污泥处理方法

污泥处理方法
污泥处理方法

1前言

厌氧消化是污泥处理常用的减容稳定工艺,具有能耗低、污泥稳定性好、产生沼气等优点,但由于污泥固体的生物可降解性低,完全的厌氧消化需相当长的时间,即使20~30d的停留时间仅能去除30%~50%的挥发性固体(VSS),污泥固体细胞分解和胞内生物大分子水解为小分子,是厌氧消化的限速步骤,因此提高厌氧消化效率的一个主要途径是促进污泥细胞的分解,增强其生物可降解性

〔1、2〕目前有几种促进污泥分解的方法

〔3、4〕(1)热解法;(2)化学法:酸或碱处理。(3)机械法:超声波、球磨、高压均质和剪切均质等;(4)氧化法:过氧化氢和臭氧氧化;(5)生物法:酶处理。在污泥厌氧消化前采用这些技术进行强化处理,可增强生物降解效率,并减少污泥处理量。

2污泥厌氧消化的强化技术

2.1热解

污泥中的碳水化合物和脂类相对易下降解,而蛋白质却难以被水解酶水解,采用热解预处理可以破坏细胞壁促使蛋白质释放而得以降解。热解处理可应用于不同类型的污泥。对于初沉污泥,热处理并不能提高其降解性,但能增强其脱水性能Li等

〔5〕发现活性污泥的最佳热处理条件是170℃加热60min,小试实验结果表明在随后的厌氧消化中,经热解的污泥只需5d停留时间COD去除率即可达到60%。造纸工业污泥最佳的热解温度为150℃~160℃,这是由于造纸污泥含有较多的纯生物体。研究表明,在135℃热解处理后的污泥消化VSS破坏率比对照污泥在15d、12d的停留时间下,分别增加了135%、235%。热解强化处理的效果并不与温度成正比,温度过高会对厌氧消化产生负面影响。

〔6〕发现活性污泥的最佳热解温度在175℃左右,温度再高效果会出现下降。另有研究者发现,温度超过200℃热解处理会导致厌氧消化产气量的下降,这可通过一种分子内反应—Maillard反应解释。在此反应中,减少的糖类与氨基酸反应生成一种褐色的多聚氮,其溶解性和组成与腐殖酸相似,这种物质很难降解甚至起抑制作用。虽然在100℃以下的低温就开始产生这种反应,但其产生量随着温度升高以及停留时间增加而增多,并可能形成二恶英。

〔7〕报道,挪威的Hias污水处理厂运用热解对污泥进行厌氧消化的强化处理,生产

规模运行3年,效果良好。该厂采用相应的蒸气压将污泥在130℃~180℃加热30min,生物细胞破裂分解,细胞内水释放出来而改变了污泥的粘滞度,使污泥中含有更高的溶解性固体,因此热解可提高消化池污泥浓度。与无强化处理的技术相比,热解处理可使消化池体积减半,而且大幅度增强污泥脱水性能,污泥脱水率可提高60%~80%,消化污泥的缓冲能力加强,污泥更为稳定,臭味大大减少且易了堆放。此外,还可以起到消毒灭菌的作用,并提高产气量。

2.2碱处理

碱处理可在常温下以较低用量达到促进细胞分解的目的,Woodard等

〔8〕研究表明碱处理可以有效地溶解50%~60%的制药污水污泥。研究者采用NaOH 预处理污泥,探讨了在单级高速厌氧消化池中的消化情况

〔2〕未经NaOH处理的污泥浓度(TS)为1%,NaOH处理方式分别为20meq/L(1%TS)、40 meq/L(1%TS)、20meq/L(2%TS)。碱处理的污泥消化后可溶部分降低,未经碱处理的污泥可溶部分略有升高,这是由于酶的缓慢水解作用,但是水解产物中可降解的有机物很快被利用,难降解物质逐渐积累。污泥经碱处理后进行厌氧消化,底物去除速率明显增加。若消化的HRT较短,则碱处理有助于提高污泥稳定性。厌氧消化HRT为7.5d,碱处理使有机物稳定效率提高两倍,处理后污泥比对照污泥的VSS去除率提高72%,COD去除率提高76%,有机物去除率随着NaOH浓度和污泥固体浓度的增大而增大。碱处理的污泥进行厌氧消化产气量增加,甲烷产量随着NaOH浓度的提高而增大,原因主要是碱处理污泥含有更多的溶解性有机物,消化过程中可被厌氧微生物迅速利用减处理污泥的小颗粒污泥大大增多,这些小颗粒污泥在厌氧消化中会优先被去除,污泥总比表面积下降而增大了脱水率。

研究者也提出了用BMP(biochemcal methane potential,生化甲烷电势),测试碱处理对厌氧消化动力学和消化效率的影响,其动力学方程式为

〔9〕Y=L u(l-e -kt )Y—t时刻有机物的去除(mg/LCOD);L u—最后可降解的有机物(mg/LCOD); k—反应速率常数(d -1 )。

碱处理对生物降解性有一定抑制作用,其原因有三种解释:

(1)碱处理过程中会释放出一些抑制性分子;

(2)分子内反应(如Maillard反应)导致难降解化合物的形成;

(3)Na +等其它离于影响了生物可降解性。研究者探讨了Na +和OH -的影响以分析限制生物可降解性的根本因素。当NaOH浓度超过5g/L时,污泥生物可降解性降低,这并不是Na +的影响,而与OH -有关,OH -的投加提高了pH值,利于COD的降解,

但同时也导致难降解化合物的形成。过高pH值条件不利于厌氧生物处理,同时Na +是产甲烷菌群的抑制剂 〔10~12〕

2.3臭氧氧化

臭氧与污泥同时通过直接和间接两条途径发生反应。直接反应速率较低,与反应物的结构相关,而间接反应主要通过没有特异反应的自由基进行。为了弄清臭氧与污泥之间的反应机理,Scheminski等

〔13〕研究了臭氧氧化处理过程中污泥的蛋白质、多聚糖和脂类等主要组分的转化情况,臭氧耗量为0.5g/g干污泥进行氧化处理,60%的VSS转化为可溶性物质,臭氧氧化过程中,蛋白质量比初始值减少了90%。微生物的细胞壁与臭氧发生反应而破坏,因此细胞内物质释放出来,这在短时间内即可在污泥的液相中检测到。凝胶渗透层析测定表明,释放到液相的蛋白质连续被臭氧氧化掉。由于臭氧持续反应速率很快,因而污泥液相检测不到明显的蛋白质分子。臭氧处理后,约63%的胞内和胞外多聚糖溶解到液相中,多聚糖也被臭氧连续氧化,但比蛋白质的反应速率低,因此污泥液相中多聚糖的浓度逐渐增加,污泥中总的多聚糖浓度与臭氧的消耗量成线性关系。氧化过程中,脂类的量减少30%,臭氧与不饱和脂肪酸发生直接反应,使其变为短链脂肪酸溶解在液相中,而饱和脂肪酸与臭氧只发生间接反应。臭氧氧化处理后的污泥厌氧消化过程中溶解性有机碳可降低70%。

污泥溶解的水解产物主要由VFA组成,而臭氧氧化最终形成的易于吸收的产物主要是羧酸

〔14,15〕Weemaes等

〔16〕 实验过程中pH从7.8下降到4.9,当臭氧用量小于0.5g/gCOD时主要形成

己二烯二酸,而臭氧用量高时,则己二烯二酸浓度降低而草酸浓度增大,其过程中的测定分析未发现二羧酸,VFA浓度一直很低(<200mg/L),说明臭氧将大分子氧化为小分子化合物,但最后并未产生VFA。污泥中总COD减少29~47%,TOC减少29%左右,因此得知COD的降低主要是有机化合物被彻底氧化为CO 2引起的。研究表明,对于氧化还原电位(Eh)较高、生物降解缓慢的废水,很难降低其Eh使之适应厌氧消化过程中产甲烷菌的要求,而污泥经臭氧处理后的高Eh对厌氧消化却未产生完全的有害影响,经3d消化停滞期开始产气

