第二课合式公式真值表等价置换定理

离散数学自学笔记命题公式及其真值表

离散数学自学笔记命题公式及其真值表 我们把表示具体命题及表示常命题的p,q,r,s等与f,t统称为命题常元(proposition constant)。深入的讨论还需要引入命题变元(proposition variable)的概念,它们是以“真、假”或“1,0”为取值范围的变元,为简单计,命题变元仍用p,q,r,s等表示。相同符号的不同意义,容易从上下文来区别,在未指出符号所表示的具体命题时,它们常被看作变元。 命题常元、变元及联结词是形式描述命题及其推理的基本语言成分,用它们可以形式地描述更为复杂的命题。下面我们引入高一级的语言成分——命题公式。 定义1.1 以下三条款规定了命题公式(proposition formula)的意义: (1)命题常元和命题变元是命题公式,也称为原子公式或原子。 (2)如果A,B是命题公式,那么(┐A),(A∧B),(A∨B),(A→B),(A?B)也是命题公式。 (3)只有有限步引用条款(1),(2)所组成的符号串是命题公式。 命题公式简称公式,常用大写拉丁字母A,B,C等表示。公式的上述定义方式称为归纳定义,第四章将对此定义方式进行讨论。 例1.8 (┐(p→(q∧r)))是命题公式,但(qp),p→r,p1∨p2∨…均非公式。 为使公式的表示更为简练,我们作如下约定: (1)公式最外层括号一律可省略。 (2)联结词的结合能力强弱依次为┐,(∧,∨),→,?,(∧,∨)表示∧与∨平等。 (3)结合能力平等的联结词在没有括号表示其结合状况时,采用左结合约定。湖南省自考网:https://www.360docs.net/doc/1312128532.html,/整理 例如,┐p→q∨(r∧q∨s)所表示的公式是((┐p)→(q∨((r∧q)∨s))) 设A是命题公式,A1是A 的一部分,且A1也是公式,则A1称为公式A的子公式。

二项式定理(通项公式)

六、二项式定理 一、指数函数运算 知识点:1.整数指数幂的概念 *)(N n a a a a a a n n ∈??= 个 )0(10≠=a a ,0(1 N n a a a n n ∈≠=- 2.运算性质: ),(Z n m a a a n m n m ∈=?+ ,),()(Z n m a a mn n m ∈=,)()(Z n b a ab n n n ∈?= 3.注意 ① n m a a ÷可看作n m a a -? ∴n m a a ÷=n m a a -?=m a -② n b a )(可看作n n b a -? ∴n b a )(=n n b a -?n n b 4、n m n m a a = (a >0,m ,n ∈N *,且n >1) 例题: 例1求值:43 32 13 2)81 16(,)41(,100,8---. 例2用分数指数幂的形式表示下列各式: 1) a a a a a a ,,32 32?? (式中a >0) 2)43a a ? 3)a a a 例3计算下列各式(式中字母都是正数));3()6)(2)(1(656131212132b a b a b a -÷- .))(2(88 341n m 例4计算下列各式: );0() 1(3 2 2>a a a a 435)12525)(2(÷- 例5化简:)()(4 14 12 12 1y x y x -÷- 例6 已知x+x -1 =3,求下列各式的值:.)2(,)1(2 32 32 12 1- - ++x x x x 二、二项式知识回顾 1. 二项式定理 0111()n n n k n k k n n n n n n a b C a C a b C a b C b --+=+++++ , 以上展开式共n+1项,其中k n C 叫做二项式系数,1k n k k k n T C a b -+=叫做二项展开式的通项. (请同学完成下列二项展开式) 0111()(1)(1)n n n k k n k k n n n n n n n a b C a C a b C a b C b ---=-++-++- ,1(1)k k n k k k n T C a b -+=- 01(1)n k k n n n n n n x C C x C x C x +=+++++ ① 0111(21)(2)(2)(2)(2)1n n n k n k n n n n n x C x C x C x C x ---+=+++++ 1110n n n k n n n k a x a x a x a x a ----=+++++ ②

二项式定理(通项公式).

二项式定理 二项式知识回顾 1. 二项式定理 0111 ()n n n k n k k n n n n n n a b C a C a b C a b C b --+=++ ++ +, 以上展开式共n+1项,其中k n C 叫做二项式系数,1k n k k k n T C a b -+=叫做二项展开式的通项. (请同学完成下列二项展开式) 0111()(1)(1)n n n k k n k k n n n n n n n a b C a C a b C a b C b ---=-++-+ +-,1(1)k k n k k k n T C a b -+=- 01(1)n k k n n n n n n x C C x C x C x +=++ +++ ① 01 11 (21)(2)(2)(2)(2)1n n n k n k n n n n n x C x C x C x C x ---+=++ ++ + 1110n n n k n n n k a x a x a x a x a ----=++++ + ② ① 式中分别令x=1和x=-1,则可以得到 01 2n n n n n C C C ++ +=, 即二项式系数和等于2n ; 偶数项二项式系数和等于奇数项二项式系数和,即0213 12n n n n n C C C C -++=++ = ② 式中令x=1则可以得到二项展开式的各项系数和. 2. 二项式系数的性质 (1)对称性:与首末两端等距离的两个二项式系数相等,即m n m n n C C -=. (2)二项式系数k n C 增减性与最大值: 当12n k +< 时,二项式系数是递增的;当1 2 n k +≥时,二项式系数是递减的. 当n 是偶数时,中间一项2n n C 取得最大值.当n 是奇数时,中间两项12n n C -和12n n C +相等,且同 时取得最大值. 3.二项展开式的系数a 0,a 1,a 2,a 3,…,a n 的性质:f(x )= a 0+a 1x +a 2x 2+a 3x 3……+a n x n ⑴ a 0+a 1+a 2+a 3……+a n =f(1) ⑵ a 0-a 1+a 2-a 3……+(-1)n a n =f(-1) ⑶ a 0+a 2+a 4+a 6 (2) 1()1(-+f f ⑷ a 1+a 3+a 5+a 7……= 2 ) 1()1(--f f

