小波神经网络的时间序列预测-短时交通流量预测

小波神经网络的时间序列预测-短时交通流量预测
小波神经网络的时间序列预测-短时交通流量预测

%% 清空环境变量

clc

clear

%% 网络参数配置

load traffic_flux input output input_test output_test

M=size(input,2); %输入节点个数

N=size(output,2); %输出节点个数

n=6; %隐形节点个数

lr1=0.01; %学习概率

lr2=0.001; %学习概率

maxgen=100; %迭代次数

%权值初始化

Wjk=randn(n,M);Wjk_1=Wjk;Wjk_2=Wjk_1; Wij=randn(N,n);Wij_1=Wij;Wij_2=Wij_1;

a=randn(1,n);a_1=a;a_2=a_1;

b=randn(1,n);b_1=b;b_2=b_1;

%节点初始化

y=zeros(1,N);

net=zeros(1,n);

net_ab=zeros(1,n);

%权值学习增量初始化

d_Wjk=zeros(n,M);

d_Wij=zeros(N,n);

d_a=zeros(1,n);

d_b=zeros(1,n);

%% 输入输出数据归一化

[inputn,inputps]=mapminmax(input');

[outputn,outputps]=mapminmax(output');

inputn=inputn';

outputn=outputn';

%% 网络训练

for i=1:maxgen

%误差累计

error(i)=0;

% 循环训练

for kk=1:size(input,1)

x=inputn(kk,:);

yqw=outputn(kk,:);

for j=1:n

for k=1:M

net(j)=net(j)+Wjk(j,k)*x(k);

net_ab(j)=(net(j)-b(j))/a(j);

end

temp=mymorlet(net_ab(j));

for k=1:N

y=y+Wij(k,j)*temp; %小波函数

end

end

%计算误差和

error(i)=error(i)+sum(abs(yqw-y));

%权值调整

for j=1:n

%计算d_Wij

temp=mymorlet(net_ab(j));

for k=1:N

d_Wij(k,j)=d_Wij(k,j)-(yqw(k)-y(k))*temp;

end

%计算d_Wjk

temp=d_mymorlet(net_ab(j));

for k=1:M

for l=1:N

d_Wjk(j,k)=d_Wjk(j,k)+(yqw(l)-y(l))*Wij(l,j) ;

end

d_Wjk(j,k)=-d_Wjk(j,k)*temp*x(k)/a(j);

end

%计算d_b

for k=1:N

d_b(j)=d_b(j)+(yqw(k)-y(k))*Wij(k,j);

end

d_b(j)=d_b(j)*temp/a(j);

%计算d_a

for k=1:N

d_a(j)=d_a(j)+(yqw(k)-y(k))*Wij(k,j);

end

d_a(j)=d_a(j)*temp*((net(j)-b(j))/b(j))/a(j);

end

%权值参数更新

Wij=Wij-lr1*d_Wij;

Wjk=Wjk-lr1*d_Wjk;

b=b-lr2*d_b;

a=a-lr2*d_a;

d_Wjk=zeros(n,M);

d_Wij=zeros(N,n);

d_a=zeros(1,n);

d_b=zeros(1,n);

y=zeros(1,N);

net=zeros(1,n);

net_ab=zeros(1,n);

Wjk_1=Wjk;Wjk_2=Wjk_1;

Wij_1=Wij;Wij_2=Wij_1;

a_1=a;a_2=a_1;

b_1=b;b_2=b_1;

end

end

%% 网络预测

%预测输入归一化

x=mapminmax('apply',input_test',inputps); x=x';

%网络预测

for i=1:92

x_test=x(i,:);

for j=1:1:n

for k=1:1:M

net(j)=net(j)+Wjk(j,k)*x_test(k);

net_ab(j)=(net(j)-b(j))/a(j);

end

temp=mymorlet(net_ab(j));

for k=1:N

y(k)=y(k)+Wij(k,j)*temp ;

end

end

yuce(i)=y(k);

y=zeros(1,N);

net=zeros(1,n);

net_ab=zeros(1,n);

end

%预测输出反归一化

ynn=mapminmax('reverse',yuce,outputps);

%% 结果分析

figure(1)

plot(ynn,'r*:')

hold on

plot(output_test,'bo--')

title('预测交通流量','fontsize',12)

legend('预测交通流量','实际交通流量') xlabel('时间点')

ylabel('交通流量')

%这里面用到的两个子程序分别是:

function y=mymorlet(t)

y = exp(-(t.^2)/2) * cos(1.75*t);

function y=d_mymorlet(t)

y = -1.75*sin(1.75*t).*exp(-(t.^2)/2)-t* cos(1.75*t).*exp(-(t.^2)/2) ;

