经过氢转移也能得到叔丁基正碳离子。但是人们研究烷基化反应机理时发现,至少部分示踪的正丁烯变成了异丁烷,说明在酸性条件下正丁烯异构化生成了异丁烯,异丁烯接受氢负离子转移成了异丁烷;另外进行异丁烯/异丁烷的烷基化反应并不能显着提高三甲基戊烷的含量,在氢转移起主要作用时,指挥加快异丁烯的二聚和多聚,说明烷基化反应之前正丁烯要经过异构过程。这也是异丁烷与不同烯烃进行烷基化反应所得到的产物分布大致相似的主要原因。 2)链的增长

以下反应式解释了链的增长的过程,叔丁基正碳离子夺取氢负离子后生成产物,并保证了叔丁基正碳离子的继续存在。

CH 3

CH 3

C

CH 3)

CH 2

H

3

C 其中

3)链的终止

增长中的正碳离子通常从异丁烷中摘取一个氢负离子而停止增长,这是大多数烷基化链终止的方式。而链增长的正碳离子失去H+成为烯烃却是很少发生的,因为在对烷基化产物进行分析时很少发现有烯烃,而且烯烃一旦生成也会立即在烷基化条件下被质子化而重新参加反应的。

碳四馏分中的异丁烷与异丁烯发生烷基化反应生成2,2,4-三甲基戊烷的化学反应式为:

烷基化反应中的几种类型

从烷基化产物组成表中可以看出,烷基化反应过程要比上述链式反应机理复杂得多,一般过程中的反应有以下几种。 1)异构化

CH 3CH 2

C CH 3

CH 3

CH 3

C CH 3

C C

C C

C

C C

C

CH 2

(CH 3)

3

C H C CH 2CH

3

C

C

C

C

C C

C

C

C C

C

C

C

C C

C C

C

C

C C

C

C

C C

C C

C

C C C

C

CH 3CH 2

C CH

3

CH 3

CH 3

C CH 3

H CH 3CH 3

C CH 3

CH 3CH 2

C CH 3

H

为什么用正丁烯烷基化时所得到的2,2,4-三甲基戊烷比用异丁烯烷基化时还多?人们发现即使用丙烯烷基化时也生成相当数量的2,2,4-三甲基戊烷。合理的解释是,在酸性条件下,正丁烯发生了异构化反应,生成了异丁烯,异丁烯接受氢负离子转移生成了异丁烷。

注:C 14

为研究烷基化反应时常用的示踪原子。

烷基化反应中异构化反应的说法受到普遍的承认,并得到以下事实的证实: ①在烷基化的反应温度下,几种丁烯之间的热力学平衡是有利于异丁烯的,从对热力学有利考虑,异丁烯存在的百分数最高。

②从研究来看,各种丁烯所得到的烷基化产物的组成大体上是相似的,也就是说这意味着不同丁烯在进入烷基化反应之前,先进行了异构化反应,并且不同丁烯都异构化为一个以异丁烯为主的平衡的组成相似的烯烃混合物,所以使得不同烯烃的烷基化产物有着相似的组成。

③如果正丁烯直接参加链引发反应的话,将会有相当数量的正丁烷生成。事实上并没有一定量的正丁烷在烷基化反应中生成,这说明不是正丁烯直接参加引发烷基化反应的。

2)异丁烯二聚或多聚

在低温下,异丁烯在酸性催化剂的作用下,可以聚合成高聚物——聚异丁烯。而高

14CH 3CH 3CH

C H

CH 3

CH 2

C CH 3

CH 3

CH 3

C CH

3

1414CH 3

CH 3

C CH 3

CH 3

CH 3

C CH 3

H CH 3CH 3

C CH 3

H (CH 3)

3C 1414

温下异丁烯就进行二聚反应,产生异辛烯,将这个异辛烯加氢就可以得到异辛烷。因此,人们想到在异丁烯与异丁烷烷基化中,似乎不是一个异丁烷分子与一个异丁烯分子发生烷基化反应,而是由异丁烯二聚然后再从异丁烷上摘取一个氢而完成烷基化反应的。

既然存在二聚反应,就不可避免地可能产生三聚与多聚,特别是异丁烯的多聚,使得烷基化产物中总是包括一定量的高沸点物。如果在烷基化反应器中提高异丁烷的浓度,可以减少异丁烯彼此碰撞的机会,从而减少高沸物的生成,这也就是工业生产中控制反应烷烯比在15~20范围的原因。 3)断裂反应

多聚反应生成的烯烃在催化剂的作用下得到质子形成正碳离子,这些大分子正碳离子在摘取氢负离子之前自身能够发生断裂反应,所生成的较小分子量的正碳离子摘取氢负离子生成烷烃,这就是生成C5、C7等烷烃的原因。

发生断裂反应还有如下一些证据:

①将2,2,4-三甲基戊烯作为烷基化原料进行反应,在反应产物中发现了C5和C7异构烷烃等低分子产物,说明有断裂反应。

②将三甲基戊烷和二甲基己烷在硫酸存在下进行降解反应,生成相当数量的C4~C7等低分子烷烃或烯烃产物。

对断裂反应的研究发现,烯烃发生多聚合反应所生成的大分子烷基正离子是产生断裂反应的中间体。在不同的反应条件下,可能发生不同种类的断裂反应。 4)氢负离子转移反应

正碳离子有着从其他烷烃分子上摘取一个氢负离子的可能,从而使自己成为稳定的烷烃,同时开始一个新的正碳离子。

正碳离子能够从烯烃以及较大一些聚合物分子中摘取氢负离子,这个反应称为氢负离子转移反应。氢负离子转移反应可以解释丙烯与异丁烷烷基化时也能产生2,2,4-三甲基戊烷的原因了。 5)岐化反应

CH 3

C CH

3

R

CH 3CH 3

C CH 3

H CH 3CH 3

C CH 3

H R

CH 3C CH

3

在丁烯异丁烷的烷基化产物中还可以看到少量的C7产物,这是在与C4与C8之间发生了岐化反应所生成的。

反应产物的解释

1)2,2,4-三甲基戊烷在不同的烷基化原料、工艺和反应条件下都是最重要的反应产物,约占全部反应产物的20~50%。其生成反应是叔丁基正碳离子与异丁烯共二聚后从异丁烷摘取一个氢原子后完成的。在烷基化条件下,正丁烯可以异构化为异丁烯或叔丁基正碳离子,丙烯也可以摘取异丁烷中的氢负离子,使异丁烷变成为叔丁基正碳离子以至异丁烯,从而生成2,2,4-三甲基戊烷。

