各种测量的规范及限差

各种测量的规范及限差
各种测量的规范及限差

测绘规范及限差

《工程测量规范》(GB50026─93)

发布与实施时间:1993-03-26发布,1993-08-01实施,

适用范围:城镇、工矿企业、交通运输和能源等工程建设的勘察、设计、施工以及生产(运营)阶段的通用性测绘工作。

内容:控制测量、采用非摄影测量方法的1:500~1:5000比例尺测图、线路测量、绘图与复制、施工测量、竣工总图编绘与实测和变形测量。

《水利水电工程施工测量规范》(SL52─93)

发布与实施时间:1993-06-25发布,1993-12-01实施

适用范围:水利水电工程施工阶段的测量工作。

内容:控制测量、放样的准备与方法、开挖工程测量、立模与填筑放样、金属结构和机电设备安装测量、地下洞室测量、辅助工程测量、施工场地地形测量、疏浚及渠堤施工测量、竣工测量、施工期间的外部变形监测。

《建筑变形测量规程》(JGJ/T 8-97)

发布与实施时间:1998年6月1日施行

适用范围:工业与民用建筑物(包括构筑物)的地基基础、上部结构及其场地的各种沉降(包括上升)测量和位移测量。

《城市测量规范》(CJJ 8-99)

发布与实施时间:1999-02-10发布,1999-07-01施行

适用范围:城市规划、城市地籍管理和城市各项建设工程的勘测、设计、竣工以及城市管理的通用性测绘工作。

《全球定位系统城市测量技术规程》(CJJ 73-97)

发布与实施时间:1997-04-25发布,1997-10-01施行

适用范围:城市各等级控制网测量,城市地籍控制网测量和工程控制网测量。当进行城市地形形变监测控制网测量时,可参照本规范执行。

《水利水电工程施工测量规范》(SL52─93)

表1 光电测距附合(闭合)导线技术要求

注:表中所列的技术要求,符合最弱点点位中误差不大于10mm(三、四等)和20mm(五等)

1. 当导线网作为首级控制时,应布设成环形结点网,各导线环的长度不应大于表1中规定总长的0.7倍。

2. 加密导线,宜以直伸形状布设,附合于首级网点上。各导线点相邻边长不宜相差过大。

表2 水平角方向观测法技术要求 注:当观测方向的垂直角大于±3o时,按相邻测回同方向进行比较,其差值仍应符合上表规定。 一、水平角观测误差超限时,应在原位置上进行重测,并符合下列规定: 1. 上半测回归零差或零方向2c 超限,该测回应立即重测,但不计重测测回数。

2. 同测回2c 较差或各测回同一方向值较差超限,可重测超限方向(应联测原零方向)。一测回中,重测方向数,超过测战方向总数的1/3时,该测回应重测。

3. 因测错方向、读错、记错、气泡中心位置偏移超过一格或个别方向临时被挡,均可随时进行重测。 二、观测手簿的记录、检查和观测数据的划改,应遵守下列规定:

(1)、水平角观测的秒值读、记错误,应重新观测,度分读、记错误可在现场更正。但同一方向盘左、盘右不得同时更改相关数字。

(2)、天顶距观测中,分的读数在各测回中不得连环更改。

(3)、距离测量中,每测回开始要读、记完整的数字,以后可读、记尾数。厘米以下数字不得划改。米和厘米部分的读、记错误,在同一距离的往返测量中,只能划改一次。 三、水平角观测结束后,其测角中误差按下列公式计算:

导线(网)测角中误差的计算方法分两种情况:

(1)、按左、右角闭合差计算:[]n

m 2??±

(1-1)

(2 )、按导线方位角闭合差计算:nN

f m 2ββ

±

= (1-2)

其中:?--------左、右角之和360o与之差

βf -------附合导线(或闭合导线)的方向角闭合差;

n---------三角形个数或计算βf 的测站数 N--------附合导线或闭合导线环的个数。

表3 内业计算数字取位要求

表4 等级水准测量的技术要求

注:n 为水准路线单程测站数,每公里多于16站,按山地计算闭合差限差;

?M 为每Km 高程测量高差中数的偶然中误差,W M 为每Km 高程测量高差中数的全中误差。

表5 等级水准测量测站的技术要求

注:当采用单面标尺四等水准测量时,变动仪器高度两次所测高差之差与黑红面所测高差之差的要求相同。

表6 光电测距三角高程测量的技术要求

注:D为平距,以公里记。

《工程测量规范》(GB50026─93)(1993-03-26发布,1993-08-01实施)

表7 导线测量的主要技术要求

注:1. 表中n为测站数;

