蛋白质的合成、加工

蛋白质的合成、加工
蛋白质的合成、加工

综述细胞内的蛋白质合成、加工、修饰、分选与运输方式及其生物学意义。

蛋白质是生命活动的主要承担者,是构成细胞和生物体结构的重要物质,在生物体及细胞的生命活动中发挥重大作用。

1.许多蛋白质是构成细胞和生物体结构的重要物质,称为结构蛋白。

2.细胞内的化学反应离不开酶得催化,绝大多数酶都是蛋白质。

3.有些蛋白质具有运输载体的功能。(血红蛋白运输氧)

4.有些蛋白质起信息传递的作用,能够调节机体的生命活动。(如,胰岛素)

5.有些蛋白质有免疫功能,人体的抗体是蛋白质,可以帮助人体抵御病菌和病毒等抗原的侵害。

1 蛋白质的合成

蛋白质的生物合成过程实质上是基因表达的一个过程,它包括转录和翻译。即把mRNA 分子中的碱基排列顺序转变为蛋白质或多肽链中的氨基酸排列顺序的过程,可分为起始、延长和终止3个阶段,分别由不同的起始因子、延伸因子和终止因子(释放因子)参与。细胞中的蛋白质都是在核糖体上合成的,并都是起始于细胞质基质之中。

2 蛋白质的加工与修饰

许多新生肽要经过一种或几种共价键修饰,这种修饰可以在正延伸着的肽链中进行。一般情况下,翻译后修饰一是为了功能上的需要,另一种情况是折叠成天然构象的需要。在粗面内质网合成并进入内质网腔的蛋白质发生的主要化学修饰作用有糖基化、羟基化、酰基化和二硫键的形成。而在细胞质基质中发生蛋白质修饰的类型主要有辅酶或辅基与酶的共价结合、磷酸化和去磷酸化、糖基化、甲基化、酰基化等。蛋白质的修饰加工主要包括:

切除加工:包括切除N-端甲硫氨酸、信号肽序列和切除部分肽段,将无活性的前体转变成活性形式。(包含信号肽的胰岛素前体称为前胰岛素原,去掉信号肽的胰岛素的前体称为胰岛素原),进一步切除称为C链的肽段后才能形成活性形式的胰岛素)

糖基化:糖基化主要发生在内质网和高尔基体中。粗面内质网上合成的大多数蛋白在都发生了糖基化。主要作用是促进蛋白质在成熟过程中折叠成正确构象,增加蛋白质的稳定性,有N-连接的糖基化和O-连接的糖基化之分。

羟基化:最常见的是内质网上合成的跨膜蛋白在通过内质网和高尔基体的转运过程中发生的,它由不同的酶来催化,把软脂酸链共价地连接在某些跨膜蛋白的暴露在细胞质基质中的结构域。

磷酸化与去磷酸化:蛋白磷酸化与去磷酸化参与代谢调控和信号转导以及蛋白与蛋白之间的相互作用。(PDGF受体的酪氨酸残基经过自身磷酸化后才与细胞质定位蛋白质结合。)

亲脂修饰:最常见的亲脂修饰是酰化和异戊二烯化。蛋白质亲脂修饰后可以改变膜结合能力和特定的蛋白与蛋白之间的相互作用。N-豆蔻酰化(豆蔻酸以酰酰氨键形式共价连在肽链N 端的残基上)能增加特定G蛋白的α亚基对膜结合的β、γ亚基的亲和力。

甲基化:通过甲基转移酶进行。天冬氨酸的甲基化能促进已破坏蛋白的修复或降解,在2,3-二磷酸核酮糖羧化酶(rihilose-2,3-biosphosphate carboxylase)、钙调蛋白(calmodulin)、组氨酸(histone)、某些核糖体蛋白和细胞色素C中都有甲基化的赖氨酸残基。

二硫键形成:二硫键通常只发现于分泌蛋白(如胰岛素)和某些膜蛋白中,在细胞质中由于有各种还原性物质,所以细胞质蛋白没有二硫键。因为内质网腔是一个非还原性环境,所以粗糙内质网上的新生肽只暂时形成二硫键。当新生肽进入内质网腔时,一些肽链可能会按氨基酸次序依次暂时形成二硫键,但最终会通过交换二硫键位置的形式形成正确的结构,内质网中可能还有一种二硫键异构酶催化该过程。

3 蛋白质的分选和转运

绝大多数的蛋白都是在细胞质基质游离核糖体上或者粗面内质网膜结合核糖体上合成的。由于蛋白质发挥结构或功能作用的部位几乎遍布细胞各个膜区或组分,因此必然存在不同的机制确保蛋白质分选、转运至细胞的特定部位。通过不同的途径转运到细胞的特定部位成为蛋白质分选或定向转运。信号假说的确认为细胞内蛋白质的定向转运研究指明了方向,除了信号肽外,人们发现了一系列蛋白质分选序列,统称信号序列以及信号斑,而根据信号序列运输方向的不同分为三种类型,即入核信号、引导肽和信号肽。入核信号指导核蛋白的运输,引导肽指导线粒体、叶绿体和过氧化物酶体蛋白的运输,信号肽则指导内膜系统的蛋白质运输。蛋白质的分选大体可分为:

1 翻译后转运途径:也就是合成后转运。在细胞质基质游离核糖体上完成多肽链的合成后,其中一些蛋白质不带分选信号,就留在细胞质基质中,成为可溶性驻留蛋白和支架蛋白,构成自身的结构成分;带有分选信号的蛋白质,按期分选信号的种类被分别转运到细胞的不同部位,如细胞核、线粒体、过氧化物酶体等。