〔17〕。厌氧消化过程中未经臭氧处理的污泥总有机物去除率为38%,而臭氧用量分别为0.05、0.1、0.2g/gCOD处理的污泥总有机物去除率分别为58%、68%和62%。

2.4超声处理

超声波破碎是一种破坏细胞导致细胞内物质释放的方法,其作用原理有两方面:水力作用和声化反应。研究表明克分子量大于4000的大分子可以被超产空穴产生的水力剪切力分解,声频低于100kHz的情况下,水力作用最为有效;声化反应,空穴泡内的热解反应可降解挥发性有机物,而液相体中的自由基反应进行非挥发性有机物的降解,当声频在100kHz以上时声化反应效率达到最高〔18、19〕Petrier等

〔18〕 采用41kHz到3127kHz的声频进行污泥超声波预处理,结果表明在最低频即41kHz处,污泥的分解效果最好,并从理论上解释了超声水力作用比声化反应对污泥的分解作用更大的原因,超声空穴的半径可用下列公式计算:R T≈3.28f T。其中f T 表示声频(kHz)。空穴泡的半径与超声频率成反比,因此应用低频可产生更大的空穴泡,空穴泡破碎可产生强水力喷射流作用于固体表面,通过此途径可产生很高的能量。当空穴泡的半径在4μrn以上时,细胞的分解与气泡半径的对数成比例。用41kHz的超声波处理30min、60min和150min,溶解性COD分别增加了4.7%、13.1%和23.7%,超声处理150min 的污泥厌氧消化后VSS去除率比未经处理的污泥提高56.8%,并且产气量也明显上升,超声波处理污泥因为主要是水力剪切起作用,Eh并不高,从而不会影响厌氧消化的产气过程。

超声波预处理的时间长短对产甲烷会有影响,预处理时间低于30min,甲烷产量随着时间的增加而明显增多,当预处理时间达到40min,甲烷的增加量与30min相差不大。与对照相比,厌氧消化11d时超声波预处理10、20、30和40min的甲烷量分别增加12%、31%、64%和69%,有机物破坏率分别为11%、20%、38和46%,因而运行时可选取30min 作为最佳预处理时间。超声波预处理30min的污泥含溶解态蛋白质比对照污泥高,厌氧消化开始24h时,蛋白质降解很快,然后逐渐降低,而超产预处理污泥与对照污泥溶解性碳水化合物浓度相差甚微,两者VFA浓度相差也不明显,但消化过程中,强化处理污泥的VFA浓度要高于对照,消化最初的12h内强化处理污泥的VFA浓度迅速增加,与之相对应的是溶解性有机物浓度迅速下降,这表明释放出来的有机物快速转化为VFA。超声波处理会加快VFA的产生速率、增加其产生量,并大幅度提高甲烷的产率。

3结语

污泥厌氧消化强化处理技术能有效促进污泥中细胞的分解,使释放出来的细胞物质快速得以降解利用,提高污泥有机物的利用率,缩短厌氧消化停留时间,提高厌氧消化产气率。在综合考虑运行费用和污泥消化

效果的前提下,采取适宜的污泥强化处理措施是有积极意义的。不同强化处理措施进行有效组合,也往往可得到满意的处理效果

污泥处理方法

1前言 厌氧消化是污泥处理常用的减容稳定工艺,具有能耗低、污泥稳定性好、产生沼气等优点,但由于污泥固体的生物可降解性低,完全的厌氧消化需相当长的时间,即使20~30d的停留时间仅能去除30%~50%的挥发性固体(VSS),污泥固体细胞分解和胞内生物大分子水解为小分子,是厌氧消化的限速步骤,因此提高厌氧消化效率的一个主要途径是促进污泥细胞的分解,增强其生物可降解性 〔1、2〕目前有几种促进污泥分解的方法 〔3、4〕(1)热解法;(2)化学法:酸或碱处理。(3)机械法:超声波、球磨、高压均质和剪切均质等;(4)氧化法:过氧化氢和臭氧氧化;(5)生物法:酶处理。在污泥厌氧消化前采用这些技术进行强化处理,可增强生物降解效率,并减少污泥处理量。 2污泥厌氧消化的强化技术 2.1热解 污泥中的碳水化合物和脂类相对易下降解,而蛋白质却难以被水解酶水解,采用热解预处理可以破坏细胞壁促使蛋白质释放而得以降解。热解处理可应用于不同类型的污泥。对于初沉污泥,热处理并不能提高其降解性,但能增强其脱水性能Li等 〔5〕发现活性污泥的最佳热处理条件是170℃加热60min,小试实验结果表明在随后的厌氧消化中,经热解的污泥只需5d停留时间COD去除率即可达到60%。造纸工业污泥最佳的热解温度为150℃~160℃,这是由于造纸污泥含有较多的纯生物体。研究表明,在135℃热解处理后的污泥消化VSS破坏率比对照污泥在15d、12d的停留时间下,分别增加了135%、235%。热解强化处理的效果并不与温度成正比,温度过高会对厌氧消化产生负面影响。 〔6〕发现活性污泥的最佳热解温度在175℃左右,温度再高效果会出现下降。另有研究者发现,温度超过200℃热解处理会导致厌氧消化产气量的下降,这可通过一种分子内反应—Maillard反应解释。在此反应中,减少的糖类与氨基酸反应生成一种褐色的多聚氮,其溶解性和组成与腐殖酸相似,这种物质很难降解甚至起抑制作用。虽然在100℃以下的低温就开始产生这种反应,但其产生量随着温度升高以及停留时间增加而增多,并可能形成二恶英。 〔7〕报道,挪威的Hias污水处理厂运用热解对污泥进行厌氧消化的强化处理,生产

污泥处置各种方法的优缺点对比及可行性分析

污泥处置利用 一、污泥处理的难点及危害 污泥是指处理污水所产生的固态、半固态及液态的废弃物,含有大量的有机物、丰富的氮磷等营养物、重金属以及致病菌和病原菌等,如果不加处理的任意排放和投弃对环境造成的危害如下:(1)侵占土地;(2)污染土壤。污泥堆置的有害成分聚集,风吹雨淋。产生高温或者其他化学反应,会杀灭土壤微生物,破坏土壤结构,使其丧失腐蚀分解能力;(3)污泥直接摔放淤积河床、污染水体; (4)污染大气,污泥有机物被微生物分解释放出有害气体、尘埃.会加重大气污染;(5)病原菌,主要有肠道细菌、寄生虫及病毒三大类,大部分被浓缩结合在污泥颗粒物上,其数量比污水中的高数十倍,威胁人类健康。 二、污泥处理遵循的原则 减量化、稳定化、无害化、资源化 三、污泥处理的方式及优缺点 污泥处置方式有:卫生填埋、焚烧、污泥直接制砖、堆肥后农用、污泥热解等。几种处置方式的优缺点如下表 污泥处置方法情况分析表