2. 测区测图的最大比例尺为1:1000时,一、二、三级导线的平均边长及总长可适当放长,但最大长

度不应大于表中规定的2倍。

3. 导线平均边长较短时,应控制导线边数,但不得超过表5-1相应等级导线长度和平均边长算得的

边数;当导线长度小于表5-1规定长度的1/3时,导线全长的绝对闭合差不应大于13cm。

4. 导线宜布设成直伸形状,相邻边长不宜相差过大。当附合导线长度超过规定时,应布设成结点网形。

结点与结点、结点与高级点之间的导线长度,不应大于表5-1中规定长度的0.7倍。

当导线网用作首级控制时,应布设成环形网,网内不同环节上的点不宜相距过近。

表8 水平角方向观测法技术要求

注:当观测方向的垂直角大于±3o时,该方向2倍照准差的变动范围,可按相邻测回同方向进行比较。

表9 内业计算中数字取值精度的要求

表10 水准测量的主要技术要求

注:n 为水准路线单程测站数,每公里多于16站,按山地计算闭合差限差,W M 为每Km 高程测量高差中数的全中误差。二等水准视线长度小于20m 时,其视线高度不应低于0.3m

表12 电磁波测距三角高程测量的技术要求

注:D 为平距,以公里记。

地形测量:

表13 测图比例尺的选用

注:对于精度要求较低的专用地形图,可按小一级比例尺地形图的规定进行测绘或利用小一级比例尺地形图放大成图。

地形类别划分,应根据地面倾角(a )大小确定,并应符合下列规定: 平坦地:a<3˙ 丘陵地:3˙≤a<10˙ 山 地:10˙≤a<25˙ 高山地: a ≥25˙

表14-1 一般地区解析图根点的个数

表14-2 地形图的基本等高距(m )

注:1、同一城市或测区的同一比例尺地形图,宜采用一种基本等高距。此时不同地形类别的等高线插求点高程精度要求,可按相应的地形类别应采用的基本等高距分别推算;

2

、同一幅图不得采用两种基本等高距。

表15 图根导线测量的主要技术要求

注:M 为测图比例尺的分母,H 为测图最大视距,n 为测站数;

隐蔽或施测困难地区导线相对闭合差可放宽,但不应大于1/1000。

表16 图根支导线(极坐标)平均边长及边数

表17 图根经纬仪三角测量的主要技术要求

H为等高距(m)边长大于400m时,应考虑地球曲率和折光差的影响。注:S为边长,n为边数,

d

《城市测量规范》(CJJ 8-99)(1999-7-01实施)

表18-1 光电测距导线的主要技术要求

表18-2 导线测量水平角观测技术要求

注:n为测站数

表18-3 水平角方向观测法的各项限差(″)

注:当观测方向的垂直角大于±3o时,该方向2倍照准差的变动范围,可按相邻测回同方向进行比较,手簿中注明。

表18-4 垂直角观测的测回数与限差

表19 水准测量计算小数位的取位

表20 地形图的基本等高距(m)

注:1、同一城市或测区的同一比例尺地形图,宜采用一种基本等高距。此时不同地形类别的等高线插求点高程精度要求,可按相应的地形类别应采用的基本等高距分别推算;2、同一幅图不得采用两种基本等高距。

表21-1 图根光电测距导线测量的技术要求

表21-2 图根三角高程技术要求

表22 水准测量的主要技术要求

注: 1、W M 为每Km 高程测量高差中数的全中误差,?M 为每Km 高程测量高差中数的偶然中误差,s L 为测段、区段或路线长度,L 为附合路线或环线长度,i L 为检测测段长度,均以公里记; 2、山区指路线中最大高差超过400米的地区;

3、水准环线由不同等级水准路线构成时,闭合差的限差应按各等级路线长度分别计算,然后取其平方根为限差;检测已测测段高差之差的限差,对单程及往返检测均适用;检测长度小于1公里时,按1公里计算;

4、当成像清晰稳定时,三、四等水准观测视线长度可以放长20%。

《建筑变形测量规程》(JGJ/T 8-97)1998年6月1日施行

表23 建筑变形测量的等级及其精度要求

注:1 观测点测站高差中误差,系指几何水准测量测站高差中误差或静力水准测量相邻观测点相对高差中误差;

2观测点坐标中误差,系指观测点相对测站点(如工作基点等)的坐标中误差、坐标差中误差以及等价的观测点相对基准线的偏差值中误差、建筑物(或构件)相对底部定点的水平位移分量中误差。

表24 水准观测的视线长度、前后视距差和视线高度(m)

各等级水准观测的限差应符合表25中的规定:

使用的水准仪、水准标尺,项目开始前应进行检验,项目进行中也应定期检验。检验后应符合下列要求:表25 水准观测的限差(mm)

注:表中n为测站数。

表26 测边控制网技术要求

注:有下列情况之一时,不宜按本规定采用:

1测距中误差不同于表列规定时;

2实际平均边长与表列数值相差较大时。

表27 导线测量技术要求

注:1 C1、C2为导线类别系数。对附合导线,C1=C2=1;对独立单一导线,C1=1.2,C2=2;对导线网,导线长度系指附合点与结点或结点间的导线长度,取C1≤0.7、C2=1;