2 共翻译转运途径:也就是边合成边转运。蛋白质在细胞质基质的游离核糖体上开始合成后,由信号肽引导转移至粗面内质网,即在核糖体上多肽链开始合成不久,在N-末端形成的信号肽引导核糖体附着到内质网膜上,信号肽传入内质网腔并继续其合成,新合成的多肽链可游离于内质网腔成为可溶性蛋白,也可插入内质网膜成为跨膜蛋白。以这种方式合成的蛋白质除一部分留在内质网外,大部分经高尔基体加工包装运至溶酶体、细胞质膜或分泌到细胞外。

根据蛋白质分选的转运方式或机制看,蛋白质分选的转运可分为蛋白质的跨膜转运、门控转运和膜泡运输以及细胞质基质中的蛋白转运等。其分选指令存在于多肽自身。

其中蛋白质在细胞质基质与细胞核之间的运输通过核孔复合体进行,属于门控运输。进入细胞核的蛋白质是细胞核包括染色质的结构基础之一,并且作为一些调控因子和酶参与细胞核内基因转录等活动。

蛋白质从细胞质基质进入内质网、线粒体和过氧化物酶体等有膜的细胞器是通过跨膜转运的方式进行的。进入内质网的蛋白质可分为(1)向细胞外分泌的蛋白质,包括胰腺细胞分泌的酶、浆细胞分泌的抗体。小肠被细胞分泌的黏蛋白。内分泌腺分泌的多肽类激素和胞外基质成分等。这类蛋白质常以分泌泡的形式通过细胞的胞吐作用运输到细胞外。(2)膜整合蛋白,构成细胞质膜上的膜蛋白及内质网、高尔基体和溶酶体膜上的膜蛋白。(3)构成内膜系统细胞其中的可溶性驻留蛋白。有些驻留蛋白需要与其他细胞组分严格隔离,如溶酶体与植物液泡中的酸性水解酶类,内质网、高尔基体和胞内体中固有的蛋白质以及其他有重要生物活性的蛋白质,在合成后进入内质网,便于与其他细胞组分进一步区分,也有利于对它们的加工与活化。进入线粒体的蛋白,作为结构蛋白参与线粒体内外膜的构成,作为各种氧化酶、代谢酶参与线粒体的各项生物功能,包括氧化代谢、呼吸链中电子的传递和质子的转移以及氧化磷酸化过程。进入外膜系统的蛋白,除了参与生物膜的基本构建以为,构成了细胞膜上的各种生物泵,参与物质运输。同时,细胞膜、核膜等受体蛋白,参与着生物的信号传导过程。

蛋白质通过不同类型的转运小泡从粗面内质网合成部位转运至高尔基体,进而分选转运到细胞的不同部位,是膜泡运输的典型代表。

第十二章 蛋白质的生物合成

第十二章蛋白质的生物合成 一、知识要点 (一)蛋白质生物合成体系的重要组分 蛋白质生物合成体系的重要组分主要包括mRNA 、tRNA 、rRNA、有关的酶以及几十种蛋白质因子。其中,mRNA是蛋白质生物合成的直接模板。tRNA的作用体现在三个方面:3ˊCCA接受氨基酸;反密码子识别mRNA链上的密码子;连接多肽链和核糖体。rRNA和几十种蛋白质组成合成蛋白质的场所——核糖体。 遗传密码的特点:无标点性、无重叠性;通用性和例外;简并性;变偶性。 (二)蛋白质白质生物合成的过程 蛋白质生物合成的过程分四个步骤:氨基酸活化、肽链合成的起始、延伸、终止和释放。 其中,氨基酸活化即氨酰tRNA的合成,反应由特异的氨酰tRNA合成酶催化,在胞液中进行。氨酰tRNA合成酶既能识别特异的氨基酸,又能辩认携带该氨酰基的一组同功受体tRNA分子。 肽链合成的起始对于大肠杆菌等原核细胞来说,是70S起始复合物的形成。它需要核糖体30S和50S亚基、带有起始密码子AUG的mRNA、fMet-tRNA f 、起始因子IF1、IF2、IF3(分子量分别为10 000、80 000和21 000的蛋白质)以及GTP和Mg2+的参加。 肽链合成的延伸需要70S起始复合物、氨酰-tRNA、三种延伸因子:一种是热不稳定的EF-Tu,另一种是热稳定的EF-Ts,第三种是依赖GTP的EF-G以及GTP和Mg2+。 肽链合成的终止和释放需要三个终止因子RF1、RF2、RF3蛋白的参与。 比较真核细胞蛋白质生物合成与原核细胞的不同。 (三)蛋白质合成后的修饰 蛋白质合成后的几种修饰方式:氨基末端的甲酰甲硫氨酸的切除、肽链的折叠、氨基酸残基的修饰、切去一段肽链。 二、习题 (一)(一)名词解释 1.密码子(codon) 2.反义密码子(synonymous codon) 3.反密码子(anticodon) 4.变偶假说(wobble hypothesis) 5.移码突变(frameshift mutant) 6.氨基酸同功受体(isoacceptor) 7.反义RNA(antisense RNA) 8.信号肽(signal peptide) 9.简并密码(degenerate code) 10.核糖体(ribosome) 11.多核糖体(poly some) 12.氨酰基部位(aminoacyl site) 13.肽酰基部位(peptidy site) 14.肽基转移酶(peptidyl transferase) 15.氨酰- tRNA合成酶(amino acy-tRNA synthetase) 16.蛋白质折叠(protein folding)