等价无穷小替换_极限的计算

无穷小 极限的简单计算 一、无穷小与无穷大 1.定义 前面我们研究了∞→n 数列n x 的极限、∞→x (+∞→x 、+∞→x )函数()x f 的极限、0x x →(+ →0x x 、- →0x x )函数()f x 的极限这七种趋近方式。下面我们用 →x *表示上述七种的某一种趋近方式,即 *{ } - + →→→-∞ →+∞→∞→∞ →∈00 0x x x x x x x x x n 定义:当在给定的→x *下,()f x 以零为极限,则称()f x 是→x *下的无穷小,即 ()0lim =→x f x * 。 例如, ,0sin lim 0 =→x x .0sin 时的无穷小是当函数→∴x x ,01lim =∞→x x .1 时的无穷小是当函数∞→∴x x ,0)1(lim =-∞→n n n .})1({ 时的无穷小是当数列∞→-∴n n n 【注意】不能把无穷小与很小的数混淆;零是可以作为无穷小的唯一的数,任何非零常量都 不是无穷小。 定义: 当在给定的→x *下,()x f 无限增大,则称()x f 是→x *下的无穷大,即 ()∞=→x f x * lim 。显然,∞→n 时, 、、、32n n n 都是无穷大量, 【注意】不能把无穷大与很大的数混淆;无穷大是极限不存在的情形之一。无穷小与无穷大是相对的,在不同的极限形式下,同一个函数可能是无穷小也可能是无穷大,如 0l i m =-∞ →x x e , +∞=+∞ →x x e lim , 所以x e 当-∞→x 时为无穷小,当+∞→x 时为无穷大。 2.无穷小与无穷大的关系:在自变量的同一变化过程中,如果()x f 为无穷大, 则 ()x f 1为无穷小;反之,如果()x f 为无穷小,且()0≠x f ,则() x f 1为无穷大。 小结:无穷大量、无穷小量的概念是反映变量的变化趋势,因此任何常量都不是无穷大量,任何非零常量都不是无穷小,谈及无穷大量、无穷小量之时,首先应给出自变量的变化趋势。 3.无穷小与函数极限的关系: 定理 1 0 lim ()()(),x x x f x A f x A x α? =? +其中)(x α是自变量在同一变化过程 0x x →(或∞→x )中的无穷小.

2 离散数学-命题公式,真值表

2 命题公式,真值表 (1) 数理逻辑是通过引入表意符号研究人类思维中的推理过程及推理正确与否的数学分支. 数学------??? 符号运算 推理---思维过程:前提 结论 命题逻辑---研究由命题为基本单位构成的前提和结论之间的可推导关系.(逻辑演算) 即将推理(不涉及内函)形式化. 例1 (a) 4是偶数. 张林学习优秀. 太阳系以外的星球上有生物. (b) 这朵花真美丽! 现在开会吗? (c) 3 5.x +> 我正在说慌. 特征分析(a) 陈述句,非真即假. (b) 感叹句,疑问句. (c) 悖论. 定义1 能辩真假的陈述句,称为命题,用,,,P Q Z 表示.其判断结果称为命题的真值. 成真的命题称为真命题,其真值为真,记为,T 或为1.成假的命题称假命题,其真值为假,记为,F 或为0. 例2 (1) 2008年奥运会在北京举行. (2) 22 5.?= (3) 计算机程序的发明者是诗人拜伦. 用符号表是上述命题,并求真值. 解 (1) :P 2008年奥运会在北京举行. .T (2) :Q 22 5.?= .F (3) :R 计算机程序的发明者是诗人拜伦. .F (2) 3, 35,+ 3(4 1).+- 例3 (1) 今天没有数学考试. (2) 下午,我写信或做练习. (3) 王芳不但用功,而且成绩优秀. (4) 如果太阳从西边出来了,那么地球停止转动.

