三相有功功率 计量芯片

三相有功功率 计量芯片
三相有功功率 计量芯片

STPM01计量芯片资料

1/9 September 2004 s INTEGRATED LINEAR VREGS TO SUPPLY THE DIGITAL AND ANALOG CORES s ADVANCED BICMOS TECHNOLOGY FOR HIGH PERFORMANCE s OTP FOR CALIBRATION AND CONFIGURATION s INTEGRATED OSCILLATOR WITH EXTERNAL RESISTOR OR CRYSTAL s MONITOR BOTH LIVE AND NEUTRAL FOR TAMPER DETECTION s SIGMA DELTA 1st ORDER CONVERTER s POWER SUPPLY CURRENT LESS THAN 6mA s SUPPORT 50 ÷ 60 Hz – IEC 62052-11, IEC 62053-2X SPECIFICATION FOR CLASS 0.5 AC WATT METERS s PRECISION VOLTAGE REFERENCE ON CHIP: 1.25 V AND 30 ppm/°C MAX s TSSOP20 PACKAGE DESCRIPTION The STPM01 is designed for effective measurement of active energy in a power line system using the Rogowski and/or Shunt principle. This device can be implemented as a single chip 1-phase energy meter or as a peripheral measurement in a microprocessor based 1-phase or 3-phase energy meter. The STPM01 consists, essentially, of two parts:the analog part and the digital part. The former, is composed by preamplifier and 1st order ΣD AD converter blocks, Bandgap voltage reference,Lowdrop voltage regulator and a pair of DC buffer,the latter, is composed by system control, clock generator, hard wired DSP and SPI interface.There is also a OTP block, which is controlled through the SPI by means of a dedicated command set. The configured bits are used for testing, configuration and calibration purpose.From a pair of ΣD output signals coming from analog section, a DSP unit computes the amount of consummated active, reactive and apparent energy, RMS values of voltage and current value.The results of computation are available as pulse frequency and states on the digital outputs of the device or as data bits in a data stream, which can be read from the device by means of SPI interface. This system bus interface is used also during production testing of the device and/or for temporary or permanent programming of bits of internal OTP. In the STPM01 the calibration is very easy: an output signal with pulse frequency proportional to energy is generated, this signal is used to enable the calibration of the energy meter. When the device is fully configured and calibrated,a dedicated bit of OTP block, can be written permanently in order to prevent accidental entering into some test mode or changing any configuration. Table 1: Order Codes Type Temperature Range Package Comments STPM01 -40 to 85 °C TSSOP20 (Tape & Reel) 2500 parts per reel STPM01 PROGRAMMABLE SINGLE PHASE ENERGY METERING IC WITH TAMPER DETECTION This is preliminary information on a new product now in development or undergoing evaluation. Details are subject to change without notice. PRELIMINARY DATA Rev. 1

三相功率的测量

三相功率的测量学案 一.三相电路复习 1.三相电路的组成: 2.三相电路的种类 3.三相电路的形式: 二.三相电路有功功率的测量 (一)单相功率表的测量 1.一表法 (1)适用场合: (2)具体接法: ①Y型负载 ②△型负载 ③人工中点法 (3)总功率的确定: 2.两表法 (1)适用范围: (2)具体接法:

(3)对称电路功率表读数与负载功率因数的关系 ①功率表的读数: ②与负载功率因数的关系: 1) 2) 3) 4) 3.三表法 (1)适用场合: (2)具体接法 ①三相三线制 ②三相四线制 (3)总功率的确定: (二)用三相有功功率表测量 1.二元三相功率表 (1)结构: (2)适用场合: (3)接线图:

2.三元三相功率表 (1)结构: (2)适用场合: (3)接线图: 三.三相电路无功功率的测量 (一)用单相有功功率表测量 1.一表跨相法 (1)适用: (2)接法: (3)原理分析: (4)结果: (5)注意: 2.两表跨相法 (1)适用: (2)接法:

3.三表跨相法 (1)适用: (2)接法: (3)原理分析: (4)结果: (5)注意: (二)铁磁电动系三相无功功率表 1.两表跨接法 (1)适用: (2)接法: 2.两表人工中点法 (1)适用: (2)接法:

例1.采用两表法测量三相对称电路的功率,试分析在下列三种情况下,各表读数情况及与三相总功率的关系。 (1)纯电阻负载;(2)?=±60°的电感或电容性负载;(3)∣?∣>60°。 例2.一表法、两表法、三标法测三相电路有功功率时,每只功率表测得结果有无确定物理意义。 巩固练习 一.填空题 1.三相电路包括______________、______________电路,不对称电路有______________、_________________。用一表法测量三相三线完全对称电路时,若被测电路中点不便于接线,或负载不能断开时,可采用______________法。 2.三相三线制电路中,不论其三相负载是否对称,都可采用_________法测量三相有功功率。 3.三元三相功率表是根据三表法原理构成的,它有三个独立单元,每个单元就相当于一个___________________。 4.电动系功率表除可测量直流电路的功率外,还可测量____________电路的功率、_________电路的功率,采用特殊接法,还可测量三相电路的___________功率。 二.选择题 ( )1.用两表法测量三相对称电路的有功功率时,如果两表读数相等,说明负载的功率因数等于__________。 A.1.0 B.0.9 C.0.5 D.0.6 ( )2.测量三相四线制不对称负载的有功功率,可选用_________法进行测量。 A.一表法 B.两表法 C.三表法 D.一表跨相法 ( )3.用两表法测三相功率不适用于_____________。 A.三相三线制对称负载 B.三相三线制不对称负载 C.三相四线制对称负载 D.三相四线制不对称负载 ( )4.用两表法测三相对称电路的有功功率时,如果两表读数相等,则说明负载呈__________。 A.电阻法 B.感性 C.容性 D.纯电感性