蛋白质的合成加工

综述细胞内的蛋白质合成、加工、修饰、分选与运输方式及其生物学意义。 蛋白质是生命活动的主要承担者,是构成细胞和生物体结构的重要物质,在生物体及细胞的生命活动中发挥重大作用。 1.许多蛋白质是构成细胞和生物体结构的重要物质,称为结构蛋白。 2.细胞内的化学反应离不开酶得催化,绝大多数酶都是蛋白质。 3.有些蛋白质具有运输载体的功能。(血红蛋白运输氧) 4.有些蛋白质起信息传递的作用,能够调节机体的生命活动。(如,胰岛素) 5.有些蛋白质有免疫功能,人体的抗体是蛋白质,可以帮助人体抵御病菌和病毒等抗原的侵害。 1 蛋白质的合成 蛋白质的生物合成过程实质上是基因表达的一个过程,它包括转录和翻译。即把mRNA 分子中的碱基排列顺序转变为蛋白质或多肽链中的氨基酸排列顺序的过程,可分为起始、延长和终止3个阶段,分别由不同的起始因子、延伸因子和终止因子(释放因子)参与。细胞中的蛋白质都是在核糖体上合成的,并都是起始于细胞质基质之中。 2 蛋白质的加工与修饰 许多新生肽要经过一种或几种共价键修饰,这种修饰可以在正延伸着的肽链中进行。一般情况下,翻译后修饰一是为了功能上的需要,另一种情况是折叠成天然构象的需要。在粗面内质网合成并进入内质网腔的蛋白质发生的主要化学修饰作用有糖基化、羟基化、酰基化和二硫键的形成。而在细胞质基质中发生蛋白质修饰的类型主要有辅酶或辅基与酶的共价结合、磷酸化和去磷酸化、糖基化、甲基化、酰基化等。蛋白质的修饰加工主要包括: 切除加工:包括切除N-端甲硫氨酸、信号肽序列和切除部分肽段,将无活性的前体转变成活性形式。(包含信号肽的胰岛素前体称为前胰岛素原,去掉信号肽的胰岛素的前体称为胰岛素原),进一步切除称为C链的肽段后才能形成活性形式的胰岛素) 糖基化:糖基化主要发生在内质网和高尔基体中。粗面内质网上合成的大多数蛋白在都发生了糖基化。主要作用是促进蛋白质在成熟过程中折叠成正确构象,增加蛋白质的稳定性,有N-连接的糖基化和O-连接的糖基化之分。(重点) 羟基化:最常见的是内质网上合成的跨膜蛋白在通过内质网和高尔基体的转运过程中发生的,它由不同的酶来催化,把软脂酸链共价地连接在某些跨膜蛋白的暴露在细胞质基质中的结构域。 磷酸化与去磷酸化:蛋白磷酸化与去磷酸化参与代谢调控和信号转导以及蛋白与蛋白之间的相互作用。(PDGF受体的酪氨酸残基经过自身磷酸化后才与细胞质定位蛋白质结合。) 亲脂修饰:最常见的亲脂修饰是酰化和异戊二烯化。蛋白质亲脂修饰后可以改变膜结合能力和特定的蛋白与蛋白之间的相互作用。N-豆蔻酰化(豆蔻酸以酰酰氨键形式共价连在肽链N 端的残基上)能增加特定G蛋白的α亚基对膜结合的β、γ亚基的亲和力。 甲基化:通过甲基转移酶进行。天冬氨酸的甲基化能促进已破坏蛋白的修复或降解,在2,3-二磷酸核酮糖羧化酶(rihilose-2,3-biosphosphate carboxylase)、钙调蛋白(calmodulin)、组氨酸(histone)、某些核糖体蛋白和细胞色素C中都有甲基化的赖氨酸残基。 二硫键形成:二硫键通常只发现于分泌蛋白(如胰岛素)和某些膜蛋白中,在细胞质中由于有各种还原性物质,所以细胞质蛋白没有二硫键。因为内质网腔是一个非还原性环境,所以粗糙内质网上的新生肽只暂时形成二硫键。当新生肽进入内质网腔时,一些肽链可能会按氨基酸次序依次暂时形成二硫键,但最终会通过交换二硫键位置的形式形成正确的结构,内质网中可能还有一种二硫键异构酶催化该过程。 3 蛋白质的分选和转运

