LED封装材料基础知识(精)

LED封装材料基础知识(精)
LED封装材料基础知识(精)

LED 封装材料基础知识

LED 封装材料主要有环氧树脂,聚碳酸脂,聚甲基丙烯酸甲脂,玻璃,有机硅材料等高透明材料。其中聚碳酸脂,聚甲基丙烯酸甲脂,玻璃等用作外层透镜材料;环氧树脂,改性环氧树脂,有机硅材料等,主要作为封装材料,亦可作为透镜材料。而高性能有机硅材料将成为高端LED 封装材料的封装方向之一。下面将主要介绍有机硅封装材料。

提高LED 封装材料折射率可有效减少折射率物理屏障带来的光子损失,提高光量子效率,封装材料的折射率是一个重要指标,越高越好。提高折射率可采用向封装材料中引入硫元素,引入形式多为硫醚键、硫脂键等,以环硫形式将硫元素引入聚合物单体,并以环硫基团为反应基团进行聚合则是一种较新的方法。最新的研发动态,也有将纳米无机材料与聚合物体系复合制备封装材料,还有将金属络合物引入到封装材料,折射率可以达到1.6-1.8,甚至2.0,这样不仅可以提高折射率和耐紫外辐射性,还可提高封装材料的综合性能。

一、胶水基础特性

1.1有机硅化合物--聚硅氧烷简介

有机硅封装材料主要成分是有机硅化合物。有机硅化合物是指含有Si-O 键、且至少有一个有机基是直接与硅原子相连的化合物,习惯上也常把那些通过氧、硫、氮等使有机基与硅原子相连接的化合物也当作有机硅化合物。其中,以硅氧键(-Si-0-Si-)为骨架组成的聚硅氧烷,是有机硅化合物中为数最多,研究最深、应用最广的一类,约占总用量的90%以上。

1.1.1结构

其结构是一类以重复的Si-O 键为主链,硅原子上直接连接有机基团的聚合物,其通式为R ’---(Si R R ’ ---O)n --- R ”,其中,R 、R ’、R ”代表基团,如甲基,苯基,羟基,H ,乙烯基等;n

为重复的Si-O 键个数(n 不小于2)。

有机硅材料结构的独特性:

(1) Si原子上充足的基团将高能量的聚硅氧烷主链屏蔽起来;

(2) C-H无极性,使分子间相互作用力十分微弱;

(3) Si-O键长较长,Si-O-Si 键键角大。

(4) Si-O键是具有50%离子键特征的共价键(共价键具有方向性,离子键无方向性)。

1.1.2性能

由于有机硅独特的结构,兼备了无机材料与有机材料的性能,具有表面张力低、粘温系数小、压缩性高、气体渗透性高等基本性质,并具有耐高低温、电气绝缘、耐氧化稳定性、耐候性、难燃、憎水、耐腐蚀、无毒无味以及生理惰性等优异特性。

耐温特性:有机硅产品是以硅-氧(Si -O )键为主链结构的,C -C 键的键能为347kJ/mol,Si -O 键的键能在有机硅中为462kJ/mol,所以有机硅产品的热稳定性高,高温下(或辐射照射)分子的化学键不断裂、不分解。有机硅不但可耐高温,而且也耐低温,可在一个很宽的温度范围内使用。无论是化学性能还是物理机械性能,随温度的变化都很小。

耐候性:有机硅产品的主链为-Si -O -,无双键存在,因此不易被紫外光和臭氧所分解。有机硅具有比其他高分子材料更好的热稳定性以及耐辐照和耐候能力。有机硅中自然环境下的使用寿命可达几十年。

电气绝缘性能:有机硅产品都具有良好的电绝缘性能,其介电损耗、耐电压、耐电弧、耐电晕、体积电阻系数和表面电阻系数等均在绝缘材料中名列前茅,而且

它们的电气性能受温度和频率的影响很小。因此,它们是一种稳定的电绝缘材料,被广泛应用于电子、电气工业上。有机硅除了具有优良的

耐热性外,还具有优异的拒水性,这是电气设备在湿态条件下使用具有高可靠性的保障。

生理惰性:聚硅氧烷类化合物是已知的最无活性的化合物中的一种。它们十分耐生物老化,与动物体无排异反应,并具有较好的抗凝血性能。

低表面张力和低表面能:有机硅的主链十分柔顺,其分子间的作用力比碳氢化合物要弱得多,因此,比同分子量的碳氢化合物粘度低,表面张力弱,表面能小,成膜能力强。这种低表面张力和低表面能是它获得多方面应用的主要原因:疏水、消泡、泡沫稳定、防粘、润滑、上光等各项优异性能。

1.1.3有机硅化合物的用途

由于有机硅具有上述这些优异的性能,因此它的应用范围非常广泛。它不仅作为航空、尖端技术、军事技术部门的特种材料使用,而且也用于国民经济各行业,其应用范围已扩到:建筑、电子电气、半导体、纺织、汽车、机械、皮革造纸、化工轻工、金属和油漆、医药医疗等行业。

其中有机硅主要起到密封、粘合、润滑、绝缘、脱模、消泡、抑泡、防水、防潮、惰性填充等功能。随着有机硅数量和品种的持续增长,应用领域不断拓宽,形成化工新材料界独树一帜的重要产品体系,许多品种是其他化学品无法替代而又必不可少的。

1.2 LED封装用有机硅材料特性简介

LED 封装用有机硅材料的要求:光学应用材料具有透光率高,热稳定性好,应力小,吸湿性低等特殊要求,一般甲基类型的硅树脂25℃时折射率为1.41左右,而苯基类型的硅树脂折射率要高,可以做到1.54以上,450 nm 波长的透光率