(5) 2是素数,当且仅当三角形有三条边. 特征分析(a)存在自然语言中的虚词. (b)语句可以分解,细化. 定义2 称下列符号为逻辑联结词 否定 ? 非 P ? 析取 ∨ 或者 P Q ∨ 合取 ∧ 且 P Q ∧ 蕴涵 → 若----,则----- P Q → 等价 ? 当且仅当 P Q ? 逻辑联结词真值的规定 例4 将下列命题符号化. (1) 小李聪明,但不用功. ()P Q ∧? (2) 单位派小王或小苏出差. P Q ∨ (3) 如果椅子是紫色的,且是园的,那么地是平的. ()P Q R ∧→ (4) n 是偶数当且仅当它能被2整除. P Q ? 注 1 逻辑联结词:运算符.顺序 ,,,,.?∧∨→? 2 自然语言中 虽然---,但是----; 不但---,而且----; ∧ 只有----,才----; 除非----,才-----; → 3 ∨ 可兼或(相容) ∨ 不可兼或(排斥) 小王是山东人或是河北人. ()()P Q P Q P Q ∨?∧?∨?∧ 4 ,P Q -----------------------简单命题

真值表化简法

在设计逻辑电路图时,由真值表直接得到的函数往往比较复杂。代数法和卡诺图法等方法对于变量数目较多的逻辑函数则效果不佳,本文介绍一种可以化简复杂逻辑函数的方法──表格法,该方法可以对变量数目较多的逻辑函数也可以进行化简。 2、原理 在介绍化减法之前,先说明三个概念: 蕴涵项──在函数的任何积之和式中,每个乘积项称为该函数的蕴涵项。对应于卡诺图中的任一标1单元(最小项)以及2m个相邻单元所形成的圈都是函数的蕴涵项。 素项──若函数的一个蕴涵项不是该函数中其它蕴涵项的一个子集,则此蕴涵项称为素蕴涵项,简称素项。 实质素项──若函数的一个素项所包含的某一最小项,不包括在该函数的其它任何素项中则此素项称为实质素蕴涵项,简称实质素项。 列表化简法的基本原理是利用逻辑函数的最小项,通过对相邻最小项的合并,消去多余变量因子,获得逻辑函数的最简式的。列表化简法的思路是先找出给定函数F的全部素项,然后找出其中的实质素项;若实质素项不能覆盖F的所有最小项,则进一步找出所需素项,以构成F的最简素项集。 下面用列表化简法将下列函数化简为最简与或表达式。 F(A,B,C,D)=Σ(0,3,4,5,6,7,8,10,11) 3、建立素项表 首先,找出给定函数的全部素项。 (1)先将每个最小项所对应的二进制数按其“1”的个数分组得表1; 表1 最小项

(2)将表1中的相邻两个组之间二进制数进行比较、合并得到一次化简结果,称为一次乘积项,其项号记为i(j-i),其中i为最小项中的小项号,j为最小项中的大项号,得表2; 表2 一次乘积项

(3)再将表2中的相邻两组内的二进制数进行比较、合并、便得到第二次化简结果,称为二次乘积项,其项号记为i(n,m),其中i为两个一次乘积项中的小项号,n为原最小项的项号差,m为一次乘积项的项号差,得表3; 表3 二次乘积项 不能与其它一次乘积项合并的一次乘积项是素项,分别以a,b,c,d,e,f记之,不能合并的二次乘积项也是素项,以g记之。

关于大学高等数学等价无穷小

这个问题很多人都搞不明白,很多自认为明白的人也不负责任地说一句“乘除可以,加减不行”,包括不少高校教师。其实这种讲法是不对的!关键是要知道其中的道理,而不是记住结论。 1.做乘除法的时候一定可以替换,这个大家都知道。 如果f(x)~u(x),g(x)~v(x),那么lim f(x)/g(x) = lim u(x)/v(x)。关键要记住道理 lim f(x)/g(x) = lim f(x)/u(x) * u(x)/v(x) * v(x)/g(x) 其中两项的极限是1,所以就顺利替换掉了。 2.加减法的时候也可以替换!但是注意保留余项。 f(x)~u(x)不能推出f(x)+g(x)~u(x)+g(x),这个是很多人说不能替换的原因,但是如果你这样看: f(x)~u(x)等价于f(x)=u(x)+o(f(x)),那么f(x)+g(x)=u(x)+g(x)+o(f(x)),注意这里是等号,所以一定是成立的! 问题就出在u(x)+g(x)可能因为相消变成高阶的无穷小量,此时余项o(f(x))成为主导,所以不能忽略掉。当u(x)+g(x)的阶没有提高时,o(f(x))仍然是可以忽略的。 比如你的例子,ln(1+x)+x是可以替换的,因为 ln(1+x)+x=[x+o(x)]+x=2x+o(x), 所以ln(1+x)+x和2x是等价无穷小量。 但是如果碰到ln(1+x)-x,那么 ln(1+x)+x=[x+o(x)]-x=o(x), 此时发生了相消,余项o(x)成为了主导项。此时这个式子仍然是成立的!只不过用它来作为分子或分母的极限问题可能得到不定型而无法直接求出来而已。