小波神经网络的时间序列预测-短时交通流量预测

%% 清空环境变量 clc clear %% 网络参数配置 load traffic_flux input output input_test output_test M=size(input,2); %输入节点个数 N=size(output,2); %输出节点个数 n=6; %隐形节点个数 lr1=0.01; %学习概率 lr2=0.001; %学习概率 maxgen=100; %迭代次数 %权值初始化 Wjk=randn(n,M);Wjk_1=Wjk;Wjk_2=Wjk_1; Wij=randn(N,n);Wij_1=Wij;Wij_2=Wij_1; a=randn(1,n);a_1=a;a_2=a_1; b=randn(1,n);b_1=b;b_2=b_1; %节点初始化 y=zeros(1,N); net=zeros(1,n); net_ab=zeros(1,n); %权值学习增量初始化 d_Wjk=zeros(n,M); d_Wij=zeros(N,n); d_a=zeros(1,n);

d_b=zeros(1,n); %% 输入输出数据归一化 [inputn,inputps]=mapminmax(input'); [outputn,outputps]=mapminmax(output'); inputn=inputn'; outputn=outputn'; %% 网络训练 for i=1:maxgen %误差累计 error(i)=0; % 循环训练 for kk=1:size(input,1) x=inputn(kk,:); yqw=outputn(kk,:); for j=1:n for k=1:M net(j)=net(j)+Wjk(j,k)*x(k); net_ab(j)=(net(j)-b(j))/a(j); end temp=mymorlet(net_ab(j)); for k=1:N y=y+Wij(k,j)*temp; %小波函数 end end

(完整版)小波神经网络的时间预测

基于小波神经网络的短时交通流预测 摘要 将小波神经网络的时间序列预测理论应用于短时交通流量的预测。通过小波分解与重构获取交通流量数据中的低频近似部分和高频随机部分, 然后在分析各种模型的优、劣的基础上, 选取较有效的模型或模型结合方式, 建立了交通流量预测模型。最后, 利用实测交通流量数据对模型仿真, 结果表明该模型可以有效地提高短时交通流量预测的精度。 关键词: 小波变换 交通流预测 神经网络 1.背景 众所周知, 道路交通系统是一个有人参与的、时变的、复杂的非线性大系统, 它的显著特点之一就是具有高度的不确定性(人为的和自然的影响)。这种不确定性给短时交通流量预测带来了极大的困难。这也就是短时交通流量预测相对于中长期预测更复杂的原因所在。在交通流量预测方面,小波分析不是一个完全陌生的工具,但是仍然处于探索性的应用阶段。实际上,这种方法在计算机网络的流量的预测中有着广泛的应用。与计算机网络一样,车流也表现出复杂的习性。所以可以把它的应用推广类比到交通流量的预测中来。小波分析有着与生俱来的解决非稳定时间序列的能力, 所以常常被单独用来解决常规时间序列模型中的问题。 2.小波理论 小波分析是针对傅里叶变换的不足发展而来的,傅里叶变换是信号处理领域里最为广泛的一种分析手段,然而他有一个严重的不足,就是变换抛弃了时间信息,变换结果无法判断某个信号发生的时间。小波是一种长度有限,平均值为0的波形,它的特点包括: (1)时域都具有紧支集或近似紧支集; (2)直流分量为0; 小波变换是指把某一基本小波函数ψ(t)平移b 后,再在不同尺度a 下与待分析的信号x(t)做内积。 dt a b t t x a b a WT x )()(1),(-=?*ψ??==?*)(),()()(,,t t x dt t t x b a b a ψψ (2 — 1) 等效的时域表达式为 dt a b x a b a WT x ωωψωj e )()(1),(-=?* a > 0 (2 — 2) 3.小波神经网络 小波神经网络是小波分析理论与神经网络理论相结合的产物,把小波基函数作为隐含层节点的传递函数,信号前向传播的同时误差反向传播的神经网络。 图一中1x ,2x ,....k x 是小波神经网络的输入参数,1y ,2y ....,m y 是小波神经网络的预测输出。

小波神经网络程序

这是一个小波神经网络程序,作者judyever %参考<青岛海洋大学学报> 2001年第1期一种基于BP算法学习的小波神经网络%% %step1--------网络初始化------------------------------------------- clc; clear all; %设定期望的误差最小值 err_goal=0.001; %设定最大循环次数 max_epoch=50; %设定修正权值的学习速率0.01-0.7 lr=0.7; epoch=0; x=0:0.01:0.3;%输入时间序列 d=sin(8*pi*x)+sin(16*pi*x);%目标输出序列 M=size(x,2);%输入节点的个数 N=M;%输出节点的个数 n=10;%隐形节点的个数 %这个地方需要改进,由于实际上隐形节点的个数可以通过小波的时频分析确定 Wjk=randn(n,M); Wij=randn(N,n); % a=randn(1,n); a=1:1:n; b=randn(1,n); % stepa=0.2*(x(M)-x(1)); % a=stepa(n-1)+stepa; % step=(x(M)-x(1))/n; % b=x(1)+step:step:x(1)+n*step; % y=zeros(1,N);%输出节点初始化 y=zeros(1,N);%输出节点初始化 net=zeros(1,n);%隐形节点初始化 net_ab=zeros(1,n);%隐形节点初始化 %step2--------对网络进行训练------------------------------------------- for i=1:1:N for j=1:1:n for k=1:1:M net(j)=net(j)+Wjk(j,k)*x(k); net_ab(j)=(net(j)-b(j))/a(j); end y(i)=y(i)+Wij(i,j)*mymorlet(net_ab(j)); %mymorlet是judyever编写的小波函数,以后可以扩展成输入不同的小波名字即可 % y(i)=mysigmoid(2,y(i)); end

