铁铬铝电热合金丝主要设计参数

铁铬铝电热合金丝主要设计参数

铁铬铝电热合金丝主要设计参数:

AO工艺设计计算公式

A/O工艺设计参数 ①水力停留时间:硝化不小于5~6h;反硝化不大于2h,A段:O段=1:3 ②污泥回流比:50~100% ③混合液回流比:300~400% ④反硝化段碳/氮比:BOD 5 /TN>4,理论BOD消耗量为1.72gBOD/gNOx--N ⑤硝化段的TKN/MLSS负荷率(单位活性污泥浓度单位时间内所能硝化的凯氏氮):<0.05KgTKN/KgMLSS·d ⑥硝化段污泥负荷率:BOD/MLSS<0.18KgBOD 5 /KgMLSS·d ⑦混合液浓度x=3000~4000mg/L(MLSS) ⑧溶解氧:A段DO<0.2~0.5mg/L O段DO>2~4mg/L ⑨pH值:A段pH =6.5~7.5 O段pH =7.0~8.0 ⑩水温:硝化20~30℃ 反硝化20~30℃ ⑾ 碱度:硝化反应氧化1gNH 4+-N需氧4.57g,消耗碱度7.1g(以CaCO 3 计)。 反硝化反应还原1gNO 3 --N将放出2.6g氧, 生成3.75g碱度(以CaCO 3 计) ⑿需氧量Ro——单位时间内曝气池活性污泥微生物代谢所需的氧量称为需氧量 (KgO 2 /h)。微生物分解有机物需消耗溶解氧,而微生物自身代谢也需消耗溶解氧,所以Ro应包括这三部分。 Ro=a’QSr+b’VX+4.6Nr a’─平均转化 1Kg的BOD的需氧量KgO 2 /KgBOD b’─微生物(以VSS 计)自身氧化(代谢)所需氧量KgO 2 /Kg VSS·d。

上式也可变换为: Ro/VX=a’·QSr/VX+b’ 或 Ro/QSr=a’+b’·VX/QSr Sr─所去除BOD的量(Kg) Ro/VX─氧的比耗速度,即每公斤活性污泥(VSS)平均每天的耗氧量KgO 2 /KgVSS·d Ro/QSr─比需氧量,即去除1KgBOD 的需氧量KgO 2 /KgBOD 由此可用以上两方程运用图解法求得a’ b’ Nr—被硝化的氨量kd/d 4.6—1kgNH 3-N转化成NO 3 -所需的氧 量(KgO 2 ) 几种类型污水的a’ b’值 ⒀供氧量─单位时间内供给曝气池的氧量,因为充氧与水温、气压、水深等因素有关,所以氧转移系数应作修正。 ⅰ.理论供氧量 1.温度的影响 KLa(θ)=K L(20)×1.024Q-20 θ─实际温度 2.分压力对Cs的影响(ρ压力修正系数) ρ=所在地区实际压力(Pa)/101325(Pa) =实际Cs值/标准大气压下Cs值

泵与风机的基本性能参数

1.泵与风机的基本性能参数。 2. 离心式叶轮按出口安装角β2y的大小可分为三种型式。 3、泵与风机的损失主要。 4、离心式泵结构的主要部件。 5、轴流式通风机的主要部件。 1.泵与风机的性能曲线主要包括()。 A扬程与流量、B轴功率与流量、C效率与流量。 2.泵与风机管路系统能头由()项组成。 A流体位能的增加值、B流体压能的增加值、C各项损失的总和。 3、通风机性能试验需要测量的数据()。 A压强、B流量、C功率、D、转速、E 温度。 4、火力发电厂常用的叶片泵() A给水泵、B循环水泵、C 凝结水泵、D 灰渣泵。 5、泵与风机非变速调节的方式。() A节流调节、B分流调节、C前导叶调节、E 动叶调节。 1.简述离心式泵与风机的工作原理 2. 影响泵与风机运行工况点变化的因素 3、泵与风机串并联的目的 4、比转速有哪些用途 1.有一单吸单级小型卧式离心泵,流量q v=68m3/h,NPSH c=2m,从封闭容器中抽送温度400C的清水,容器中液面压强为,吸入管路总的流动损失Σh w=,试求该泵的允许几何安装高度是多少(水在400C时的密度为992kg/m3。对应的饱和蒸汽压强7374Pa。)

2.有一输送冷水的离心泵,当转速为1450r/min时,流量q v=s,扬程H=70m,此时所需的轴功率P sh=1100KW,容积效率ηv=,机械效率ηm=,求流动效率为多少(已知水的密度ρ=1000kg/m3)。 1、试分析启动后水泵不输水(或风机不输风)的原因及解决措施 2.试分析泵与风机产生振动的原因 1、液力偶合器的主要部件,变速调节特点,性能特性参数,在火力电厂中的优点

2015离心式通风机设计和选型手册

离心式通风机设计 通风机的设计包括气动设计计算,结构设计和强度计算等内容。这一章主要讲第一方面,而且通风机的气动设计分相似设计和理论设计两种方法。相似设计方法简单,可靠,在工业上广泛使用。而理论设讲方法用于设计新系列的通风机。本章主要叙述离心通风机气动设计的一般方法。 离心通风机在设计中根据给定的条件:容积流量,通风机全压,工作介质及其密度 ,以用其他要求,确定通风机的主要尺寸,例如,直径及直径比,转速n,进出口 宽度和,进出口叶片角和,叶片数Z,以及叶片的绘型和扩压器设计,以保证通风机的性能。 对于通风机设计的要求是: (1)满足所需流量和压力的工况点应在最高效率点附近; (2)最高效率要高,效率曲线平坦; (3)压力曲线的稳定工作区间要宽; (4)结构简单,工艺性能好; (5)足够的强度,刚度,工作安全可靠; (6)噪音低; (7)调节性能好; (8)尺寸尽量小,重量经; (9)维护方便。 对于无因次数的选择应注意以下几点: (1)为保证最高的效率,应选择一个适当的值来设计。 (2)选择最大的值和低的圆周速度,以保证最低的噪音。 (3)选择最大的值,以保证最小的磨损。