碰到这种情况也不是说就不能替换,如果你换一个高阶近似: ln(1+x)=x-x^2/2+o(x^2) 那么 ln(1+x)-x=-x^2/2+o(x^2) 这个和前面ln(1+x)-x=o(x)是相容的,但是是更有意义的结果,此时余项o(x^2)可以忽略。也就是说用x-x^2/2作为ln(1+x)的等价无穷小量得到的结果更好。 从上面的例子就可以看出来,余项很重要,不能直接扔掉,因为余项当中包含了一定的信息。而且只要保留余项,那么所做的就是恒等变换(注意上面我写的都是等式)而不是近似,这种方法永远是可行的,即使得到不定型也不可能得出错误的结论。等你学过带余项的Taylor公式之后对这一点就会有更好的认识。 高数教了一段时间了,对于等价无穷小量代换法求极限为什么只能在乘除中使用,而不能在加减的情况下使用的条件感到有些疑惑,于是找了一些资料,仔细的研究了这个问题,整理如下: 等价无穷小的定义及常用的等价无穷小 无穷小量是指某变化过程中极限为0的变量。而等价无穷小量是指在某变化过程中比值极限为1的两个无穷小量。 常用的等价无穷小有: sinx~tanx~arctanx~arcsinx~ln(1+x)~x(x→0) sin?x~tan?x~arctan?x~arcsin?x~ln?(1+x)~x(x→0) 1?cosx~x22,1+x?????√n?1~xn(x→0)1?cos?x~x22,1+xn?1~xn(x→0) 等价无穷小量在求极限问题中非常重要。恰当的使用等价无穷小量代换常常使极限问题大大简化。但是有时却不能使用等价无穷小量代换。

离散数学自学笔记命题公式及其真值表

我们把表示具体命题及表示常命题的p,q,r,s等与f,t统称为命题常元(proposition constant)。深入的讨论还需要引入命题变元(proposition variable)的概念,它们是以“真、假”或“1,0”为取值范围的变元,为简单计,命题变元仍用p,q,r,s等表示。相同符号的不同意义,容易从上下文来区别,在未指出符号所表示的具体命题时,它们常被看作变元。 命题常元、变元及联结词是形式描述命题及其推理的基本语言成分,用它们可以形式地描述更为复杂的命题。下面我们引入高一级的语言成分——命题公式。 定义1.1 以下三条款规定了命题公式(proposition formula)的意义: (1)命题常元和命题变元是命题公式,也称为原子公式或原子。 (2)如果A,B是命题公式,那么(┐A),(A∧B),(A∨B),(A→B),(A?B)也是命题公式。 (3)只有有限步引用条款(1),(2)所组成的符号串是命题公式。 命题公式简称公式,常用大写拉丁字母A,B,C等表示。公式的上述定义方式称为归纳定义,第四章将对此定义方式进行讨论。 例1.8 (┐(p→(q∧r)))是命题公式,但(qp),p→r,p1∨p2∨…均非公式。 为使公式的表示更为简练,我们作如下约定: (1)公式最外层括号一律可省略。 (2)联结词的结合能力强弱依次为┐,(∧,∨),→,?,(∧,∨)表示∧与∨平等。 (3)结合能力平等的联结词在没有括号表示其结合状况时,采用左结合约定。 例如,┐p→q∨(r∧q∨s)所表示的公式是((┐p)→(q∨((r∧q)∨s))) 设A是命题公式,A1是A 的一部分,且A1也是公式,则A1称为公式A的子公式。 如对公式A:┐p→q∨(r∧q∨s),则p,┐p ,q ,(r∧q∨s)及q∨(r∧q∨s)都是公式A的子公式,而┐q,┐p→q,虽然是公式,但确不是A的一部分,因此不是A 的子公式;q∨(r∧虽然是公式A的一部分,但不是公式,因而也不是A的子公式。 如果公式A含有命题变元p1,p2,…,pn,记为A(p1,…,pn),并把联结词看作真值运算符,那么公式A可以看作是p1,…,pn的真值函数。对任意给定的p1,…,pn 的一种取值状况,称为指派(assignments),用希腊字母a,b等表示,A均有一个确定的真值。当A对取值状况a 为真时,称指派a弄真A,或a是A的成真赋值,记为a (A)= 1;反之称指派a弄假A,或a是A的成假赋值,记为a (A)= 0.对一切可能的指派,

求给定命题公式真值表并根据真值表求公式主范式

“离散数学”实验报告(求给定命题公式地真值表并根据真值表求公式地主范式) 专业网络工程 班级 1202班 学号 12407442 姓名张敏慧 2013.12.14

目录 一.实验目地 3 二.实验内容 (3) 求任意一个命题公式地真值表 (3) 三.实验环境 3 四. 实验原理和实现过程(算法描述)3 1.实验原理 (3) 2.实验流程图 (5) 五.实验代码 6 六. 实验结果14 七. 实验总结19