交通流量的神经网络预测研究

交通流量的神经网络预测研究 [摘要]交通流量预测问题是交通信息预测的核心问题,进行交通流量预测理论体系的研究,对于改善我国交通拥堵问题具有十分重要的学术价值和现实意义。本文在总结国内外研究成果的基础上,对已有的交通流预测方法进行了分类分析和介绍,并利用神经网络的方法来对交通流量进行预测分析。基于交通流量的集中分布特点并结合实际交通流量观测数据,我们采用了分区间段进行数据整理,将BP神经网络应用于交通流量预测的过程,通过对比预测结果,验证了BP 神经网络具有良好的预测效果。 [关键词]交通信息交通流预测 BP神经网络

Research on neural network prediction of traffic flow [Abstract] Traffic flow forecasting is the core problem of traffic information prediction,theory system in the prediction of traffic flow,is very important for improving our countrytraffic congestion has academic value and practical significance.Th is paper based on summarizing the domestic and foreign research results,analyzes and introduces the existing traffic flow forecasting methods, andanalysis to predict the traffic flow by neural network. based on centralized distribution of traffic flow and combined with the actual traffic flow data. We use the inter partition of data processing during the process of BP neural network can be used to traffic flow prediction by comparing the predicted results ,proves that BP neural network has the good forecast effect. [Keywords] Traffic Information Traffic flow Prediction BP neural network

交通预测模型【对各种交通流预测模型的简要分析】

交通预测模型【对各种交通流预测模型的简要分析】 摘要:随着社会的发展,交通事故、交通堵塞、环境污染和能源消耗等问题日趋严重。多年来,世界各国的城市交通专家提出各种不同的方法,试图缓解交通拥堵问题。交通流预测在智能交通系统中一直是一个热门的研究领域,几十年来,专家和学者们用各种方法建立了许多相对精确的预测模型。本文在提出交通流短期预测模型应具备的特性的基础上,讨论了几类主要模型的结果和精确度。 关键词:交通流预测;模型;展望 20世纪80年代,我国公路建设项目交通量预测研究尚处于探索成长阶段,交通量预测主要采用个别推算法,又可分为直接法和间接法。直接法是直接以路段交通量作为研究对象;间接法则是以运输量作为研究对象,最后转换为路段交通量。 进入90年代后,我国的公路建设项目,特别是高速公路建设项目的交通量分析预测多采用“四阶段”预测,该法以机动车出行起讫点调查为基础,包括交通量的生成、交通分布、交通方式选择和交通量分配四个阶段。

几十年来,世界各国的专家和学者利用各学科领域的方法开发出了各种预测模型用于短时交通流预测,总结起来,大概可以分为六类模型:基于统计方法的模型、动态交通分配模型、交通仿真模型、非参数回归模型、神经网络模型、基于混沌理论的模型、综合模型等。这些模型各有优缺点,下面分别进行分析与评价。 一、基于统计方法的模型 这类模型是用数理统计的方法处理交通历史数据。一般来说统计模型使用历史数据进行预测,它假设未来预测的数据与过去的数据有相同的特性。研究较早的历史平均模型方法简单,但精度较差,虽然可以在一定程度内解决不同时间、不同时段里的交通流变化问题,但静态的预测有其先天性的不足,因为它不能解决非常规和突发的交通状况。线性回归模型方法比较成熟,用于交通流预测,所需的检测设备比较简单,数量较少,而且价格低廉,但缺点也很明显,主要是适用性差、实时性不强,单纯依据预先确定的回归方程,由测得的影响交通流的因素进行预测,只适用于特定路段的特定流量范围,且不能及时修正误差。当实际情况与参数标定时的交通状态相差较远时,

小波神经网络及其应用

小波神经网络及其应用 1014202032 陆宇颖 摘要:小波神经网络是将小波理论和神经网络理论结合起来的一种神经网络,它避免了BP 神经网络结构设计的盲目性和局部最优等非线性优化问题,大大简化了训练,具有较强的函数学习能力和推广能力及广阔的应用前景。首先阐明了小波变换和多分辨分析理论,然后介绍小波神经网络数学模型和应用概况。 1.研究背景与意义 人工神经网络是基于生物神经系统研究而建立的模型,它具有大规模并行处理和分布式存储各类图像信息的功能,有很强的容错性、联想和记忆能力,因而被广泛地应用于故障诊断、模式识别、联想记忆、复杂优化、图像处理以及计算机领域。但是,人工神经网络模型建立的物理解释,网络激活函数采用的全局性函数,网络收敛性的保证,网络节点数的经验性确定等问题尚有待进一步探讨和改善。 小波理论自 Morlet 提出以来,由于小波函数具有良好的局部化性质,已经广泛渗透到各个领域。小波变换方法是一种窗口大小固定但其形状可以改变, 时间窗和频率窗都可以改变的时频局部化分析方法, 由于在低频部分具有较高的频率分辨率和较低的时间分辨率, 在高频部分具有较高的时间分辨率和较低的频率分辨率, 所以被誉为数学显微镜。正是这种特性, 使小波变换具有对信号的自适应性。基于多分辨分析的小波变换由于具有时频局部化特性而成为了信号处理的有效工具。实际应用时常采用Mallat快速算法,利用正交小波基将信号分解到不同尺度上。实现过程如同重复使用一组高通和低通滤波器把信号分解到不同的频带上,高通滤波器产生信号的高频细节分量,低通滤波器产生信号的低频近似分量。每分解一次信号的采样频率降低一倍,近似分量还可以通过高通滤波和低通滤波进一步地分解,得到下一层次上的两个分解分量。 而小波神经网络(Wavelet Neural Network, WNN)正是在近年来小波分析研究获得突破的基础上提出的一种人工神经网络。它是基于小波分析理论以及小波变换所构造的一种分层的、多分辨率的新型人工神经网络模型,即用非线性小波基取代了通常的非线性Sigmoid 函数,其信号表述是通过将所选取的小波基进行线性叠加来表现的。 小波神经网络这方面的早期工作大约开始于1992 年,主要研究者是Zhang Q、Harold H S 和焦李成等。其中,焦李成在其代表作《神经网络的应用与实现》中从理论上对小波神经网络进行了较为详细的论述。近年来,人们在小波神经网络的理论和应用方面都开展了不少研究工作。 小波神经网络具有以下特点。首先,小波基元及整个网络结构的确定有可靠的理论根据,可避免BP 神经网络等结构设计上的盲目性;其次,网络权系数线性分布和学习目标函数的凸性,使网络训练过程从根本上避免了局部最优等非线性优化问题;第三,有较强的函数学习能力和推广能力。 2.数学模型与小波工具 2.1 小波变换及多分辨分析 L R(或更广泛的Hilbert 空间)中,选择一个母小波函数(又称为基本在函数空间2() ,使其满足允许条件: 小波函数)()x