单相电能计量芯片MCP3906及其应用

单相电能计量芯片MCP3906及其应用 引言电能表作为电能计量的专用仪表,在电能管理仪器仪表中占有很大比例,其性能直接影响着电能管理的效率和科技水平。从产品的功能、性能及经济效益等多方面来看,全电子电能表与传统的感应式电能表相比,存在着明显的优势。而且电能表作为计量管理和用电管理的终端,它所提供的各种功能是实现电力系统自动化管理必不可少的。传统的测量都是采用A/D转换电路,但这种方法使部分电参量测量精度欠佳,性价比不理想,且软件编程相对复杂,微控制器必须对采样电路进行数据处理(如电压、电流的平均值、有效值,有功、无功计算等)。而随着现代电子产业的高速发展,测量电路的集成化、模块化成为未来发展的趋势,各大器件公司也纷纷推出自己的电能计量芯片。这种集成芯片不仅精确度高,而且硬件、软件设计简单,价格便宜,性价比高,极具市场潜力。本文给出了基于Microchip公司的MCP3906单相电能计量芯片,并以AVR公司的ATMega16为MCU设计开发的一款新型单相电能表实现方案。与以往电能表相比,该方案具有设计接口简单、结构紧凑、可靠性高等特点。 1 MCP3906单相电能计量芯片 MCP3906是Microch ip公司推出的单相电能计量芯片,它支持国际电能计量标准技术规范IEC62053,可提供与平均有功功率成比例的频率输出,以及与瞬时功率成比例的高频输出用于电表校准。MCP3906内部包含两个16位△-∑ADC,可用于各种IB和IMAX电流和小分流器(<200μΩ )的电表设计。该芯片还包含一个超低温漂(<15ppm/℃)参考电压,通过特殊设计的带隙温度曲线,可在整个工业级温度范围内使温度梯度达到最小。固定功能的片上DSP模块可用于计算有功功率,此外,片上还有驱动机械计数器的高输出驱动器,可以减少现场故障和机械计数器咬合。芯片的空载门限模块可防止任何电流潜变(Creep)测量,而上电复位(Power on Reset,POR)模块则可在低电压时限制电表测量。因此,MCP3906是具备高现场可靠性的精密电能计量IC,并采用业界标准的引脚配置。 1.1 MCP3906的内部结构及工作原理 MCP3906是混合模拟/数字信号的CMOS集成电路,其内部结构框图。 MCP3906可提供与有功功率成比例的频率输出和与瞬时功率成比例的高频输出来用于校准。它的两个通道均使用16位二阶△-∑ADC,能以MCLK/4的频率对输入进行采样,同时允许对动态范围很宽的输入信号进行采样。可编程增益放大器(Programmable Gain Amplifier,PGA)扩大了电流输入通道(通道0)的可用范围。其有功功率的计算以及与计算有关的滤波均可在数字域中完成,从而提高了其稳定性和温漂性能。 MCP3906的两个数字高通滤波器(HPF1和HPF2)可以滤除两个通道的系统偏移量,因此,有功功率的计算不含任何电路或系统偏移量。经过高通滤波后,电压和电流信号相乘,即可得出瞬时功率信号。此信号不含直流偏移分量,因此可有效利用求平均法(Averaging Technique)计算出所需的有功功率输出。 瞬时功率信号包含的有功功率信息就是瞬时功率的直流分量。求平均法可用于计算正弦和非正弦波形,以及所有功率因数。瞬时功率经过低通滤波器(LPF)就可以产生瞬时有功功率信号。 通过MCP3906的DTF转换器可对瞬时有功功率信息进行累加,以产生输出脉冲,此脉冲的频率与平均有功功率成比例。FOUT0和FOUT1输出的低频脉冲可用于设计驱动机电式计数器和双相步进电机,以便显示实际消耗的有功功率。每个脉冲对应于一个固定的有功电量值,其功能可由F2、F1和F0的逻辑进行选择。HFOUT输出具有较高的频率设定和较低的积分周