2)一般认为二甲基己烷是异丁烯和正丁烯共二聚后再从异丁烷上摘取氢负离子后生成的。

3)C7和C8的多种异构体是在二聚反应后的正碳离子阶段发生异构化反应而生成的。不应该是正、异丁烯的直接二聚骨架。

4)烷基化反应产物中的重质化合物应是烯烃多聚合的产物。

5)C5、C6、C7等轻烃的生成是C 12+

、C 16+

等大分子正碳离子的断裂反应以及C 7+

C 8+正碳离子的岐化反应生成的。

6)丙烯异丁烷烷基化反应的反应产物主要是二甲基戊烷,由于正碳离子的作用,也能生成三甲基戊烷。此外,丙烯也能发生二聚、多聚反应,其正碳离子也能发生岐化、异构化和断裂反应。

C 8H 18C 4H 10C 5H 12C 7H

16

正丁烷异构化制异丁烷

正丁烷异构化制异丁烷 一、正丁烷异构化制异丁烷反应 正丁烷异构化是石化工业中一个很重要的反应, 其产物异丁烷是生产高辛烷值汽油的原料之一,异丁烷的脱氢产物异丁烯可用于生产无铅汽油添加剂甲基叔丁基醚和乙基叔丁基醚. 正丁烷的异构化反应机理与催化剂的类型有关。目前, 工业上正丁烷异构化反应主要使用Pt/Cl-Al2O3类催化剂, 在此类催化剂上, 反应所需温度(400~460 K) 较低, 但催化剂易中毒, 对水和芳烃敏感, 而且在使用过程中需不断加入含氯化合物以保持反应所需的酸强度, 存在一定的腐蚀和环境污染问题。而现在固体酸催化剂. 沸石分子筛、杂多酸盐和SO42?促进的金属氧化物催化剂是目前研究较多的三大类烷烃异构化催化剂, 二、产物异丁烷的主要用途 正丁烷异构化产物异丁烷是烷基化反应的主要原料和合成甲基叔丁基醚(MTBE)等汽油添加剂的重要前驱体。广泛用于染料、化学合成致冷剂、合成橡胶、航空汽油、照明等。其重要性有:(1)脱氢制成异丁烯,是合成MTBE 和乙基叔丁基醚(ETBE)等无铅汽油添加剂的主要原料。(2)生产丁基橡胶、聚异丁烯、甲基丙烯酸甲酯和异戊二烯等精细化工产品的原料。(3)异丁烷与异丁烯经烃化而制得异辛烷,作为汽油辛烷值的改进剂。 三、异构化技术的发展 我国的直馏汽油和催化裂化汽油所占比例较大,而适合环保需

要的清洁汽油组分所占比例很小。这使得我国成品汽油的普遍存在苯、烯烃和芳烃等含量超标现象,因此发展环境友好汽油组分的生产已成为必然。 在国外异构化工艺已得到广泛应用,异构化加工能力,全球均呈上升趋势,其中在北美应用最广泛,而且仍在迅速发展。美国车用汽油中异构化油的加入量已超过10%,2000年平均加入量已达12%,个别炼厂达20%。 四、异构化催化剂及工艺 异构化工艺改进的关键在于催化剂。 化工工艺按操作温度可分为高温异构化(高于320 ℃)、中温异构化(250~280 ℃)和低温异构化过程(115~150 ℃)三种,其中高温异构化应用条件较苛刻,故不作介绍。 低温异构化工艺采用卤化铂/ 氧化铝型催化剂,以γ- Al2O3作载体,操作过程中需要在原料中不断加入适量的氯化物助剂。反应仍然在临氢条件下进行催化剂可进行再生,但再生设备昂贵。对原料中水和硫的含量有较严格的要求,使其应用受限制; 中温异构化工艺,在2 MPa 临氢的条件下进行异构化反应,反应温度250~280 ℃,采用贵金属/ 改性分子筛为催化剂。该工艺的优点是对原料的要求不太严格,其缺点是其平衡转化率不高。 目前的异构化催化剂的开发更注重于提高其对原料的适应性,从而不需要配套的原料处理系统,以减少装置投资、降低操作费用。目前从投产的装置数量上看,中温型的装置占多数。

烷基化反应的机理

烷基化反应的机理 石油炼制过程中的烷基化反应是指在酸性催化剂的作用下,烷烃分子与烯烃分子的化学加成反应,在反应过程中烷烃分子中的活泼氢原子的位置被烯烃所取代。由于异构烷烃中叔碳原子上的氢原子比正构烷烃中伯碳原子上的氢原子活泼得多,因此参加烷基化反应的烷烃为异构烷烃,一般特指异丁烷。 烷基化原料是以催化裂化液化气中异丁烷和异丁烯、丁烯-1为主。烷基化常用的酸性催化剂有硫酸、氢氟酸、三氯化铝等,本装置使用的催化剂为硫酸。 正碳离子的概念 在研究各种有机化学反应的时候,人们发现各种有机反应中间产物大体可以分为3种类型:自由基、阳离子、阴离子。烷基化反应属于其中的阳离子反应,即生成了正碳离子。随着人们对烷基化反应机理的不断探索与认识的日渐成熟,人们普遍接收的是正碳离子——链式反应机理。 所谓正碳离子是一个带正电荷的碳原子,它只有6个外层电子,是缺电荷的,其通式可以写为: 围绕正碳离子的取代物可以是氢原子,也可以是甲基基团,其四种形式分别为: 其稳定性从左到右依次增大,也就是说叔碳原子的正碳离子是最稳定的。这里所说的稳定性是相对而言的,总体来说,各种正碳离子都是极不稳定的,很容易进一步参与反应。只有当其与另一对电子成键以后,也就是说,当这个碳原子周围有了8个电子以后,它才能说是真正稳定了。 正碳离子与另一对电子成键的最常见的形式是加合一个负离子。这是正碳离子的最后一步反应,但却开始了另一个正离子的进程。 正碳离子的化学行为 以酸为催化剂的烷基化反应中,酸所提供的氢质子与烯烃的加成反应是产生正碳离子的主要反应。 C H H H CH 3 CH 3 CH 3CH 3 CH 3 CH 3 H H H C C C C