平稳时间序列预测法

7 平稳时间序列预测法 7.1 概述 7.2 时间序列的自相关分析 7.3 单位根检验和协整检验 7.4 ARMA模型的建模 回总目录 7.1 概述 时间序列取自某一个随机过程,则称: 一、平稳时间序列 过程是平稳的――随机过程的随机特征不随时间变化而变化过程是非平稳的――随机过程的随机特征随时间变化而变化回总目录 回本章目录 宽平稳时间序列的定义: 设时间序列 ,对于任意的t,k和m,满足: 则称宽平稳。 回总目录

回本章目录 Box-Jenkins方法是一种理论较为完善的统计预测方法。 他们的工作为实际工作者提供了对时间序列进行分析、预测,以及对ARMA模型识别、估计和诊断的系统方 法。使ARMA模型的建立有了一套完整、正规、结构 化的建模方法,并且具有统计上的完善性和牢固的理 论基础。 ARMA模型是描述平稳随机序列的最常用的一种模型; 回总目录 回本章目录 ARMA模型三种基本形式: 自回归模型(AR:Auto-regressive); 移动平均模型(MA:Moving-Average); 混合模型(ARMA:Auto-regressive Moving-Average)。回总目录 回本章目录 如果时间序列满足 其中是独立同分布的随机变量序列,且满足:

则称时间序列服从p阶自回归模型。 二、自回归模型 回总目录 回本章目录 自回归模型的平稳条件: 滞后算子多项式 的根均在单位圆外,即 的根大于1。 回总目录 回本章目录 如果时间序列满足 则称时间序列服从q阶移动平均模型。或者记为。 平稳条件:任何条件下都平稳。

三、移动平均模型MA(q) 回总目录 回本章目录 四、ARMA(p,q)模型 如果时间序列 满足: 则称时间序列服从(p,q)阶自回归移动平均模型。 或者记为: 回总目录 回本章目录 q=0,模型即为AR(p); p=0,模型即为MA(q)。 ARMA(p,q)模型特殊情况: 回总目录 回本章目录 例题分析 设 ,其中A与B 为两个独立的零均值随机变量,方差为1;

浅谈基于小波分析的神经网络

浅谈基于小波分析的神经网络 摘要:基于小波分析的神经网络在我们的日常生产中有着重要的作用,尤其是在故障检测中,正因为有了它的存在,使得我们能更好的对一些机器内部微小的部件进行检测。在一定程度上,避免了人工检测工作量大且准确度不高的情况,降低了检验的成本,减少了因零件损坏而带来的损失,为工业的生产提供了极大的帮助。 关键词:小波分析,神经网络,故障诊断 随着科学的进步与时代的发展,神经网络正慢慢的运用到我们的日常生活与生产之中。从1943年人们首次提出了人工神经网络这一概念至今,神经网络已经与越来越多的其他技术结合了起来,例如,结合神经元的混沌属性提出混沌神经网络,应用于组合优化的问题中,与粗集理论结合,应用于对数据的分类处理,与分形理论结合,应用于图形识别、图像编码、图像压缩等,与小波分析结合,应用于机械设备的故障检测中。以下是我对基于小波分析的神经网络的见解。 一、概述 小波分析即小波变换,是1981年Morlet首先提出的,经过发展后成为了一门学科,小波分析对低频信号在频域和高频信号在时域里有着较好的分辨率。而神经网络特有的对非线性适应性信息处理能力,当它与小波分析相结合后,使得它们能在对高压电网的信号处理,机械故障的检测等方面发挥了重要的作用。

二、小波神经网络的算法 小波神经网络的算法大体的思路是这样的,小波神经网络的核心是隐层神经元的激活函数小波基函数(Morlet )进行非线性映射,信号通路只进行前向传递,待分类信号进行前向传递的同时,误差信号进行反向的传递。输出层的传递函数为S 函数,小波函数的拓扑结构如下所示: 小波函数的修正公式如下: (k 1)(k)*E mc ωωη ωω?+=++? (1) a(k 1)(k)*E a mc a a η?+=++? (2) b(k 1)(k)*E b mc b b η ?+=++? (3) 误差函数如下: 211 1(y yt )2N M n n m m n m E N ===-∑∑ (4) 输入层 隐含层 输出层