蛋白质合成、加工和转运的过程

一、蛋白质的合成 1、核糖体是合成蛋白质的机器,其功能是按照mRNA的指令由氨基酸合成蛋白质。 2、游离核糖体游离于胞质中,合成细胞内的基础蛋白质;附着核糖体,附着在内质网表面,构 成粗面内质网的核糖体,合成分泌蛋白和膜蛋白。 3、蛋白质合成的一般过程: 1)氨基酸的活化。氨基酸和tRNA在氨酰一tRNA合成酶作用下合成活化的氨酰一 tRNA。2)起始、延伸和终止。3)蛋白质合成后的加工。肽链N端Met的去除; 氨基酸残基的化学修饰,乙酰化、甲基化、磷酸化等;肽链的折叠;二硫键的形成。 二、蛋白质的分泌合成、加工修饰和转运 1、信号肽介导分泌性蛋白在粗面内质网的合成。 1)信号肽是蛋白质合成中最先被翻译出来的一段氨基酸序列,通常由18-30个疏水氨基酸组成,能指引核糖体与内质网结合,并引导合成的多肽链进入内质网 腔。 2)新生分泌性蛋白质多肽链在胞质中的游离核糖体上起始合成。当新生肽链N端的信号肽被翻译后,可立即被细胞质基质中的信号识别颗粒(SRP)识别、结 合。 3)与信号肽识别结合的SRP,识别结合内质网膜上的SRP-R,并介导核糖体锚泊附着于内质网膜的通道蛋白移位子上。而SRP则从信号肽一核糖体复合体上解离, 返回细胞质基质中重复上述过程。 4)在信号肽的引导下,合成中的肽链,通过由核糖体大亚基的中央管和移位子蛋白共同形成的通道,穿膜进入内质网网腔。随之,信号肽序列被内质网膜俄面的信号肽酶且除, 新生肽链继续延伸,直至完成而终止。最后完成肽链合成的核糖体大、小亚基解聚,并 从内质网上解离。 2、跨膜驻留蛋白的插入和转移决定了蛋白质的两种去处:1)穿过膜进腔,为可溶性蛋 白质,包括分泌蛋白和内质网驻留蛋白。2)嵌入内质网膜中,形成膜蛋白。 3、粗面内质网与外输性蛋白质的分泌合成、加工修饰和转运过程密切相关。 1)新生多肽链的折叠与装配,与合成同时发生。内质网为新生多肽链正确的折叠和装配提供了有利的环境。分子伴侣通过对多肽链的识别结合来协助它们的折叠组装和转运。 2)蛋白质的糖基化。在粗面内质网网膜腔面的糖基转移酶作用下发生N一连接糖基化。 三、蛋白质的加工、分选和定向运输 1、蛋白质在高尔基体内加工等。 1)糖蛋白的加工合成。糖基化修饰加工合成的糖蛋白,主要包括N一连接糖蛋白和O一连接糖蛋白两种类型。前者,糖链合成与糖基化修饰始于内质网,完成 于高尔基复合体;后者,则主要或完全是在高尔基复合体中进行和完成的。 2)蛋白质糖链的加工有严格的区域性和顺序性:甘露糖去除发生在中间扁囊高尔基复合体靠近顺面的部位;N一乙酰葡萄糖胺加入在中间部;半乳糖加入在中 间扁囊区靠近反面的部位。 3)蛋白质的水解加工。 2、分选蛋白质:高尔基体通过对蛋白质的修饰、加工,使其带上能被高尔基复合体网膜上专一 受体识别的分选信号,进而选择、浓缩,形成不同靶向的分泌泡。 四、蛋白质合成的质量监控 1、内质网至高尔基体的蛋白质必须是正确折叠和组装的。分子伴侣可特异性的识别错

蛋白质生物合成考题

第十四章蛋白质的生物合成 一、单项选择题 1、原核生物中起始氨基酰-tRNA是 A.fMet-tRNA fMet B.Met-tRNA Met C. Arg-tRNA Arg D.leu- tRNA leu E.Asn--tRNA Asn 2、与mRNA上5′-ACG-3′密码子相应的tRNA反密码子(5′→3′)是 A.CGA B.IGC C.CIG D.CGI E.GGC 3、tRNA分子具有下列结构特征 A.密码环 B.有5'端-C-C-AOH末端 C.有反密码环和5'端-C-C-AOH末端 D.有多聚A尾 E. 3'端有C-C-AOH末端,另一侧有反密码环 4、在蛋白质生物合成中催化氨基酸之间形成肽键的酶是 A.氨基酸合成酶 B.羧基肽酶 C.转肽酶 D.氨基肽酶 E.氨基酸连接酶 5、原核生物翻译起始复合物有下列组分 A. DNA模板+RNA+RNA聚合酶 B. 翻译起始因子+核糖体 C. 核糖体+fMet-tRNA fMet+mRNA D. 核糖体+起始-tRNA E.氨基酰-tRNA合成酶 6、催化氨基酸活化的酶是 A.氨基酸- tRNA 转移酶 B.氨基酰- tRNA 合成酶 C.氨基肽酶 D.氨基酸转移酶 E.羧基肽酶 7、蛋白质生物合成的终止信号由下列哪种因子识别? A. σ B. RF C. EF D. IF E. ρ 8、通过结合细菌的核糖体大亚基而杀灭或抑制细菌的抗生素是 A.四环素 B.氯霉素 C.链霉素 D.嘌呤霉素 E.放线菌酮 9、翻译延长阶段所需的酶是 A. 转肽酶 B. 磷酸化酶 C. 肽链聚合酶 D. 氨基酰-tRNA合成酶 E.氨基肽酶 10、肽链延长时接受氨基酰-tRNA的部位是 A.小亚基 B.大亚基 C.A位 D.P位 E.肽位 11、氨基酸是通过那种化学键与tRNA 结合的 A. 肽键 B.磷酸酯键 C.酐键 D.酯键 E.氢键 12、在mRNA分子的5'端,下列密码子具有起始信号作用 A. UAA B. UAG C. UGA D.GUA E.AUG