正构烷烃临氢异构化反应的研究综述

正构烷烃临氢异构化反应的研究综述 摘要:综述了近年来正构烷烃在分子筛为载体的双功能催化剂上临氢异构化反应机理的研究进展,介绍了单分子机理、双分子机理、孔口机理及锁匙机理。同时,综述了近年来临氢异 构催化剂的发展,介绍了β分子筛、丝光沸石、SAPO 系列分子筛、固体超强酸等为载体的双 功能催化剂。最后,对反应机理在制备新型催化剂领域的应用以及新型复合材料在这一领域的 应用前景做了展望。 关键词:正构烷烃,临氢异构,反应机理,催化剂 1 前言 随着环保法规的要求日益严格以及人们环保意识的增强,石油产品的质量规格日益提高,人们对清洁汽油、柴油和润滑油等产品的需求不断增加,因而加氢异构化作为生产优质石油产品的技术越来越受到人们的重视。在汽油的生产中,利用加氢异构化技术可以提高辛烷值;在柴油和润滑油的生产中,通过加氢异构化可以降低凝点或倾点,改善润滑油的粘温性质,同时保持较高的产品收率。加氢异构化技术还可以改善产品的结构。现代炼油工业为了充分利用石油资源,对重质油的加工越来越多,在重油的加氢裂化工艺中,提高催化剂的异构化性能可以多产中间馏分油。因此,对于烷烃的临氢异构化反应进行深入的研究,了解异构化反应的途径,揭示反应规律,可为催化剂的设计提供更好的思路,具有十分重要的意义。 2 临氢异构反应机理 2.1 单分子反应机理 正构烷烃在双功能催化剂上进行加氢异构化反应,部分通过烷基正碳离子中间体进行。其中,异构化反应可通过两条途径来实现[1]:(1)烷基迁移,即A型异构化;(2)质子角-角迁移,即B型异构化,如图1所示。其中A型异构化机理能够改变侧链的位置,但不改变分子中伯、仲、叔和季碳的原子个数,经历了一个烷基正碳离子环化过程,生成角状质子化的环丙烷结构的中间体(简称CPCP),随后环丙烷开环;而B型异构化机理能够改变支链度,随之改变分子中伯、仲、叔和季碳的原子个数,通常发生在CPCP开环之前,质子先进行角-角迁移,然后经过取代质子化环丁烷(简称CPCB)生成乙基侧链的烃。由于角-角迁移需较高的能量,因此,B型异构化比A型反应慢。 图1 烷基正碳离子A型和B型异构化机理 通常认为,单分子异构化反应机理按照环丙烷正碳离子机理(PCP)进行,如图2所示。

异构化催化剂

一、异构化原理 芳烃异构化反应是指在一定的温度、压力,临氢状态和催化剂作用下,将含贫对二甲苯(PX〈1%)的混合二甲苯转化为二甲苯的四种异构体(PX、MX、OX、EB)接近平衡的催化异构过程。其目的是为了降低吸附塔进料中乙苯的含量,提高对二甲苯的浓度,多生产对二甲苯产品。 二、催化剂性能介绍 二甲苯异构化采用法国Exxon Mobil的XyMax工艺。催化剂型号为EM-4500T/B,它是由氧化铝和丝光沸石为载体的载铂双功能催化剂。催化剂上层酸性比较强,主要是乙苯脱乙基转化成苯;下层金属功能比较强,主要是二甲苯异构。反应过程中乙苯转化率比较高,二甲苯损失率比较小。 主反应: 二甲苯异构化;乙苯加氢脱乙基生成苯和乙烷;乙苯通过环烷桥转化成二甲苯 副反应(造成C8A环损): 二甲苯歧化反应生成甲苯/C9或C10/苯;二甲苯加氢脱烷基生成甲苯与甲烷;加氢开环裂解 异构化反应条件: 三、EM-4500与SKI-100A性能对比 石科院研制的SKI-100A乙苯脱乙基催化剂2005年7月应用在洛阳石化芳烃装置上,2006年5月对催化剂进行了标定。两种催化剂标定情况对比如下:

从表中的数据对比可以看出进口催化剂有以下几点优势: 1、空速高:装置负荷一定的情况下,催化剂装填量少,反应器体积小。 2、轻烃比小:循环氢量少,循环氢压缩机体积小。 3、EB转化率高、C8A环损低:二甲苯产量大,PX产率高。 与国产异构化催化剂相比,使用进口催化剂,最大的优势是设备及管线规格小,可以减少了设备大型化的难度并节约投资。催化剂价格虽然贵,但是装填量少,而且二甲苯产率高。 但是使用Exxon Mobil的催化剂,反应压力比较高,反应温度也高一些,能耗高一些。 四、催化剂硫化 异构化催化剂在使用初期,要进行预硫化和钝化。预硫化的目的是通过向反应器内注硫来抑制催化剂的金属功能,控制开工阶段的反应温升,防止床层飞温;钝化是通过缓慢提高反应苛刻度,使催化剂少量积炭来抑制其酸性功能,减少芳环损失,提高C8A产率。 对于EM4500催化剂而言硫是暂时性毒物,硫化使催化剂暂时中毒,降低新鲜催化剂的初始活性,降低加氢和裂解反应、控制反应器温升。催化剂上的硫随着装置的运行会逐渐从高分顶部排出。钝化时间短,钝化完成以后,应尽快调整到正常的操作条件。预硫化和钝化对催化剂的寿命影响很小。

正丁烷异构化制异丁烷

项目:正丁烷异构化制异丁烷 一、正丁烷异构化制异丁烷反应 正丁烷异构化是石化工业中一个很重要的反应, 其产物异丁烷是生产高辛烷值汽油的 原料之一,异丁烷的脱氢产物异丁烯可用于生产无铅汽油添加剂甲基叔丁基醚和乙基叔丁基醚.正丁烷的异构化反应机理与催化剂的类型有关。目前, 工业上正丁烷异构化反应主要使用Pt/Cl-Al2O3 类催化剂, 在此类催化剂上, 反应所需温度(400~460 K) 较低, 但催化剂 易中毒, 对水和芳烃敏感, 而且在使用过程中需不断加入含氯化合物以保持反应所需的酸强度, 存在一定的腐蚀和环境污染问题。而现在固体酸催化剂. 沸石分子筛、杂多酸盐和SO42?促进的金属氧化物催化剂是目前研究较多的三大类烷烃异构化催化剂, 二、产物异丁烷的主要用途 正丁烷异构化产物异丁烷是烷基化反应的主要原料和合成甲基叔丁基醚(MTBE)等汽油添加剂的重要前驱体。广泛用于染料、化学合成致冷剂、合成橡胶、航空汽油、照明等。其重要性有:(1)脱氢制成异丁烯,是合成MTBE 和乙基叔丁基醚(ETBE)等无铅汽油添加剂的主要原料。(2)生产丁基橡胶、聚异丁烯、甲基丙烯酸甲酯和异戊二烯等精细化工产品的原料。(3)异丁烷与异丁烯经烃化而制得异辛烷,作为汽油辛烷值的改进剂。 三、异构化技术的发展 我国的直馏汽油和催化裂化汽油所占比例较大,而适合环保需要的清洁汽油组分所占比例很小。这使得我国成品汽油的普遍存在苯、烯烃和芳烃等含量超标现象,因此发展环境友好汽油组分的生产已成为必然。 在国外异构化工艺已得到广泛应用,异构化加工能力,全球均呈上升趋势,其中在北美应用最广泛,而且仍在迅速发展。美国车用汽油中异构化油的加入量已超过10%,2000年平均加入量已达12%,个别炼厂达20%。 四、异构化催化剂及工艺 异构化工艺改进的关键在于催化剂。 化工工艺按操作温度可分为高温异构化(高于320 ℃)、中温异构化(200~320 ℃)和低温异构化过程(低于200 ℃)三种,其中高温异构化应用条件较苛刻,故不作介绍。低温异构化工艺采用卤化铂/ 氧化铝型催化剂,以γ- Al2O3作载体,操作过程中需要在原料中不断加入适量的氯化物助剂。反应仍然在临氢条件下进行催化剂可进行再生,但再生设备昂贵。对原料中水和硫的含量有较严格的要求,使其应用受限制;中温异构化工艺,,在2 MPa 临氢的条件下进行异构化反应,反应温度250~280 ℃,采用贵金属/ 改性分子筛为催化剂。该工艺的优点是对原料的要求不太严格,其缺点是其平衡转化率不高。 目前的异构化催化剂的开发更注重于提高其对原料的适应性,从而不需要配套的原料处理系统,以减少装置投资、降低操作费用。目前从投产的装置数量上看,中温型的装置占多数。 目前,国外异构化技术主要掌握在美国UOP公司和法国IFP公司手中,产品辛烷值在80以上,最高可达92(C6循环+全异构化工艺)。低温型催化剂反应活性较高;中温型LPI-100催化剂活性比传统的沸石催化剂高,其产物的辛烷值较高,可达80~82,反应温度约为220 ℃。UOP开发的HS-10沸石催化剂比IFP 的同类型催化剂的性能差一些。美国UOP和法国IFP公司技术保密性较强,转化