四、 污泥处置方式的可行性分析 1. 卫生填埋 卫生填埋难点在于填埋场和填埋污泥要满足一定的要求。对于填埋污泥应满足以下要求: a 、污泥含水率 混合填埋要求污泥含水率小于65%。一般污泥脱水后污泥含水率为75%以上,因此需对脱水后的污泥进行干化处理。 b 、土力学指标(抗剪强度) 混合填埋时,一般要求污泥的抗剪强度最低不小于20kN/m 2 。我国城市污水处理厂污泥投加电解质脱水后,含固率一般在20%~30%之间,其抗剪强度一般在 10kN/m 2左右;根据有些研究,投加聚合物电解质经带式压滤机或者离心脱水机脱水后,含固率为35%的污泥其抗剪强度一般不会超过20kN/m 2 ,含固率25%的污泥平均强度不超过6kN/m 2,含固率20%的污泥平均强度在5kN/m 2左右,因此,脱水后的污泥一般不能满足填埋要求的强度,还必须通过增加添加剂或者降低含水率或者其它方式提高其抗剪强度。脱水后污泥如果不用添加剂,就不能大面积用机械操作连续填埋。 污泥填埋场的选址及工程设计应满足生活垃圾填埋污染控制标准(GB16889-97)。 2. 焚烧 污泥焚烧的难点在于投资及成本过高。以中国某南方城市30t/d 污泥焚烧项目为例。工程项目投资700万元(含土建、工艺设备、电气仪表控制等)。 直接运行消耗成本如下表:

污泥膨胀原因和解决办法

污泥膨胀原因和解决办法标准化文件发布号:(9312-EUATWW-MWUB-WUNN-INNUL-DDQTY-KII

污泥膨胀原因和解决办法 废水生物处理是利用有关微生物的代谢过程,是对废水中有机物进行降解或转化的过程。微生物在降解有机物的同时其本身也得到了增殖。污泥膨胀有两种类型,一是由于活性污泥中大量丝状菌的繁殖而引起的污泥丝状菌膨胀,二是由于菌胶团细菌体内大量累积高粘性物质(如葡萄糖、甘露糖、阿拉伯糖、鼠李糖和脱氧核糖等形成的多类糖)而引起的非丝状菌性膨胀。污泥丝状菌膨胀可根据丝状微生物对环境条件和基质种类要求的不同而划分为五类类型:(1)低基质浓度型;(2)低溶解氧浓度型;(3)营养缺乏型;(4)高硫化物型;(5)pH不平衡型。在实际运行中,一般以污泥丝状菌膨胀为主,占90%以上。发生污泥膨胀时,主要有以下特征:(1)二沉池中污泥的SVI值大于200ml/g;(2)回流污泥浓度下降;(3)二沉池中污泥层增高。 污泥膨胀相关理论: (1)A/V假说:当混合液中基质收到限制或控制时,由于比表面积大的丝状菌获取基质的能力要强于菌胶团,因而菌胶团受到抑制,丝状菌大量繁殖; (2)动力选择性理论:以微生物生长动力学为基础,根据不同种类微生物具有不同的最大比生长速率和饱和常数,分析丝状菌与菌胶团的竞争情况; (3)饥饿假说:将活性污泥中微生物分为三类,第一类是菌胶团细菌,第二类是具有高基质亲和力但生长缓慢的耐饥饿丝状菌,第三类是对溶解氧有高亲和力、对饥饿高度敏感的快速生长丝状菌; (4)存储选择理论:在底物风度的状态下,非丝状菌具有贮存底物的能力,而被贮存物质在底物匮乏时能够被代谢产生能量或合成蛋白质。但是一些丝状菌也具有底物贮存能力,底物贮存能力不能完全用来解释污泥膨胀机理; (5)氮氧化氮假说:CASEY提出低负荷生物脱氮除磷工艺的污泥膨胀假说,如果缺氧区的反硝化不充分,导致好氧区存在亚硝酸氮,那中间产物NO、N2O就会抑制菌胶团的好氧细胞色素,进而抑制其好氧情况下的基质利用,相反一些丝状菌只能将硝酸氮还原为亚硝酸氮,因此不会在反硝化条件下胞内积累NO和N2O,丝状菌就不会在好氧段被抑制,因而更具竞争优势。亚硝酸与SVI有一定的正相关性。沉淀性能良好的污泥粒径分布较广,且以球菌为主,膨胀污泥的粒径大都在10μm以内,污泥较为细碎。 影响污泥膨胀的因子: 1、温度

城市污泥不同处理处置方式的成本和效益分析

城市污泥不同处理处置方式的成本 和效益分析 城市污泥不同处理处置方式的成本和效益分析摘要:以北京市为例,估算不同电价及运输距离下填埋、焚烧及堆肥等方式的城市污泥处理处置成本,在此基础上讨论各种处理处置方案的前景,展望北京市污泥处理处置出路。污泥填埋在一定时期内还将是主要处理处置方式,但所占比例将逐渐下降;堆肥是经济上较为可行的处理处置方式,适合大力推广;随着经济实力与技术水平提高,焚烧法可以适用于个别特殊地点。同时,分析了政府补贴对污泥处理处置效益的影响。城市污泥是污水处理的副产物,以含水率97%计算,体积占处理污水的%~%[1],深度处理产泥量还将增加50%~100%。目前我国每年排放的干污泥大约×106 t,并以大约10%的速率在增加。北京

市全区域规划污水排放量为330×104 m3/d,其中2003年市区污水排放量约为230×104 m3/d[2]。规划建设14座污水处理厂,2015年污水处理能力预计将超过320×104 m3/d,处理率将超过90%。到2008年,北京市将新增9座中水处理厂,深度处理能力将目前的1×104 m3/d提高到×104 m3/d,届时每年产生含水率80% 城市污泥超过80×104 m3。北京市最大的污水处理厂——高碑店污水处理厂污泥外运运输费用占到全厂运行费用的1/3[3]。城市污泥的大量产生,已引起日益严峻的二次污染,并成为城市污水处理行业瓶颈。污泥处理处置率低,其中非常重要的一个原因就是投资和运行成本方面的限制。但到目前为止,还未见关于不同污泥处理处置方案的经济分析,导致不同单位和设计人员在方案的选择上存在较大的盲目性。以北京为例,对几种典型的城市污泥处理处置方式进行经济分析,以便为城市污泥处理处置技术的选择提供参考依据。 1 城

最新整理一般污泥和含油污泥的处理一般方法

一般污泥和含油污泥的处理一般方法 一般来讲,为了不造成环境的二次污染,需要在污水处理的二级处理之后添加一道污泥处理工艺。污水处理的目标通过把水中杂质浓缩成固体形态再从流体中分离而实现。这种浓缩质变称为污泥,因包含了大量的有害物质,需要妥善处置。污泥处理设备大约占污水处理厂的40%-60%基建投资,污泥处理则占50%左右的处理费用,同时也造成了和其经济费用不成比例的处理难度。 首先,原污泥通过污泥泵由二沉池打到另一个池子中从而和上清液分离。因为原污泥的含水率通常能达到99.5%,所以污泥必须浓缩,有多种可行的方法用于减少污泥的体积。例如真空过滤和离心等机械处理的方法通常用于将污泥以半固体形式处置之前。通常这些方法是污泥焚烧处理的准备工作。如果计划采用生物处理,则多数才用重力沉降或者是气浮的方法进行浓缩。这两种情况所对应的污泥仍然是流态的。 重力浓缩池的设计和运行类似于污水处理中的二沉池。浓缩功能是主要的设计参数,为了满足更大的浓缩能力,浓缩池基本上比二沉池要深。一个设计正确,运行良好的重力浓缩池至少能提高两倍的污泥含泥量。也