生物化学考题_蛋白质生物合成

蛋白质生物合成 一级要求单选题 1真核生物在蛋白质生物合成中的启始tRNA 是 A 亮氨酸Trna B 丙氨酸tRNA C 赖氨酸tRNA D 甲酰蛋氨酸tRNA E 蛋氨酸tRNA E 2原核生物蛋白质生物合成中肽链延长所需的能量来源于 A ATP B GTP C GDP D UTP E CTP B 3哺乳动物核蛋白体大亚基的沉降常数是 A 40S B 70S C 30S D 80S E 60S E 4下列关于氨基酸密码的叙述哪一项是正确的 A 由DNA 链中相邻的三个核苷酸组成 B 由tRNA 链中相邻的三个核苷酸组成 C 由mRNA 链中相邻的三个核苷酸组成 D 由rRNA 链中相邻的三个核苷酸组成 E 由多肽链中相邻的三个氨基酸组成 C 5mRNA 作为蛋白质合成的模板,根本上是由于 A 含有核糖核苷酸 B 代谢快 C 含量少 D 由DNA 转录而来 E 含有密码子

6蛋白质生物合成过程特点是 A 蛋白质水解的逆反应 B 肽键合成的化学反应 C 遗传信息的逆向传递 D 在核蛋白体上以mRNA 为模板的多肽链合成过程 E 氨基酸的自发反应 D 7关于mRNA,错误的叙述是 A 一个mRNA 分子只能指导一种多肽链生成 B mRNA 通过转录生成 C mRNA 与核蛋白体结合才能起作用 D mRNA 极易降解 E 一个tRNA 分子只能指导一分于多肽链生成 E 8反密码子是指 A DNA 中的遗传信息 B tRNA 中的某些部分 C mRNA 中除密码子以外的其他部分 D rRNA 中的某些部分 E 密码子的相应氨基酸 9密码GGC 的对应反密码子是 A GCC B CCG C CCC E B D CGC E GGC 10在蛋白质生物合成中转运氨基酸作用的物质是

蛋白质生物合成部分的练习题参考答案

第一部分填空 1、在蛋白质合成中,每种RNA各有作用,其中mRNA , tRNA 。 2、蛋白质的生物合成是在___________进行,以___________作为模板,以___________作为运载工具。 3、原核细胞多肽链合成第一个氨基酸是_________,真核细胞多肽链合成的第一个氨基酸是________。 4、遗传密码的特点有方向性、连续性、________、______以及有起始和终止密码。 5、肽链的延伸包括________、________和_________三个步骤周而复始的进行。 6、核糖体上有A和P两个位点,A位点是结合位点。 7、多肽合成的起始氨基酸在原核细胞中是,在真核细胞中 是。 8、起始密码子是______ ,终止密码子是UAA,UAG和______。 9、蛋白质合成后加工常见的方式有,例如、、。 10、细胞内多肽链合成的方向是从_______端到_______端。 11、mRNA的4种碱基总共编码_______个密码子,其中_______个编码氨基酸。 12、DNA的复制合成的方向是_______,RNA的转录方向______,蛋白质合成方向________。 13、AUG即可作为翻译的起始信号,同时又编码________氨基酸。 14、在蛋白质生物合成中,mRNA起作用,tRNA起作用,由rRNA与蛋白质组成的核蛋白体起。 1、蛋白质合成的模板,转运活化的氨基酸至mRNA模板上 2、核糖体,m RNA,t RNA。 3、甲酰甲硫氨酸,甲硫氨酸 4、简拼性,通用性 5、进位,成肽键,转位 6、结合氨基酰tRNA的氨酰基 7、甲酰甲硫氨酸,甲硫氨酸 8、AUG,UGA 9、磷酸化,糖基化,信号肽切除 10、N,C 11、64,61 12、3’→5’,3’→5’,N 端→C端 13、甲硫氨酸 14、模板,携带转运氨基酸,合成蛋白质场所 第二部分单选题 1、蛋白质合成起始时模板mRNA首先结合于核糖体上的位点是( B ) 2、原核细胞中新生肽链的N-末端氨基酸是( C ) 3、蛋白质合成所需的能量来自( C )

蛋白质的生物合成习题与参考答案 (2)

第十五章蛋白质生物合成 一、填空题: 1.三联体密码子共有64 个,其中终止密码子共有 3 个,分别为UAA 、UAG 、UGA 。 2.密码子的基本特点有四个分别为从5′→3′无间断性、简并性、变偶性、通用性。 3.次黄嘌呤具有广泛的配对能力,它可与U 、 C 、 A 三个碱基配对,因此当它出现在反密码子中时,会使反密码子具有最大限度的阅读能力。4.原核生物核糖体为70 S,其中大亚基为50 S,小亚基为30 S;而真核生物核糖体为80 S,大亚基为60 S,小亚基为40 S。 5.原核起始tRNA,可表示为tRNA f甲硫,而起始氨酰tRNA表示为 f Met-tRNA f甲硫;真核生物起始tRNA可表示为tRNA I甲硫,而起始氨酰-tRNA表示为Met-tRNA f甲硫。 6.肽链延伸过程需要进位、转肽、移位三步循环往复,每循环一次肽链延长 1 个氨基酸残基,原核生物中循环的第一步需要EF-Tu 和EF-Ts 延伸因子;第三步需要EF-G 延伸因子。 7.原核生物mRNA分子中在距起始密码子上游约10个核苷酸的地方往往有一段富含嘌呤碱基的序列称为Shine-Dalgrano序列,它可与16S-rRNA 3′-端核苷酸序列互补。 8.氨酰-tRNA的结构通式可表示为:O tRNA-O-C-CH-R NH2, 与氨基酸键联的核苷酸是A(腺嘌呤核苷酸)。 实用文档