偶氮苯顺反异构化机理研究进展

偶氮苯顺反异构化机理研究进展 王罗新1,2 王晓工 2 * (1武汉科技学院 武汉 430073; 2清华大学化工系高分子研究所 北京 100084) 摘要 偶氮苯的光致顺反异构化是许多偶氮类功能材料光响应的基础。近年来,偶氮苯的顺反异构化机理受到了广泛关注。本文综述了有关偶氮苯顺反异构化机理的一些最新研究进展,针对偶氮苯光致异构化过程中有争议的旋转和反转机理问题,从争论的起源到目前的研究结论进行了系统总结,同时也提出了一些尚需深入研究的问题。 关键词偶氮苯异构化机理光响应性 Progress of the Trans-Cis Isomerization Mechanism of Azobenzene Wang Luoxin1, 2, Wang Xiaogong2 * (Wuhan Universtity of Science and Engineering, Wuhan 430073; Institute of Polymer Science and Engineering, Department of Chemical Engineering, Tsinghua University, Beijing 100084) Abstract: The trans-cis photoisomerization of azobenzene is the basis of photo-responsive properties of many azo-functional materials. The isomerization mechanism has drawn extensive attention recently. This paper reviews the recent research progress in the isomerization mechanism of azobenzene. A comprehensive summary, from the original argument to the present research state, has been given to the open question about the rotation and inversion mechanisms of the photoisomerization. Some relevant problems necessary to be further studied are put forward at the same time. Key words: Azobenzene, Isomerization, Mechanism, Photoresponsive 偶氮苯及其衍生物是目前世界上使用量最大的一类染料。近年来,偶氮苯的光响应特性使其在许多领域表现出巨大的应用潜力。偶氮苯分子存在顺式和反式两种异构体。在特定波长的紫外光照射下,反式构型的偶氮苯会转变为顺式构型;在可见光或热作用下,顺式构型可回复到反式构型。两种构型的偶氮苯分子具有明显不同的紫外可见吸收光谱。同时,两者的立体结构、偶极矩等一些物理和化学性质亦存在明显差异。目前,偶氮苯顺反异构体的不同特性,以及顺反异构化诱导产生的各种光响应现象,引起了广泛的关注。含偶氮基元的光响应性材料表现出很多独特的性能,如光动力纳微米机械[1,2]、光驱动分子开关[3]、信息存储[4]、表面起伏光栅及命令表面[5,6]、非线性光学材料及光子材料[7~9]等。最近,随着各种偶氮苯类材料奇特性质的不断发现,偶氮苯分子的结构[10~12]、光谱特性[13,14]、异构化机理[15~20]、激发态衰减动力学过程[21~29]等重新引起了人们的极大兴趣。 1 偶氮苯热致顺反异构化机理 相对于偶氮苯的光异构化,偶氮苯的热异构化机理较为简单。但已有的相关文献对于偶氮苯分子的国家自然基金重点项目(50533040)

异构化 isomerization

化合物分子进行结构重排而其组成和分子量不发生变化的反应过程。烃类分子的结构重排主 要有烷基的转移、双键的移动和碳链的移动。反应通常在催化剂作用下进行。 40年代以前,异构化过程主要用于生产高辛烷值汽油调合组分。40年代以后,由于对航空汽油的大量需求,由异丁烷烷基化生产高辛烷值汽油调合组分的过程迅速发展,同时广泛开展 了用三氯化铝作催化剂(见固体酸催化剂)的正丁烷异构化研究,并实现了工业化,扩大了 烷基化的原料来源。1960年,美国大西洋炼油公司将异构化过程应用于芳烃的转换,开发了 以氧化铝或氧化铝-氧化硅为载体的铂催化剂的二甲苯异构化工艺过程,随后日本三菱瓦斯 化学公司又开发了用氟化氢-氟化硼作催化剂的液相二甲苯异构化过程。1976年和1978年 美国莫比尔化学公司先后开发了使用新型ZSM-5分子筛催化剂的二甲苯气相和液相异构化 过程。 反应类型主要有气相法和液相法两种。按工业中最有代表性的原料,又分为: ①烷烃的异构化,如C4、C5、C6烷烃的异构化: ②烯烃的异构化,如1-丁烯的异构化: ③芳烃的异构化,如二甲苯、乙苯的异构化: ④环烷烃的异构化,如甲基环戊烷的异构化:环烷烃的异构化是催化重整过程的重要反应之一。 ⑤甲酚的异构化: 催化剂主要有下列几类:①弗瑞德-克来福特型催化剂,常用的有三氯化铝-氯化氢、氟 化硼-氟化氢等。这类催化剂活性高,所需反应温度低,用于液相异构化,如正丁烷异构化为异丁烷,二甲苯的异构化等。②以固体酸为载体的贵金属催化剂,如铂-氧化铝、铂-分子筛、钯-氧化铝等。这类催化剂属于双功能催化剂,其中金属组分起加氢和脱氢作用,固体酸起异构化作用。采用这类催化剂时,反应需在氢存在下进行,故也称临氢异构化催化剂,用于气 相异构化。烷烃、烯烃、芳烃、环烷烃的异构化也可采用。尤其是乙苯异构化为二甲苯和环 烷烃的异构化只有这类催化剂有效。其优点是结焦少,使用寿命长。③以固体酸为载体的非 贵金属催化剂,如镍-分子筛等,一般也需有氢存在,用于气相异构化,但不能使乙苯异构化成二甲苯。④ZSM-5分子筛催化剂,主要用于二甲苯的气相或液相异构化。 过程条件异构化是可逆反应,反应常常可进行到接近平衡转化率。由于反应热效应很小, 温度对平衡组成影响不甚显著,但低温操作有利于减少副反应。液相异构化反应温度一般为90~150°C。气相异构化反应温度则为300~500°C。气相非临氢异构化可在低压(约0.3MPa)下进行,气相临氢异构化则需较高压力(2.0~2.5Mpa)下进行。氢烃摩尔比为5~20:1,过量 氢气可循环使用。气相异构化可采用固定床反应器,液相均相异构化可用塔式反应器,非均