(4)大时选择最大的值。 §1 叶轮尺寸的决定 图3-1叶轮的主要参数:图3-1为叶轮的主要参数: :叶轮外径 :叶轮进口直径; :叶片进口直径; :出口宽度; :进口宽度; :叶片出口安装角;

:叶片进口安装角; Z:叶片数; :叶片前盘倾斜角; 一.最佳进口宽度 在叶轮进口处如果有迴流就造成叶轮中的损失,为此应加速进口流速。一般采用,叶轮进口面积为,而进风口面积为,令为叶轮进口速度的变化系数,故有: 由此得出: (3-1a) 考虑到轮毂直径引起面积减少,则有: (3-1b) 其中 在加速20%时,即, (3-1c)

离心通风机选型及设计

离心通风机选型及设计 1.引言…………………………………………………………………… .(1) 2.离心式通风机的结构及原理 (3) 2.1离心式风机的基本组成 (3) 2.2离心式风机的原理 (3) 2.3离心式风机的主要结构参数 (4) 2.4离心式风机的传动方式 (5) 3离心风机的选型的一般步骤 (5) 4.离心式通风机的设计 (5) 4.1通风机设计的要求 (5) 4.2设计步骤 (6) 4.2.1叶轮尺寸的决定 (6) 4.2.2离心通风机的进气装置 (13) 4.2.3蜗壳设计 (14) 4.2.4参数计算 (20) 4.3离心风机设计时几个重要方案的选择 (24) 5.结论 (25) 附录 (25)

引言 通风机是依靠输入的机械能,提高气体压力并排送气体的机械,它是一种从动的流体机械。通风机广泛用于工厂、矿井、隧道、冷却塔、车辆、船舶和建筑物的通风、排尘和冷却;锅炉和工业炉窑的通风和引风;空气调节设备和家用电器设备中的冷却和通风;谷物的烘干和选送;风洞风源和气垫船的充气和推进等。 通风机的工作原理与透平压缩机基本相同,只是由于气体流速较低,压力变化不大,一般不需要考虑气体比容的变化,即把气体作为不可压缩流体处理。 通风机已有悠久的历史。中国在公元前许多年就已制造出简单的木制砻谷风车,它的作用原理与现代离心通风机基本相同。1862年,英国的圭贝尔发明离心通风机,其叶轮、机壳为同心圆型,机壳用砖制,木制叶轮采用后向直叶片,效率仅为40%左右,主要用于矿山通风。1880年,人们设计出用于矿井排送风的蜗形机壳,和后向弯曲叶片的离心通风机,结构已比较完善了。 1892年法国研制成横流通风机;1898年,爱尔兰人设计出前向叶片的西罗柯式离心通风机,并为各国所广泛采用;19世纪,轴流通风机已应用于矿井通风和冶金工业的鼓风,但其压力仅为100~300帕,效率仅为15~25%,直到二十世纪40年代以后才得到较快的发展。 1935年,德国首先采用轴流等压通风机为锅炉通风和引风;1948年,丹麦制成运行中动叶可调的轴流通风机;旋轴流通风机、子午加速轴流通风机、斜流通风机和横流通风机也都获得了发展。 按气体流动的方向,通风机可分为离心式、轴流式、斜流式和横流式等类型。 离心通风机工作时,动力机(主要是电动机)驱动叶轮在蜗形机壳内旋转,空气经吸气口从叶轮中心处吸入。由于叶片对气体的动力作用,气体压力和速度得以提高,并在离心力作用下沿着叶道甩向机壳,从排气口排出。因气体在叶轮内的流动主要是在径向平面内,故又称径流通风机。 离心通风机主要由叶轮和机壳组成,小型通风机的叶轮直接装在电动机上中、大型通风机通过联轴器或皮带轮与电动机联接。离心通风机一般为单侧进气,用单级叶轮;流量大的可双侧进气,用两个背靠背的叶轮,又称为双吸式离心通风机。 叶轮是通风机的主要部件,它的几何形状、尺寸、叶片数目和制造精度对性能有很大影响。叶轮经静平衡或动平衡校正才能保证通风机平稳地转动。按叶片出口方向的不同,叶轮分为前向、径向和后向三种型式。前向叶轮的叶片顶部向叶轮旋转方向倾斜;径向叶轮的叶片顶部是向径向的,又分直叶片式和曲线型叶片;后向叶轮的叶片顶部向叶轮旋转的反向倾斜。 前向叶轮产生的压力最大,在流量和转数一定时,所需叶轮直径最小,但效率一般较低;后向叶轮相反,所产生的压力最小,所需叶轮直径最大,而效率一般较高;径向叶轮介于两者之间。叶片的型线以直叶片最简单,机翼型叶片最复杂。 为了使叶片表面有合适的速度分布,一般采用曲线型叶片,如等厚度圆弧叶片。叶轮通常都有盖盘,以增加叶轮的强度和减少叶片与机壳间的气体泄漏。叶片与盖盘的联接采用焊接或铆接。焊接叶轮的重量较轻,流道光滑。低、中压小型离心通风机的叶轮也有采用铝合金铸造的。 轴流式通风机工作时,动力机驱动叶轮在圆筒形机壳内旋转,气体从集流器进入,通过叶轮获得能量,提高压力和速度,然后沿轴向排出。轴流通风机的布置形式有立式、卧式和倾斜式三种,小型的叶轮直径只有100毫米左右,大型的可达20米以上。