一.实验目地 本实验课程是网络工程专业学生地一门专业基础课程,通过实验,帮助学生更好地掌握计算机科学技术常用地离散数学中地概念.性质和运算;通过实验提高学生编写实验报告.总结实验结果地能力;使学生具备程序设计地思想,能够独立完成简单地算法设计和分析. 熟悉掌握命题逻辑中地真值表.主范式等,进一步能用它们来解 决实际问题. 二.实验内容 求任意一个命题公式地真值表,并根据真值表求主范式 详细说明: 求任意一个命题公式地真值表 本实验要求大家利用C/C++语言,实现任意输入公式地真值表计算.一般我们将公式中地命题变元放在真值表地左边,将公式地结果放在真值表地右边.命题变元可用数值变量表示,合适公式地表示及求真值表转化为逻辑运算结果;可用一维数表示合式公式中所出现地n个命题变元,同时它也是一个二进制加法器地模拟器,每当在这个模拟器中产生一个二进制数时,就相当于给各个命题变元产生了一组真值指派.算法逻辑如下: (1)将二进制加法模拟器赋初值0 (2)计算模拟器中所对应地一组真值指派下合式公式地真值. (3)输出真值表中对应于模拟器所给出地一组真值指派及这组真值指派所对应地一行真值. (4)产生下一个二进制数值,若该数值等于2n-1,则结束,否则转(2). 三.实验环境;

二项式定理

二项式定理 性质:说课稿 一、教材分析 1.教材的地位和作用 二项式定理一节,分四个课时.这里讲的是第一课时,重点是公式的推导,其次是二项式定理及二项展开式通项公式的简单应用,至于二项式定理及二项展开式的通项公式的灵活运用和二项式系数的性质留在第二、三、四课时. 二项式定理是初中学习的多项式乘法的继续,它所研究的是一种特殊的多项式——二项式的乘法的展开式,这一小节与不少内容都有着密切联系,特别是它在本章学习中起着承上启下的作用.学习本小节的意义主要在于: (1)由于二项式定理与概率理论中的三大概率分布之一-----二项分布有内在联系,本小节是学习后面的概率知识以及进一步学习概率统计的准备知识. (2)由于二项式系数都是一些特殊的组合数,利用二项式定理可得到关于组合数的一些恒等式,从而深化对组合数以及计数原理的认识. (3)基于二项式展开式与多项式乘法的联系,本小节的学习可对初中学习的多项式的变形起到复习、深化的作用. (4)二项式定理是解决某些整除性、近似计算问题的一种方法. 2.教学的重点·难点 根据以上分析和新课标的教学要求确定了以下: 重点:二项定理的推导及运用 难点:二项式定理及通项公式的运用 二、三维教学目标分析 知识目标掌握二项式定理及二项展开式的通项公式,并能熟练地进行二项式的展开及求解某些指定的项. 能力目标通过探索二项式定理,培养学生观察问题发现问题,归纳推理问题的能力. 情感目标激发学生学习兴趣、培养学生不断发现,探索新知的精神,渗透事物相互转化和理论联系实际的辩证唯物主义观点,并通过数学的对称美,培养学生的审美意识.

三、教法分析: 新的数学课程标准提出:掌握数学知识只是结果,而掌握知识的活动过程才是途径,通过这个途径,来挖掘人的发展潜能才是目的,结果应让位于过程.因此,在教学中,必须贯彻好过程性原则.也就是说,在教学过程中,充分揭示每一个阶段的思维活动过程,通过思维活动过程的暴露和数学创新活动过程的演变,使教学活动成为思维活动的教学,由此来启发、引导学生直接或间接地感受和体验知识的产生、发展和演变过程. 变传统的“接受性、训练性学习”为新颖的“探究式、发现式的学习”,变教师是传授者为组织者、合作者、指导者,在学习过程中,教师想尽办法激发学生探究式、发现式学习的兴趣,并使其作为一种教学方式应用于概念、定理、公式和解题教学中,让学生在探究、发现中获取知识,发展能力.从而增强学生的主体意识,提高学生学习的效果. 四、教学过程: (一)创设情境,激发兴趣 提出问题:“今天是星期六,我能很快知道再过810天的那一天是星期几,你能想出来吗?” 设计意图:根据教学内容特点和学生的认识规律,给学生提出一些能引起思考和争论性的题目,即一些内容丰富、背景值得进一步探究的诙谐有趣的题目、给学生创造一个“愤”和“悱”的情境,利用问题设下认知障碍,激发学生的求知欲望. (二)问题初探 (1)、从具体问题入手,启发学生将这个问题转化成一个数学问题:“求810被7除的余数是多少?”因为8=7+1,82=(7+1)2=72+2﹡ 7+1,83=(7+1)3=73+3 72+3 ﹡7+1,那810=(7+1)10又如何展开呢?更一般的(a+b)10、(a+b)n 如何展开?从而产生研究问题从特殊到一般的转化. 1、先让学生自己动手运用多项式乘多项式的法则写出(a+b) 2、(a+b) 3、(a+b)4的展开式,然后提出用这种方法写出(a+b)10的展开式容易吗?(a+b)100、(a+b)n呢?对于这个问题,我们如何解决?