异构化

异构化 中文名称:异构化 英文名称:isomerization 定义:一种同分异构体与另一种同分异构体相互转化的作用或过程。 改变化合物的结构而不改变其组成和分子量的过程。一般指有机化合物分子中原子或基团的位置的改变。常在催化剂的存在下进行。 催化剂 主要有下列几类:①弗瑞德-克来福特型催化剂,常用的有三氯化铝-氯化氢、氟化硼-氟化氢等。这类催化剂活性高,所需反应温度低,用于液相异构化,如正丁烷异构化为异丁烷,二甲苯的异构化等。②以固体酸为载体的贵金属催化剂,如铂-氧化铝、铂-分子筛、钯-氧化铝等。这类催化剂属于双功能催化剂,其中金属组分起加氢和脱氢作用,固体酸起异构化作用。采用这类催化剂时,反应需在氢存在下进行,故也称临氢异构化催化剂,用于气相异构化。烷烃、烯烃、芳烃、环烷烃的异构化也可采用。尤其是乙苯异构化为二甲苯和环烷烃的异构化只有这类催化剂有效。其优点是结焦少,使用寿命长。③以固体酸为载体的非贵金属催化剂,如镍-分子筛等,一般也需有氢存在,用于气相异构化,但不能使乙苯异构化成二甲苯。④ZSM-5分子筛催化剂,主要用于二甲苯的气相或液相异构化。 过程条件 异构化是可逆反应,反应常常可进行到接近平衡转化率。由于反应热效应很小,温度对平衡组成影响不甚显著,但低温操作有利于减少副反应。液相异构化反应温度一般为90~150°C。气相异构化反应温度则为300~500°C。气相非临氢异构化可在低压(约0.3MPa)下进行,气相临氢异构化则需较高压力(2.0~2.5Mpa)下进行。氢烃摩尔比为5~20:1,过量氢气可循环使用。气相异构化可采用固定床反应器,液相均相异构化可用塔式反应器,非均相异构化则可用涓流床反应器。

烷基化反应的机理.docx

-` 烷基化反应的机理 石油炼制过程中的烷基化反应是指在酸性催化剂的作用下,烷烃分子与烯烃分子的 化学加成反应,在反应过程中烷烃分子中的活泼氢原子的位置被烯烃所取代。由于异构 烷烃中叔碳原子上的氢原子比正构烷烃中伯碳原子上的氢原子活泼得多,因此参加烷基 化反应的烷烃为异构烷烃,一般特指异丁烷。 烷基化原料是以催化裂化液化气中异丁烷和异丁烯、丁烯-1 为主。烷基化常用的酸 性催化剂有硫酸、氢氟酸、三氯化铝等,本装置使用的催化剂为硫酸。 4.1 正碳离子的概念 在研究各种有机化学反应的时候,人们发现各种有机反应中间产物大体可以分为3种类型:自由基、阳离子、阴离子。烷基化反应属于其中的阳离子反应,即生成了正碳 离子。随着人们对烷基化反应机理的不断探索与认识的日渐成熟,人们普遍接收的是正 碳离子——链式反应机理。 所谓正碳离子是一个带正电荷的碳原子,它只有6个外层电子,是缺电荷的,其通式 可以写为: C 围绕正碳离子的取代物可以是氢原子,也可以是甲基基团,其四种形式分别为: H H H CH3 H C H CH3 C H CH3 C CH3CH3 C CH3 其稳定性从左到右依次增大,也就是说叔碳原子的正碳离子是最稳定的。这里所说 的稳定性是相对而言的,总体来说,各种正碳离子都是极不稳定的,很容易进一步参与 反应。只有当其与另一对电子成键以后,也就是说,当这个碳原子周围有了8个电子以后,它才能说是真正稳定了。 正碳离子与另一对电子成键的最常见的形式是加合一个负离子。这是正碳离子的最 后一步反应,但却开始了另一个正离子的进程。 4.2正碳离子的化学行为 以酸为催化剂的烷基化反应中,酸所提供的氢质子与烯烃的加成反应是产生正碳离 子的主要反应。

轻烷烃异构化技术及发展

轻烷烃异构化技术及发展 论述了异构化技术在清洁汽油生产中的作用及异构化技术的发展现状,同时对轻烷烃异构化装置的经济性进行了简要分析:在降低重整反应温度后,液体收率、汽油收率均有所提高,同时还可以延长催化剂使用寿命,使重整装置运行的经济性有较大的提高。 关键词:清洁汽油异构化技术 随着我国国民经济的快速发展和人民生活水平的提高,大气污染越来越受到人们的密切关注,对汽车尾气的排放要求越来越高,对车用燃料质量要求也日趋严格,清洁燃料的生产已提到十分紧迫的日程上来。 我国车用汽油的主要成分是催化汽油和重整汽油,目前只有少数炼油厂在车用汽油中加入少量的MTBE和烷基化油,由于MTBE对地下水的污染,前途未卜,其应用受到限制。烷基化汽油又因现有的生产工艺对环境的污染、加工成本高等原因,国内大部分烷基化装置没有开工,这样炼油厂必须寻找其他高辛烷值的汽油调合组分,于是C5、C6异构化技术被提了出来。 1 轻烷烃异构化技术及发展 1.1 异构化技术 C5、C6烷烃各组分的辛烷值如表1。 5656 辛烷值较高的异构体。可供选择的原料有直馏或轻重整原料等。虽然异构化产品相对烷基化油、醚化产品等辛烷值并不高,但有以下优点:①硫含量很低,不含烯烃、芳烃和苯; ②可减少汽车发动机在低速条件下的爆震,使汽油具有较好的挥发性;③可提高汽油的前端辛烷值。因此,异构化汽油是较好的清洁汽油调合组分。 1.2 异构化技术的发展 我国的直馏汽油和催化裂化汽油所占比例较大,而适合环保需要的清洁汽油组分所占比例很小。这使得我国成品汽油的普遍存在苯、烯烃和芳烃等含量超标现象,因此发展环境友好汽油组分的生产已成为必然。 世界各地轻汽油异构化技术的加工能力见表2。 表2 1990-2010年异构化装置的加工能力