单相三相交流电路计算公式归纳

《单相、三相交流电路》功率计算公式

三相电源一般都是对称的,多用三相四线制 三相负载包括:星型负载和三角形负载 不对称时:各相电压、电流单独计算,对称时:只需计算一相。 千瓦电流值:220v阻性: 1000w/220v=4.5A 220v感性:1000w/(220*0.8)=5.5A 380v阻性:1000w/3/220v=1.5A 380v感性:I线=1000w/(380*1.7*0.8)=1.9A 三相四线制中的零线截面通常选为相线截面的1/2左右。在单相线路中,零线与相线截面相同。 U相220v×√3=U线380v U相380v×√3=U线660v 220v×3=660v (三角:线电压=相电压=380v) 相电流:(负载上的电流),用Iab、Ibc、Iac表示。相电压:任一火线对零线的电压U A、U B、U C 线电流:(火线上的电流),用I A、I B、I C表示。线电压:任意两火线间的电压U AB、U BC、U CA 星形:I线(IA、IB、IC)=I相(Iab、Ibc、Iac),U线=380V(UAB、UBC、UCA)=√3×U相(UA、UB、UC=220V), P相=U相×I相, P总=3P相=√3×U线×I相=√3×U线×I线; 三角:I线(IA、IB、IC)=√3×I相(Iab、Ibc、Iac),U线=380V(UAB、UBC、UCA)=U相(UA、UB、UC),P相=U相×I相,P总=3P相=√3×I线×U相=√3×I线×U线。

单相电有功功率:P= U相I相cosφ 1千瓦=4.5-5.5A 三相电有功功率: P总=3U相I相cosφ=3x220xI相cosφ P总=√3U线I线cosφ=1.732x380xI线cosφ三相电1千瓦线电流:IA、IB、IC:=P总/√3U线cosφ=1000kw/(380x√3x0.8)=2A 铜线的安全截流量为5-8A/平方毫米,铝线的安全截流量为3-5A/平方毫米。 在单相电路中,每1平方毫米的铜导线可以承受1KW功率负载; 三相平衡电路,每1平方毫米的铜导线可以承受2-2.5KW的功率。 相电压:三根火线中任意相线与零线之间的电压叫相电压Ua.Ub,Uc 线电压:三相电路中A、B、C三相引出线相互之间的电压,又称线电压。 不论星形接线还是三角形接线,三个线电压分别是UAB、UBC和UCA,

基于功率测量芯片HLW8012的功率显示表设计

基于功率测量芯片HLW8012的功率显示表设计 [摘要] 功率显示表是一种用于显示电量数据的仪表,是针对电力系统、公共设施、智能大厦的电力监控需求而设计的。 本文主要讲述功率显示表的主要功能、硬件原理图等。该功率显示表可以对单相交流电路中的用电设备进行功率、电压和电流等参数的检测。仪表采用HLW7021作为控制MCU,以专用电能计量集成电路芯片HLW8012为电量采集的核心器件,显示电路由芯片SM1642驱动4位数码管显示。 [关键词] 功率显示模块,功率计量,功率检测,功率计量模块,,功率计量方案,HLW8012,智能家电,功率监测模块 [正文] 一、功率显示表原理 为了能够测量单相电路中的电流、电压、功率、电量和功率因系素等有效值,本次设计的采样电路以电能计量芯片HLW8012为主,不需使用复杂的设计电路和编写复杂的软件。因为HLW8012内置了晶振和参考电源,所以外围电路非常简单。 HLW8012主要特性 ●高频脉冲CF,指示有功功率,在1000:1范围内达到±0.3%的精度 ●高频脉冲CF1,指示电流或电压有效值,使用SEL选择,在500:1范围内达到±0.5%的精 度 ●内置晶振、2.43V 电压参考源及电源监控电路 ●5V单电源供电,工作电流小于3mA HLW8012输入输出 图1 芯片引脚图 功率显示表是对负载设备的用电情况进行实时的检测,将负载设备的用电数据进行收集,提供给控制终端,并通过4位数码管进行显示。使用HLW8012设计的功率检测模块的测量精度<0.3%,可以准确的测量功率、用电量等信息,具有性能稳定、设计简单等特点。 功率检测模块主要包含以下几个系统模块:电源模块,功率采集模块,主控制器模块和显示模块。 功率显示表的原理框图如下:

无功功率的测量方法

四种相位的测量方法(无功功率) 一、无功功率概念的历史发展 最早的无功功率概念是建立在单相正弦交流信号的基础上。 设某线路的电压 ,电流,则 有功功率为 ,无功功率为。U 、I,分别为电压与电流的有效值。 随着半导体行业和电力工业的发展,各种整流器件、换流设备以及其他非线性负载大量安装与电力系统中,使原有的无功功率定义在工程运用中非常不方便。 现在人们对正弦信号无功功率有了新的理解。 假设某单相线路的电压为 ,电流为,则将按照与平行和垂直两个方向分解为与,那么与的积即为无功功率。 二、无功功率的测量方法 1、替代法 主要使用于无功功率变送器中,用于测量三相平衡电路的无功功率。当三相电路严格平衡对称时,此方法不存在原理性误差。在不对称与存在多谐波的情况下,此方法不适用。 2、电子移相测量法(简称模拟移相法) 多用于比较高级的综合仪器中(多用数字表) 根据三角公式变换??sin 90-cos =?)(,从而把无功功率测量转化为有功功率测量,即转化为求两个向量的内积)(???=??=90-cos U I sin U I Q ??。这已经可以比较方便的测量了。 理想情况下电子移相并不存在原理性误差。但在工程上电容与电阻是实际元件,其值及相应的效应与理想值差距巨大,所以效果并不理想。 3、数字移相测量法 在一个周期内对三相电压、三相电流均匀采样24点至64点(因生产厂家所生产的设备不同而异),然后用电压采样值乘以滞后90度点的电流采样值,做积分运算从而得到一个周期内的平均无功功率 N N N N /)j 4/(i u )j 4/(i u )j 4/(i u Q N 1j C Cj B Bj A Aj ∑=+?++?++?=)( 式中 j ——代表第j 个采样点 N ——代表一个周期的采样点数,N/4代表1/4个周期 从原理上讲,不存在理论误差。该方法的问题主要在于数字移相的适用性。当被测量是单纯的三相正弦信号,可以通过控制采样点数及其均匀的程度来实现精密的数字移相。但是如果被测信号不是严格的正弦波,有谐波含量、则数字移相就要出现误差。原因在于,数字移相90度是按基波计算的,对于三次谐波而言,则相当于移了270度,对于五次谐波而言,相当于移相90度。所以此时的无功功率测量存在着各次谐波造成的误差。 )?+=wt sin(2u U )?+=wt sin(I 2i ?cos UI P =?sin UI Q =→U →I →I →U →1I →2I →U →2I