小波神经网络及其应用

小波神经网络及其应用 陆宇颖 摘要:小波神经网络是将小波理论和神经网络理论结合起来的一种神经网络,它避免了BP 神经网络结构设计的盲目性和局部最优等非线性优化问题,大大简化了训练,具有较强的函数学习能力和推广能力及广阔的应用前景。首先阐明了小波变换和多分辨分析理论,然后介绍小波神经网络数学模型和应用概况。 1. 研究背景与意义 人工神经网络是基于生物神经系统研究而建立的模型,它具有大规模并行处理和分布式存储各类图像信息的功能,有很强的容错性、联想和记忆能力,因而被广泛地应用于故障诊断、模式识别、联想记忆、复杂优化、图像处理以及计算机领域。但是,人工神经网络模型建立的物理解释,网络激活函数采用的全局性函数,网络收敛 即 ,焦李神经网络2. 2.1()x ,使式中为的Fourier 变换。对作伸缩、平移变换得到小波基函数系 对任意2()()f x L R ∈,其连续小波变换定义为: 反演公式为: 在实际应用中,特别是计算机实现中,往往要把上述的连续小波及其变换离散化,通常采用二进制离散,即 令2,2m m a b k ==,则 二进小波一定是一个允许小波,且是一个正交小波基。考虑一个连续的、平方可积的函数 2()()f x L R ∈在分辨率2m 下的逼近()m f x ,由多分辨分析理论可知:

()x Φ是尺度函数,对其作伸缩、平移变换得到()mk x Φ。 Mallat 同时证明了函数()f x 在2m 和12m -分辨率下的信息差别(即细节)()m D f x ,可以通过将函数() f x 在一小波正交基上分解而获得,从而定义了一种完全而且正交的多分辨率描述,即小波描述。 ()mk x ψ就是式(5)定义的二进小波,则()f x 在12m -分辨率下的逼近式为: Mallat 并指出,对于任意一个函数 2()()f x L R ∈可以在一组正交小波基上展开: 式(11)是一个平方可积函数的小波分解,提供了小波神经网络设计的理论框架。 .. 12(,)x x ο 则有2.2 (ψ(f x 式(Lk a 与式 (17i c i 则有: 即(21)=f Ac 式(20)的最小二乘解为: +A 被称为A 的伪逆矩阵。且 如果样本i x 均匀分布,(1,2,...,)θ=i i n 是正交基, 则T A A 是一个?n n 单位矩阵,且

短期交通流量预测

短期交通流量预测 摘要 交通流量是一种对于一段时间在某个路口通过的交通实体量,在现在的社会中,智能运输系统等交通理论的研究已经渐渐成为发达国家的研究对象,而交通流量预测分析是其中的核心研究之一。所以,对于交通流量的预测成为叩开智能交通系统大门的最有力的那一把钥匙。 在前面,我们首先面临的一个问题是对于数据的处理。题目以15分钟为一个时间段来测量交通流量,一共有三天的数据,应该有288个数据,但是题目只给出了276个。另外,在数据中还有两个为负的数据。面对缺失数据和异常数据,我们分别使用了热卡插补法和平均值填补法来解决。 然后在进行预测时,我们分别使用了不同的软件来建立不同的预测模型。首先我们使用了灰色预测GM软件来进行灰色模型的预测,在预测前,我们先用模型和前两天的交通流量来预测第三天的交通流量,然后将第三天的真实交通流量与预测交通流量进行相关性检验,检验通过后,再用于预测第四天的交通流量,最后评价模型的好坏。 接着,我们使用了spss软件来进行回归分析模型的预测。在预测之前,我们需要先对数据进行相关性检验,若没有相关性,则回归方程会没有意义。接下来,通过对回归方法的决定性系数检验和方差分析检验,得到最合适方法。之后再进行第四天的预测及预测结果的评价。 然后,我们使用了metlab软件来实现BP神经网络模型的预测。BP神经网

络的实质是用已给出的数据来推出需要的数据,并将新预测出的数据重新返回输入中,得到误差,一直重复,直到误差到达合理的围。在预测之前,我们先得出了误差在合理围,并且看到已给出数据的真实值与预测值得对比。在确保模型是可用的之后,在进行预测与预测结果的评价。 最后,我们使用了eview软件来进行时间序列的预测。时间序列预测要求数据必须是平稳的,所以在预测前,先要对数据进行ADF检验,在检验通过后,才能进行预测,得到预测后的表达式和残差。在最后,还必须对残差进行分析估计。这样之后,对模型进行评价。 在本文的最后,我们进行了进一步的讨论和改进,对四种预测方法进行了一个比较,判断出那个模型是最适合这个题目的。并且对文章中所涉及的模型进行推广,使其更便于运用于生活实际中。 关键词:eviews 热卡插补法相关性检验神经网络时间序列ADF检验