催化裂化反应机理

异丙醇脱氢制丙酮所采用的催化剂及其设计原理 张若杰 1201班 化学工程 01201208170114 一、反应机理 脱氢反应是脱氢催化剂(Dehydrogenation catalysts )下进行的气固相催化反应,且反应是吸热的。在异丙醇分子中由于羟基的影响,α-H 比较活泼,容易发生脱氢。 常压200-300℃,异丙醇在催化剂表面,脱氢吸热生成丙酮,并产生大量氢气。本反应主要涉及两个过程。温度适中时,发生主反应: ()()↑+?→? 22323H CO CH CHOH CH (1) 起始时,由于异丙醇的加入,汽化需要吸收大量的热,导致反应温度降低,发生 副反应: ()()()O H COCH CHCH CH CHOH CH CO CH 232232323+?→?+ (2) 温度过高时,发生异丙醇分子内脱水,生成异丙醚: ()()()O H CH CHOCH CH CHOH CH 2232332+?→? (3) 因此温度控制的是否得当是生成目的产物的关键。 二、反应热力学分析 查有关手册得298K 各相关物质的 f H ?和 f G ?值于下表:(kcal/mol ) 求出各反应在298K 的r H ?、r G ?和Kp 值列于下表: 由方程??? ? ??-?=211211ln T T R H Kp Kp r 求出多个温度的Kp 值列于下表:

由上表数据可知,高温、低压有利异丙醇脱氢生成丙酮的反应。 三、分子反应机理 反应物分子先被催化剂上的金属离子Mn+作用而脱去H-(发生C-H键异裂),随后再脱去H+而成不饱和键。要求反应分子交易极化产生Cδ+—Hδ-,催化剂也需要有极化能力的金属离子Mn+用来脱去H-,同时具有负电荷的O2-,以接受H-。因此这类机理类似于酸碱催化。 四、催化剂的选择 在反应过程中,反应温度随催化剂的不同而不同。异丙醇脱氢反应是一简单反应,工业上大多采用气相反应,原料在气相条件下流过列管式固定床反应器,发生脱氢反应,常用铜锌系催化剂。典型的工艺条件为反应压力0.2~0.3 MPa,反应温度200~300℃,异丙醇单程转化率(摩尔分数)大于6O%,产品丙酮对异丙醇总收率(摩尔分数)大于95.5%。 所用催化剂有铜、银、铂、钯等金属以及过渡金属的硫化物,负载于惰性载体上,反应在管式反应器中进行,温度400~600℃。在使用氧化锌-氧化锆、铜-铬氧化物或铜-二氧化硅催化剂时,脱氢温度降低为300~500℃。

正丁烯骨架异构化催化剂研究进展

专论与综述 正丁烯骨架异构化催化剂研究进展 焦宁宁 (兰化公司化工研究院 兰州73006) 论述了正丁烯骨架异构化活性位的性质、骨架异构化的主导机理和异构催化剂的最新进展。 指出正丁烯骨架异构化的主导机理是单分子性的,Br o nsted酸(OH)活性位是必需的位点。沸石的形状选择性和沸石类型对催化剂的选择性和稳定性有很大影响。 关键词:骨架异构化 异丁烯 催化剂 活性位 分子筛 0 前 言 异丁烯是重要的有机化工原料,能否充分利用异丁烯是C4烃类综合利用的关键所在。而异丁烯的主要用途是生产甲基叔丁基醚(MT BE)、丁基橡胶、聚异丁烯和甲基丙烯酸甲酯等。特别是近年来M TBE需求在全球范围迅猛增长,导致异丁烯需求量剧增。传统来源的异丁烯已不能满足M TBE对异丁烯的巨大需求,因而将正丁烯转化成异丁烯的技术对生产低公害的汽油添加剂M TBE是十分有价值的。此外,全球范围内正丁烯过剩,环境保护法又禁止将其直接用于汽油,故正丁烯转化成异丁烯具有现实意义。 1 正丁烯骨架异构化的活性位 C4烃类骨架异构化的催化剂有多种,但仅有少数几种能高效引发骨架异构化反应。正丁烯骨架异构化的最佳催化剂是金属氧化物。探索性研究表明〔1〕,只有氧化钨、氧化钼和氧化铝几种单正离子氧化物具有发展前景。特别是氧化铝表面经过热处理或用卤素改性后具有非常高的活性〔2-4〕。上述几种氧化物表面上呈现不同性质的活性位:(1)路易斯酸(LA)位点;(2)路易斯碱(LB)位点,以某种方式与LA位点呈缔合状态;(3) Br onsted酸(BA)位点,与LA位点呈缔合状态。这就需要确定哪类位点对正丁烯骨架异构化是最关键的。早期文献〔4〕给出了关于位点问题的某些有用信息,指出了BA位点的重要作用。而一些最新文献〔5〕则强调LA 位点或LA-LB双位点的重要作用。 Po nec〔5〕没有直接测定最重要的位点的数目和酸性强度,而是在氢气中对催化剂进行退火处理,有选择地使某些类型的位点中毒,并将氧化铝的卤化效应与早期报道的在活性位上的卤化效应进行比较,发现早期研究对BA位点的重要性估计不足。 为验证BA位点的作用,Ho uzv icka等〔6〕采用由H3PO4和SiO2制成的无孔隙催化剂 收稿日期:1998-06-20

有机化学中用来研究反应机理的方法

有机化学中用来研究反应机理的方法

有机反应机制的研究方法 有机化学中用来解释反应机理的传统方法主要集中在Kinetics和Dynamics两方面,即理解势能面、深入研究分子运动和碰撞、测定活化参数、测定速率常数、确定某个反应机理中一系列化学步骤的顺序、确定反应限速步骤和决速步骤。 研究机理的关键目的是反应机理知识可以对如何在原子或分子水平上操纵物质给出最快速的洞察,而不是依靠运气来获得偶然性的变化从而获得想要的结果。由于动力学在辨别机理方面起着关键作用,所以动力学是整个有机反应机理研究领域中最重要的分支之一。 传统的反应机理研究方法除了动力学分析之外,还有同位素效应、结构-功能分析等。这些都是研究有机反应机理的标准实验工具,然后实验化学家可以根据其想象力和化学创造性,设计出一些完全不同于之前出现过的研究方法。因此,本文总结了一些最为常见的方法。首先分析最简单的实验,例如产物和中间体的鉴定。但也会分析一些更为微妙、精细的实验,如交叉和同位素置乱(cross-over and isotope scrambling)实验。 1.改变反应物结构以转变或捕获预想的中间体 有时可以通过合成一种类似于所研究的反应物的新反应物来破译中间体的性质,但是这需要所预测的中间体能以一种可预想的方式进行反应。没有标准的方式来处理这一类实验,所以实验者必须根