要求大于95%。在固化前有适当的流动性,成形好;固化后透明、硬度、强度高,在高湿环境下加热后能保持透明性。

主要技术指标有:折射率、粘度、透光率、无机离子含量、固化后硬度、线性膨胀系数等等。

1.2.1 材料光学透过率特性

石英玻璃、硅树脂和环氧树脂的透过率如图1 所示。硅树脂和环氧树脂先注入模具, 高温固化后脱模, 形成厚度均匀为5 mm 的样品。可以看到, 环氧树脂在可见光范围具有很高的透过率, 某些波长的透过率甚至超过了95% , 但环氧树脂在紫外光范围的吸收损耗较大, 波长小于380 nm 时, 透过率迅速下降。硅树脂在可见光范围透过率接近92%, 在紫外光范围内要稍低一些, 但在320 nm时仍然高于88%, 表现出很好的紫外光透射性质; 石英玻璃在可见光和紫外

光范围的透过率都接近95%, 是所有材料里面紫外光透过率最高的。对于紫外LED 封装, 石英玻璃具有最高的透过率, 有机硅树脂次之, 环氧树脂较差。然而尽管石英玻璃紫外光透过率高, 但是其热加工温度高, 并不适用于LED 芯区的密封, 因此在LED 封装工艺中石英玻璃一般仅作为透镜材料使用。由于石英玻璃的耐紫外光辐射和耐热性能已经有很多报道 , 仅对常用于密封LED 芯区的环氧树脂和有机硅树脂的耐紫外光辐射和耐热性能进行研究。

1.2.2耐紫外光特性

研究了环氧树脂A 和B 以及有机硅树脂A 和B 在封装波长为395 nm和375 nm 的LED 芯片时的老化情况, 如图2所示。实验中, 每个LED 的树脂涂层厚度均为2 mm 。可以看到, 环氧树脂材料耐紫外光辐射性能都较差, 连续工作时, 紫外LED 输出光功率迅速衰减, 100 h 后输出光功率均下降到初始的50% 以下; 200 h 后, LED 的输出光功率已经非常微弱。对于脂环族的环氧树脂B, 在375 nm 的紫外光照射下衰减比395 nm时要快, 说明对紫外光波长较为敏感, 由于375 nm的紫外光光子能量较大, 破坏也更为严重。双酚类的环氧树脂A 在375 nm 和395 nm 的紫外光

照射下都迅速衰减, 衰减速度基本一致。尽管双酚类的环氧树脂A 在375 nm 和395 nm 时的光透过率要略高于脂环族类的环氧树脂B, 但是由于环氧树脂A 含有苯环结构, 因此在紫外光持续照射时, 衰减要比环氧树脂B 要快。

尽管双酚类的环氧树脂A 在375 nm和395 nm时的光透过率要略高于脂环族类的环氧树脂B, 但

是由于环氧树脂A 含有苯环结构, 因此在紫外光持续照射时, 衰减要比环氧树脂B 要快。测量老化前后LED 芯片的光功率, 发现老化后LED 的光功率基本上没有衰减。这说明, 光功率的衰减主要是由紫外光对环氧树脂的破坏引起的。环氧树脂是高分子材料, 在紫外线的照射下, 高分子吸收紫外光子, 紫外光子光子能量较大, 能够打开高分子间的键链。因此, 在持续的紫外光照射下, 环氧树脂的主链慢慢被破坏, 导致主链降解, 发生了光降解反应, 性质发生了变化。实验表明, 环氧树脂不适合用于波长小于380 nm的紫外LED 芯片的封装。相对环氧树脂, 硅树脂表现出了良好的耐紫外光特性。经过近1 500 h 老化后, LED 输出光功率虽然有不同程度的衰减, 但是仍维持在85%以上, 衰减低于15%。这可能与硅树脂和环氧树脂间的结构差异有关。硅树脂的主要结构包括Si 和O, 主链Si-O-Si 是无机的, 而且具有较高的键能; 而环氧树脂的主链主要是C-C 或C-O, 键能低于Si-O 。由于键能较高, 硅树

脂的性能相对要稳定。因此, 硅树脂具有良好的耐紫外光特性。

1.2.3 耐热性

LED 封装对材料的耐热性提出了更高的要求。从图3可以看出, 环氧树脂和硅树脂具有较好的承受紫外光辐照的能力。因此, 对其热稳定性进行了研究。图3 表示这两种材料在高温老化后mm- 1厚度时透过率随时间的变化情况。可以看到, 环氧树脂的耐热性较差, 经过连续6天的高温老化后, 各个波长的透过率都发生了较大的衰减, 紫外光范围的衰减尤其严重, 环氧树脂样品颜色从最初的清澈透明变成了黄褐色。

硅树脂表现出了优异的耐热性能。在150 e 的高温环境下, 经过14 days 的老化后, 可见光范围的样品mm- 1厚度时透过率只有稍微的衰减, 在紫外光范围也仅有

少量的衰减, 颜色仍然保持着最初的清澈透明。与环氧树脂不同, 硅树脂以Si-O-Si 键为主链, 由于Si-O 键具有较高的键能和离子化倾向, 因此具有优良的耐热性。

1.2.4光衰特性

传统封装的超高亮度白光L ED ,配粉胶一般采用环氧树脂或有机硅材料。如图4所示, 分别用环氧树

脂和有机硅材料配粉进行光衰实验的结果。可以看出, 用有机硅材料配粉的白光L ED 的寿命明显比环氧树脂的长很多。原因之一是用有机硅材料和环氧树脂配粉的封装工艺不一样, 有机硅材料烘烤温度较低, 时间较短, 对芯片的损伤也小; 另外, 有机硅材料比环氧树脂更具有弹性, 更能对芯片起到保护作用。