普通车床数控化改造中机械结构的设计

普通车床数控化改造中机械结构的设计 发表时间:2019-05-13T10:35:33.893Z 来源:《防护工程》2019年第2期作者:曾玉成唐良军 [导读] 车床在机械加工中是重要的基础设备,车床的性能是影响生产的关键。 广东科达洁能股份有限公司广东省佛山市 528313 摘要:车床在机械加工中是重要的基础设备,车床的性能是影响生产的关键。随着社会的发展,新型的数控车床具有精度高、效率高等特点,可以实现自动化控制,普通的车床无法满足当前企业的生产现状,因此对一些普通车床进行数控改造,既达到了使用要求,还为企业节约了成本。 关键词:数控;机械;车床;改造 随着数控机床的普及,各加工企业都在更改机械加工工艺,将原来普通车床加工的流程都尽可能地安排到数控机床上来进行。普通车床具有操作简单、精度保持性好、故障率低等特点,在机械加工企业中一般都大量使用。通过改造可以使普通车床达到数据化生产的要求,提高企业的生产效能。 1普通车床改造总体方案设计 普通车床的数控化改造是一项技术性很强的工作,首先根据车床的规格与技术性能指标,设计基于该车床的整体改造方案,并给出详细的改造流程;然后进行任务分解,确定各部分的实施方案。普通车床数据化改造一般按如下步骤进行。 1.1对被加工对象进行工艺分析 普通车床主要用于回转类(轴类、盘类)以及螺纹零件加工,这些零件具有不同形状、不同技术要求,因而加工方法也不同,对车床改造后的要求也不相同。故应在工艺分析的基础上计算切削力及切削功率,计算进给系统和主轴所需的参数。 1.2被改造车床的现状分析 一定要掌握原始数据。车床改造时,一些零部件被拆掉同时还要增添一些新的机构,这就必须要确定相关的尺寸和连接方式。了解被改造车床当前的主要缺陷,如外圆车削产生锥度、端面车削平面度超差等,通过分析,在改造中采取措施予以解决。充分估计实际载荷,保证整机及各组成件的刚度,才能使数控改造后的车床加工精度和工作性能满足要求。 1.3制定总体设计方案 在充分进行技术分析并确定改造后,首先需要确定车床的现状及参数;根据机床现有的规格参数,再确定改造所需的硬件的型号和数量,机械部分主要有丝杠、丝母、轴承、轴承座、刀架等,电气部分主要有伺服驱动电机、变频器、强电元器件等。 以普通车床数控改造为例,在查阅其主要技术参数及对现状分析后,对滚珠丝杠副、步进电动机的选用进行梳理,给出较为实用的设计计算及应用方案。 2车床数控改造传动部件滚珠丝杠副的设计 2.1切削力的计算 总切削力沿X、Y、Z方向分解为互相垂直的Fc、Ff和Fp三个分力。主切削力Fc用于计算机床主运动机构及刀具强度,是选择切削用量的主要依据,是消耗功率最多的;进给力Ff是校验进给机构强度和确定进给功率的主要依据;背向力Fp是使工件在切削过程中产生振动的力,用来计算工艺系统刚度。切削力可按下列经验公式计算: Fc=0.67D1.5max.(1) Ff=(0.1~0.6)Fc.(2) Fp=(0.15~0.7)Fc.(3) 其中:Dmax为车床床身的最大加工直径,mm。横切端面时主切削力可取纵切时Fc的1/2。为简便起见,也可按照以下比例分别计算出另外两个切削分力。 Fc∶Ff∶Fp=1∶0.25∶0.4.(4) 2.2滚珠丝杠螺母副的计算与选型 滚珠丝杠螺母副已经标准化,其主要作用是将旋转运动转换为直线运动,从而使机床能够加工出所需零件。滚珠丝杠螺母副的型号可通过导程、动负载、螺纹底径等参数确定。 2.2.1滚珠丝杠上的牵引力计算 作用在滚珠丝杠上的牵引力Fm是根据切削分力和运动部件的重力引起的进给抗力来计算的,其数值大小与导轨形状有关。对于矩形导轨: Fm=kFf+f′(Fc+Fp+G).(5) 对于燕尾形导轨: Fm=kFp+f′(Fc+Ff+G).(6) 对于三角形或综合导轨: Fm=kFf+f′(Fc+G).(7) 其中:G为移动部件的重量,N;f′为导轨上的摩擦因数;k为考虑颠覆力矩影响的试验系数。 正常情况下,矩形导轨k=1.1,f′=0.15;燕尾形导轨k=1.4,f′=0.2;三角形或综合导轨k=1.15,f′=0.15~0.18。 2.2.2计算滚珠丝杠副的动负载、静负载 动负载C即滚珠丝杠承受的轴向负载的最大值,通过牵引力和要求的寿命值进行如下计算: 其中:fh为硬度系数,硬度为60HRC时,取fh=1,小于60HRC时,fh>1;fw为运转系数,一般情况下fw取1.2~1.5,有冲击时fw取

风机 主要性能参数

风机的八个主要性能参数 文件描叙: 风机的八个主要性能参数 风机的型号、规格千差万别,纷繁复杂,但是风机的本质不同与区别在于风机的主要性能参数,只要我们首先搞清楚这些性能参数的不同,对于我们了解风机和现实风机设备的选型具有很大帮助作用。那么,风机有那些主要性能参数呢?这主要包括:流量、压力、气体介质、转速、功率。下面一一分别介绍: 1. 流量 风机的流量是用出气流量换算成其进气状态的结果来表示的,通常以m3/h、m3/min表示。但在进出口压比为1.03以下(比如通风机范畴的风机)时,通常将出气风量看作为进气流量相同。在化学工业等领域中,以m3/h(常温常压)来表示的情况居多,它是将流量换算成标准状态,即摄氏0度、0.1MPa干燥状态。另外有时还以质量m按Kg/s来表示的。 流量亦称为气体量或空气量。将出气流量Q(出)换算成进气流量Q(进),可按下来公式计算: Q(进)=Q(出)×出气气体密度(kg/m3)/进气气体的密度(kg/m3) 将标准状态的流量Q(标准,m3/h,常温常压)换算成进气流量Q(进,m3/min),可按下列公式计算: Q(进)=Q(标准)×P(进气气体绝对压力,Pa)/(P(进气气体绝对压力,Pa)-S(相对湿度)×P(水蒸气饱和压力,Pa))×T(进气气体的热力学温度K)/273 2. 压力 为进行正常通风,需要有克服管道阻力的压力,风机则必须产生出这种压力。风机的压力分为静压、动压、全压三种形式。其中,克服前述送风阻力的压力为静压;把气体流动中所需动能转换成压力的形式为动压,实际中,为实现送风目的,就需有静压和动压。 静压:为气体对平行于气流的物体表面作用的压力,它是通过垂直于其表面的孔测量出来的。 动压=气体密度(kg/m3)×气体速度的平方(m/s)/2; 全压=静压+动压 风机的全压:是指风机所给定的全压增加量,即风机的出口和进口之间的全压之差。 3. 功率 风机的原动力(通常是电机或柴油机等)传递给风机轴上的功率为风机的轴功率