9.氨酰-tRNA合成酶对氨基酸和相应tRNA都具有较高专一性,此酶促反应过程中由ATP 水解提供能量。 10.肽链合成的终止阶段,RF1因子和RF2因子能识别终止密码子,以终止肽链延伸,而RF3因子虽不能识别任何终止密码子,但能协助肽链释放。 11.蛋白质合成后加工常见的方式有磷酸化、糖基化、脱甲基化、信号肽切除。 12.真核生物细胞合成多肽的起始氨基酸为甲硫氨酸,起始tRNA为tRNA I甲硫,此tRNA分子中不含T C 序列。这是tRNA家庭中十分特殊的。 二、选择题(只有一个最佳答案): 1.下列有关mRAN的论述,正确的一项是( C ) A、mRNA是基因表达的最终产物 B、mRNA遗传密码的阅读方向是3′→5′ C、mRNA遗传密码的阅读方向是5′→3′ D、mRNA密码子与tRNA反密码子通过A-T,G-C配对结合 E、每分子mRNA有3个终止密码子 2.下列反密码子中能与密码子UAC配对的是( D ) A、AUG B、AUI C、ACU D、GUA 3.下列密码子中,终止密码子是( B ) A、UUA B、UGA C、UGU D、UAU 实用文档

分泌蛋白的合成

问题一: 1.分泌蛋白的合成: (1)在游离的核糖体上由信号密码翻译出一段16~30个氨基酸组成的肽链,也就是信号肽。(2)SPA识别信号肽并与之结合,形成SRP-核糖体复合体,蛋白质的合成暂时中止。SRP-核糖体复合物在SPR的介导下,向粗面内质网上的SPR受体靠近,通过SPR受体识别并结合SPR,使正在合成蛋白质的核糖体附着在内质网上。 (3)当核糖体附着于内质网膜之后,SPR受体发生构象变化,SPR与受体分开,离开内质网,重新进入SPR循环。 (4)SPR与膜上受体分离后,处于暂停状态的肽链合成又恢复,新合成的肽链通过由核糖体大亚基的中央管和转移器蛋白共同形成的通道,穿膜进入内质网腔 (5)这时,信号肽由内质网腔面的信号肽酶切掉,新生肽链继续合成。当核糖体沿mRNA 阅读到终止密码时,多肽的合成停止,合成后的多肽链游离于粗面内质网腔中。 2.分泌蛋白的加工: (1)蛋白质的糖基化:N-连接的糖链合成起始于内质网,完成于高尔基复合体。在内质网形成的形成的糖蛋白具有相似的糖链,由顺面进入高尔基复合体后,在各膜囊之间的转运过程中,发生了一系列有序的加工和修饰,原来糖链中大部分甘露糖被切除,但又被多种糖基转移酶依次加上了不同类型的糖分子,形成了结构特异的寡糖链。O-连接的基化在高尔基复合体中进行,通常的一个连接上去的糖单元是N-乙酰半乳糖胺。连接的部位为丝氨酸、苏氨酸和酪氨酸的OH基团,然后逐次将糖基转移上去形成寡糖链。 (2)蛋白水解活化:高尔基复合体的膜结合着很多类蛋白水解酶,可以将某些蛋白质N端或C端切除,成为成熟的多肽,具有生物活性。 3.分泌蛋白的转运:分泌蛋白进入内质网腔后主要有两个转运途径。 (1)经过折叠及糖基化作用,以运输囊泡的形式进入高尔基复合体,在高尔基复合体中修饰,加工后再输出细胞外,这是分泌蛋白质常见的排出途径。 (2)含有分泌蛋白质的膜泡由内质网上脱离下来形成一种浓缩泡,通过胞吐作用而被排出。这种途径仅见于某些哺乳动物的胰腺外分泌细胞。 问题二: 1.相同点:膜蛋白、分泌蛋白、溶酶体酶的合成与加工相同。 (1)转运相同:都是由附着在内质网上的核糖体合成。 (2)加工相同:都需要进入粗面内质网腔中进行N-连接糖基化,形成糖蛋白;糖基化完成后,都需要经过内质网腔至高尔基复合体,在此处寡糖的成分被修饰和加工,并进行其特有的糖基化——O-连接糖基化。 2.不同点:膜蛋白、分泌蛋白、溶酶体酶的转运不同。 (1)膜蛋白的转运:跨膜蛋白的转运分为单次跨膜蛋白转运和多次跨膜蛋白转运。 1)单次跨膜蛋白转运: i)新生肽链协同翻译插入。在新生跨膜蛋白的肽链中既含有N端起始转移信号,又具有停止转移信号。由起始转移信号引导肽链向内质网膜转移,在整个肽链尚未完成转移之前,停止转移信号便停止转移。起始转移信号从移位子上解除释放,停止转移信号形成单次跨膜α螺旋结构区,其蛋白的氨基端深入内质网腔内,羧基端则滞留于细胞质侧。 ii)信号肽在肽链内部,称为内信号肽。内信号肽作为起始转移信号启动多肽链的转移,多肽