1.2.5 苯基含量的影响

提高LED 封装材料折射率可有效减少折射率物理屏障带来的光子损失,提高光量子效率,封装材料的折射率是一个重要指标,越高越好。硅树脂中苯基含量越大,就越硬,折射率越高(合成的几乎全苯基的硅树脂折射率可达1.57),但因热塑性太大,无实际使用价值,苯基含量一般以20%~50%(质量分数)为宜。实验发现苯基含量为40%时(质量分数)硅树脂的折射率约1.51,苯基含量为50%时硅树脂的折射率大于1.54,如图5所示。所合成的都是高苯基硅树脂,苯基含量都在45%以上,其折射率都在1.53以上,其中一些可以达到1.54以上。

1.3有机硅封装材料应用原理及分析

有机硅封装材料一般是双组分无色透明的液体状物质,使用时按A :B=1:1的比例称量准确,使用专用设备行星式重力搅拌机搅拌,混合均匀,脱除气泡即可用于点胶封装,然后将封装后的部件按产品要求加热固化即可。

有机硅封装材料的固化原理一般是以含乙烯基的硅树脂做基础聚合物,含SiH 基硅烷低聚物作交联剂,铂配合物作催化剂配成封装料,利用有机硅聚合物的Si —CH =CH 2与Si —H 在催化剂的作用下,发生硅氢化加成反应而交联固化。我

们可以用仪器设备来分析表征一些技术指标有如折射率、粘度、透光率、无机离子含量、固化后硬度、线性膨胀系数等等。

1.3.1 红外光谱分析

有机硅聚合物的Si —CH =CH 2与Si —H 在催化剂的作用下,发生硅氢化加成反应而交联。随着反

应的进行,乙烯基含量和硅氢基的浓度会逐渐减少,直到稳定于一定的量,甚至消失。

可采用红外光谱仪测量其固化前后不同阶段的乙烯基和硅氢基的红外光谱吸收变化情况[2]。我们只列举合成的高苯基乙烯基氢基硅树脂固化前和固化后的红外光谱为例:如图6所示,固化前:3071,3050 cm -1是苯环和CH 2=CH-不饱和

氢的伸缩振动,2960 cm-1是-CH 3的C-H 伸缩振动,2130 cm-1是Si —H 的吸收峰,1590 cm -1是—CH =CH2不饱和碳的吸收峰, 1488 cm -1是苯环的骨架振动,1430,1120 cm

-1

是Si -Ph 的吸收峰,1250 cm -1是Si -CH 3的吸收峰,1060 cm -1是Si-O-Si 的吸收峰;固化后:2130

cm -1处的Si —H 的吸收峰和1590 cm-1处的—CH =CH2不饱和碳的吸收峰均消失。

1.3.2 热失重分析

有机硅主链si-0-si 属于“无机结构”,si-0键的键能为462kJ/mol,远远高于C-C 键的键能347kJ/mol,单纯的热运动很难使si-0键均裂,因而有机硅聚合物具有良好的热稳定性,同时对所连烃基起到了屏蔽作用,提高了氧化稳定性。有机硅聚合物在燃烧时会生成不燃的二氧化硅灰烬而自熄。为了分析封装材料的耐热性,及硅树脂对体系耐热性的影响,我们进行了热失重分析,如图7图8所示,样品起始分

解温度大约在400℃,800℃的残留量在65%以上。封装材料在400℃范围内不降解耐热性好,非常适用于大功率LED 器件的封装。

1.3.3 DSC分析

我们采用DSC (差示热量扫描法)分析了硅树脂固化后的玻璃化转变温度

Tg 。一般,Tg 的大小取决于分子链的柔性及化学结构中的自由体积,即交联密度,Tg 随交联密度的增加而升高,可以提供一个表征固化程度的参数。我们采用DSC 分析了所制备的凝胶体、弹性体、树脂体的Tg ,如表1所示,显然随着凝胶体、弹性体、树脂体的交联密度的增加,玻璃化转变温度Tg 升高。同样也列举合成的高苯基乙烯基氢基硅树脂固化后的差示热量扫描分析图谱,如图9所示,玻璃化转变温度Tg 约72℃。封装应用应根据封装实际的需求,选用不同的形态。

表1 有机硅树脂的玻璃化转变温度Tg

图9 高苯基乙烯基氢基硅树脂DSC 分析图谱

1.4有机硅封装材料的分类及与国外同类产品的对比

为了提高LED 产品封装的取光效率,必须提高封装材料的折射率,以提高产品的临界角,从而提高产品的封装取光效率。根据实验结果,比起荧光胶和外封胶折射率都为1.4时,当荧光胶的折射率比外封胶高时,能显著提高LED 产品的出光效率,提升LED 产品光通量。目前业内的混荧光粉胶折射率一般为1.5左右,外封胶的折射率一般为1.4左右,故大功率白光LED 灌封胶应选取透光率高(可见光透光率大于99%)、折射率高(1.4-1.5)、耐热性较好(能耐受200℃的高温)的双组分有机硅封装材料

LED 有机硅封装材料,固化后按弹性模量划分,可分为凝胶体,弹性体及树脂等三大类;按折射率划分,可分为标准折射率型与高折射率两大类,见表2:

表2 LED有机硅封装材料的分类

与国外同类产品进行了对比,其参数如表3表4所示,可知各项性能参数较接近,经部分客户试用反映良好。

表3自制低折色率产品与国外同类产品的比较

表4自制高折色率产品与国外同类产品的比较

针对LED 封装行业的不同部位的具体要求开发五个应用系列的有机硅材料,不同的封装要求,在封装材料的粘度,固化条件,固化后的硬度(或弹性),外观,折光率等方面有差异。具体分类介绍如下:

1.4.1混荧光粉有机硅系列

传统封装的超高亮度白光L ED ,配粉胶一般采用环氧树脂或有机硅材料。如图9所示, 分别用环氧树脂和有机硅材料配粉进行光衰实验的结果。可以看出, 用有机硅材料配粉的白光L ED 的寿命明显比环氧树脂的长很多。原因之一是用有机硅材料和环氧树脂配粉的封装工艺不一样, 有机硅材料烘烤温度较低, 时间较短, 对芯片的损伤也小; 另外, 有机硅材料比环氧树脂更具有弹性, 更能对芯片起到保护作用。

1.4.2 MODING封装材料有机硅系列

1.4.3TOP 贴片封装材料有机硅系列

1.4.4透镜填充有机硅系列

1.4.5集成大功率LED 有机硅系列

二、胶水与其它材料之间的关联性(含固晶胶)

有机硅材料对其他材料没有腐蚀性,但某些材料会影响封装材料的固化。固晶胶一般为环氧树脂材料,它的固化剂种类很多,如果其中含有N ,P ,S 等元素,会导致封装材料与固晶胶接触部分不固化。如果对某一种基材或材料是否会抑制固化存在疑问,建议先做一个相容性实验来测试某一种特定应用的合适性。如果在有疑问的基材和固化了的弹性体材料界面之间存在未固化的封装料,说明不相容,会抑制固化。

这些最值得注意的物质包括:

1、有机锡和其它有机金属化合物

2、硫、聚硫化物、聚砜类物或其它含硫物品

3、胺、聚氨酯橡胶或者含氨的物品

4、亚磷或者含亚磷的物品

5、某些助焊剂残留物

有机硅封装材料有很好的耐湿气,耐水性及耐油性,但对浓硫酸,浓硝酸等强酸,氨水,氢氧化钠等强碱,以及甲苯等芳香烃溶剂的抵抗能力差。下表定性的列出有机硅封装材料耐化学品性。

有机硅封装材料耐化学品性表

三、胶水的应用与风险防范

3.1使用:

A、B 两组分1:1称量,用行星式重力搅拌机(自公转搅拌脱泡机)搅拌均匀即可点胶。或者在一定温度下,于10mmHg 的真空度下脱除气泡即可使用。建议在干燥无尘环境中操作生产。

3.2注意事项

A 、有机硅封装材料在称量,混合,转移,点胶,封装,固化过程中使用专用设备,避免与其他物质混杂带来不确定的影响。

B 、某些材料、化学制剂、固化剂和增塑剂可以抑制弹性体材料的固化。这些最值得注意的物质包括: B-1、有机锡和其它有机金属化合物

B-2、硫、聚硫化物、聚砜类物或其它含硫物品

B-3、胺、聚氨酯橡胶或者含氨的物品

B-4、亚磷或者含亚磷的物品

B-5、某些助焊剂残留物

如果对某一种基材或材料是否会抑制固化存在疑问,建议先做一个相容性实验来测试某一种特定应用的合适性。如果在有疑问的基材和固化了的弹性体材料界面之间存在未固化的封装料,说明不相容,会抑制固化。

C 、在使用封装材料时避免进入口眼等部位;接触封装材料后进食前需要清洗手;封装材料不会腐蚀皮肤,因个人的生理特征有差异,如果感觉不适应暂停相关工作或就医。

D 、在LED 生产中很可能会产生的问题是芯片封装时,杯内汽泡占有很大的不良比重,但是产品在制作过程中如果汽泡问题没有得到很好的解决或防治,就会造成产品衰减加快的一个因素。影响气泡产生的因素比较多, 但是多做一些工程评估,即可逐步解决。一般情况下,工艺成熟后,气泡的不良比重不会太高。以下是相关因素:

(1)环境的温度和湿度对气泡产生有较大的影响。

(2)模条的温度也是产生气泡的一个因素。

(3)气泡的产生与工艺的调整有很大关系。

例如,有些工厂没有抽真空也没有气泡,而有些即使抽了真空也有气泡,从这一点看不是抽不抽真空的问题,而是操作速度的快慢、熟练程度的问题。同时与环境温度也是分不开的。环境温度变化了,可以采取相应的措施加以控制。若常温是15℃,如让胶水的温度达到60℃,这样做杯内气泡就不会出现。同时要注意很多细节问题,如在滚筒预沾胶时产生微小气泡,肉眼和细微镜下看不到,但一进入烤箱体内,热胀气泡扩涨。如果此时温度太高,气体还没有跃出就固化所以产生气泡现象。LED 表面有气泡但没破,此为打胶时产生气泡。LED 表面有气泡已破,原因是温度太高。手工预灌胶前,支架必须预热。预热预灌的AB 组分进行2小时调换一次。只要你保持AB 料、支架都是热的,气泡问题不难解。因为AB 组分冷时流动性差, 遇到冷支架容易把气泡带入。操作时要注意以下问题:

(1)操作人员的操作技巧不熟练(整条里面有一边出现气泡);

(2)点胶机的快慢和胶量没有控制好(很容易出现气泡的地方);

(3)机器是否清洁(此点不一定会引起气泡,但很容易产生类似冰块一样的东西,尤其是环已酮);

(4)往支架点胶时,速度不能快,太快带入的空气将难以排出;

(5)胶要常换、胶筒清洗干净,一次混胶量不能太多,A ,B 组分混合就会开始反应,时间越长胶越稠,气泡越难排出;

E、大多数封装客户都发现做好的产品在初期做点亮测试老化之后都有不错的表现,但是随着时间的推移,明明在抽检都不错的产品,到了应用客户开始应用的时候或者不久之后,就发现有胶层和PPA 支架剥离、LED 变色(镀银层变黄发黑)的情况发生。那这到底是什么原因引起的?是在制程的过程中工艺把握不好导

致封装胶固化不好吗?当然有可能,但是随着客户工艺的不断成熟,这种情况发生的机率会越来越少。有以下因素供大家参考;