电机常用计算公式和说明

电机电流计算: 对于交流电三相四线供电而言,线电压是380,相电压是220,线电压是根号3相电压 对于电动机而言一个绕组的电压就是相电压,导线的电压是线电压(指A相 B相 C相之间的电压,一个绕组的电流就是相电流,导线的电流是线电流 当电机星接时:线电流=相电流;线电压=根号3相电压。三个绕组的尾线相连接,电势为零,所以绕组的电压是220伏 当电机角接时:线电流=根号3相电流;线电压=相电压。绕组是直接接380的,导线的电流是两个绕组电流的矢量之和 功率计算公式 p=根号三UI乘功率因数是对的 用一个钳式电流表卡在A B C任意一个线上测到都是线电流 极对数与扭矩的关系 n=60f/p n: 电机转速 60: 60秒 f: 我国电流采用50Hz p: 电机极对数 1对极对数电机转速:3000转/分;2对极对数电机转速:60×50/2=1500转/分在输出功率不变的情况下,电机的极对数越多,电机的转速就越低,但它的扭矩就越大。所以在选用电机时,考虑负载需要多大的起动扭距。 异步电机的转速n=(60f/p)×(1-s),主要与频率和极数有关。 直流电机的转速与极数无关,他的转速主要与电枢的电压、磁通量、及电机的结构有关。n=(电机电压-电枢电流*电枢电阻)/(电机结构常数*磁通)。 扭矩公式 T=9550*P输出功率/N转速 导线电阻计算公式: 铜线的电阻率ρ=0.0172, R=ρ×L/S (L=导线长度,单位:米,S=导线截面,单位:m㎡) 磁通量的计算公式: B为磁感应强度,S为面积。已知高斯磁场定律为:Φ=BS 磁场强度的计算公式:H = N × I / Le 式中:H为磁场强度,单位为A/m;N为励磁线圈的匝数;I为励磁电流(测量值),单位位A;Le为测试样品的有效磁路长度,单位为m。 磁感应强度计算公式:B = Φ/ (N × Ae)B=F/IL u磁导率 pi=3.14 B=uI/2R 式中:B为磁感应强度,单位为Wb/m^2;Φ为感应磁通(测量值),单位为Wb;N为感应线圈的匝数;Ae为测试样品的有效截面积,单位为m^2。 感应电动势 1)E=nΔΦ/Δt(普适公式){法拉第电磁感应定律,E:感应电动势(V),n:感应线圈匝数,ΔΦ/Δt:磁通量的变化率} 磁通量变化率=磁通量变化量/时间磁通量变化量=变化后的磁通量-变化前的磁通量 2)E=BLV垂(切割磁感线运动){L:有效长度(m)} 3)Em=nBSω(交流发电机最大的感应电动势){Em:感应电动势峰值} 4)E=BL2ω/2(导体一端固定以ω旋转切割){ω:角速度(rad/s),V:速度(m/s)}

基于功率计量芯片HLW8012的计量插座方案

基于功率计量芯片HLW8012计量插座方案 【摘要】 计量插座是一种插座转换装置,可以显示电量、功率、电压、电流、时钟等参数,是针对于家庭电器节能要求而设计。 本文主要讲述计量插座的主要功能、硬件原理图等。该计量插座可以对单相交流用电的电器进行电量、功率、电压及电流等参数的测量。此方案采用HLW7031作为控制MCU,以专用功率计量芯片HLW8012为电量采集器件,HT1621为LCD驱动芯片,DS1302作为时钟记录芯片。【关键词】 计量插座,功率计量,功率计量,节能插座,智能插座,HLW8012,智能家电 【正文】 一、计量插座原理 计量插座需要测量功率、电量、电流和电压等参数,同时计量插座产品内部空间小,本次设计使用功率计量芯片HLW8012作为各个电参数的测量器件。因为HLW8012可以测量功率、电量、电流和电压值,内置晶振、参考源,SOP8封装,外围电路简单,在满足性能要求的同时,可以做到体积更小。 ●HLW8012主要特性 (1)高频脉冲CF,指示有功功率,在1000:1范围内达到±0.3%的精度 (2)高频脉冲CF1,指示电流或电压有效值,使用SEL选择,在500:1范围内达到±0.5%的精度(3)内置晶振、2.43V电压参考源及电源监控电路 (4)5V单电源供电,工作电流小于3mA ●HLW8012输入输出 VIP SEL CF CF1输出 电流/电压值 /电压值 图1 HLW8012芯片引脚图 (1)V1P,V1N输入电流采样信号:峰峰值V P-P:±43.75mV,最大有效值:±30.9mV。