片段教学讲稿:分泌蛋白的合成和运输

一、复习 通过上一节课的学习,我们知道细胞内部就像一个繁忙的工厂,在细胞质中有许多忙碌不停的“车间”,也就是细胞器。各种细胞器的形态、结构不同,在功能上也各有分工。 现在我们来复习下各种细胞器的功能。第一个,线粒体。它是细胞进行有氧呼吸的主要场所,是细胞的?“动力车间”。细胞生命活动所需的能量,大约95%来自线粒体。溶酶体是?“消化车间”,内部含有多种水解酶,能分解衰老、损伤的细胞器,吞噬并杀死侵入细胞的病毒或病菌。液泡主要存在于植物细胞中,内有细胞液,含糖类、无机盐、色素和蛋白质等物质,可以调节植物细胞内的环境,充盈的液泡还可以使植物细胞保持坚挺。核糖体有的附着在内质网上,有的游离分布在细胞质中,是“生产蛋白质的机器”。高尔基体主要是对来自内质网的蛋白质进行加工、分类和包装的“车间”及“发送站”。中心体存在于动物和某些低等植物的细胞中,由两个互相垂直排列的中心粒及周围物质组成,与细胞的有丝分裂有关。内质网是由膜连接而成的网状结构,是细胞内蛋白质合成和加工,以及脂质合成的“车间”。叶绿体是绿色植物进行光合作用的场所,是植物细胞的“养料制造车间”和“能量转换站”。 二、导入 细胞内有许多条“生产线”,单是一种简单的细胞就可以推出许多的“产品”,例如蛋白质,糖蛋白,脂类等等。而每一条“生产线”都需要若干细胞器的相互配合。正如ppt所呈现的,蛋白质的合成、加工等与核糖体、内质网和高尔基体等细胞器有关,那这些细胞器之间是如何进行协调配合,才能生产出蛋白质这一产品呢?这节课我们就以分泌蛋白为例,来学习细胞器之间的协调配合。(板书) 三、新课

(一)概念介绍 在学习分泌蛋白的合成和运输之前,我们先要了解几个相关概念。 1.分泌蛋白。(顾名思义,在细胞内合成后,分泌到细胞外起作用的蛋白质叫做分泌蛋白,如消化酶、抗体和部分激素。比如唾液淀粉酶、胃蛋白酶、胰蛋白酶,胰岛素、生长激素等。) 2.同位素标记法。放射性同位素会释放出具有穿透力的射线,科学家们可以用相应的探测仪器探测到这些射线,进而追踪到放射性同位素的位置。(用放射性同位素标记的化合物,化学性质不会改变。根据同位素标记的化合物的放射性,科学家可以对有关物质的运行和化学变化进行追踪。)这种方法就叫做同位素标记法。 在课本48页的资料分析中,科学家将用放射性同位素氘3H标记的亮氨酸注射到豚鼠的胰腺腺泡细胞中。结果如图4-2豚鼠胰腺腺泡细胞分泌蛋白形成过程图解。我们将探测到射线的位置用红点来表示,红点位置的移动,代表着被标记的亮氨酸的位置移动。科学家们通过追踪氘3H标记的亮氨酸的位置变化,就可以弄清分泌蛋白的合成和运输过程。

生物化学试题 蛋白质生物合成.

第十四章蛋白质生物合成.. (一A型题 1 遗传密码的简并性指的是(1995年生化试题 A 一些三联体密码可以缺少一个嘌呤碱或嘧啶碱 B 密码中有许多稀有碱基 C 大多数的氨基酸有一组以上的密码 D 一些密码适用于一种以上的氨基酸 E 以上都不是 [答案] C 2 原核事物蛋白质合成中肽链延长所需的能量来源于(1996年生化试题 A. ATP B. GTP C. GDP D. UTP E. CTP [答案] B 3.下列关于氨基酸密码的叙述哪一项是正确的(1996年生化试题、 A.由DNA链中相邻的三个核苷酸组成, B.由tRNA链中相邻的三个核苷酸组成

C.由mRNA链中相邻的三个核苷酸组成 D.由rRNA链中相邻的三个核苷酸组成 E.由多肽链中相邻的三个氨基酸组成 (答案 C 4.氯霉素的抗菌作用是由于抑制了细菌的(1997年生化试题 A.细胞色素氧化酶 B.核蛋白体上的转肽酶 C.嘌呤核苷酸代谢 D.基因表达E,二氢叶酸还原酶 答案B 5 一个mRNA的部分顺序和密码编号如下(1998年生化试题..CAG CUC UAU CGG UAG AAU AGC..... 140 141 142 143 144 145 146 以此mRNA为模板,经翻译后生成多肽链含有的氨基酸数是: A.140 B.141 C.142 D.143 E.146

(答案 D (二X型题 1.下列哪些氨基酸是蛋白质合成后加工过程形成的(1997年生化试题 A.羟赖氨酸B,磷酸酪氨酸C.羟脯氨酸D,磷酸丝氨酸 (答案 A、B C D 2.下列哪些成分是核蛋白循环终止阶段所需要的(1999年生化试题 A.核蛋白体B,终止因子· C.遗传密码(UAA,UAG UGA D.GTP (答案 A、B、C 四、测试题 (一A型题 1.真核生物在蛋白质生物合成中的启动tRNA是 A。亮氨酸tRNA B.丙氨酸tRNA C,赖氨酸tRNA D。甲酰蛋氨酸tRNA E.蛋氨酸tRNA 2.哺乳动物核蛋白体大亚基的沉降常数是· A.40S B,70S C.30S D.80S E.60S 3。使核蛋白体大小亚基保持分离状态的蛋白质因子是 A IF1.B.IF2 C,IF3 D.EFl E.EF2