据具体实验情况来设计实验。下面以酶反应作为此方法的应用实例。 Lin[1]等人设计了一种转变中间体的方法。扁桃酸消旋化酶可使扁桃酸根离子的对映体(2-羟基苯甲酸)互换。位于羧酸跟α位的碳负离子被认为是中间体。为了测试此中间体是否存在,作者合成设计了扁桃酸跟离子的类似物i,并用酶对其进行了外消旋化。其过程是首先形成碳负离子,然后经过溴化物的1,6-消除,最后经过互变异构化,分离得到产物ii。此结果支持了在扁桃酸根离子路径中碳负离子中间体iii的存在。 2.捕获实验和竞争实验 鉴定中间体的一种常见方法是通过加入额外的试剂来捕获中间体。目前存在着几种自由基不伙计,许多好的亲核试剂是半衰期很短的亲电试剂(如碳正离子)的可行的捕获剂。必须以自己的化学知识来设计捕获中间体(如碳正离子、卡宾等)的捕获剂。但是活泼中间体的半衰期很短,所以捕获剂必须是具有很高的活性,并能与活泼中间体的标准反应路径进行竞争。同样,因为捕获反应是典

烷基化反应报告

烷基化反应 专 题 报 告 班级: 学号: 姓名: 完成日期:

烷基化反应专题报告 前言 随着我国国民经济可持续发展国策的实施,汽车排放尾气对空气的污染问题成为我们关注的焦点,我国石油炼制工业面临的最关键问题就是如何生产符合国家日益严格的环保标准的清洁燃料,以满足国内交通行业和市场的需求。 石油炼制过程中的烷基化反应是指在酸性催化剂的作用下,烷烃分子与烯烃分子的化学加成反应,在反应过程中烷烃分子中活泼氢原子的位置被悉听所取代,由于异构烷烃中叔碳原子上的氢原子比正构烷烃中碳原子上的氢原子活泼的多,因此参加烷基化反应烷烃。反应生成异辛烷(烷基化汽油)的催化反应过程。 烷基化汽油具有以下特点:该种汽油具有辛烷值高(RON95~98) 、敏感性低(RON 与MON 之差一般≤3) 康保性能好;蒸汽压低、燃烧热值高、不含烯烃芳烃硫含量也低。燃烧完全而清洁,不污染环境等优点,是航空汽油和车用汽油的理想调和油。真是由于烷基化的各种优点,使它成为石油加工过程的重要过程之一,越来越受到广泛关注。 烷基化原理及影响因素 一、烷基化原理 碳四烷基化遵循正碳离子反应机理,其过程主要包含四个步骤: 步骤1:叔丁基正碳离子的生成

步骤2:叔丁基正碳离子与丁烯加成生成碳八正碳离子 叔丁基正碳离子与不同的丁烯异构体进行烷基化反应可以生成不同的碳八正碳离子。 TMP+和DMH+分别是三甲基戊烷和二甲基己烷的正碳离子。TMP组分是烷基化油中的理想组分,具有较高的辛烷值(RON 100~109),而DMH的辛烷值较低(RON 55~76),DMH组分的大量存在会降低烷基化油的品质。 步骤3:碳八正碳离子的异构 生成的碳八正碳离子会通过氢转移或甲基转移而生成更稳定的正碳离子。 步骤4:氢转移形成碳八异构烷烃

第4章烷基化反应

第4章烷基化反应 §4-1 C-烷基化反应 一、芳环上的C-烷基化反应 1.烷基化剂:卤代烷,烯烃,醇,醛,酮 2.催化剂:Lewis酸:AlCl3> SbCl5 >FeCl3> BF3> ZnCl2——卤烷,烯烃质子酸:HF > H2SO4> H3PO4——醇,醛,酮,烯烃 3.反应历程:芳香族亲电取代 4.反应特点: (1)连串反应 (2)可逆反应-烷基的转移和岐化 *苯过量

(3)烷基重排 (4)取代苯环再次引入烷基时的位置与反应条件有关温和条件下:亲电取代反应规律 强烈条件下:非规律性产物 5.反应实例: (1)用卤烷的烷基化反应 ——长碳链烷基苯的合成:十二烷基苯 *催化剂:AlCl3 **重排 (2)用烯烃的烷基化反应 *催化剂:AlCl3-HCl, BF3 or 载于硅藻土上的H3PO4 **苯过量 (3)用醇的烷基化反应

(4)用醛酮的烷基化反应 ——制备二芳基或三芳甲烷衍生物 二、活泼亚甲基化合物的烷基化反应——强碱催化 三、炔烃的烷基化反应

§4-2 N-烷基化反应 一、取代型N-烷基化反应 机理: RZ—烷基化剂Z=-OH, -X, -OSO3H 醇:活性弱,强酸(HX, H2SO4, H3PO4)催化,高温(200℃),价廉:甲醇,乙醇,异丙醇,丁醇——活泼胺 卤烷:活性高,价格较高,不可逆反应,生成卤化氢(成盐),加碱(氢氧化钙,氢氧化钠,碳酸钠)中和—引入长碳链烷基,不活泼胺或季胺化 强酸的酯类:(RO)3PO, (RO)2SO2——活性强,价格最高,有毒 脂肪胺>卞胺>芳胺 实例: (1)醇

(2)卤烷 (3)酯 二、加成型N-烷基化反应——亲电加成 烷基化剂:烯烃衍生物—丙稀睛,丙烯酸,丙烯酸酯 ——活性弱,需加催化剂,酸性(HAc,HCl,H2SO4)或碱性(三甲胺,三乙胺) 环氧化物—环氧乙烷,环氧氯乙烷等 ——活性强(酸碱催化开环),爆炸(用量为理论量的30~50%,通N2) 三、缩合还原型N-烷基化反应 烷基化剂——醛酮