就是说,污泥的含水率可以有99.5%减少到98%,或者更少。这里值得一提的是,重力浓缩池的的设计要尽量基于中式结果的分析,因为合适的污泥负荷率与污泥的属性的有很大关系的。 如果采用溶气气浮浓缩,需要有一小部分的水,通常是二沉池出水,在400k P a的压力下充气。这种过饱和的液体通入罐底,而污泥在大气压下通过。气体以小气泡的形式和污泥中的固体颗粒黏附,或则是被包围,从而带动固体颗粒上浮到表面。浓缩了的污泥的上部被除去,而液体由底部流回溶气罐充气。 体积减少后,污泥中含有大量的有害成分,在处置之前需要将之转化为惰性成分。最常用的方法是生物降解稳定。因为这个过程目的在于将物质转化为最终无菌产物,所以常应用消化的方法。污泥消化既能进一步的减少污泥体积也能使所含固体转化为惰性物质并且大体的上没有病菌。通过厌氧消化或好养消化都能达到污泥消化目的。 污泥含有多种有机物,因此需要多种微生物来分解。有关资料将厌氧消化中的微生物分为两类:产酸菌和甲烷菌。所以,我们也能把厌氧消化分为两步。第一步,

活性污泥指标及污泥膨胀处理

活性污泥法 处理的关键在于具有足够数量和性能良好的污泥。它是大量微生物聚集的地方,即微生物高度活动的中心,在处理废水过程中,活性污泥对废水中的有机物具有很强的吸附和氧化分解能力,故活性污泥中还含有分解的有机物和无机物等。污泥中的微生物,在废水中起主要作用的是细菌和原生动物。 微生物的指示作用 (1)着生的缘毛目多时,处理效果良好,出水BOD5和浊度低。(如小口钟虫、八钟虫、沟钟虫、褶钟虫、瓶累枝虫、微盘盖虫、独缩虫)这些缘毛目的种类都固定在絮状物上,并随窗之而翻动,其中还夹杂一些爬行的栖纤虫、游仆虫、尖毛虫、卑气管叶虫等,这说明优质而成熟的活性污泥。 (2)小口钟虫在生活污水和工业废水处理很好时往往就是优势菌种。 (3)如果大量鞭毛虫出现,而着生的缘毛目很少时,表明净化作用较差。 (4)大量的自由游泳的纤毛虫出现,指示净化作用不太好,出水浊度上升。 (5)如出现主要有柄纤毛虫,如钟虫、累枝虫、盖虫、轮虫、寡毛类时,则水质澄清良好,出水清澈透明,酚类去除率在90%以上。 (6)根足虫的大量出现,往往是污泥中毒的表现。

(7)如在生活污水处理中,累枝虫的大量出现,则是污泥膨胀、解絮的征兆。 (8)而在印染废水中,累枝虫则作为污泥正常或改善的指示生物。 (9)在石油废水处理中钟虫出现是理想的效果。 (10)过量的轮虫出现,则是污泥要膨胀的预兆。 另在一些对原生动物不宜生长的污泥中,主要看菌胶团的大小用数量来判断处理效果。 活性污泥中的微生物 活性污泥是微生物群体及它们所吸附的有机物质和无机物质的总称。微生物群体主要包括细菌、原生动物和藻类等。其中,细菌和原生动物是主要的两大类。 (一)细菌 细菌是单细胞生物,如球菌、杆菌和螺旋菌等。它们在活性污泥中种类多、数量大、体积微小,具有强的吸附和分解有机物的能力,在污水处理中起着关键作用。 在活性污泥培养的初期,细菌大量游离在污水中,但随着污泥的逐步形成,逐渐集合成较大的群体,如菌胶团、丝状菌等。 1.菌胶团 菌胶团是细菌及其分泌的胶质物质组成的细小颗粒,是活性污泥的主体,污泥的吸附性能、氧化分解能力及凝聚沉降等性能均与菌胶团有关。菌胶团有球形、分枝状、蘑菇形、垂丝形等

我国污泥处理现状及新工艺

我国污泥处理现状及新工艺在城市污水和工业废水处理过程中,产生的污泥量约占总处理量的0.3 %~ 0.5 %(以含水率 97 %计)。污泥成分复杂,含有病原微生物、寄生虫卵及重金属等,必须进行适当的处理,才能避免对周围环境造成二次污染。目前大量未稳定处理的污泥已成为污水处理厂的沉重负担,如何将产量巨大、成分复杂的污泥进行妥善安全地处理,使其无害化、减量化、资源化,已成为深受关注的重大课题。 1.1污泥处理现状 20世纪90年代以后,城市污水处理厂发展迅速,一大批大型城市污水处理厂开始建设并相继投产。但是,近十年来由于没有严格的污泥排放监管,致使许多大中型城市出现污泥嗣城的现象,给生态环境带来隐患。目前,城市污水处理厂污泥处理费用仅占工程投资和运行费用的24%~45%。而发达国家的污泥处理费用占污水处理厂总投资的50%~70%。常用的污泥处理方法有:浓缩,污泥调理,厌氧消化,脱水。堆肥等处理技术。至于好氧消化,湿式氧化,消毒,热干燥,焚烧,低温热解等尚处于研究试验阶段。 1.2污泥常规处理方法 (1)浓缩 污泥浓缩方法有重力浓缩、气浮浓缩和离心浓缩。污泥浓缩后其含水率可降为95%左右,仍为液体流动状态。重力浓缩法储存污泥能力高,操作简单,是最常用的污泥减容手段之一。

(2)污泥调节 污泥调节处理可降低污泥的亲水性和提高脱水效率,常用的调节方法有化学调节法、热力调节法。热力调节法和水冻一熔融法、投加惰性物质等方法处在试验研究阶段。 (3)污泥脱水 污泥脱水后的含水率一般可降至70%~80%.减少污泥的体积。常用的脱水方法有自然干燥和机械脱水两种目前常用的机械脱水机有真空过滤机、板框压滤机、带式压滤机和离心机。转鼓离心机和带式压滤机是近年 (4)厌氧消化 污泥厌氧消化是目前最常用的污泥稳定处理工艺,有中温消化(3 2~C~35~c)和高温消化。随着技术的进步.厌氧消化又发展为两相消化和两级消化,在实验研究的两级、两相消化]艺有:厌氧一好氧两相消化;高温酸化一中温甲烷化两相厌氧消化;中温一高温二级处理工艺等。 (5)堆肥化 堆肥化是一种无害化、减容化和稳定化的综合处理技术,系由混合微生物群落在潮湿的环境中对有机物进行分解。堆肥过程中产生的高温可以有效地杀死病原微生物及各种寄生虫卵,是一种无害化、减容化、稳定化的综合处理技术。 2.1污泥减量化技术 污泥减量化机理目前已成为研究热点,其原则是使污泥尽量消灭