(2)V2P输入电压采样信号:峰峰值V P-P:±700mV,最大有效值:±495mV。 (3)高频脉冲CF(PIN6):指示功率,计算电能;输出占空比为1:1的方波。 (4)高频脉冲CF1(PIN7):指示电流或电压有效值,SEL选择;输出占空比为1:1的方波。 计量插座实际上是一个插座转接设置,电器通过计量插座之后再连接到电网。MCU从功率计量模块获取用电器的电量、功率、电压、电流等参数,从时钟模块获取当前时钟,MCU将这些数据通过LCD驱动芯片显示在LCD屏上。MCU可以打开或关闭插座孔的电源,通过按键直接操作或设置定时自动操作,电源的打开与关闭是通过MCU控制继电器的闭合与切断实现。 时钟设置是通过按键进行设置,可以设置日期、小时、分、秒,自动设置星期。可以设置一星期内哪几天定时打开或关闭插座孔的电源,实现无人自动控制插座孔的电源。一般在出厂前会设置好时间。计量插座结构框图如图2所示。 图2 计量插座方案结构框图 二、计量插座硬件设计 计量插座硬件设计相对应于结构框图,有6部分模块电路:电源管理电路、功率计量电路、显示模块电路、继电器控制电路、时钟电路及按键。 所有功率计量测量,电压、电流通道的采样方式有2种:互感器采样方式(隔离采样)、电阻采样方式(非隔离采样)。互感器采样方式成本高,本设计使用电阻采样方式。 1、电源管理电路 使用LNK304设计的AC-DC非隔离电源,L与N分别是交流火线与零线,以零线作为地线。此电路无需变压器,稳压5V,可以提供150mA左右的电流,能够保证在AC85V~265V的交流范围内,实现稳定的电压输出,纹波也很小,在50mV左右。此电源为所有模块提供工作电压。

三相无功功率的测量方法

三相无功功率的测量方法 发电机及变压器等电气设备的额定容量为S=UI,单位为伏安。在功率因数较低时,即使设备已经满载,但输出的有功功率却很小(因为P=UIcosφ),不仅设备不能很好利用,而且增加了线路损失。因此提高功率因数是挖掘电力系统潜能的一项重要措施。电力工业中,在发电机、配电设备上进行无功功率的测量,可以进一步了解设备的运行情况,以便改进调度工作,降低线路损失和提高设备利用率。测量三相无功功率主要有如下方法。 1. 一表法 在三相电源电压和负载都对称时,可用一只功率表按图4-1联接来测无功功率。 将电流线圈串入任意一相,注意发电机端接向电源侧。电压线圈支路跨接到没接电流线圈的其余两相。根据功率表的原理,并对照图4-1,可知它的读数是与电压线圈两端的电压、通过电流线圈的电流以及两者间的相位差角的余 弦cosφ的乘积成正比例的,即P Q =U BC I A cosθ (4-1) 其中θ =ψ UBC –ψ iA 图4-1 由于uBC与uA间的相位差等于90度(由电路理论知),故有θ=90o-φ式中φ为对称三相负载每一相的功率因数角。在对称情况下UBC IA 可用线电压U1及线电流I1表示,即 PQ=U1I1cos(90o-φ )=U1I1sinφ (4-2) 在对称三相电路中,三相负载总的无功功率Q =√3 U1I1sinφ (4-3) ∴ 亦即Q=√3PQ (4-4) 可知用上述方法测量三相无功功率时,将有功功率表的读数乘上√3/2 倍即可。 2. 二表法

用两只功率表或二元三相功率表按图4-2联接,从功率表的作用原理可知,这时两个功率表的读数之和为 PQ=PQ1=PQ2=2U1I1sinφ(4-5) 较式(4-3) (4-5) 知(4-6) Q=√3PQ/2 图4-2 从上式可见将两功率表读数之和(或二元三相功率表的读数)乘以√3/2,可得到三相负载的无功功率。 3. 三表法 三表法可用于电源电压对称而负载不对称时,三相电路无功功率的测量,其接线如图4-3所示。当三相负载不对称时,三个线电流IA、IB、IC不相等,三个相的功率因数角φA 、φB 、φC 也不相同. 图4-3 因此,三只功率表的读数P 1、P 2 、P 3 也各不相同,它们分别是:4-3 (1) P 1=U BC I A cos(90o-φ A )=√3U A I A sinφ A (2) P 2=U CA I B cos(90o-φ B )=√3U B I B sinφ B