任意命题公式的真值表

实验报告 实验名称:任意命题公式的真值表 实验目的与要求:通过实验,帮助学生更好地掌握计算机科学技术常用的离散数学中的概念、性质和运算,包括联结词、真值表、运算的优先级等,提高学生编写实验报告、总结实验结果的能力,培养学生的逻辑思维能力和算法设计的思想,能够独立完成简单的算法设计和分析,进一步用它们来解决实际问题,帮助学生学习掌握C/C++语言程序设计的基本方法和各种调试手段,使学生具备程序设计的能力。 实验内容提要:求任意一个命题公式的真值表 实验步骤:(一)、关于命题公式的形式和运算符(即联结词)的运算 首先根据离散数学的相关知识,命题公式由命题变元和运算符(即联结词)组成,命题变元用大写字母英文表示(本次试验没有定义命题常元T和F,即T、F都表示命题变元),每个命题变元都有两种真值指派0和1,对应于一种真值指派,命题公式有一个真值,由所有可能的指派和命题公式相应的真值按照一定的规范构成的表格称为真值表。 目前离散数学里用到的包括扩充联结词总共有九种,即析取(或)、合取(与)、非、蕴含、等值、与非、或非、异或、蕴含否定,常用的为前五种,其中除了非运算为一元运算以外,其它四种为二元运算。所以本次实验设计时只定义了前五种运算符,同时用“/”表示非,用“*”表示合取,用“+”表示析取,用“>”表示蕴含,用“:”表示等值,且这五种运算符的优先级依次降低,如果需用括号改变运算优先级,则用小括号()改变。 以下为上述五种运算符运算时的一般真值表,用P和Q表示命题变元:1.非,用“/”表示 2.合取(与),用“*”表示

3.析取(或),用“+”表示 4.蕴含,用“>”表示 5.等值,用“:”表示 (二)、命题公式真值的计算 对于人来说,计算数学表达式时习惯于中缀表达式,例如a*b+c,a*(b+c)等等,而对于计算机来说,计算a*b+c还好,计算a*(b+c)则困难,因为括号的作用改变了运算的顺序,让计算机识别括号而改变计算顺序显得麻烦。经理论和实践研究,用一种称之为后缀表达式(逆波兰式)的公式形式能让计算机更容易计算表达式的真值。例如上面的a*(b+c),其后缀表达式为abc+*,计算时从左边开始寻找运算符,然后按照运算符的运算规则将与其相邻的前面的一个(非运算时为一个)或两个(其它四种运算为两个)操作数运算,运算结果取代原来的运算符和操作数的位置,然后重新从左边开始寻找运算符,开始下一次计算,比如上式,从左边开始寻找运算符,先找到+,则计算b+c,结果用d表示,这时后缀表达式变为ad*,又重新开始从左边开始寻找运算符,找到*,则计算a*d,

二项式定理中的特殊项问题

《二项式定理中的特殊项问题》导学案 学习目标: 1. 进一步熟悉二项式定理及二项展开式的通项公式; 2. 学会利用“赋值”的方法解决有关问题。 学习重点:二项式系数性质的应用; 学习难点:二项式系数性质的应用。 学习过程: 学习提纲: n n n r r n r n n n n n n b b a b a a b a C C C C )(110+++++=+--ΛΛ,是二项式展开式定理, 主要研究了以下几个方面的问题: (1)展开式;(2)通项公式;(3)二项式系数及其有关性质。 1.求5 2 3 )12()1(+-x x 的展开式中2 x 项的系数。 变式1:9()a x x -的展开式中3x 的系数是84-,求a 的值。 2. 求二项式3 5 2 1()x x - 的展开式中的常数项。 3. 求11 的展开式中的有理项。 4. 已知22)()n n N x ∈*的展开式中第五项的系数与第三项的系数的比是10:1。 (1) 求展开式中各项系数的和; (2) 求展开式中含32 x 的项; (3) 求展开式中系数最大的项和二项式系数最大的项。 5. 若82 80128()x a a a x a x a x -=++++g g g ,且556a =,求0128a a a a ++++g g g 的值。 当堂检测:

1.(2011 陕西高考)6 (42)()x x x R --∈的展开式中的常数项是( ) .20A - .15B - .15C .20D 2.若4234 01234(1)x a a x a x a x a x -=++++,则024a a a ++的值为 。 3.若(0)x ∈+∞,,则15 (12)x +的二项展开式中系数最大的项为 。 4.已知(1)n x -的展开式中所有项的系数的绝对值之和为32,则(1)n x -的展开式中系数最小的项是 。 5.若1(3)n x x +的展开式中各项系数和为1024,试确定展开式中含x 的整数次幂的项。 作业:课本 40P A 组1~9题;B 组1~5题 附加题:若4 1()2n x x +展开式中前三项系数成等差数,求展开式中系数最大项. 补充作业: 1.若016 6777a +x a +....+x a +x a =)1-x 3(,求 (1)1237a a a a ++++g g g ; (2)7531a +a +a +a ; (3)01237||||||||||a a a a a +++++L 2.在25(32)x x ++的展开式中x 的系数为( ) A .160 B .240 C .360 D .800 3.已知2()n i x x - 的展开式中第三项与第五项的系数之比为314-,其中21i =-,则展开式 中系数为实数且最大的项为( ) A .第3项 B .第4项 C .第5项 D .第5项或第6项 4.设()(1)(1)m n f x x x =+++(m 、n ∈N*),若其开展式中关于x 一次项的系数和为11,问m 、n 为何值时,含x 项的系数取最小值并求这个最小值.