风机的性能参数及工作原理

风机的性能参数及工作原理 风机的使用我们都不陌生,生活中对于风机的使用也只是局限在为温室或工厂中,主要作用是做好通风的设备,对于风机自身的性能参数没有做过了解。风机的型号、规格千差万别,纷繁复杂,但是风机的本质不同与区别在于风机的主要性能参数常见的是厂房的通风口就是采用轴流风机,室外机一般采用此种方式。此外,还有一种风机是混流式,用的比较少那么,今天我们就一起了来了了解下风机究竟是怎么工作的吧。 #详情查看#【风机】 【风机的性能参数】 生产车间里我们常见的风机有引风机、送风机、一次风机、密封风机,火检冷却风机等,这些风机一般都采用的是离心式风机,以获得较高的风压。离心风机是轴向进风,径向出风,静压较大,室内机一般采用此种方式。还有采用的是轴流风机,轴流风机气流沿着风机轴向流动,常见的是厂房的通风口就是采用轴流风机,室外机一般采用此种方式。此外,还有一种风机是混流式,用的比较少。

2、风机的主要性能参 风机的型号、规格千差万别,纷繁复杂,但是风机的本质不同与区别在于风机的主要性能参数。只要我们首先搞清楚这些性能参数的不同,对于我们了解风机和现实风机设备的选型具有很大帮助作用。那么风机有那些主要性能参数呢?这主要包括流量、压力、气体介质、转速、功率。 (1)流量 风机的流量是用出气流量换算成其进气状态的结果来表示的,通常以m3/h、m3/min表示。但在进出口压比为1.03 以下(比如通风机 范畴的风机)时, 通常将出气风量 看作为进气流量 相同。 流量亦称为气体 量或空气量。将出 气流量Q(出)换算 成进气流量Q(进)可按下来公式计算: Q(进)=Q(出)×出气气体密度(kg/m3)/进气气体的密度(kg/m3) 将标准状态的流量Q(标准m3/h,常温常压)换算成进气流量Q(进,m3/min),可按下列公式计算:Q(进)=Q(标准)×P(进气气体压力,Pa)/(P(进气气体压力,Pa)-S(相对湿度)×P(水蒸气饱和压力,Pa))×T(进气气体的热力学温度K)/273 (2)压力 为进行正常通风需要有克服管道阻力的压力风机则需产生出这种压力。风机的压力分为静压、动压、全压三种形式。其中克服前述送风阻力的压力为静压,把气体流动中所需动能转换成压力的形式为动压,实际中为实现送风目的,就需有静压和动压。

AO工艺设计参数

污水处理A/O工艺设计参数 1.HRT水力停留时间:硝化不小于5~6h;反硝化不大于2h,A段:O段=1:3 在 A/O工艺中,好氧池的作用是使有机物碳化和使氮硝化;缺氧池的作用是反硝 化脱氮,故两池的容积大小对总氮的去除率极为重要。A/O的容积比主要与该废 水的曝气分数有关。缺氧池的大小首先应满足NO3--N利用有机碳源作为电子供体,完成脱氮反应的需要,与废水的碳氮比,停留时间、回流比等因素相应存在一定的关系。借鉴于类似的废水以及正交试验,己内酷胺生产废水的A/0容积比确定在1:6左右,较为合适。 而本设计的A/ 0容积比为亚:2,缺氧池过大,导致缺氧池中的m(BOD)/m (NO3--N)比值下降,当比值低于1.0时,脱氮速率反趋变慢。另外,缺氧池过大,废水停留时间过长,污泥在缺氧池内沉积,造成反硝化严重,经常出现大块上浮死泥,影响后续好氧处理。后将A/O容积比按1:6改造,缺氧池运行平稳。 1.1、A/O除磷工艺的基本原理 A/O法除磷工艺是依靠聚磷菌的作用而实现的,这类细菌是指那些既能贮存聚磷(poly—p)又能以聚β—羟基丁酸(PHB)形式贮存碳源的细菌。在厌氧、好氧交替条 件下运行时,通过PHB与poly—p的转化,使其成为系统中的优势菌,并可以过 量去除系统中的磷。其中聚磷是若干个基团彼此以氧桥联结起来的五价磷化合物,亦被称为聚磷酸盐,其特点是:水解后生成溶解性正磷酸盐,可提供微生物生长繁殖所需的磷源;当积累大量聚磷酸盐的细菌处于不利环境时,聚磷酸盐可分解释放能量供细菌维持生命。聚β—羟基丁酸是由多个β—羟基丁酸聚合而成的大分子聚 合物,当环境中碳源物质缺乏时,它重新被微生物分解,产生能量和机体生长所需要的物质。这一作用可分为两个过程:厌氧条件下的磷释放过程和好氧条件下的磷吸收过程。 厌氧条件下,通过产酸菌的作用,污水中有机物质转化为低分子有机物(如醋酸等),聚磷菌则分解体内的聚磷酸盐释放出磷酸盐及能量,同时利用 水中的低分子有机物在体内合成PHB,以维持其生长繁殖的需要。研究发现,厌 氧状态时间越长,对磷的释放越彻底。 好氧条件下,聚磷菌利用体内的PHB及快速降解COD产生的能量,将污水中的磷 酸盐吸收到细胞内并转变成聚磷贮存能量。好氧状态时间越长,对磷的吸收越充分。由于好氧状态下微生物吸收的磷远大于厌氧状态下微生物释放出的磷,随着厌氧—好氧过程的交替进行,微生物可以在污泥中形成稳定的种类并占据一定的优势,磷就可以通过系统中剩余污泥的排放而去除(见图1)。