-第七章蛋白质的生物合成

第七章蛋白质的生物合成——翻译 (一)名词解释 1.翻译2.密码子3.密码的简并性4.同义密码子5.变偶假说6.移码突变7.同功受体8.多核糖体 (二)问答题 1.参与蛋白质生物合成体系的组分有哪些?它们具有什么功能? 2.遗传密码是如何破译的? 3.遗传密码有什么特点? 4.简述三种RNA在蛋白质生物合成中的作用。 5.简述核糖体的活性中心的二位点模型及三位点模型的内容。 6.氨基酸在蛋白质合成过程中是怎样被活化的? 7.简述蛋白质生物合成过程。 8.蛋白质合成中如何保证其翻译的正确性? 9.原核细胞和真核细胞在合成蛋白质的起始过程有什么区别。 10.蛋白质合成后的加工修饰有哪些内容? 11.蛋白质的高级结构是怎样形成的? 12.真核细胞与原核细胞核糖体组成有什么不同?如何证明核糖体是蛋白质的合成场所? 13. 已知一种突变的噬菌体蛋白是由于单个核苷酸插入引起的移码突变的,将正常的蛋白质和突变体蛋白质用胰蛋白酶消化后,进行指纹图分析。结果发现只有一个肽段的差异,测得其基酸顺序如下:正常肽段Met-Val-Cys-Val-Arg 突变体肽段Met-Ala-Met-Arg (1)什么核苷酸插入到什么地方导致了氨基酸顺序的改变? (2)推导出编码正常肽段和突变体肽段的核苷酸序列. 提示:有关氨基酸的简并密码分别为 Val:GUU GUC GUA GUG Arg:CGU CGC CGA CG AGA AGG Cys:UGU UGC Ala:GCU GCC GCA CGC 14. 试列表比较核酸与蛋白质的结构。 15. 试比较原核生物与真核生物的翻译。 (三)填空题 1.蛋白质的生物合成是以___________为模板,以___________为原料直接供体,以_________为合成杨所。 2.生物界共有______________个密码子,其中___________个为氨基酸编码,起始密码子为_________;终止密码子为_______、__________、____________。 3.原核生物的起始tRNA以___________表示,真核生物的起始tRNA以___________表示,延伸中的甲硫氨酰tRNA以__________表示。 4.植物细胞中蛋白质生物合成可在__________、___________和___________三种细胞器内进行。 5.延长因子T由Tu和Ts两个亚基组成,Tu为对热___________蛋白质,Ts为对热________蛋白质。 6.原核生物中的释放因子有三种,其中RF-1识别终止密码子_____________、____________;RF-2识别__________、____________;真核中的释放因子只有___________一种。 7.氨酰-tRNA合成酶对__________和相应的________有高度的选择性。

蛋白质生物合成考题

蛋白质的生物合成 一、单项选择题 1、原核生物中起始氨基酰-tRNA是 A.fMet-tRNA fMet B.Met-tRNA Met C. Arg-tRNA Arg D.leu- tRNA leu E.Asn--tRNA Asn 2、与mRNA上5′-ACG-3′密码子相应的tRNA反密码子(5′→3′)是 A.CGA B.IGC C.CIG D.CGI E.GGC 3、tRNA分子具有下列结构特征 A.密码环 B.有5'端-C-C-AOH末端 C.有反密码环和5'端-C-C-AOH末端 D.有多聚A尾 E. 3'端有C-C-AOH末端,另一侧有反密码环 4、在蛋白质生物合成中催化氨基酸之间形成肽键的酶是 A.氨基酸合成酶 B.羧基肽酶 C.转肽酶 D.氨基肽酶 E.氨基酸连接酶 5、原核生物翻译起始复合物有下列组分 A. DNA模板+RNA+RNA聚合酶 B. 翻译起始因子+核糖体 C. 核糖体+fMet-tRNA fMet+mRNA D. 核糖体+起始-tRNA E.氨基酰-tRNA合成酶 6、催化氨基酸活化的酶是 A.氨基酸- tRNA 转移酶 B.氨基酰- tRNA 合成酶 C.氨基肽酶 D.氨基酸转移酶 E.羧基肽酶 7、蛋白质生物合成的终止信号由下列哪种因子识别? A. σ B. RF C. EF D. IF E. ρ 8、通过结合细菌的核糖体大亚基而杀灭或抑制细菌的抗生素是 A.四环素 B.氯霉素 C.链霉素 D.嘌呤霉素 E.放线菌酮 9、翻译延长阶段所需的酶是 A. 转肽酶 B. 磷酸化酶 C. 肽链聚合酶 D. 氨基酰-tRNA合成酶 E.氨基肽酶 10、肽链延长时接受氨基酰-tRNA的部位是 A.小亚基 B.大亚基 C.A位 D.P位 E.肽位 11、氨基酸是通过那种化学键与tRNA 结合的 A. 肽键 B.磷酸酯键 C.酐键 D.酯键 E.氢键 12、在mRNA分子的5'端,下列密码子具有起始信号作用 A. UAA B. UAG C. UGA D.GUA E.AUG 13、在蛋白质生物合成过程中,下列物质不参与肽链的延长 A.转肽酶 B.GTP C.EFTu、EFTs D. IF E. EFG 14、在翻译延长阶段中,成肽是指 A.核糖体在mRMA上移动一个密码 B. 下一位氨基酸-tRMA进入核糖体A位 C.又称为进位 D.将P位上的氨酰基转移到A位形成一个肽键 E.又称转位 15、遗传密码的摆动性是 A.一个氨基酸有两个或两个以上密码子 B.从低等生物到人类都用同一套遗传密码

相关文档
最新文档