(1)PPA 与支架剥离的原因是:PPA 中所添加的二氧化钛因晶片所发出的蓝光造成其引起的光触媒作用、PPA 本身慢慢老化所造成的,硅胶本身没老化的情况下,由于PPA 老化也会导致剥离想象的发生;二氧化钛吸收太阳光或照明光中的紫外线,产生光触媒作用,会产生分解力与亲水性的能力。特別具有分解有机物的能力。

(2 以LED 变色问题为例、现阶段大致分三类:

?硫磺造成镀银层生硫化银而变色

?卤素造成镀银层生卤化银而变色

?镀银层附近存在无机碳。

? 有机硅封装材料、固晶材料并不含有S 化合物、卤素化合物, 硫化及卤化物的发生取决于使用的环境。

? 无机碳的存在为环氧树脂等的有机物因热及光的分解后的残渣。在镀银层以环氧等固晶胶作为蓝光晶片接合的场合频繁发生。

?有机硅封装材料即使被热及光分解也不会变成黑色的碳。

? 若是沒有使用环氧等的有几物的场合有发现无机碳存在的话有可能是由外部所带入。

? 上述的3种变色现象是因蓝光、镀银、氧气及湿气使其加速催化所造成

综上所述,我们发现,以上的主要原因是由于有氧气,湿气侵入到LED 内部以及有无机碳的存在

而带来的一系列的问题,那么我们应该如何解决呢。

LED封装材料基础知识

LED封装材料基础知识 LED封装材料主要有环氧树脂,聚碳酸脂,聚甲基丙烯酸甲脂,玻瑪,有机硅材料等高透明材料。其中聚碳酸脂,聚甲基丙烯酸甲脂,玻璃等用作外层透鏡材料;环氧树脂,改性环氧树脂,有机硅材料等,主要作为 封装材料,亦可作为透镜材料。而高性能有机硅材料将成为高端LED封装材料的封装方向之一。下面将主要介绍有机硅封装材料。 提高LED封装材料折射率可有效减少折射率物理屏障带来的光子损失,提高光量子效率,封装材料的折射率是一个重要指标,越高越好。提高折射率可采用向封装材料中引入硫元素,引入形式多为硫瞇键、硫脂键等,以环硫形式将硫元素引入聚合物单体,并以环硫基团为反应杀团进行聚合则是一种较新的方法。最新的研发动态,也有将纳米无机材料与聚合物体系复合制备封装材料,还有将金属络合物引入到封装材料,折射率可以达到,甚至,这样不仅可以提高折射率和耐紫外辐射性,还可提高封装材料的综合性能。 一、胶水基础特性 有机硅化合物一聚硅氧烷简介 有机硅封装材料主要成分是有机硅化合物。有机硅化合物是指含有Si-0键、且至少有一个有机基是直接与硅原子相连的化合物,习惯上也常把那些通过氧、硫、氮等使有机基与硅原子相连接的化合物也当作有机硅化合物。其中,以硅氣键(-Si-O-Si-)为骨架组成的聚硅氧烷,是有机硅化合物中为数最多,研究最深、应用最广的一类,约占总用量的90%以上。 结构 其结构是一类以重复的Si-0键为主链,硅原子上直接连接有机基团的聚合物,其通式为R' ---(Si R R' ---0) n-一R”,其中,R、R'、R”代表基团,如甲基,苯基,痉基,H,乙烯基等;n 为重复的Si-0键个数(n不小于2)。 有机硅材料结构的独特性: (1) Si原子上充圧的基团将高能量的聚硅氧烷主链屏蔽起来: (2) C-H无极性,使分子间相互作用力十分微弱; (3) Si-0键长较长,Si-0-Si键键角大。 (4) Si-0键是具有50%离子键特征的共价键(共价键具有方向性,离子键无方向性)。 性能由于有机硅独特的结构,兼备了无机材料与有机材料的性能,具有表面张力低、粘温系数小、压缩性高、气体渗透性高等基本性质,并具有耐高低温、电气绝缘、耐氧化稳定性、耐候性、难燃、憎水、耐腐 蚀、无毒无味以及生理惰性等优异特性。

LED封装材料基础知识

封装材料基础知识 封装材料主要有环氧树脂,聚碳酸脂,聚甲基丙烯酸甲脂,玻璃,有机硅材料等高透明材料。其中聚碳酸脂,聚甲基丙烯酸甲脂,玻璃等用作外层透镜材料;环氧树脂,改性环氧树脂,有机硅材料等,主要作为封装材料,亦可作为透镜材料。而高性能有机硅材料将成为高端封装材料的封装方向之一。下面将主要介绍有机硅封装材料。 提高封装材料折射率可有效减少折射率物理屏障带来的光子损失,提高光量子效率,封装材料的折射率是一个重要指标,越高越好。提高折射率可采用向封装材料中引入硫元素,引入形式多为硫醚键、硫脂键等,以环硫形式将硫元素引入聚合物单体,并以环硫基团为反应基团进行聚合则是一种较新的方法。最新的研发动态,也有将纳米无机材料与聚合物体系复合制备封装材料,还有将金属络合物引入到封装材料,折射率可以达到1.6-1.8,甚至2.0,这样不仅可以提高折射率和耐紫外辐射性,还可提高封装材料的综合性能。 一、胶水基础特性 1.1有机硅化合物聚硅氧烷简介 有机硅封装材料主要成分是有机硅化合物。有机硅化合物是指含有键、且至少有一个有机基是直接与硅原子相连的化合物,习惯上也常把那些通过氧、硫、氮等使有机基与硅原子相连接的化合物也当作有机硅化合物。其中,以硅氧键(0)为骨架组成的聚硅氧烷,是有机硅化合物中为数最多,研究最深、应用最广的一类,约占总用量的90%以上。 1.1.1结构 其结构是一类以重复的键为主链,硅原子上直接连接有机基团的聚合物,其通式为R ’(R R ’ )n R ”,其中,R 、R ’、R ”代表基团,如甲基,苯基,羟基,H ,乙烯基等;n