小波神经网络预测的代码1

clc; clear all; %设定期望的误差最小值 err_goal=0.01; %设定最大循环次数 max_epoch=50; %设定修正权值的学习速率0.01-0.7 lr=0.7; epoch=0; x=0:0.01:0.3;%输入时间序列 %d=sin(8*pi*x)+sin(4*pi*x)+5*sin(pi*x);% d=[1 2 3 4 5 6 7 8 9 10 9 8 7 6 5 4 3 2 1 2 3 4 5 6 7 8 9 10 9 8 7];%目标输出序列M=size(x,2);%输入节点的个数 N=M;%输出节点的个数 n=10;%隐形节点的个数 %这个地方需要改进,由于实际上隐形节点的个数可以通过小波的时频分析确定 Wjk=randn(n,M); Wij=randn(N,n); % a=randn(1,n); a=1:1:n; b=randn(1,n); % stepa=0.2*(x(M)-x(1)); % a=stepa:1n-1)+stepa; % step=(x(M)-x(1))/n; % b=x(1)+step:step:x(1)+n*step; % y=zeros(1,N);%输出节点初始化 y=zeros(1,N);%输出节点初始化 net=zeros(1,n);%隐形节点初始化 net_ab=zeros(1,n);%隐形节点初始化 %step2--------对网络进行训练------------------------------------------- for i=1:1:N for j=1:1:n for k=1:1:M net(j)=net(j)+Wjk(j,k)*x(k); net_ab(j)=(net(j)-b(j))/a(j); end y(i)=y(i)+Wij(i,j)*mymorlet(net_ab(j)); %mymorlet是judyever编写的小波函数,以后可以扩展成输入不同的小波名字即可 % y(i)=mysigmoid(2,y(i)); end end

曹安公路远期交通流量预测

曹安公路远期交通流量预测——以华江支路——嘉金高速段为基础 学院:交通运输工程学院 学号: 姓名:

目录 一、报告概述 (3) 工作目标 (3) 工作内容 (3) 技术路线 (3) 二、调查道路和交叉口概述 (4) 三、调查数据处理与现状分析 (4) 3.1调查数据汇总及标准车换算 (4) 3.2路段流量推算 (5) 3.3 AADT计算 (6) 3.4现状分析 (7) 四、远期流量预测 (8) 4.1基于弹性系数的远期交通量预测 (10) 4.2基于线性回归的远期交通量预测 (11) 4.3基于人工神经网络为融合基础的远期交通量组合预测 (12) 五、预测结果分析 (14)

一、报告概述: 工作目标 根据曹安公路华江支路——嘉金高速段历年交通流量数据,综合现场调查结果,预测该段2020—2025年年平均日交通量,并对未来曹安公路道路建设工程提出合理意见。 工作内容 现场数据采集:收集曹安公路华江支路——嘉金高速段两交叉口早晨8:00—9:00车流量; 数据处理与分析:(1)现状与历年流量的差异及差异出现的原因(2)变化趋势与历年趋势的对比,说明影响预测结果的主要影响因素及产生原因(3)预测结果分析 技术路线

二、调查道路和交叉口概述 本次调查区段为曹安公路华江支路—嘉金高速段,共有两个交叉口,分别是翔江公路交叉口和翔封路交叉口。两交叉口相对位置如下图所示: 三、调查数据处理与现状分析 3.1调查数据汇总及标准车换算 将实测的分车型交通量转换为标准车流量。换算系数如下: 各交叉口流量调查及标准车换算

3.2路段流量推算 以采集数据的两个交叉口:翔江公路及翔封路,把华江支路——嘉金高速区段划分成三个路段:华江支路—翔封路,翔封路—翔江公路和翔江公路—嘉金高速。采样时间段内(8:00—9:00)各路段统计交通量如下:

短时交通流预测研究综述

短时交通流预测研究综述 摘要:道路交通流预测预报是智能交通系统关键技术之一,短时预测是交通控制、车辆导航的技术基础。本文概述了道路交通流预测方法的发展历程,分析比较了各预测模型的优点、缺点及适用情况,给出了道路交通预测的一般流程。对现存预测方法进行了分类分析:基于统计理论的方法、基于神经网络的方法、基于非线性理论的方法以及基于检测器优化选择的短时交通流预测算法的预测方法。将人工神经网络模型与其他领域的研究相结合的综合预测模型要比单一神经网络预测模型、常规预测模型的预测效果好;以预测的均方误差最小为目标函数,通过遗传算法优化选择合适的检测器,以小波神经网络作为预测算法进行短时交通流预测具有很高的精度和适用性。 关键词:交通工程;交通流理论;短时交通流;预测模型;神经网络算法 Research on Short-Time Traffic Flow Forecasting Methods LIU Jia-tong (1. Department of Bridge Engineering, School of Highway, Chang’an Unversity) Abstract:Prediction of road traffic flow is one of the key technologies of intelligent transportation system. This paper summarizes the development of road traffic flow forecasting methods, analyzes and compares the advantages, disadvantages and application of each forecasting model. The existing prediction methods are classified based on the method of statistical analysis: Based on the theory and methods of nonlinear theory and traffic detector based on the optimal selection of flow prediction algorithm based on prediction method and neural network method. The prediction effect of comprehensive prediction model of artificial neural network model and other fields combined than single neural network prediction model and the conventional prediction; to minimize the mean squared error as the objective function, the genetic algorithm to choose the appropriate detector with the wavelet neural network as prediction algorithm of short term traffic flow forecasting high precision and applicability. Keywords:Transportation Engineering; Traffic Flow Theory; Short-termTraffic Flow; Prediction Model; Neural Network Algorithm