各种污泥处理方法的比较

各种污泥处理方法的比较常用的污泥处置方法有焚烧、污泥农用、土地卫生填埋、制作建材、海洋处置等几种方法。其中海洋处置由于其造成海洋污染、破坏海洋生态已经被各个国家明令禁止。 污泥焚烧是最彻底的处理方法,基本上可以达到减容化、无害化和资源化的目的。一般污泥经焚烧处理后,其体积可以减少85%~95%,质量减少70%~80%。高温焚烧还可以消灭污泥中的有害病菌和有害物质。通过主要可分为两大类:一类是将脱水污泥直接用焚烧炉焚烧;另一类是将脱水污泥先干化再焚烧。污泥焚烧要求污泥有较高的热值,因此污泥一般不进行消化处理。一般当污泥不符合卫生要求,有毒物质含量高,不能作为农副业利用时,或污泥自身的燃烧热值高,可以自燃并可利用燃烧热量发电时,可考虑采用污泥焚烧。焚烧所需热量,主要靠污泥含有的有机物燃烧,如污泥所含有的有机物燃烧所产生的热能。焚烧最大优点是可以迅速和较大程度地使污泥减容,并且在恶劣的天气条件下不需存储设备,能够满足越来越严格的环境要求和充分地处理不适宜于资源化利用的部分污泥。污泥的焚烧处置不仅是一种有效降低污泥体积的方法,设计良好的焚烧炉不但能够自动运行,还能够提供多余的能量和电力,因此几乎所有的发达国家均期望通过焚烧处置污泥来解决日益增长的污泥量和以前通过填理处置的部分污泥。 污泥的农田利用很早就得到应用。这种利用和处置方式致使污泥最终剩余物问题得到真正解决,因为其中有机物重新进入自然环境。污泥中含有丰富的各种微量元素,施用于农田能够改良土壤结构、增加土壤肥力、促进作物的生长。同时污泥中也含有大量病原菌、寄生虫(卵)、以及铬、汞等重金属和多氯联苯、二恶英、放射性核素等难降解的有毒有害物。一般来说,污泥要作土地处置必须经无毒无害化处理,否则,污泥中的有毒有害物质会导致土壤或水体的二次污染。因此各国对土地利用的污泥标准要求越来越严格。污泥农用必须做到以下几点:首先,严格控制污水厂污泥的有毒有害物质及病原微生物,使其达

污泥处理处置市场调查报告

污泥处理处置市场调查 报告 LG GROUP system office room 【LGA16H-LGYY-LGUA8Q8-LGA162】

中国污泥处理处置市场调查报告 进入“十一五”以来,我国的污水处理产业得到了快速发展,污水处理能力及处理率增长迅速,带来了污泥产量的迅速增加。根据住建部资料显示,截止到2009年年底,全国城镇污水处理量达到280亿立方米,湿污泥(含水率80%)产生量突破2000万吨。根据调研结果显示,我国污水处理厂所产生的污泥,有80%没有得到妥善处理,污泥随意堆放及所造成的污染与再污染问题已经凸显出来,并且引起了社会的关注。 社会的关注促使国家不得不对污泥的处理处置重视起来,国家的重视又促使了污泥处理处置市场的形成。2010年初,住建部副部长仇保兴称,“十五”期间我国主要进行污水处理厂工作,“十一五”期间,重点是进行管网的配套,即将到来的“十二五”,将重点放在污泥处置等方面。应“千方百计地将污泥处置搞上去”,鼓励污泥无害化后进行土地综合利用。由此可见,“十二五”期间,污泥处理处置市场将得到进一步发展,其也将成为继污水处理之后的下一个投资热点。 在污泥处理处置市场初步形成之初,已有内、外资环保企业及非环保领域投资人提前嗅得市场机会,开始关注并参与到污泥处理处置市场中来。根据本报告收集资料显示,2007年,世界五百强企业法国苏伊士环境集团进入重庆污泥处置市场,2009年初,苏伊士环境集团进军江苏苏州污泥处置市场,就连微软中国终身荣誉总裁唐骏也开始涉足污泥处理处置领域……这均说明污泥处理处置市场的投资机会已来临,且竞争也逐渐激烈起来。 对于污泥处理企业来说,谁先进入市场,取得市场先机,谁就将取得未来巨大市场的主动权。 报告简要目录 1、污泥处理处置的相关概述 污泥的定义与分类 污泥的特性 污泥处理处置的主要方式 2、污泥处理处置行业市场发展现状与趋势 污水处理市场现状与发展趋势

污泥处理工艺

污泥无害化、资源化利用项目简介 一、概述: 随着经济的飞速发展,全国各地的生活垃圾和河流污染,成了我国经济发展的一大病痛;目前广州市每天产污泥量是1000吨,最高峰期达到了1400多吨;广州政府每吨污泥的处理费用为200元,按照以上数据可算出:每天政府要支出污泥处理费180000元。最近广州市政府准备400亿元整治河涌,新建9家污泥处理厂。 上海市的污泥产量是每天3000吨,上海的污泥处理费用为每吨400元,那么政府每天要支出污泥处理费用400*3000=1200000元; 这是一个相当吸引人的一个数据,是一个长期的处理事业;也是一个为人类造福的事业;目前我国真正成立的污泥处理厂家只有一家,可以想象这个事业的前景和发展空间是巨大的。 下面根据在某污泥处理厂家的实际生产处理经验,写出以下污泥处理工艺。 二、工艺技术要求: (1)有效除去污泥中的重金属,生成无害化物质; (2)实现了污泥杀菌、消毒、除臭目的; (3)无“三废”污染问题,可实现零排放; (4)发展发酵工艺、设备简易、方法简单、能耗低、易于实施; (5)制作建材用料; (6)所得有机酸类肥料在土壤中易于氨化,是农作物最容易吸收的高效有机肥料;经省农科院多次施用及专家组论证(有田间试验报告及专家组论证

报告)证明:对农作物增产增收、恢复自然风味、改良土壤三大功能, 均具有显著的效果。 三、工艺设计原理: (1)在污泥中加入催化剂等物质,在微加热不产生废气的一定工艺条件下,使污泥中的微生物及菌体细胞壁发生破解反应;微生物及菌体分解成含氮有机物(主组分为蛋白质)和非含氮有机物(主组分为葡萄糖),此时溶液中的有机物质主要由蛋白质、糖类、脂肪、木质素、纤维素、以及腐殖质组成。再在微加热不产生废气的催化工艺条件下, 发生如下的分解反应: Ⅰ,蛋白质水解生成有机酸: 蛋白质+H2O→RCHNH2COOH Ⅱ,纤维素水解生成葡萄糖: (C6H10O5)n+nH2O→nC6H12O6 Ⅲ,葡萄糖分解生成乳酸: C6H12O6→2C3H2O4+3H2O 此外,还有木质素分解生成酚、醛和酸类物质等。 (2)污泥中较小分子量、“碳氮比”较低的腐殖酸,与钾、钠、氨、钙、镁、铁(K+、Na+、NH3+、Ca2+、Mg2+、Fe3+)等离子结合,生成腐殖酸盐类而保留于污泥中。 (3)污泥中较大分子量、“碳氮比”较高的腐殖质,比较难于分解,污泥中原来就已存在的腐殖质与重金属[铬(Cr)、镉(Cd)、铅(Pb)、汞(Hg)、砷(As)等]形成的不溶于水的沉淀物,仍以固相形式保留在污泥中。 (4)溶液进行过滤,将滤渣加入硅酸盐(黄泥、粘土等)进行高温烧结,

污水处理中导致污泥膨胀的原因及解决方案

污水处理中导致污泥膨胀的原因及解决方案 污泥膨胀是活性污泥处理工艺中常见的一种异常现象,是指活性污泥沉降性能恶化,随二沉池出水流失。 发生污泥膨胀时,活性污泥SVI值(1g干污泥所占体积,mL/g)超过150时,预示着活性污泥即将或已经为膨胀状态,应当立即采取控制措施。 污泥膨胀可以分为丝状菌膨胀和非丝状菌膨胀两大类。前者是因为污泥中丝状菌过度繁殖,后者是因为菌胶团的细菌本身生理活动异常。 两类污泥膨胀的各自成因分析 正常环境下,菌胶团的生长率远大于丝状菌,不会出现丝状菌过度繁殖的情况,但出现下列情况时,会引起丝状菌膨胀: 01 进水有机物太少,导致微生物食料不足; 02 进水中氮、磷等营养物质不足; 03 pH偏低; 04 曝气池溶解氧含量太低; 05 进水水质或水量波动大,对微生物造成冲击;