为重复的键个数(n 不小于2)。 有机硅材料结构的独特性: (1)原子上充足的基团将高能量的聚硅氧烷主链屏蔽起来; (2)无极性,使分子间相互作用力十分微弱; (3)键长较长,键键角大。 (4)键是具有50%离子键特征的共价键(共价键具有方向性,离子键无方向性)。 1.1.2性能 由于有机硅独特的结构,兼备了无机材料与有机材料的性能,具有表面张力低、粘温系数小、压缩性高、气体渗透性高等基本性质,并具有耐高低温、电气绝缘、耐氧化稳定性、耐候性、难燃、憎水、耐腐蚀、无毒无味以及生理惰性等优异特性。 耐温特性:有机硅产品是以硅-氧(-O )键为主链结构的,C -C 键的键能为347,-O 键的键能在有机硅中为462,所以有机硅产品的热稳定性高,高温下(或辐射照射)分子的化学键不断裂、不分解。有机硅不但可耐高温,而且也耐低温,可在一个很宽的温度范围内使用。无论是化学性能还是物理机械性能,随温度的变化都很小。 耐候性:有机硅产品的主链为--O -,无双键存在,因此不易被紫外光和臭氧所分解。有机硅具有比其他高分子材料更好的热稳定性以及耐辐照和耐候能力。有机硅中自然环境下的使用寿命可达几十年。 电气绝缘性能:有机硅产品都具有良好的电绝缘性能,其介电损耗、耐电压、耐电弧、耐电晕、体积电阻系数和表面电阻系数等均在绝缘材料中名列前茅,而且它们的电气性能受温度和频率的影响很小。因此,它们是一种

LED封装材料基础知识(精)

LED 封装材料基础知识 LED 封装材料主要有环氧树脂,聚碳酸脂,聚甲基丙烯酸甲脂,玻璃,有机硅材料等高透明材料。其中聚碳酸脂,聚甲基丙烯酸甲脂,玻璃等用作外层透镜材料;环氧树脂,改性环氧树脂,有机硅材料等,主要作为封装材料,亦可作为透镜材料。而高性能有机硅材料将成为高端LED 封装材料的封装方向之一。下面将主要介绍有机硅封装材料。 提高LED 封装材料折射率可有效减少折射率物理屏障带来的光子损失,提高光量子效率,封装材料的折射率是一个重要指标,越高越好。提高折射率可采用向封装材料中引入硫元素,引入形式多为硫醚键、硫脂键等,以环硫形式将硫元素引入聚合物单体,并以环硫基团为反应基团进行聚合则是一种较新的方法。最新的研发动态,也有将纳米无机材料与聚合物体系复合制备封装材料,还有将金属络合物引入到封装材料,折射率可以达到1.6-1.8,甚至2.0,这样不仅可以提高折射率和耐紫外辐射性,还可提高封装材料的综合性能。 一、胶水基础特性 1.1有机硅化合物--聚硅氧烷简介 有机硅封装材料主要成分是有机硅化合物。有机硅化合物是指含有Si-O 键、且至少有一个有机基是直接与硅原子相连的化合物,习惯上也常把那些通过氧、硫、氮等使有机基与硅原子相连接的化合物也当作有机硅化合物。其中,以硅氧键(-Si-0-Si-)为骨架组成的聚硅氧烷,是有机硅化合物中为数最多,研究最深、应用最广的一类,约占总用量的90%以上。 1.1.1结构 其结构是一类以重复的Si-O 键为主链,硅原子上直接连接有机基团的聚合物,其通式为R ’---(Si R R ’ ---O)n --- R ”,其中,R 、R ’、R ”代表基团,如甲基,苯基,羟基,H ,乙烯基等;n

LED封装基础知识(精)

LED封装的一些介绍如下: 一导电胶、导电银胶 导电胶是IED生产封装中不可或缺的一种胶水, 其对导电银浆要求导电、导热性能要好,剪切强度一定要大,且粘结力要强。 二LED封装工艺 1. LED的封装的任务 是将外引线连接到LED芯片的电极上,同时保护好LED芯片, 并且起到提高光输出效率的作用。关键工序有装架、压焊、封装。 2. LED封装形式 LED封装形式可以说是五花八门,主要根据不同的应用场合采用相应的外形尺寸, LED按封装形式分类有Lamp-LED、TOP-LED、Side-LED、SMD-LED、High-Power-LED 等。 三LED封装工艺流程 1LED芯片检验? 镜检:材料表面是否有机械损伤及麻点麻坑 芯片尺寸及电极大小是否符合工艺要求,电极图案是否完整等等

2扩片 由于LED芯片在划片后依然排列紧密间距很小(约0.1mm,不利于后工序的操作。 我们采用扩片机对黏结芯片的膜进行扩张,是LED芯片的间距拉伸到约 0.6mm。 也可以采用手工扩张,但很容易造成芯片掉落浪费等不良问题。 3点胶 在LED支架的相应位置点上银胶或绝缘胶。(对于GaAs、SiC导电衬底,具有背面电极的红光、 黄光、黄绿芯片,采用银胶。对于蓝宝石绝缘衬底的蓝光、 绿光LED芯片,采用绝缘胶来固定芯片。 工艺难点在于点胶量的控制,在胶体高度、点胶位置均有详细的工艺要求。? 由于银胶和绝缘胶在贮存和使用均有严格的要求, 银胶的醒料、搅拌、使用时间都是工艺上必须注意的事项。 4备胶 和点胶相反,备胶是用备胶机先把银胶涂在LED背面电极上, 然后把背部带银胶的LED安装在LED支架上。 备胶的效率远高于点胶,但不是所有产品均适用备胶工艺。 5手工刺片