离心通风机的设计

离心通风机的设计 已知条件:风机全压P tf =2554 Pa,风机流量q v =5700 m 3/h, 风机进口压力P in =101324.72Pa 风机进口温度t m =25°C 空气气体常数R=287J/ ㎏×k 风机转速n=2900r/min 1.空气密度ρ ()()33in 1847.16.3027328732.133*760273m kg m kg t R P in =??????+=+=ρ 2.风机的比转速 432.154.5???? ??=iF in v s q n n ρρ 4325541847.12.13600 5700290054.5??? ?????=s n =55.73 3.选择叶片出口角A 2β A 2β=?35 由于比转速较小,选择后弯圆弧叶片。 4.估算全压系数t ψ []210439.1107966.23835.02523??-?+=--s A t n βψ []273.5510439.135107966.23835.0253???-??+=-- =0.873

5.估算叶轮外缘圆周速度2u s m s m p u t tF 772.70873.0187.1212554212=??==ρψ 6. 估算叶轮外缘出口直径2D m m n u D 462.029001416.3772.70606022=?? ? ????==π 选择2D =0.46m ,相应地s m 85.692=u 7. 计算风机的t ψ、?、s D 、σ 884.085.691847.1212554u 21p 2 22tF t =??==ρψ 136.085.6946.045700/3600u D 4q 22 22v =??==ππ ? 611.20.136884.0993.0993 .0412141t s =?==?ψD 405.0884.0136.04321 43t 21===ψ?σ 8.确定叶轮进口直径0D ????? ? ??+=2 004d c q D v π 选择悬臂式叶轮,d=0,参考表3-11a 选0c =30s m ;

风机主要参数

一、主机概况: 数据单位名称参数说明 77 [m] 风轮风轮直径 3 [-] 叶片数目 80 [m] 轮毂中心高 78 [m]63 塔高 3.7 [deg] 叶片安装角桨叶和变距之间的参考线相对于风轴回转平面的角 0 [deg] 叶片回转锥角叶片回转锥角 4 [deg] 仰角主轴和水平面的夹角 3668 [m] 风轮中心到塔心的距离凤轮回转中心和塔筒中心线的水平距离 0 [m] 侧偏移(主轴到塔心) 主轴和塔轴的水平偏差 Clockwise [-] 风轮自转方向(顺时针/逆时针) 当从上风向向风机看时,风机顺时针或逆时针转12000 [kg] 轮毂轮毂质量不含桨叶 0.05 [m] 轮毂重心从主轴和叶片轴的交点到轮毂质量中心的距离 14600 [kgm2] 轮毂转动惯量(x轴) 16640 [kgm2] 轮毂转动惯量(y轴) 16640 [kgm2] 轮毂转动惯量(z轴) 0.90 [m] 叶根半径螺孔中心圆半径 2.692 [m] 回转直径(球径) 回转直径(球径) top:φ2556*12 bottom:φ4113*28 塔架在一些截面的几何尺寸 78 [m] 高 [kg/m] 单位长度质量 [m] 直径 [Nm] 抗弯刚度 [mm] 壁厚 7800 [kg/m] 密度 2.06e11 [N/m] 杨氏模量 [Hz] 塔架一阶频率(弯曲下风向纵向) [Hz] 塔架一阶频率(横向) [-] 空气动力拖动系数 [-] 流体动力拖动系数 (海上适用) [-] 流体动力惯量系数 (海上适用) [m] 理论平均水深 (海上适用) [N/m] 基础平移刚度水平 [kg] 基础质量 [Nm/rad] 回转刚度绕水平轴 [kgm2] 基础转动惯量绕水平轴 3.5 [m] 机舱宽不含风轮和轮毂 8.44 [m] 机舱长 3.4 [m] 机舱高

污水处理中AO工艺的设计参数

A/O生物除磷工艺是由厌氧和好氧两部分反应组成的污水生物处理系统。污水进入厌氧池后,与回流污泥混合。活性污泥中的聚磷菌在这一过程中大量吸收污水中的BOD,并将污泥中的磷以正磷酸盐的形式释放到混合液中。混合液进入好氧池后,有机物被氧化分解,同时聚磷菌大量吸收混合液中的正磷酸盐到污泥中。由于聚磷菌在好氧条件下吸收的磷多于厌氧条件下释放的磷,因此污水经过“厌氧-好氧”的交替作用和二沉池的污泥分离达到除磷的目的。一般情况下,TP的去除率可达到85%以上。 A/O工艺设计参数 ①水力停留时间:硝化不小于5~6h;反硝化不大于2h,A段:O段=1:3 ②污泥回流比:50~100% ③混合液回流比:300~400% ④反硝化段碳/氮比:BOD5/TN>4,理论BOD消耗量为1.72gBOD/gNOx--N ⑤硝化段的TKN/MLSS负荷率(单位活性污泥浓度单位时间内所能硝化的凯氏氮):<0.05KgTKN/KgMLSS·d ⑥硝化段污泥负荷率:BOD/MLSS<0.18KgBOD5/KgMLSS·d ⑦混合液浓度x=3000~4000mg/L(MLSS) ⑧溶解氧:A段DO<0.2~0.5mg/L O段DO>2~4mg/L ⑨pH值:A段pH =6.5~7.5 O段pH =7.0~8.0 ⑩水温:硝化20~30℃ 反硝化20~30℃ ⑾碱度:硝化反应氧化1gNH4+-N需氧4.57g,消耗碱度7.1g(以CaCO3计)。 反硝化反应还原1gNO3--N将放出2.6g氧,生成3.75g碱度(以CaCO3计) ⑿需氧量Ro——单位时间内曝气池活性污泥微生物代谢所需的氧量称为需氧量(KgO2/h)。微生物分解有机物需消耗溶解氧,而微生物自身代谢也需消耗溶