三相电总功率计算公式解读

三相电总功率计算公式解读 三相电功率计算公式包括三种功率,有功功率P、无功功率Q和视在功率S。对于对称负载来说,三种功率计算公式均比较简单,相对测量也比较简单,也只需测量一路电量信号即可。 对于要求精度较高的场合,我必须采用两表法或者三表法来测量三相功率。 电压与电流之间的相位差()的余弦叫做功率因数,用符号cos表示,在数值上,功率因数是有功功率和视在功率的比值,即cos=P/S 三种功率和功率因素cos是一个直角功率三角形关系:两个直角边是有功功率、无功功率,斜边是视在功率。 有功功率平方+无功功率平方=视在功率平方。三相负荷中,任何时候这三种功率总是同时存在:视在功率S=1.732UI 有功功率P=1.732UIcos 无功功率Q=1.732UIsin 功率因数cos=P/S sin=Q/S 如供电电压是交流三相电,每相电压为220V, 已知电机额定电压为380V,额定电流为15A,请问,: 1、当三相异步电机在星形启动时,电功率计算公式是否为:根号3*U*I*功率因数,U是380V还是220V? 2、当三相异步电机在角形运转时,电功率计算公式是否为:根号3*U*I*功率因数,U是380V还是220V? 1》供电电压是交流三相电,每相电压为220V,电机额定电压为380V,额定电流为15A (应该是15KW△接的),可将电机改为Y接以适应三相220V运行,其计算公式U=220V,电压低了,电流大了,功率保持不变。 2》当三相电压为380V时,三相异步电机在原有接法中不论Y接还是△接,其计算公式U=380V。 3》当三相电压为380V时,三相异步电机原为△接法改为Y接法时,因其绕组原来是承受380V的,改Y接法后其绕组能承受380V电压的根号3倍(即3801.732660V),绕组

电能计量芯片汇总

电能计量SA9904B, 1引言新型集成芯片不仅精确度高,而且硬件软件设计简单性价比高 1引言 新型集成芯片不仅精确度高,而且硬件软件设计简单、性价比高。着重介绍SA9904B,ATT7026A及CS54633种三相电能计量芯片的工作原理,比较其性能指标,为合理选择电能芯片提供了有力的帮助。 2电能计量芯片 SA9904B是南非微电子系统有限公司设计开发的一种电能计量芯片, ATY7026A是珠海炬力集成电路设计有限公司开发的电能计量芯片,CS5463是美国CRYSTAL公司推出的带有串行接口的单相双向功率/电能计量集成电路芯片。这三者都用于三相多功能电能计量,均适用于三相三线制的具有50Hz 或60Hz标准频率的电网,支持电阻网络校表和软件校表两种方式。由于电能计量、参数测量和数据读取是电能芯片的核心部分。下面主要从有功计量、无功计量、视在功率/电能计量、有效值测量、中断和SPI接口6个方面介绍芯片原理。 2.1SA9904B简介 SA9904B有20个引脚,PDIP封装,12个元暂存器。SA9904B包含9个代表各相的有功电能、无功电能与电源电压的24位元暂存器。第10个24位元暂存器代表任何有效相位的市频,包含3个位址以保存与SA9604A的兼容性。3个位址的任何其一可用于存取频率暂存器。每相位的有功与无功功率被积存于24位元暂存器。被测电路的电能或功率不直接提供给用户,但是可以通过公式计算。计算每相的有功或无功电能:电能每计数=(VRATED×IRATED)/320 000;计算每相的有功或无功功率:功率=VRATED×IRATED×N/INTTIME/320 000。其中:VRATED为电表的额定电源电压,IRATED为电表的额定电源电流,N=相继读数间的暂存器数值差数(△值),INTTIME为相继读数间的时间差值(单位为秒)。若要求合相有功电能,只能通过程序对三相有功电能求和,或通过有功功率脉冲输出F50计数。芯片内的3个电压暂存器包含各相位测得的RMS电压值.用户可以直接从暂存器中读取。SA9904B不具有中断功能。串行周边的接口汇流排(SPI)为一同步汇流排,使用于微控器与SA9904B之间的数据传输。引脚D0(串行数据出端),DI(串行数据入端),CS(芯片选项)与SCK(串行时脉)用于此汇流排的应用。SA9904B为从器件,。而微控器为汇流排主器件。CS 输入启始与终止数据传输。SCK信号(微控器发送的)选通微控器与SA9904B的SCK引脚间的数据。DI与DO引脚为SA9904B的串行数据输入与输出引脚。2.2ATT7026A简介 ATT7026A44个引脚,QFP44封装,102个寄存器翻。有功功率通过求瞬时功率代数均值获得。分相、合相有功功率分别存入指定寄存器,供用户读取。。无功功率是通过将电压采样信号作一90°相移,再求瞬时功率的代数均值获得。分相、合相无功功率同样提供给用户。芯片中有电能累加寄存器,能够提供分相、合相有功、无功电能,但不提供电网周期累加模式。芯片通过能量脉冲生成器,提供校表脉冲CFl和驱动步进电机的低频脉冲F1/F2。由于芯片提供电流和电压有效值,用户也可用公式S=VRMS×IRMS,通过MCU计量分相、合相视在功率。有效值测量通过对电压、电流的采样数据求均方值实现。能够同时计算6通道的有效值,结果存在指定的寄存器中供用户读取。此外,芯片不仅提供分相电流、电压有效值.还提供三相电流、电压矢量和的有效值,用户可在指定寄存