基于改进GMDH算法的路口短时交通流量预测

一一收稿日期:2014-05-29;修回日期:2014-08-20三 一一基金项目:国家自然科学基金资助项目(61374116);中央高校基本科研专项基金资助项目(2014202)三 一一作者简介:王明月(1990-),女,江苏扬州人,硕士研究生,主要研究方向:控制理论与控制工程;一王晶(1960-),女,辽宁沈阳人,副教授,硕士,主要研究方向:系统工程二经济控制论;一齐瑞云(1979-),女,安徽人,教授,博士,主要研究方向:模糊自适应控制;一陈复扬(1967-),男,江苏扬州人,教授,博士,主要研究方向:自适应控制二道路交通管理三 文章编号:1001-9081(2015)S1-0101-03 基于改进GMDH 算法的路口短时交通流量预测 王明月,王一晶? ,齐瑞云,陈复扬 (南京航空航天大学自动化学院,南京210016) (?通信作者电子邮箱wangj_9989@https://www.360docs.net/doc/127527628.html,)摘一要:城市交通是一个复杂的大系统,实时而准确的短时交通流量预测,可以为城市交通诱导和控制提供科学支持三针对GMDH 算法建模泛化能力差的问题,结合集成学习的思想对GMDH 算法进行改进,并将改进的算法应用到短时交通流量模型的构建中三结果表明,该方法可以有效地对短时交通流量进行预测,建模平均相对误差为1.10%,预测相对误差为0.58%三 关键词:智能交通系统;短时;交通流量;GMDH ;预测中图分类号:TP181一一文献标志码:A Short-term traffic flow forecasting on grossroads based on improved group method of data handing WANG Mingyue,WANG Jing ? ,QI Ruiyun,CHEN Fuyang (College of Automation Engineering,Nanjing University of Aeronautics and Astronautics,Nanjing Jiangsu 210016,China ) Abstract:The urban traffic is a complex large system,actual and accurate traffic flow prediction can provide scientific support for urban traffic guidance and control.Ensemble learning is introduced to improve the general ability of classical Group Method Of Data Handing (GMDH )algorithm.The short-term traffic flow model was built based on improved GMDH algorithm.Experimental results indicate that the average relative error of the model is 1.10%,and the relative error of prediction is 0.58%.Thus,this model is an efficient method to the short-term traffic flow forecasting. Key words:intelligent traffic system;short-time;traffic flow;Group Method of Data Handing (GMDH);prediction 0一引言 近些年来,随着智能交通系统(Intelligent Transport System,ITS)的蓬勃发展,智能交通控制与诱导系统已经成为ITS 研究的热门核心课题,而实现该系统的关键是实时准确的短时交通流量预测[1],即有效利用历史数据和实时交通信息去预测未来一段时间的交通流量三 目前关于交通流量预测的模型较多,其中传统的统计算法模型有历史平均模型二自回归滑动模型二移动平均模型二线性回归模型二卡尔曼滤波模型[2]等,这类模型考虑因素相对简单,计算较为简便,具有静态稳定的优点,但是不能准确反映交通流过程的动态特征;基于人工智能技术的模型的典型代表为人工神经网络[3]模型,该模型具有较强的动态非线性映射能力;最后是组合预测模型,即把几种模型按某种方式组合,以充分发挥各单项模型的优点,从而提高预测精度三 GMDH(Group Method of Data Handling)[4]模型属于人工智能模型,它是由乌克兰科学院Ivakhnenko 院士在1967年提出并发展起来的一种启发式自组织建模方法,也是自组织数据挖掘(Self-Organizing Data Mining,SODM)方法的核心算法三该方法能够有效地对复杂多变量系统进行辨识,预测结果良好三GMDH 算法建模能够根据输入二输出变量原始的信息构造出模型,从而进行自选择三GMDH 算法建模是用多项式处理数据,在结构上有自组织二全局优选的特性,因此GMDH 非常适合用于复杂系统的建模,但是GMDH 方法建模 有时得到的模型泛化能力较差三 1一短时交通流量特性 交通流量是指单位时间内通过道路某一地点或某一断面 的实际车辆数,又称交通量三交通系统是由人二车辆和道路共同作用的复杂系统,人们出行行为的总体规律性及城市道路网络通行条件的实际约束决定了交通流量具有随时间和空间不断变化的特征[5]三一般认为,短时交通流量的时间间隔不超过15min [6]三短时交通流量的特性主要表现为动态变化性二时间相似性和空相似性三 1)动态变化性三 城市道路的交通流量是由交通需求二路网条件二交通管理 控制方案二公共交通出行比例二信息诱导等共同作用的结果,所以交通流量时刻在变化三 2)时间相似性三 在对交通流的研究中发现,相同路段以周为周期的交通 流量曲线,相似程度最高,规律性最强[7]三因此,可以把历史数据分为两类:工作日(星期一至星期五)交通流量数据和周末(星期六二星期日)交通流量数据三 3)空间相关性三 城市道路交通系统是一个非常复杂的网状结构,多个路 段的交通流量之间存在密切的相互联系三相关路口的交通流量在多种因素的影响下存在空间相关性三 Journal of Computer Applications 计算机应用,2015,35(S1):101-103,134一 ISSN 1001-9081 CODEN JYIIDU 一 2015-06-20 https://www.360docs.net/doc/127527628.html,