垃圾焚烧发电工艺设计参数的计算方法

垃圾焚烧发电工艺设计参数的计算方法 浙江旺能环保股份有限公司作者:周玉彩 摘要:本文介绍了垃圾焚烧发电炉排炉、汽轮机组工艺设计的参数计算方法。 关键词:参数、垃圾、焚烧、炉排、汽轮机组。 前言: 生活垃圾焚烧发电应用于环境保护领域,实现城市生活垃圾的无害化、减量化、减容化和资源化、智能化处理,达到节能减排之目的。在生活垃圾焚烧发电工艺设计流程中首先进行垃圾焚烧发电炉排炉工艺设计参数的计算,为后续设计提供参数依据。 一、生活垃圾焚烧炉排炉工艺设计参数的计算 1、待处理生活垃圾的性质 1.1待处理生活垃圾主要组成成分 表1:待处理生活垃圾的性质 表2:待处理生活垃圾可燃物的元素分析(应用基)% 表3:要求设计主要参数 1.2 根据垃圾元素成分计算垃圾低位热值: LHV=81C+246H+26S-26O-6W (Kcal/Kg) =81*20.6+246*0.9+26*0.12-26*0.12-6*47.4=1388(Kcal/Kg)*4.18=5800(KJ/Kg)。 1.3根据垃圾元素成分计算垃圾高位热值: HHV={LHV+600*(W+9H)}*4.18={1388+600(0.474+9*0.009)}*4.18=7193.78(KJ/Kg)。 2、处理垃圾的规模及能力 焚烧炉3台: 每台炉日处理垃圾350t;

处理垃圾量: 1000t/24h=41.67(t/h); 炉系数:(8760-8000)/8000=0.095; 实际每小时处理生产能力:41.67*(1+0.095)=45.6(t/h); 全年处理量: 45.6*8000=36.5*104t; 故:每台炉每小时处理垃圾量:350/24*1.05=15.3(t/h)。 3、设计参数计算: 3.1垃圾仓的设计和布置 已知设计中焚烧炉长度L=75.5米,宽D=18.5米,取垃圾仓内壁与炉长度对齐,T=5d,垃圾的堆积密度取0.35t/m3 求:垃圾的容积工程公式:V=a*T 式中: V----垃圾仓容积m3; a--- 容量系数,一般为 1.2~1.5,考虑到由于垃圾仓存在孔角,吊车性能和翻 仓程度以及有效量的缺陷,导致垃圾仓可利用的有效容积小于几何容积; T--- 存放时间,d;根据经验得出适合燃烧存放天数,它随地区及季节稍有变化; V=a*T=1.2*5*1000/0.35=17142.86(m3 )。 故:垃圾仓的容积设计取18000(m3)。 垃圾仓的深度为Hm Hm=L*D/V=18000/75.5*18.5=12.88(m)。 故:垃圾池全封闭结构,长75.5米,宽18.5米,总深度以6米卸料平台为基准负13米。 3.2焚烧炉的选择与计算 (1)焚烧炉的加料漏斗 焚烧炉的加料漏斗挂在加料漏斗层,通过垃圾吊车将间接垃圾供料变为均匀加料,漏斗的容积要能满足“1h”内最大焚烧量。 垃圾通过竖溜槽送到给料机,垃圾竖溜槽可通过液压传动闸板关闭,竖溜槽的尺寸选择要满足溜槽中火焰密封闭合,给料机根据要求向焚烧炉配送垃圾,每台炉安装配合给料机传动用液压汽缸,液压设备由每台炉生产线控制中心控制。 料斗的容积V D V D=G/24*Kx/ρL 式中: V D---料斗的容积(m3); G--- 每台炉日处理垃圾的量,(t/h);

风机性能参数公式

风机性能参数相关公式 A . 改变介质密度ρ,转速n 的换算式: 1、 1122q n q n = 2、 2111()222p n p n ρ=ρ 3、31 1 1()22 P n P n ρ=ρ2 4、η1=η 2 B . 改变转速n ,大气压力p a , 气体温度t 时的换算式: 1、 1122q n q n = 2、 2122127311()()()22273a a p t p n p n p t +=+ 3、21 2212731 1 ()()()22273a a p t P n P n p t +=+ 4、η1=η 2 以上式中:1、q ―――流量(m 3/h ); p ―――全压(Pa ); P ―――轴功率(KW );η―――全压效率;ρ―――密度(Kg/m 3); n ―――转速(r/min ); t ―――温度(℃);p a ―――大气压(Pa )。 2、注脚符号“2”表示已知的性能及其关系参数,注脚符号 “1”表示所求的性能及关系参数。

C . 风机性能一般均指在标准状态下的风机性能,技术文件或订货要 求的性能除特殊定货外,均按标准状态为准。 标准状态系指大气压力p a =101325Pa 、大气温度t=20℃、相对湿度 ?=50%时的空气状态,标准状态下的空气密度ρ=1.2kg/m 3. D. 风机所需功率按下式求出: P = 1000m q p K ??η?η 式中:q ―――流量(m 3/s ); p ―――风机全压(Pa ); η―――全压效率; ηm ―――机械效率; K ―――电动机容量安全系数(一般为1.05~1.25)。 E. 由无因次参数计算有因次参数的等式: 1、Q=900πD 22·υ2· ? (m 3/h) 2、 22 3.51212/[(1)1]101300354550P K ρυψρυψ=+- 3、 p=212ρυψ/P K 4、 P i = 23 2124000D πρυλ 5、P r =i m P K η

D机床主要部件设计

D2机床主要部件设计习题 1机床的主轴主件设计应满足的要求?为什么对机床主轴系统要提出旋转精度、刚度、抗振性、温升以及耐磨性要求? 2主轴组件的旋转精度? 3主轴的轴向定位有几种?各有什么特点?CA6140车床为什么采用后端定位?而数控机床为什么采用前端定位? 4选择主轴材料的依据? 5机床的支承部件包括哪些?为什么多数机床的支承部件采用铸铁制造?怎样补偿机床中不封闭支承件的刚度损失? 6在机床支承件的机构设计中,支承件截面形状的选用原则是什么? 7支承件的形状分为几大类?提高支承件结构性能的措施有哪些? 8横向、纵向、斜向隔板的作用? 9何谓爬行?产生于哪种类型的运动中?产生爬行的原因是什么?消除爬行的措施有哪些? 10在各种切削加工机床中,广泛采用的直线运动导轨的组合形式有哪些?说明主要性能及应用场合。 1 主轴zu件设计应满足的基本要求 旋转精度 刚度 抗振性 温升和热变性 精度保持性 2旋转精度 旋转精度是主轴组件装配后,静止或低速空载状态下,刀具或工件安装基面上的全跳动值。 3 主轴轴向定位 推力轴承在主轴上的配置形式,它影响主轴轴向精度和主轴热变性方向和大小。 a前端配置(前端定位)推力轴承布置在前支承处 这种方案的前支承处轴承较多,发热大,温升高;但主轴受热后向后伸长,不影响轴向精度,精度高。用于轴向精度和刚度要求较高的高精度机床或数控机床。 b后端配置(后端定位)推力轴承布置在后支承处。 这种方案前支承处轴承较少,发热少,温升低;但主轴受热后向前伸长,影响轴向精度。用于轴向精度要求不高的普通机床,如:立铣、多刀车床。 c两端配置(两端定位)推力轴承布置在前后两个支承处。当主轴受热伸长后,影响主轴轴承的轴向间隙。为避免松动,用弹簧消除间隙和补偿热变形。用于较短主轴或轴向间隙变化不影响正常工作的机床。如组合机床主轴 4主轴的选材依据:载荷类型、耐磨性、热处理方法。 5床身、立柱、横梁、摇臂、底座、刀架、工作台、箱体和升降台等尺寸及重量较大的零件——大件 支承件的基本要求 1).具有足够静刚度和较高固有频率,2)良好的动态特性 3)结构合理4)排屑畅通,工艺性