逻辑命题公式计算

题号:第一题 题目:电梯模拟 1,需求分析: 计算命题演算公式的真值 所谓命题演算公式是指由逻辑变量(其值为TRUE或FALSE )和逻辑运算符人(AND )、 V( OR)和「( NOT )按一定规则所组成的公式(蕴含之类的运算可以用A、V和「来表示)。公式运算的先后顺序为「、人、V,而括号()可以改变优先次序。已知一个命题演算公式及各变量的值,要求设计一个程序来计算公式的真值。 要求: ( 1)利用二叉树来计算公式的真值。首先利用堆栈将中缀形式的公式变为后缀形式;然后根据后缀形式, 从 叶结点开始构造相应的二叉树;最后按后序遍历该树, 求各子树之值, 即每到达一个结点, 其子树之值已经计算出来, 当到达根结点时, 求得的值就是公式之真值。 ( 2)逻辑变元的标识符不限于单字母,而可以是任意长的字母数字串。 ( 3)根据用户的要求显示表达式的真值表。 2,设计: 2.1 设计思想: <1> ,数据结构设计: (1) 线性堆栈1 的数据结构定义 typedef struct { DataType stack [MaxStackSize]; int top; /* 当前栈的表长*/ } SeqStack; 用线性堆栈主要是用来存储输入的字符, 它的作用就是将中缀表达式变成后缀表达式。 (2) 线性堆栈2 的数据结构定义 typedef struct { BiTreeNode *stack [MaxStackSize]; int top; /* 当前栈的表长*/ } TreeStack; 这个堆栈和上面的堆栈的唯一不同就是它们存储的数据的类型不同, 此堆栈存储的是树节点,它的作用是将后缀表达式构成一棵二叉树。 (3)树节点数据结构定义typedef struct Node { DataType data; struct Node *leftChild; struct Node *rightChild; }BiTreeNode; <2>算法设计详细思路如下:首先实现将中缀表达式变成后缀表达式:在将中缀表达式变成后缀表达式的

(完整版)二项式定理典型例题

1. 在二项式n x x ??? ? ? +4 21的展开式中,前三项的系数成等差数列,求展开式中所有有理项. 分析:本题是典型的特定项问题,涉及到前三项的系数及有理项,可以通过抓通项公 式解决. 解:二项式的展开式的通项公式为: 4324121C 21)(C r n r r n r r n r n r x x x T --+=?? ? ??= 前三项的.2,1,0=r 得系数为:)1(8 141C ,2121C ,123121-=====n n t n t t n n , 由已知:)1(8 1 12312-+=+=n n n t t t , ∴8=n 通项公式为 14 3168 1,82,1,02 1C +- +==r r r r r T r x T Λ为有理项,故r 316-是4的倍数, ∴.8,4,0=r 依次得到有理项为22 888944 8 541256 121C ,83521C ,x x T x x T x T =====-. 说明:本题通过抓特定项满足的条件,利用通项公式求出了r 的取值,得到了有理项.类 似地,100 3)32(+的展开式中有多少项是有理项?可以通过抓通项中r 的取值,得到共有 系数和为n 3. 2.(1)求10 3 )1()1(x x +-展开式中5x 的系数;(2)求6)21 (++ x x 展开式中的常数项. 分析:本题的两小题都不是二项式展开,但可以转化为二项式展开的问题,(1)可以视为两个二项展开式相乘;(2)可以经过代数式变形转化为二项式. 解:(1)10 3)1()1(x x +-展开式中的5x 可以看成下列几种方式得到,然后合并同类项: 用3)1(x -展开式中的常数项乘以10)1(x +展开式中的5x 项,可以得到5 510C x ;用 3)1(x -展开式中的一次项乘以10)1(x +展开式中的4x 项可得到54104410C 3)C )(3(x x x -=-;

离散数学命题公式真值表C++或C语言实验报告

离散数学实验报告 专业班级:12级计算机本部一班姓名:鲍佳珍 学号:201212201401016 实验成绩: 1.【实验题目】 命题逻辑实验二 2.【实验目的】 熟悉掌握命题逻辑中真值表,进一步能用它们来解决实际问题。 3.【实验内容】 求任意一个命题公式的真值表 4、【实验要求】 C或C++语言编程实现 5. 【算法描述】 1.实验原理 真值表:表征逻辑事件输入和输出之间全部可能状态的表格。列出命题公式真假值的表。通常以1表示真,0 表示假。命题公式的取值由组成命题公式的命题变元的取值和命题联结词决定,命题联结词的真值表给出了真假值的算法。真值表是在逻辑中使用的一类数学表,用来确定一个表达式是否为真或有效。 2.实验过程 首先是输入一个合理的式子,生成相应真值表,然后用函数运算,输出结果:要求可生成逻辑非、合取、析取、蕴含、双条件表达式的真值表,例如:输入 !a 输出真值表如下: a !a 0 1 10 输入a&&b 输出真值表如下: a b a&&b 0 0 0 0 1 0 1 0 0 1 1 1 输入a||b 输出真值表如下:

a b a||b 0 0 0 0 1 1 1 0 1 1 1 1 输入a->b 输出真值表如下: a b a->b 0 0 1 0 1 1 1 0 0 1 1 1 输入a<>b (其中<>表示双条件) 输出真值表如下: a b a<>b 0 0 1 0 1 0 1 0 0 1 1 1 6.【源程序(带注释)】 #include #include void hequ(); void yunhan(); void xiqu(); void shuang(); void fei();//声明五个函数 int main() { int ch; char s[10];