电能计量芯片

电能计量芯片 ADE7755是ADI公司生产的一款用于电能计量的芯片,其技术指标超过了IEC1036规定的准确度要求[7]。它将有功功率的信息以频率的形式输出。在50 / 60Hz 输入信号时都能满足IEC687 / 1036标准规定的测试精度要求,在1000:1的输入动态范围内,测试误差小于0.1%。其功能框图如图3.1所示,实物图如图3.2所示。 图3.1 ADE7755功能框图 图3.2 ADE7755芯片实物图 3.1 ADE7755的特点 ADE7755 应用了过采样ADC和DSP相结合的技术,对温度的敏感度很低,即使在很高的环境温度下也能维持较高的测试精度。ADE7755只在ADC和基准源中使用模拟电路,所有其他信号处理(如相乘和滤波)都使用数字电路,这使其在恶劣的环境条件下仍能保持极高的准确度和长期稳定性。

其主要特点如下: (1)工作温度范围-40~85℃。 (2)低阈值启动,启动电流小于 0.2%Ib。 (3)低成本 CMOS 工艺。 (4)片内设有电源监控电路。 (5)片内带有防潜动功能(空载阈值)。 (6)片内带有抗混叠滤波器。 (7)+5V 单电源、低功耗(典型值 15mW)。 (8)具有负功率或错线指示功能。 (9)5V 单电源工作,正常工作时芯片功耗 30Mw。 (10)1Vpeak-peak 的最大模拟信号输入范围。 (11)电流通道具有 1/2/8/16 四种增益选择,以便灵活选用不同大小的锰铜采样电阻。 (12)2.5V 片内高精度参考电压源,绝对偏差小于!4%,温漂小于!20ppm/℃。 (13)片内基准电压 2.5V±8%(温度系数典型值 30ppm/℃),能为外部电路提供基准。 (14)带有电源电压检测功能,当电源电压降低到 80%VDD 时芯片自动复位。 (15)灵活的模拟信号输入电路,既可单端输入也可全差分输入并且输入共模电压可在 0V 和2V 之间选择,由管脚 SCOM 控制。 (16)有功功率平均值从 ADE7755 引脚 F1 和 F2 以频率方式输出,且F1、F2能直接驱动步进电机。 (17)有功功率瞬时值从引脚 CF 以较高频率方式输出,能用于仪表校验;逻辑输出引脚 REVP 能指示负功率或错线;FI 和 F2 能直接驱动机电式计度 器和两相步进电机;电流通道中的可编程增益放大器(PGA)使仪表能使 用小阻值的分流电阻。 3.2 ADE7755工作原理 ADE7755内部拥有两个16位的二阶∑-△模数转换器,这两个ADC对来自电流 和电压传感器的电压信号进行数字化,过采样速率达900KHz。AD7755的模拟 输入结构具有宽动态范围,大大简化了传感器接口(可以与传感器直接连接),也

单相三相交流电路功率计算公式

单相、三相交流电路功率计算公式

相电压:三相电源中星型负载两端的电压称相电压。用UA、UB、UC 表示。 相电流:三相电源中流过每相负载的电流为相电流,用IAB、IBC、ICA 表示。 线电压:三相电源中,任意两根导线之间的电压为线电压,用UAB、UBC、UCA 表示。线电流:从电源引出的三根导线中的电流为线电流,用IA、IB、IC 表示。 如果是三相三线制,电压电流均采用两个互感器,按V/v接法,测量结果为线电压和线电流; 如果是三相四线制: 1、电压可采用V/v接法,电流必须采用Y/y接法,测量结果为线电压和线电流,线电流也等于相电流。 2、电压和电流均采用Y/y接法,测量结果为相电压和相电流,相电流也等于线电流。Y/y接法时,电压互感器一次接在火线及零线之间,每个电压互感器二次输出接一个独立仪表。 每根火线穿过一个电流互感器,每个电流互感器二次输出接一个独立仪表。

电压V/v接法时,电压互感器一次接在火线之间,二次分别连接一个电压表,如需测量 另一个线电压,可将两个互感器的二次输出的n端连接在一起,a、b端连接第三个电压 表。 电流V/v接法时,两根火线分别穿过一个电流互感器,每个互感器的二次分 别接一个电流表,如需测量第三个线电流,可将两个的s2端连接在一起,与 两个互感器的s1端一起共三个端子,另外,将三个电流表的负端连在一起, 其它三个端子分别与上述三个端子连接在一起。 三相电流计算公式 I=P/(U*1.732)所以1000W的线电流应该是1.519A。 功率固定的情况下,电流的大小受电压的影响,电压越高,电流就越小,公式是I=P/U当电压等于220V时,电流是4.545A,电压等于380V时,电流是2.63A,以上说的是指的单相的情况。380V三相的时候,公式是I=P/(U*1.732),电流大小是1.519A 三相电机的电流计算I=P/(1.732*380*0.75)式中:P是三相功率(1.732是根号3)380是三相线电压(I是三相线