离心通风机设计

离心通风机选型及设计 1.引言?????????????????????.(1?) ???? 2.离心式通风机的结构及原理????????????...?..(?3)?离心式风机的基本组成??????????????????(3) 离心式风机的原理 ????????????????????(3) 离心式风机的主要结构参数 ????????????????(4) 3 离心风机的选型的一般步骤?????????????????(5) 4.离心式通风机的设计????????????????????(5) 通风机设计的要求????????????????????(5) 设计步骤 ????????????????????????(6) 4.2.1叶轮尺寸的决定????????????????????(6) 4.2.2离心通风机的进气装置?????????????????(13) 4.2.3蜗壳设计???????????????????????(14) 4.2.4参数计算???????????????????????(20) 离心风机设计时几个重要方案的选择?????????(24) 5.结论???????????????????????????(25) 附录????????????????????????????(25)

引言 通风机是依靠输入的机械能,提高气体压力并排送气体的机械,它是一种从动的流体机械。通风机广泛用于工厂、矿井、隧道、冷却塔、车辆、船舶和建筑物的通风、排尘和冷却;锅炉和工业炉窑的通风和引风;空气调节设备和家用电器设备中的冷却和通风;谷物的烘干和选送;风洞风源和气垫船的充气和推进等。 通风机的工作原理与透平压缩机基本相同,只是由于气体流速较低,压力变化不大,一般不需要考虑气体比容的变化,即把气体作为不可压缩流体处理。 能有很大影响。叶轮经静平衡或动平衡校正才能保证通风机平稳地转动。按叶片出口方 向的不同,叶轮分为前向、径向和后向三种型式。前向叶轮的叶片顶部向叶轮旋转方向倾斜;径向叶轮的叶片顶部是向径向的,又分直叶片式和曲线型叶片;后向叶轮的叶片顶部向叶轮旋转的反向倾斜。 前向叶轮产生的压力最大,在流量和转数一定时,所需叶轮直径最小,但效率一般较低;后向叶轮相反,所产生的压力最小,所需叶轮直径最大,而效率一般较高;径向叶轮介于两者之间。叶片的型线以直叶片最简单,机翼型叶片最复杂。 为了使叶片表面有合适的速度分布,一般采用曲线型叶片,如等厚度圆弧叶片。叶轮通常都有盖盘,以增加叶轮的强度和减少叶片与机壳间的气体泄漏。叶片与盖盘的联接采用焊接或铆接。焊接叶轮的重量较轻,流道光滑。低、中压小型离心通风机的叶轮也有采用铝合金铸造的。 轴流式通风机工作时,动力机驱动叶轮在圆筒形机壳内旋转,气体从集流器进入,通过叶轮获得能量,提高压力和速度,然后沿轴向排出。轴流通风机的布置形式有立式、卧式和倾斜式三种,小型的叶轮直径只有100 毫米左右,大型的可达20 米以上。 小型低压轴流通风机由叶轮、机壳和集流器等部件组成,通常安装在建筑物的墙壁 或天花板上;大型高压轴流通风机由集流器、叶轮、流线体、机壳、扩散筒和传动部件组成。叶片均匀布置在轮毂上,数目一般为2~24。叶片越多,风压越高;叶片安装角一般为10°~45°,安装角越大,风量和风压越大。轴流式通风机的主要零件大都用钢板焊接或铆接而成。 斜流通风机又称混流通风机,在这类通风机中,气体以与轴线成某一角度的方向进 入叶轮,在叶道中获得能量,并沿倾斜方向流出。通风机的叶轮和机壳的形状为圆锥形。这种通风机兼有离心式和轴流式的特点,流量范围和效率均介于两者之间。 横流通风机是具有前向多翼叶轮的小型高压离心通风机。气体从转子外缘的一侧进入叶轮,然后穿过叶轮内部从另一侧排出,气体在叶轮内两次受到叶片的力的作用。在相同性能的条件下,它的尺寸小、转速低。 与其他类型低速通风机相比,横流通风机具有较高的效率。它的轴向宽度可任意选择,而不影响气体的流动状态,气体在整个转子宽度上仍保持流动均匀。它的出口截面窄而长,适宜于安装在各种扁平形的设备中用来冷却或通风。 通风机的性能参数主要有流量、压力、功率,效率和转速。另外,噪声和振动的大小也是通风机的主要技术指标。流量也称风量,以单位时间内流经通风机的气体体积表示;压力也称风压,是指气体在通风机内压力升高值,有静压、动压和全压之分;功率是指通风机的输入功率,即轴功率。通风机有效功率与轴功率之比称为效率。通风机全压效率可达90%。 通风机未来的发展将进一步提高通风机的气动效率、装置效率和使用效率,以降低 电能消耗;用动叶可调的轴流通风机代替大型离心通风机;降低通风机噪声;提高排烟、排