离散数学之逻辑运算和命题公式真值表

1、逻辑联接词的运算 从键盘输入两个命题变元P和Q的真值,输出它们的合取、析取、条件、双条件和P的否定的真值。 #include int main() { int a,b; int hequ(int P,int Q); int xiqu(int P,int Q); int tiaojian(int P,int Q); int shuangtiaojian(int P,int Q); int Pfaoding(int P); int show(int a,int b); cout<<"请输入P和Q的真值:\n"; cin>>a>>b; show(a,b); return 0; } int hequ(int P,int Q) { if(P==0) P=P; else P=1; if(Q==0) Q=Q; else Q=1; return(P&Q); } int xiqu(int P,int Q) { if(P==0) P=P; else P=1; if(Q==0) Q=Q; else Q=1; return(P|Q); } int tiaojian(int P,int Q)

{ if(P==0) P=P; else P=1; if(Q==0) Q=Q; else Q=1; if(P==1&&Q==0) return(0); else return(1); } int shuangtiaojian(int P,int Q) { if(P==0) P=P; else P=1; if(Q==0) Q=Q; else Q=1; return(!P^Q); } int Pfaoding(int P) { if(P==0) P=P; else P=1; return(!P); } int show(int a,int b) { cout<<"P Q P∧Q P∨Q P→Q P←→Q ┐P"<

二项式定理(通项公式)

1 1 1 1 例 5 化简:(x" y 2) (x 4 yj 二、二项式知识回顾 1. 二项式定理 (a b )n C 0a n C :a n B L C :a n k b k L C ;b n , k 以上展开式共n+1项,其中C n 叫做二项式系数, (请同学完成下列二项展开式) (a b)n C 0a n C :a n 1b 1 L ( 1)k C :a n k b k L (1)n C :b n , T k 1 k k n k k (1) C n a b (1 x)n C 0 C :x L C'x k L C ;x n ① (2x 1)n C 0 (2x)n C n (2x)n1 L k n k C n (2x) L C ; 1(2x) 1 n n 1 i a n x a n 1x L a n n k k x L a 1x a 。 ② 一、指数函数运算 知识点:1整数指数幕的概念. a n a a a a(n N*) 六、二项式定理 a 0 1(a 0) 1 a n -(a 0,n N*) * a n 2 ?运算性质: a m a n a m n (m,n Z) , (a m )n a mn (m,n Z) , (ab) 3.注意 ① m a a n 可看作a m a n m ??? a n m a =a a n m n =a + ② (a )n 可看作a n b n .,a 、n J …(_) =a n n a b = n ? b b b m 4、a 下 Va m ( a >0, m n € N,且 n > 1) * n 个a n a n b n (n Z) 例题: 例1求值: 2 1 3 SoQ 3 碍八 例2用分数指数幕的形式表示下列各式: 1) a 2

求给定命题公式的真值表并根据真值表求公式的主范式

求给定命题公式的真值表并根据真值表求公式的主范式(求给定命题公式的真值表并根据真值表求公式的主范式) 专业网络工程 班级 1202班 学号 12407442 姓名张敏慧 2013.12.14 目录 一.实验目的 ....................................................... 3 二.实验内容 (3) 求任意一个命题公式的真值 表 ..................................................................... ..... 3 三.实验环 境 (3) 四. 实验原理和实现过程(算法描述) (3) 1.实验原 理 ..................................................................... ...................................... 3 2.实验流程 图 ..................................................................... .................................. 5 五.实验代 码 (6) 六. 实验结果 (14)

七. 实验总结 (19) - 1 - 一.实验目的 本实验课程是网络工程专业学生的一门专业基础课程,通过实验,帮助学生更好地掌握计算机科学技术常用的离散数学中的概念、性质和运算;通过实验提高学生编写实验报告、总结实验结果的能力;使学生具备程序设计的思想,能够独立完成简单的算法设计和分析。 熟悉掌握命题逻辑中的真值表、主范式等,进一步能用它们来解决实际问题。 二.实验内容 求任意一个命题公式的真值表,并根据真值表求主范式 详细说明: 求任意一个命题公式的真值表 本实验要求大家利用C/C,,语言,实现任意输入公式的真值表计算。一般我 们将公式中的命题变元放在真值表的左边,将公式的结果放在真值表的右边。命题变元可用数值变量表示,合适公式的表示及求真值表转化为逻辑运算结果;可用一维数表示合式公式中所出现的n个命题变元,同时它也是一个二进制加法器的模拟器,每当在这个模拟器中产生一个二进制数时,就相当于给各个命题变元产生了一组真值指派。算法逻辑如下: (1)将二进制加法模拟器赋初值0 (2)计算模拟器中所对应的一组真值指派下合式公式的真值。 (3)输出真值表 中对应于模拟器所给出的一组真值指派及这组真值指派所对应的一行真值。 n(4)产生下一个二进制数值,若该数值等于2-1,则结束,否则转(2)。 三.实验环境; 使用visual C++6.0为编程软件,采用C语言为编程语言实现。

相关文档
最新文档