06 进入曝气池的污水因“腐化”产生较多的H?S(超过2mg/L)时,导致丝状硫黄菌过度繁殖; 07 丝状菌大量繁殖适宜温度为25~30℃,故而夏季容易发生丝状膨胀。 而非丝状菌膨胀本质是由于菌胶团细菌本身生理活动异常,原因有以下两条: 01 进水含有大量溶解性有机物,但缺乏足够的氮、磷等营养物,此时菌胶团表现为“吃坏了”,分泌大量多聚糖类代谢物(含大量亲水羟基,使活性污泥呈凝胶状,表现为黏性膨胀 02 进水中含有大量有毒物质,菌落中毒,不能分泌足够的粘性物质,无法形成絮体,不能在二沉池分离或者浓缩,此时活性污泥表现为离散型膨胀。 曝气池污泥膨胀的解决办法 解决办法分为三类:临时控制、工艺运行控制、永久性控制。 临时控制法 该法主要用于临时原因(水量与水质波动等)造成的污泥膨胀,分为絮凝剂法和杀菌剂法。 絮凝剂法用于非丝状菌引起的膨胀,药剂投加量折合Al?O?为10mg/L左右。 杀菌剂法用于丝状菌引起的膨胀,常用的杀菌剂有二氧化氯、次氯酸钠、漂白粉,加氯量为污泥干固体重的0.3%~0.6%,加药时要观察生物相并测定SVI 值,当SVI值在最大允许范围内时,应停止加药。

城市污泥不同处理处置方式的成本和效益分析-一栏知识分享

城市污泥不同处理处置方式的成本和效益 分析-一栏

城市污泥不同处理处置方式的成本和效益分析城市污泥是污水处理的副产物,以含水率97%计算,体积占处理污水的0.3%~0.5%[1],深度处理产泥量还将增加50%~100%。目前我国每年排放的干污泥大约1.3×106 t,并以大约10%的速率在增加。 北京市全区域规划污水排放量为330×104 m3/d,其中2003年市区污水排放量约为230×104 m3/d[2]。规划建设14座污水处理厂,2015年污水处理能力预计将超过320×104 m3/d,处理率将超过90%。到2008年,北京市将新增9座中水处理厂,深度处理能力将由目前的1×104 m3/d提高到47.6×104 m3/d,届时每年产生含水率80% 城市污泥超过80×104 m3。北京市最大的污水处理厂——高碑店污水处理厂污泥外运运输费用占到全厂运行费用的1/3[3]。 城市污泥的大量产生,已引起日益严峻的二次污染,并成为城市污水处理行业瓶颈。污泥处理处置率低,其中非常重要的一个原因就是投资和运行成本方面的限制。但到目前为止,还未见关于不同污泥处理处置方案的经济分析,导致不同单位和设计人员在方案的选择上存在较大的盲目性。本文以北京为例,对几种典型的城市污泥处理处置方式进行经济分析,以便为城市污泥处理处置技术的选择提供参考依据。 1 城市污泥处理处置成本估算 1.1 估算方法 以1 t干污泥(DS)为计算基准,综合成本=运行成本+设备折价成本。运行成本以目前较为成熟的处理处置方式进行估算。 北京市污泥机械脱水效果通常在80%左右。各方案中的成本估算涉及或包括焚烧、运输、填埋等3个流程;设备折价成本取15 a使用年限,年折旧7%,社会利率10%,即年折价17%,设备年工作时数以8000 h计。因此,设备折价=设备价格×指数×0.17/8000。 1.2 估算细则 (1)单位成本 填埋:生活垃圾卫生填埋的成本约60~70 ¥/t,污泥填埋时按照压实生活垃圾∶土∶污泥容重比为0.8∶1∶1,污泥填埋成本为48~56 ¥/t,取52¥/t。 干化:干燥能耗与脱水量成正比。燃气加热效率85%、锅炉热效率70%、过程热损失5%时,水的蒸发能耗为150 (kW·h)/t,每小时去除1 t水的设备投资为180×104¥[4]。 焚烧:目前多采用流化床技术,每h焚烧1 t干化污泥的设备成本为528×104¥,污泥按干质量减量60%。焚烧的运行费用24¥/t,烟气处理消耗NaOH量约为37 kg/t,折价约128¥/t [5]。 电价:北京市工业电价高峰期、平段区、低谷期分别为0.278、0.488、0.725¥/(kW·h)。按不同补贴方案,将电价设定为0.30、0.60¥/(kW·h)。 运费:北京市运输价格在0.45~0.65¥/(t·km)之间,污泥为特殊固体废物,需特殊箱式货车运送,价格处于高端。另外,近年运输价格有上涨趋势。因此,运费取0.65 ¥/(t·km)。 此外,干化及焚烧均按设备成本添加30%物耗人工管理费及土建配套费。 (2)污泥含水率 污泥的有机质和水分含量较高,填埋存在一系列问题,当前主要关心的是土力学性能,当含水率高于68% 时需按m(土)∶m(污泥)=0.4~0.6的比例混入土 [6-8]。含水率降低时污泥性状存在突变,因此填埋脱水目标设定为80%、30%。 含水率是污泥焚烧处理中的一个关键因素。有机质含量高、含水率低利于维持自燃,降低污泥含水率对降低污泥焚烧设备及处理费用至关重要。一般将污泥含水率降至与挥发物含量之比小于3.5时,可形成自燃[9]。北京市污泥有机物含量在45% 以下,因此使污泥维持自燃焚烧的水分含量应小于61.2%。朱南文总结了几种国外污泥热干燥技术,可以将污泥干燥至10%含水率[10]。污泥焚烧综合成本随干燥程度动态变化,干化程度越高,干化能耗升高,焚

氧化沟污泥膨胀产生大量泡沫的控制方法

氧化沟污泥膨胀产生大量泡沫的控制方法 -CAL-FENGHAI.-(YICAI)-Company One1

氧化沟污泥膨胀产生大量泡沫的控制方法 更新时间:2009-07-14 11:16 来源:作者: 阅读:304 网友评论0条 长寿排水公司余家湾污水处理厂采用改良型氧化沟工艺,该工艺是在卡式氧化沟基础上进行优化改良的一种工艺。缺氧区进水,高氧区出水,最显著的特点是在进水端增加厌氧池。长寿污水处理厂发生很严重的氧化沟污泥膨胀产生褐色泡沫现象,整个氧化沟池面全是棕褐色泡沫,厚度大概20公分,沟中活性污泥SVI达200左右,镜检发现丝状菌大量繁殖(丝状菌丰度至F 级),氧化沟内污泥沉降比达90 左右,污泥絮体非常松散,沉降性能极差,整个活性污泥系统完全崩溃,二沉池出水已变为黄色。 一、污泥膨胀产生褐色泡沫的原因分析 造成污泥膨胀产生泡沫的因素很多,据有关资料介绍至少有与近30种不同的丝状菌和一系列的环境与操作因素(温度、PH值、营养物、负荷、DO、沉降比、污泥指数、泥龄等)有关,所以必须根据实际情况找准污泥膨胀产生褐色泡沫的主要原因,有针对性地改变环境条件,才能有效控制污泥膨胀产生的褐色泡沫。通过对系统崩溃前的进水量、水质、PH、DO、污泥浓度、泥龄等进行分析,认为是由于我司在冬季长期采用低负荷运行,造成污泥膨胀。理论依据是低负荷说,低负荷说认为,当污泥处于低负荷或极低负荷时,絮凝体中的菌胶团细菌得不到足够的营养,而交织与絮凝体中的球衣菌却形成长长的丝状体从絮粒中伸出来,以增加表面积,充分吸收环境中的营养,因丝状体的伸出,造成絮粒架空,以至比重减轻,沉降困难,造成污泥膨胀。具体表现在污泥浓度高4000mg/l以上,污泥沉降比高80-90,污泥指数高达170-180,最高时达220左右,负荷经常保持在左右,最低时达,由于2月15日晚和3月11日晚两次下大雨进水量突增,这个外因造成污泥负荷极剧上升,污泥浓度从 4000mg/l左右,下降至2900mg/l,污泥负荷达以上,依据冲击负荷说:即当负荷突增时,活性污泥法系统中原有的正常运行状态遭到破坏,污泥中原有的生态体系失去平衡,生物相发生变化。这种情况下,丝状微生物往往易于适应,快速恢复活性,而得到大量繁殖,从而在氧化沟液面产生大量褐色泡沫,最多时几乎要到人行道上。因此,氧化沟产生大量泡沫的原因是长期的低负荷运行,造成污泥膨胀,外加水量冲击,丝状菌大量繁殖造成的。