风机特性曲线

用以表示通风机的主要性能参数(如风量L、风压H、功率N及效率η)之间关系的曲线称为风机特性曲线或风机性能曲线。为了使用方便,将H—L曲线、N—L曲线、η—L曲线画在同一图上。下图为4—72 No5离心式通风机在转速2 900r/min时的特性曲线。 4—72No5离心式通风机特性曲线 在通风除尘系统工作的风机,即使在转速相同时,在不同阻力的系统中它所输送的风量也可能不相同。系统的阻力小时,要求风机的风压低,输送的风量就大;反之,系统阻力大,要求的风压高,输送的风量就小。因此,用一种工况下的风量和风压,来评定风机的性能是不够的。例如,风压为1 000Pa时,4—7 2No5风机可输送风量18 000m3/h;但当风压增到3000Pa时,输送的风量就只有1 000m3/h。为了全面评定风机的性能,就必须了解在各种工况下风机的风压和风量,以及功率、效率与风量的关系。这就是为什么要通过风机性能试验做出风机特性曲线的原因所在。 通风机制造工厂对生产的风机,根据实验预先做出其特性曲线,以供用户选择风机时参考。有些风机产品样本,不但列出特性曲线图,而是还提供性能表格。下表列出了4—72离心式通风机的部分性能数据。 从特性曲线图可以看出,在一定转速下,风机的效率随着风量的改变而变化,但其中必有一个最高效率点刁一。相应于最高效率下的风量、风压和轴功率称为 。此范围风机的最佳工况,在选择风机时,应使其实际运转效率不低于0.9η max

称为风机的经济使用范围。下表中列出的8个性能点(工况点),均在风机的经济使用范围内。 4—72 型离心式通风机性能表(摘录)

正确选择风机,是保证通风系统正常、经济运行的一个重要条件。所谓正确选择风机,主要是指根据被输送气体的性质和用途选择不同用途的风机;选择的风机要满足系统所需要的风量,同时风机的风压要能克服系统的阻力,而且在效率最高或经济使用范围内工作。具体选择方法和步骤如下: 1.根据被输送气体的性质,选用不同用途的风机。例如,输送清洁空气,或含尘气体流经风机时已经过净化,含尘浓度不超过150mg/m3时,可选择一般通风换气用的风机;输送腐蚀性气体,要选用防腐风机;输送易燃、易爆气体或含尘气体时,要选用防爆风机或排尘风机。但在选择具体的风机型号和规格时,还必须根据某种类型风机产品样本上的性能表或特性曲线图才能确定。 2.考虑到管道系统可能漏风,有些阻力计算不大准确,为了使风机运行可靠,选用风机的风量和风压应大于通风除尘系统的计算风量和风压,即 风量:L′=K L L (1) 风压:H′=K H H (2) 式中 L′、H′——选择风机用的风量、风压; L、H——通风除尘系统的计算风量、风压; K L ——风量附加系数,除尘系统KL=1.1~1.15; K H ——风压附加系数,除尘系统KH=1.15~1.2。 3.根据选用风机的风量L′风压H′,在风机产品样本上选定风机的类型,确定风机的机号、转速和电动机功率。为了便于接管和安装,还要选择合适的风机出口位置和传动方式。所选择风机的工作点应在经济范围内,最好处于最高效率点的右侧。 4.风机样本上给出的是风机在标准状态(大气压力为1.013×105 Pa、温度为20℃、相对湿度为50%)下的性能参数,如实际运行状态不是标准状态,风机实际的性能就会变化(风量除外)。因此,选择风机时应把实际运行状态下的参数换算为标准状态下的参数,换算的关系如下: Pa (3) kW (4) 式中 H b 、N b 、ρ b 、p b 、t b ——风机在标准状态(或规定状态)下的风压、功率、 空气密度、气体压力和温度,即风机样本上所列的数据;

污水处理中AO工艺的设计参数

工艺设计参数 ①水力停留时间:硝化不小于5~6h;反硝化不大于2h,A段段=1:3 ②污泥回流比:50~100% ③混合液回流比:300~400% ④反硝化段碳/氮比:5>4,理论消耗量为1.72 ⑤硝化段的负荷率(单位活性污泥浓度单位时间内所能硝化的凯氏氮): <0.05·d ⑥硝化段污泥负荷率:<0.185·d ⑦混合液浓度3000~4000() ⑧溶解氧:A段<0.2~0.5 O段>2~4 ⑨值:A段=6.5~7.5 O段=7.0~8.0 ⑩水温:硝化20~30℃ 反硝化20~30℃ ⑾碱度:硝化反应氧化14需氧4.57g,消耗碱度7.1g(以3计)。 反硝化反应还原13将放出2.6g氧,生成3.75g碱度(以3计) ⑿需氧量——单位时间内曝气池活性污泥微生物代谢所需的氧量称为需氧量(2)。微生物分解有机物需消耗溶解氧,而微生物自身代谢也需消耗溶解氧,所以应包括这三部分。 ’’4.6 a’─平均转化1的的需氧量2 b’─微生物(以计)自身氧化(代谢)所需氧量2·d。 上式也可变换为: ’·’或’’·

─所去除的量() ─氧的比耗速度,即每公斤活性污泥()平均每天的耗氧量2·d ─比需氧量,即去除1的需氧量2 由此可用以上两方程运用图解法求得a’ b’ —被硝化的氨量 4.6—13-N转化成3-所需的氧量(2) 几种类型污水的a’ b’值 ⒀供氧量─单位时间内供给曝气池的氧量,因为充氧与水温、气压、水深等因素有关,所以氧转移系数应作修正。 ⅰ.理论供氧量 1.温度的影响 (θ)(20)×1.02420 θ─实际温度 2.分压力对的影响(ρ压力修正系数) ρ=所在地区实际压力()/101325()=实际值/标准大气压下值 3.水深对的影响 2·(0.101321) ─曝气池中氧的平均饱和浓度() ─曝气设备装设深度()处绝对气压() 9.81×10-3H ─当地大气压力() 21·(1)/[79+21·(1)]?? ─扩散器的转移效率 ─空气离开池子时含氧百分浓度 综上所述,污水中氧的转移速率方程总修正为: α(20)(βρθ×1.024θ-20 {理论推出氧的转移速率α(β)} 在需氧确定之后,取一定安全系数得到实际需氧量

相关文档
最新文档