LED封装基本知识

LED封装基本知识 LED(发光二极管)封装是指发光芯片的封装,相比集成电路封装有较大不同。LED的封装不仅要求能够保护灯芯,而且还要能够透光,所以LED的封装对封装材料有特殊的要求。 封装简介 LED封装技术大都是在分立器件封装技术基础上发展与演变而来的,但却有很大的特殊性。一般情况下,分立器件的管芯被密封在封装体内,封装的作用主要是保护管芯和完成电气互连。而LED封装则是完成输出电信号,保护管芯正常工作,输出:可见光的功,既有电参数,又有光参数的设计及技术要求,无法简单地将分立器件的封装用于LED。 自上世纪九十年代以来,LED芯片及材料制作技术的研发取得多项突破,透明衬底梯形结构、纹理表面结构、芯片倒装结构,商品化的超高亮度(1cd以上)红、橙、黄、绿、蓝的LED产品相继问市,2000年开始在低、中光通量的特殊照明中获得应用。LED的上、中游产业受到前所未有的重视,进一步推动下游的封装技术及产业发展,采用不同封装结构形式与尺寸,不同发光颜色的管芯及其双色、或三色组合方式,可生产出多种系列,品种、规格的产品。 技术原理 大功率LED封装由于结构和工艺复杂,并直接影响到LED的使用性能和寿命,特别是大功率白光LED封装更是研究热点中的热点。LED封装的功能主要包括:1.机械保护,以提高可靠性;2.加强散热,以降低芯片结温,提高LED性能;3.光学控制,提高出光效率,优化光束分布;4.供电管理,包括交流/直流转变,以及电源控制等。 LED封装方法、材料、结构和工艺的选择主要由芯片结构、光电/机械特性、具体应用和成本等因素决定。经过40多年的发展,LED封装先后经历了支架式(Lamp LED)、贴片式(SMD LED)、功率型LED(Power LED)等发展阶段。随着芯片功率的增大,特别是固态照明技术发展的需求,对LED封装的光学、热学、电学和机械结构等提出了新的、更高的要求。为了有效地降低封装热阻,提高出光效率,必须采用全新的技术思路来进行封装设计。 关于LED封装结构说明 LED的核心发光部分是由p型和n型半导体构成的pn结管芯,当注入pn结的少数载流子与多数载流子复合时,就会发出可见光,紫外光或近红外光。但pn结区发出的光子是非定向的,即向各个方向发射有相同的几率,因此,并不是管芯产生的所有光都可以释放出来,这主要取决于半导体材料质量、管芯结构及几何形状、封装内部结构与包封材料,应用要求提高LED的内、外部量子效率。常规Φ5mm型LED封装是将边长0.25mm的正方形管芯粘结或烧结在引线架上,管芯的正极通过球形接触点与金丝,键合为内引线与一条管脚相连,负极通过反射杯和引线架的另一管脚相连,然后其顶部用环氧树脂包封。反射杯的作用是收集管芯侧面、界面发出的光,向期望的方向角内发射。顶部包封的环氧树脂做成一定形

LED基础知识-LED光源的封装讲义

本文由wugaojun119贡献 ppt文档可能在WAP端浏览体验不佳。建议您优先选择TXT,或下载源文件到本机查看。 XX伯乐达光电科技XX LED基础知识/白光LED封装 陈志忠2007/8/31 XX伯乐达光电科技XX 伯乐达做的LED是A级! XX伯乐达光电科技XX JIangsu Bright Optoelectronic Technology Co.Ltd 伯乐达-Bright! XX伯乐达光电科技XX 提纲 LED基础知识 LED的概念,LED的发光原理LED的历史LED的基本参数,LED的结构,LED的产品分类,LED的产业链, 白光LED封装 白光LED的概念,白光LED的优点白光LED基本参数白光LED封装的基本工艺白光LED的封装技术 XX伯乐达光电科技XX 1.1 LED基本概念 LED是发光二极管LIGHT EMISSION DIODE ; LIGHT EMITTING DIODE . ? LED是通过半导体PN结把电能转化成光能的器件 + - XX伯乐达光电科技XX 1.2 LED的基础知识:基本原理 其核心是PN结。因此它具有一般P-N结的I-N特性,即正向导通,反向截止、击穿特性。在正向电压下,电子由N区注入P区,空穴由P 区注入N区。进入对方区域N 的少数载流子(少子)一部分与多数载流子(多子)复合而发光。量子阱把经过结区的电子空穴限制住,提高复合效率。 PN结-》量子阱 XX伯乐达光电科技XX 1.3 LED的基础知识:历史 XX伯乐达光电科技XX 1、1965年,全球第一款商用化发光二极管诞生,效率0.1lm/W,比白炽灯低100倍,售价45$/只。 2、1968年,LED的研发取得了突破性进展,利用氮掺杂工艺使GaAsP器件的效率达到了1流明/瓦,并且能够发出红光、橙光和黄色光。 3、1971年,GaP绿色芯片LED。用途:指示用,长寿命10万小时,可靠 4、80年代AlGaAs技术使得LED效率达到10流明/瓦,90年代的AlGaInP技术使得LED效率达到100流明/瓦。用途:显示,信号用。用于室外的运动信息发布以及汽车的高位刹车灯。 XX伯乐达光电科技XX 5、1994年,中村修二研制出了第一只GaN基高亮度蓝色发光二极管。用途:由于蓝光LED的出现,人们首次实现红黄蓝LED的全色显示,从90年代中期开始,许多广告、体育和娱乐场所开始应用LED大屏幕显示。 6、1997年,中村修二和美国人修博特先后研制出了GaN蓝色发光二极管激发黄光荧光粉得到白光LED,效率不足10lm/W。 7、2000年,