烷基化反应的机理

烷基化反应的机理 Company number:【0089WT-8898YT-W8CCB-BUUT-202108】

烷基化反应的机理 石油炼制过程中的烷基化反应是指在酸性催化剂的作用下,烷烃分子与烯烃分子的化学加成反应,在反应过程中烷烃分子中的活泼氢原子的位置被烯烃所取代。由于异构烷烃中叔碳原子上的氢原子比正构烷烃中伯碳原子上的氢原子活泼得多,因此参加烷基化反应的烷烃为异构烷烃,一般特指异丁烷。 烷基化原料是以催化裂化液化气中异丁烷和异丁烯、丁烯-1为主。烷基化常用的酸性催化剂有硫酸、氢氟酸、三氯化铝等,本装置使用的催化剂为硫酸。 正碳离子的概念 在研究各种有机化学反应的时候,人们发现各种有机反应中间产物大体可以分为3种类型:自由基、阳离子、阴离子。烷基化反应属于其中的阳离子反应,即生成了正碳离子。随着人们对烷基化反应机理的不断探索与认识的日渐成熟,人们普遍接收的是正碳离子——链式反应机理。 所谓正碳离子是一个带正电荷的碳原子,它只有6个外层电子,是缺电荷的,其通式可以写为: 围绕正碳离子的取代物可以是氢原子,也可以是甲基基团,其四种形式分别为: 其稳定性从左到右依 次增 大,也就是说叔碳原子的正碳离子是最稳定的。这里所说的稳定性是相对而言的,总体来说,各种正碳离子都是极不稳定的,很容易进一步参与反应。只有当其与另一对电子成键以后,也就是说,当这个碳原子周围有了8个电子以后,它才能说是真正稳定了。 正碳离子与另一对电子成键的最常见的形式是加合一个负离子。这是正碳离子的最后一步反应,但却开始了另一个正离子的进程。 正碳离子的化学行为 以酸为催化剂的烷基化反应中,酸所提供的氢质子与烯烃的加成反应是产生正碳离子的主要反应。 如果烯烃与氢质子反应生成的了伯碳原子或仲碳原子上的正碳离子,它们有可能重排或异构化为稳定性相对较高的正碳离子。 如: H H H CH 3 CH 3 CH 3CH 3 CH 3 CH 3 H H H C C C C

傅克反应机理

傅克反应机理 Prepared on 24 November 2020

Friedel-Crafts反应机理 摘要:本文总结了傅-克反应提出以来,化学研究人员对该反应的机理方面的研究,包括动力学研究、中间体结构和性质的。提出傅一克反应机理目前存在的疑问及机理动力学的发展方向。 关键词:傅-克反应;动力学;中间体;反应机理 1、傅-克反应的发现 傅-克反应在整个化学发展史上是最为古老的化学之一[1]。1869年德国化学家Zincke[2]首次报道了在苯环上引入烷基的反应.这个反应的发现来源于一个偶然,当时Zincke想从苄氯和氯乙酸(以苯作为溶剂)出发,在铜粉(或银粉)和密封加热的条件下,通过类似Wurtz反应的方法制各苯丙酸,但他发现在反应过程中有大量的氯化氢产生,同时也生成了二苯甲烷。他意识到这是苄氯和溶剂苯发生反应产生的。为此,在接下来的几年里,他开始研究这类苯环上引入取代基的反应。Zincke的发现引起了化学家们的广泛关注,他们用不同芳烃进行反应,并且得到了相应芳烃的烷基化和酰基化产物.至此,他们一致认为铁、铜、银或锌等金属粉末可以作为此类反应的催化剂,这个反应也因此被命名为Zincke反应。 1877年,Friedel和Crafts[3-4]试图通过Gustavson反应将1,1,1一三氯乙烷(苯作溶剂)在铝粉和碘单质存在条件下转化为1,1,1.三碘乙烷,但出乎意料的是他们再次得到了Zincke反应的产物。经过他们的不断研究,他们又对各种金属卤化物、各种卤代烃以及各种酰卤分别进行了研究,表明Zincke提出的各种金属确实不是此类反应的催化剂,它们的卤代物才是真正意

傅克反应

傅-克反应 傅里德-克拉夫茨反应,简称傅-克反应,是一类芳香族亲电取代反应,1877年由法国化学家查尔斯·傅里德(Friedel C)和美国化学家詹姆斯·克拉夫茨(Crafts J)共同发现。该反应主要分为两类:烷基化反应和酰基化反应。 傅-克反应:(1)傅-克烷基化反应;(2)傅-克酰基化反应 傅-克烷基化反应 傅-克烷基化反应在强路易斯酸的催化下使用卤代烃对一个芳环进行烷基化。假设使用无水氯化铁作为催化剂,在氯化铁的作用下,卤代物产生碳正离子,碳正离子进攻苯环并取代环上的氢,最后产生烷基芳香族化合物和氯化氢。总反应式如下: 傅-克烷基化机理 这类反应有个严重缺点:由于烷基侧链的供电性,反应产物比起原料具有更高的亲核性,于是产物苯环上的另一个氢继续被烷基所取代,导致了过烷基化现象而形成了众多副产物。由于这类反应是可逆的,还可能出现烷基被其他基团所取代的副产物(例如被氢取代时,也称为傅-克脱烷基化反应);另外长时间的反应也会导致基团的移位,通常是转移至空间位阻较小、热力学稳定的间位产物。另外如果氯不是处于三级碳原子(叔碳原子)上,还有可能发生碳正离子重排反应,而这取决于碳正离子的稳定性:即三级碳>二级碳>一级碳。空间位阻效应可以被利用于限制烷基化的数量,比如1,4-二甲氧基苯的叔丁基化反应。

1,4-二甲氧基苯的叔丁基化 烷基化的底物并不局限于卤代烃类,傅-克烷基化可以使用任何的碳正离子中间体参与反应,如一些烯烃,质子酸,路易斯酸,烯酮,环氧化合物的衍生物。如合成1-氯-2-甲基-2-苯基丙烷就可以从苯与3-氯-2-甲基丙烯进行反应: 1-氯-2-甲基-2-苯基丙烷的合成 曾有研究实例表明亲电试剂还能选用由烯烃和NBS生成的溴离子。 通过烯烃的傅-克烷基化 在这个反应中三氟甲磺酸钐被认为在卤离子形成中活化了NBS的供卤素能力。 傅-克去烷基化反应 傅-克烷基化是一个可逆反应。在逆向傅-克反应或者称之为傅-克去烷基化反应当中烷基可以在质子或者路易斯酸的存在下去除。例如,在用溴乙烷对苯的多重取代当中,由于烷基是一个活化基团,原来期待能够得到邻对位取代的产物。然而真正的反应产物是1,3,5-三乙基苯,即所有烷基取代都是间位取代。热力学反应控制使得该反应产生了热力学上更稳定的间位产物。通过化学平衡,间位产物比起邻对位产物降低了空间位阻。因此反应最终的产物是一系列烷基化与去烷基化共同作用的结果。

相关文档
最新文档