什么是有功功率、无功功率、视在功率、功率三角形及三相电路的功率如何计算

什么是有功功率、无功功率、视在功率及功率三角形? 三相电路的功率如何计算? 什么是有功功率、无功功率、视在功率及功率三角形? 三相电路的功率如何计算? 一、有功功率 在交流电路中,凡是消耗在电阻元件上、功率不可逆转换的那部分功率(如转变为热能、光能或机械能)称为有功功率,简称“有功”,用“P”表示,单位是瓦(W)或千瓦(KW)。 它反映了交流电源在电阻元件上做功的能力大小,或单位时间内转变为其它能量形式的电能数值。实际上它是交流电在一个周期内瞬时转变为其他能量形式的电能数值。实际上它是交流电在一个周期内瞬时功率的平均值,故又称平均功率。它的大小等于瞬时功率最大值的1/2,就是等于电阻元件两端电压有效值与通过电阻元件中电流有 效值的乘积。 二、无功功率 在交流电路中,凡是具有电感性或电容性的元件,在通过后便会建立起电感线圈的磁场或电容器极板间的电场。因此,在交流电每个周期内的上半部分(瞬时功率为正值)时间内,它们将会从电源吸收能量用建立磁场或电场;而下半部分(瞬时功率为负值)的时间内,其建立的磁场或电场能量又返回电源。因此,在整个周期内这种功率

的平均值等于零。就是说,电源的能量与磁场能量或电场能量在进行着可逆的能量转换,而并不消耗功率。 为了反映以上事实并加以表示,将电感或电容元件与交流电源往复交换的功率称之为无功功率。 简称“无功”,用“Q”表示。单位是乏(Var)或千乏(KVar)。 无功功率是交流电路中由于电抗性元件(指纯电感或纯电容)的存在,而进行可逆性转换的那部分电功率,它表达了交流电源能量与磁场或电场能量交换的最大速率。 实际工作中,凡是有线圈和铁芯的感性负载,它们在工作时建立磁场所消耗的功率即为无功功率。如果没有无功功率,电动机和变 压器就不能建立工作磁场。 三、视在功率 交流电源所能提供的总功率,称之为视在功率或表现功率,在数值上是交流电路中电压与电流的乘积。 视在功率用S表示。单位为伏安(VA)或千伏安(KVA)。 它通常用来表示交流电源设备(如变压器)的容量大小。 视在功率即不等于有功功率,又不等于无功功率,但它既包括有功功率,又包括无功功率。能否使视在功率100KVA的变压器输出100KW的有功功率,主要取决于负载的功率因数。 四、功率三角形

三相功率计算公式

三相功率计算公式 P=1.732×U×I×COSφ (功率因数COSφ一般为0.7~0.85之间,取平均值0.78计算) 三相有功功率 P=1.732*U*I*cosφ 三相无功功率 P=1.732*U*I*sinφ 对称负载,φ:相电压与相电流之间的相位差 cosφ为功率因数,纯电阻可以看作是1,电容、电抗可以看作是0 有功功率的计算式:P=√3IUcosΦ (W或kw) 无功功率的公式: Q=√3IUsinΦ (var或kvar) 视在功率的公式:S=√3IU (VA或kVA) ⑴有功功率 三相交流电路的功率与单相电路一样,分为有功功率、无功功率和视在功率。不论负载怎样连接,三相有功功率等于各相有功功率之和,即: 当三相负载三角形连接时: 当对称负载为星形连接时因

UL=根号3*Up,IL= Ip 所以P== ULILcosφ 当对称负载为三角形连接时因 UL=Up,IL=根号3*Ip 所以P== ULILcosφ 对于三相对称负载,无论负载是星形接法还是三角形接法,三相有功功率的计算公式相同,因此,三相总功率的计算公式如下。 P=根号3*Ip ULILcosφ ⑵三相无功功率: Q=根号3*Ip ULILsinφ (3)三相视在功率 S=根号3*Ip ULIL 对于交流电三相四线供电而言,线电压是380,相电压是220,线电压是根号3相电压 对于电动机而言一个绕组的电压就是相电压,导线的电压是线电压(指A相B 相C相之间的电压,一个绕组的电流就是相电流,导线的电流是线电流 当电机星接时:线电流=相电流;线电压=根号3相电压。三个绕组的尾线相连接,电势为零,所以绕组的电压是220伏 当电机角接时:线电流=根号3相电流;线电压=相电压。绕组是直接接380的,导线的电流是两个绕组电流的矢量之和 功率计算公式p=根号三UI乘功率因数是对的 用一个钳式电流表卡在A B C任意一个线上测到都是线电流 电流和相电流与钳式电流表测量无关,与电机定子绕组接线方式有关。 当电机星接时:线电流=根3相电流;线电压=相电压。 当电机角接时:线电流=相电流;线电压=根3相电压。 所以无论接线方式如何,都得乘以根3。 电机功率=电压×电流×根3×功率因数

相关文档
最新文档