LED基础知识-LED光源的封装(讲义)

LED基础知识-LED光源的封装(讲义).txt我都舍不得欺负的人,哪能让别人欺负?一辈子那么长,等你几年算什么我爱的人我要亲手给她幸福别人我不放心 我想你的时候我一定要找得到你不许你们欺负他!全世界只有我才可以!放弃你,下辈子吧!!本文由wugaojun119贡献 ppt文档可能在WAP端浏览体验不佳。建议您优先选择TXT,或下载源文件到本机查看。 江苏伯乐达光电科技有限公司 LED基础知识/白光LED封装 陈志忠 2007/8/31 江苏伯乐达光电科技有限公司 伯乐达做的LED是A级! 江苏伯乐达光电科技有限公司 JIangsu Bright Optoelectronic Technology Co.Ltd 伯乐达-Bright! 江苏伯乐达光电科技有限公司 提纲 LED基础知识 LED的概念, LED的发光原理 LED的历史 LED的基本参数, LED的结构, LED的产品分类, LED的产业链, 白光LED封装 白光LED的概念,白光LED的优点白光LED基本参数白光LED封装的基本工艺白光LED的封装技术 江苏伯乐达光电科技有限公司 1.1 LED基本概念 LED是发光二极管LIGHT EMISSION DIODE ; LIGHT EMITTING DIODE . ? LED是通过半导体PN结把电能转化成光能的器件 + - 江苏伯乐达光电科技有限公司 1.2 LED的基础知识:基本原理 其核心是PN结。因此它具有一般P-N结的I-N特性,即正向导通,反向截止、击穿特性。在正向电压下,电子由N区注入P区,空穴由P 区注入N区。进入对方区域 N 的少数载流子(少子)一部分与多数载流子(多子)复合而发光。量子阱把经过结区的电子空穴限制住,提高复合效率。 PN结-》量子阱 江苏伯乐达光电科技有限公司 1.3 LED的基础知识:历史 江苏伯乐达光电科技有限公司 1、1965年,全球第一款商用化发光二极管诞生,效率0.1lm/W,比白炽灯低100倍,售价45$/只。 2、1968年,LED的研发取得了突破性进展,利用氮掺杂工艺使GaAsP器件的效率达到了1流明/瓦,并且能够发出红光、橙光和黄色光。 3、1971年,GaP绿色芯片LED。用途:指示用,长寿命10万小时,可靠 4、80年代AlGaAs技术使得LED效率达到10流明/瓦, 90年代的AlGaInP技术使得LED效率达到100流明/瓦。用途:显示,信号用。用于室外的运动信息发布以及汽车的高位刹车灯。 江苏伯乐达光电科技有限公司 5、1994年,中村修二研制出了第一只GaN基高亮度蓝色发光二极管。用途:由于蓝

LED基础知识资料(精)

LED基础知识资料.txt这世界上除了我谁都没资格陪在你身边。听着,我允许你喜欢我。除了白头偕老,我们没别的路可选了什么时候想嫁人了就告诉我,我娶你。本文由ywg820502贡献 ppt文档可能在WAP端浏览体验不佳。建议您优先选择TXT,或下载源文件到本机查看。 LED产品知识介绍目录一,LED简介 LED简介二,LED发展趋势 LED发展趋势三,LED芯片介绍 LED芯片介绍 四,LED封装简介 LED封装简介五,LED基础知识 LED基础知识目录一,LED简介LED简介二,LED发展趋势 LED发展趋势三,LED芯片介绍 LED芯片介绍四,LED 封装简介 LED封装简介五,LED基础知识 LED基础知识 LED简介 1,LED的定义LED的定义 2,LED的特点 LED的特点 3,发光原理什么是LED LED 是取自 Light Emitting Diode 三个字的缩写,中文译为 "发光二极管",顾名思义发光二极管是一种可以将电能转化为光能的电子器件具有二极管的特性. LED光源的特点 LED光源的特点电压:LED使用低压电源,单颗电压在1.9-4V之间,比使用高压电源更安全的电源. 效能:光效高,目前实验室最高光效已达到 161 lm/w(cree,是目前光效最高的照明产品. 抗震性:LED是固态光源,由于它的特殊性,具有其他光源产品不能比拟的抗震性. 稳定性:10万小时,光衰为初始的70% 响应时间:LED灯的响应时间为纳秒级,是目前所有光源中响应时间最快的产品. 环保:无金属汞等对身体有害物质. 颜 色:LED的带快相当窄,所发光颜色纯,无杂色光,覆盖整过可见光的全部波段,且可由R\G\B组合成任何想要可见光. LED色彩丰富由于LED带宽比较窄, 颜色纯度高,因此LED 的色彩比其他光源的色彩丰富得多. 据有关专家计算, LED的色彩比其他光源丰富30%,因此,它能够更准确的反应物体的真实性,当然也更受消费者的青睐! LED发光原理发光二极管的核心部分是由p 型半导体和n型半导体组成的晶片, 在p型半导体和n型半导体之间有一个过渡层,称为p-n结.在某些半导体材料的PN 结中,注入的少数载流子与多数载流子复合时会把多余的能量以光的形式释放出来,从而把电能直接转换为光能. PN结加反向电压,少数载流子难以注入,故不发光. LED发展趋势 1, LED光源的发展趋势 2, LED产业政策和机遇 3,公司在产业链中的位置 LED光源的发展趋势 LED光源技术市场前景: LED光源技术市场前景: 光源技术市场前景 LED理论上每瓦的发光效率高达370 LM/W,在目前芯片结构不做任何改变的情况下良好的工艺让LED每瓦到达150LM没有任何问题, 当达到这种亮度

相关主题
相关文档
最新文档