城市污水处理厂污泥的处理处置

方法探究

城市污水处理厂污泥的处理处置方法探究 引言 水环境污染问题是我国的大环境问题之一,为了减少污染物的排放,对城市生活污水、工业废水等必须经过处理达标后才能排放进入水体,而城市污水处理厂在运行的过程中会产生大量的污泥。近年来,为了改善污水处理现状,在全国范围内有许多大规模的污水处理厂投入使用,许多新的污水处理项目也在规划和建设中,这使得城市的污水处理能力有了进一步的提高,随之污泥的产生量也在不断的增大。污泥中含有大量的有机物、丰富的氮、磷、钾等营养物质、重金属、多氯联苯以及致病菌和病原菌等。这些污泥未及时处理或者随意堆放、抛弃都会对周围的环境造成严重的二次污染。因此,要根据“无害化、资源化、稳定化、减量化”的原则,对污泥处理处置的过程实行全面管理,综合考虑环境、经济和社会因素的影响,采用切实的污泥处理处置技术,对污泥进行综合利用,回收和利用污泥中的氮磷等营养物质,以达到循环经济的目的。 1、国内外污泥处理处置的基本情况 城市污水处理过程必然产生污泥,而随着城市污水处理率的不断提高,污泥的产生量也在不断的增大。据了解,目前我们国家每年的污泥产生总量约为900万吨,在城市污泥处理处置的方法中,污泥的农用约占44.8%,污泥的卫生填埋约占31%,其他处置约占10.5%,没有处置的约占13.7%。但这些污泥处理或者处置的数据都是在特定的条件下进行估算得出来的,严格来说会有较大的变动。资料统计显示,我国的污泥处理处置投资在污水处理厂总投资中所占的比例为20%-50%,可以看出,污泥的处理处置处于严重的滞后状态。 对于解决城市水污染问题来说,污水处理和污泥处理处置是两个紧密关联又同等重要的系统。在国外经济发达的国家,污泥的处理处置是极为重要的环节,其投资在污水处理厂总投资中所占比例为50%-70%,远远高出国内投资力度。在国外,污泥的处理处置方法也包括污泥卫生填埋、焚烧、土地利用和填海等。但由于填海造成了严重的环境污染问题,各国也基本都遵从国际海洋法废止了。相比较而言,污泥焚烧所需要的技术难度较大,其投资成本也较高,并且还有尾气等有害气体产生;污泥卫生填埋存在地下水污染的风险,土地利用存在重金属和病原菌污染的风险,也不容小觑,但二者从技术难度和投资成本来说还是有一定优势的。因此,不同的国家和地区要根据本国的具体情况采用合适的污泥处理处置方法,使污水处理能够画上一个完满的句号。 2、污泥处理处置方法的优缺点分析 2.1污泥的土地利用 污泥中含有有机物和丰富的氮、磷、钾、钙等营养物质,可以应用于农田、果园、草地、市政绿化、林地等,而且污泥直接利用投资少、运行费用低、能耗低等优点,是一种很有发展潜力的处置方式。科学合理的土地利用,可以使污泥作为一种资源从而减少其带来的负面效应,而市政绿化、林地的污泥使用不会引起食物链的污染成为污泥土地利用的一种有效方式。尽管污泥的土地利用有循环经济、能耗低、养分回收利用等优点,但是污泥中重金属(如:铜、锌、铬等)、病原菌等有害物质的存在,使其在土地使用时还有一定的危险性。因此农用污泥重金属浓度标准及单位面积徒弟污泥的应用量各国政府都做了严格的限制。 2.2污泥卫生填埋

对于城市污泥处理处置方法及有效的利用

对于城市污泥处理处置方法及有效的利用- 污泥处置[摘要]城市污泥是城市污水处理不可避免的产物,如何使污泥的处置与环境保护之间达到一个良好的平衡是当前面临的重大课题。城市污泥是一种常见的固态污染物,但是如果将其进行合理的加工,则会成为一种有用的资源。目前对于污泥的处置方式及深化利用是一项重要的研究课题,它对保护环境具有积极的意义。污泥科学合理的利用可以避免资源的极度浪费,具有非常重要的现实意义和经济社会价值。此外,我国对现有行业的可持续发展战略的改革更加推进了污泥的处理处置与其资源化技术的研究进程。本文主要阐述了城市污泥处理方法以及再利用的处置方式,有效的推动了城市污泥处理的环保化进程。 [关键词]城市污泥;污泥处理处置;污泥利用 前言: 据全国日统计污水排放量达13.4×105万吨. 经处理后约0.5%~1.0%的转化为固态凝聚沉下来形成污泥。污泥的成分很复杂,是由多种生物形成的菌胶体与其吸附的有机物、无机物组成的集合,除大量的水分外这含有难降解的有机物、重金属、盐类及病原微生物和寄生虫等.大量的未经处理的城市污泥任意排放对环境造成新的污染. 城市污泥处理费用相当昂贵,与污水处理费用基本相当.因而如何将大量的成分复杂的城市污泥无害化、资源,已成为全世界较为关注的问题。 1、污泥对环境的影响

尽管污泥含丰富的养分,但也含有大量病原菌、寄生虫、铜、铬、汞等重金属,盐类以及多氯联苯、二恶英、放射性核素等难降解的有毒有害物,这些物质对环境和人类以及动物健康有可能造成较大的危害 2 污泥的脱水 从污水处理厂排出的污泥和城市沟河溏清淤产生的污泥,由于含水量高、体积庞大,容易腐败发臭不利于运输和处置。常常需要进行脱水,污泥脱水主要降低污泥的含水率,减少污泥的体积,降低运输成本。污泥脱水浓缩后可利用物质的含量相对增高,有利于污泥的后续处置和利用。 2.1 机械脱水 机械脱水是使用各种机械将污泥中水份除去.常用机械有真空过滤机、板框过滤机、带压压滤机、离心机等. 2.2 自然干燥 自然干燥是利用太阳能将污泥脱水、干化的方式。传统的方法一般采用干化床。这种方法适用干燥气候,占地面积较大,易给周围环境带来卫生隐患。 利用芦苇编织物进行污泥脱水试验。芦苇编制一定规格“容皿”,置于硬化的地面(水泥地面)上再将污泥移入。芦苇编织物起“格栅”作用。这种污泥脱水方法可将污泥中干固体含量由排出时的1%左右增加到50%。这种利用芦苇编织物进行污泥干燥,不需要电能,也不需要其它物质消耗,是一种可持续的过程。这种污泥脱水方法缺点是