交通流量的预测

小交通分析 1、道路交通量分析 拟建道路为城市支路,道路车型比较表如1-1。规定:车流量昼间按16小时计算,车流量夜间按8小时计算,夜间车流量按昼间的10%计算,高峰小时车流量按全天24小时交通量的10%计算,依据项目设计单位提出的高峰期交通预测值,得出拟建道路车流量小时流量预测结果如表1-2。 建设期安排: 运营期安排: 交通预测从运营期开始预测,a为道路的交通设计年限,车包含非机动车。 2、交叉口交通量分析: 道路交叉口交通流量流向对道路所在区域的路网存在着较大的影响,同时交叉口的交通情况反映道路的服务水平。 1)道路交叉口类型: 拟建道路为双向N1车道,道路等级:城市X路。 平交道路XX路为双向N2车道,道路等级:城市X路。 拟建道路与规划(现状)XX路平交,为“十”(“T”)字型交叉口。 拟建道路在该交叉口依据道路红线规定,拟定采用X进口道,Y出口道。 2)道路交叉口交通组织采用: 交叉口东口:为XX路采用绿化带(隔离栏)进行机非分隔,路面具有较详

细的标线,机动车道进口道n1个,出口道n2个,非机动车进、出口道各1个。 交叉口西口: 交叉口南口: 交叉口北口: 3)交通状况分析 拟建道路交叉口依据相邻的交叉口交通流量情况,可用于待建交叉口分析,即拟定待建交叉口与相邻交叉口交通流量情况一致。 相邻交叉口现状分析: 通过实地观察,机动车与非机动车高峰小时交通量发生在08:00~09:00(17:00~19:00),为上(下)班时段。推测:拟建交叉口高峰时流量数据如下表: 表1-3 图1:XX路与XX路交叉口交通流量流向示意图

4)交叉口控制状况 方案一:交叉口拟定采用两相位定时信号控制,信号阶段图如下图所示: 优点: 缺点: 方案二:交叉口拟定采用X相位定时信号控制,信号阶段图如下图所示: 优点: 缺点: 方案一与方案二的比较

用小波神经网络来对时间序列进行预测

/* Note:Your choice is C IDE */ #include"stdio.h" void main() { }/*用小波神经网络来对时间序列进行预测 */ /*%File name : nprogram.m %Description : This file reads the data from %its source into their respective matrices prior to % performing wavelet decomposition. %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% %Clear command screen and variables */ clc; clear; /*%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% % user desired resolution level (Tested: resolution = 2 is best)*/ level = menu('Enter desired resolution level: ', '1',... '2 (Select this for testing)', '3', '4'); switch level case 1, resolution = 1; case 2, resolution = 2; case 3, resolution = 3; case 4, resolution = 4; end msg = ['Resolution level to be used is ', num2str(resolution)]; disp(msg); /*%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% % user desired amount of data to use */ data = menu('Choose amount of data to use: ', '1 day', '2 days', '3 days', '4 days',... '5 days', '6 days', '1 week (Select this for testing)'); switch data case 1, dataPoints = 48; /*%1 day = 48 points */ case 2, dataPoints = 96; /* %2 days = 96 points */ case 3, dataPoints = 144; /*%3 days = 144 points */ case 4, dataPoints = 192; /*%4 days = 192 points */ case 5, dataPoints = 240; /* %5 days = 240 points */

时间序列分析方法第章预测

第四章 预 测 在本章当中我们讨论预测的一般概念和方法,然后分析利用),(q p ARMA 模型进行预测的问题。 §4.1 预期原理 利用各种条件对某个变量下一个时点或者时间阶段内取值的判断是预测的重要情形。为此,需要了解如何确定预测值和度量预测的精度。 4.1.1 基于条件预期的预测 假设我们可以观察到一组随机变量t X 的样本值,然后利用这些数据预测随机变量1+t Y 的值。特别地,一个最为简单的情形就是利用t Y 的前m 个样本值预测1+t Y ,此时t X 可以描述为: 假设*|1t t Y +表示根据t X 对于1+t Y 做出的预测。那么如何度量预测效果呢?通常情况下,我们利用损失函数来度量预测效果的优劣。假设预测值与真实值之间的偏离作为损失,则简单的二次损失函数可以表示为(该度量也称为预测的均方误差): 定理4.1 使得预测均方误差达到最小的预测是给定t X 时,对1 +t Y 的条件数学期望,即: 证明:假设基于t X 对1+t Y 的任意预测值为: 则此预测的均方误差为: 对上式均方误差进行分解,可以得到: 其中交叉项的数学期望为(利用数学期望的叠代法则): 因此均方误差为: 为了使得均方误差达到最小,则有: 此时最优预测的均方误差为: 211*|1)]|([)(t t t t t X Y E Y E Y MSE +++-= End 我们以后经常使用条件数学期望作为随机变量的预测值。 4.1.2 基于线性投影的预测 由于上述条件数学期望比较难以确定,因此将预测函数的范围限制在线性函数当中,我们考虑下述线性预测: 如此预测的选取是所有预测变量的线性组合,预测的优劣则体现在系数向量的选择上。 定义4.1 如果我们可以求出一个系数向量值α,使得预测误差)(1t t X Y α'-+与t X 不相关: 则称预测t X α'为1+t Y 基于t X 的线性投影。 定理4.2 在所有线性预测当中,线性投影预测具有最小的均方误差。

相关文档
最新文档