工业污泥的处理方法

工业重金属污泥产量大,年产生约1000 万吨工业污泥。尤其是电镀污泥、不锈钢酸洗污泥等中含有多种金属成分,污染严重, 但有一定的回收价值,污泥中含有较高含量的铜、镍、铬、铁等金属,安全回收具有显著的生态和经济效益。即使如此工业污泥成分复杂,含有毒有机物、重金属和病原微生物等。必须进行处理,才能防止对环境造成二次污染。如何妥善进行工业污泥的处理呢,本文就对此进行了分析和总结。 一、污泥处理的方法 污泥处理就是对污泥进行浓缩、调治、脱水、稳定、干化或焚烧的加工过程。随着我国经济的发展,城市废水排放量日益增多,污泥产生量也随之大幅度提高。国内外现有的处理处置手段主要包括卫生填埋、水体消纳、焚烧、堆肥处理、土地利用等。针对我国现有的技术来看,我国主要的污泥处置方式是填埋。 二、工业污泥的治理方案 火法重金属污泥再生冶炼一般工艺流程为:烘干窑+烧结窑+熔炼炉。重金属污泥由立式烧结窑上部送入,与上升的热烟气换热后进入焙烧段烧结,烧结的温度约1000 ℃。由于重金属污泥成分复杂,特别是油类的有机物含量高,造成热烟气与重金属污泥换热过程中会有部分油类物质以气态形式或黏在粉尘上进入烟气中,造成烟气中含有类焦油物质以及VOCs 等。 污泥进行焚烧可以杀灭很多病菌,有机物在经过燃烧之后就会出现非常严重的分解现象,病原体和细菌也是这样,在经过高温燃烧之后,污泥的残渣当中基本上已经没有病菌,在这样的情况下也就减少了不利因素。此外焚烧之后还会减少污泥产生的异味。再次,经过脱水之后的污泥热值和褐煤的热值非常的接近,这样也就在很大程度上减少生产过程中所产生的污泥燃烧投资,为满足企业和政府的环保诉求,解决重金属污泥

七种污泥处理处置工艺技术对比

精心整理 七种污泥处理处置工艺技术对比 时间:2015-11-0411:17 来源:亚洲环保网 评论(0) 当前污泥处理处置主要工艺: 1、污泥厌氧发酵 234567甲烷。 123456、安全隐患,占地比较大。 目前国内有50多家,其中29家停止运营。 二、污泥好氧堆肥 利用秸秆等辅料将污泥含水率降至60%,增加空隙达到规定CN 比,不断补充氧气,经25-30天发酵腐殖。达到稳定化,可作为园林绿化和土地改良处置。 主要有:自然堆肥、封闭式堆肥、滚筒堆肥、竖式多层堆肥等。

缺点: 1、污泥泥质不稳定,中重金属难以稳定化,只能用作园林绿化用肥。 2、堆肥过程产生大量的臭气,污染周边环境。 3、加入大量秸秆等调理剂,不断供氧,运行成本200元/t以上。 三、污泥焚烧发电 核心设备焚烧炉,主体设备为塔形,底部有多孔板,板上放置载热体砂为燃烧床,塔内衬有耐火材料,气体从底部通入,污泥进入后成沸腾流化状态燃烧。 1 2、 元/t。 3 1 2 3 缺点: 1、含水率只能将75-65%。 2、加入大量药剂,增加污泥干基重量,运行成本较高180元/t。 3、污泥再利用局限性增大。 七、固化剂稳定 在原污泥中加入石灰及其他固化剂,与污泥产生化学反应放出大量热,降低含水率。 缺点:

1、添加大量石灰、铝基材料,污泥增量。 2、污泥无法再次利用,只能填埋。 3、运营成本较高130-150元/吨。 目前来看,依靠某一种单一工艺,已很难满足污泥处理处置要求。针对不同地区、不同污泥种类,综合考虑气候、区域特点、建设地条件等,把多种工艺巧妙结合,以达到最佳效果,是比较理想的选择。 在污泥处理工艺技术的选择上,没有最好的,只有最适合的。

污泥膨胀理论和解决办法

污泥膨胀理论和解决办法 废水生物处理是利用有关微生物的代谢过程,是对废水中有机物进行降解或转化的过程。微生物在降解有机物的同时其本身也得到了增殖。污泥膨胀有两种类型,一是由于活性污泥中大量丝状菌的繁殖而引起的污泥丝状菌膨胀,二是由于菌胶团细菌体内大量累积高粘性物质(如葡萄糖、甘露糖、阿拉伯糖、鼠李糖和脱氧核糖等形成的多类糖)而引起的非丝状菌性膨胀。污泥丝状菌膨胀可根据丝状微生物对环境条件和基质种类要求的不同而划分为五类类型:(1)低基质浓度型;(2)低溶解氧浓度型;(3)营养缺乏型;(4)高硫化物型;(5)pH不平衡型。在实际运行中,一般以污泥丝状菌膨胀为主,占90%以上。发生污泥膨胀时,主要有以下特征:(1)二沉池中污泥的SVI值大于200ml/g;(2)回流污泥浓度下降;(3)二沉池中污泥层增高。 污泥丝状菌膨胀形成的相关理论。(1)表面积容积比(A/V)假说。当微生物处于基质限制和控制时,比表面积大的丝状菌获取底物的能力要强于菌胶团微生物,因而丝状菌占优势,菌胶团受到抑制,导致污泥的沉降性能下降。(2)积累/再生(AC/SC)假说。在高负荷条件下菌胶团微生物累积有机基质的能力强,丝状菌较差。但是此时微生物处于溶解氧限制和控制,因此丝状菌需要氧较少,完成积累再生的循环较快,因此生长较快,形成污泥膨胀。(3)选择性准则。(4)饥饿假说理论 与污泥膨胀有关的丝状菌。能引起污泥膨胀的丝状菌有30多种。021N型菌是引起污泥膨胀最主要的丝状菌(80%),1701型菌和球衣菌(40%)。下面是不同行业工业废水中常见的丝状菌 工厂类型丝状菌 化工废水微丝菌、021N、0041、诺卡氏菌、软发菌 纸浆造纸 0092、诺卡氏菌、1701,软发菌 食品加工 0041、021N、0092、诺卡氏菌、1701、球衣菌 啤酒废水 0041、021N、0092、1701 奶制品业诺卡氏菌、0092、软发菌 肉食加工 1701、球衣菌、021N、软发菌 土豆加工 0092、021N、球衣菌、1701 水果业 021N、诺卡氏菌、0041、软发菌、0092 糖果罐头 0092、球衣菌 以上常见菌随水质的不同而变化。 下面是不同水质条件下引起污泥膨胀的丝状菌种类 水质条件丝状菌种类 低基质(F/M)微丝菌、诺卡氏菌、软发菌、0041、0092、021N 低溶解氧(DO)球衣菌、发硫菌、1701、021N、1863、软发菌 高H2OS 发硫菌、贝氏硫菌、1701、021N、球衣菌 低N、P 发硫菌、021N、球衣菌 pH 丝状真菌 丝状菌的作用(1)保持污泥的絮体结构,形成具有良好沉淀性能的污泥。(2)保持高的净化效率、低的处理出水浓度。(3)保持低的出水悬浮物浓度。 污泥丝状菌膨胀的控制途径 (1)环境调控控制法通过改变曝气池中生态环境,使之有利于菌胶团微生物生长,抑制丝状菌过量繁殖,从而控制污泥膨胀。好氧生物选择器和SBR法就属于此类。 (2)代谢机制控制法利用两类微生物的不同代谢机制,造成有利于菌胶团微生物生长的条件,而抑制丝状菌的过量繁殖。代表性方法有缺氧、厌氧选择器和污泥再生工艺。

相关文档
最新文档