2 有下列情况之一时,不宜按本规定采用:

1)导线最弱点点位中误差不同于表列规定时;

2)际平均边长与导线长度对比表列规定数值相差较大时。

《全球定位系统城市测量技术规程》(CJJ 73-97)1997-04-25发布,1997-10-01施行

表28 地球椭球和参考椭球的基本几何参数

表29 GPS网的主要技术要求

注:当边长小于200m时,边长中误差应小于20mm。

表30 闭合环或附合线路边数的规定

表31 GPS测量各等级的作业的基本技术要求

注:当采用双频机进行快速静态观测时,时间长度可缩短为10min 《全球定位系统城市测量技术规程》(CJJ 73-97) GPS 测量各等级的点位几何图形强度因子PDOP 值应小于6。

城市GPS 测量可不观测气象要素,但应记录雨、晴、阴、云等天气状况。

表32 同步环坐标分量及环线全长相对闭合差的规定(1310-6

无论采用单基线模式或多基线模式解算基线,都应在整个GPS 网中选取一组完全的独立基线构成独立环,各独立环的坐标分量闭合差和全长闭合差应符合下式的规定:

σωn x 2≤ σωn y 2≤ σωn z 2≤ σωn 32≤

式中 22

2z y x ωωωωω

++----=闭合差,;

n--------独立环中的边数。

复测基线的长度较差,不宜超过下式的规定:

σ

22≤s d

测绘知识

一、

测绘名词(摘自国家测绘局)

1、大地基准:

是建立国家大地坐标系统和推算国家大地控制网中各点大地坐标的基本依据,它包括一组大地测量参数和一组起算数据,其中,大地测量参数主要包括作为建立大地坐标系依据的地球椭球的四个常数,即地球椭球赤道半径啊,地心引力常数GM ,带球谐系数J2(由此导出椭球扁率f )和地球自转角度w ,以及用以确定大地坐标系统和大地控制网长度基准的真空光速c ;而一组起算数据是指国家大地控制网起算点(成为大地原点)的大地经度、大地纬度、大地高程和至想邻点方向的大地方位角。

全国天文大地网共包括三角点、导线点48433个,拉普拉斯点458个,长度起始边467条,由此组成全国范围的参考框架,是国家各部门和全国各行业进行测绘工作的基础

2、大地水准面

大地水准面是由静止海水面并向大陆延伸所形成的不规则的封闭曲面。它是重力等位面,即物体沿该面运动时,重力不做功(如水在这个面上是不会流动的)。大地水准面是描述地球形状的一个重要物理参考面,也是海拔高程系统的起算面。大地水准面的确定是通过确定它与参考椭球面的间距——大地水准面差距(对于似大地水准面而言,则称为高程异常)来实现的。大地水准面和海拔高程等参数和概念在客观世界中无处不在,在国民经济建设中起着重要的作用。

大地水准面是大地测量基准之一,确定大地水准面是国家基础测绘中的一项重要工程。它将几何大地测量与物理大地测量科学地结合起来,使人们在确定空间几何位置的同时,还能获得海拔高度和地球引力场关系等重要信息。大地水准面的形状反映了地球内部物质结构、密度和分布等信息,对海洋学、地震学、地球物理学、地质勘探、石油勘探等相关地球科学领域研究和应用具有重要作用。

3、高程基准

是推算国家统一高程控制网中所有水准高程的起算依据,它包括一个水准基面和一个永久性水准原点。水准基面,通常理论上采用大地水准面,它是一个延伸到全球的静止海水面,也是一个地球重力等位面,实际上确定水准基面则是取验潮站长期观测结果计算出来的平均海面。中国以青岛港验潮站的长期观测资料推算出的黄海平均海面作为中国的水准基面,即零高程面。中国水准原点建立在青岛验潮站附近,并构成原点网。用精密水准测量测定水准原点相对于黄海平均海面的高差,即水准原点的高程,定为全国高程控制网的起算高程。国家第二期一等水准网高程起算点为水准原点。高程系统为“1985国家高程系统”,共有292条线路、19931个水准点,总长度为93341公里,形成了覆盖全国的高程基础控制网(台湾资料暂缺)

4、重力基准

是指绝对重力值已知的重力点,作为相对重力测量(两点间重力差的重力测量)的起始点。世界公认的起始重力点称为国际重力基准。各国进行重力测量时都尽量与国际重力基准相联系,以检验其重力测量的精度并保证测量成果的统一。国际通用的重力基准有1909年波茨坦重力测量基准和1971年的国际重力基准网(IGSN——71)。中国于1956~1957年建立了全国范围的第一个国家重力基准,称为1957年国家重力基本网,该网由21个基本点和82个一等点组成。1985年,中国重新建立了国家重力基准。它由6个基准重力点,46个基本重力点和5个因点组成,称为1985年国家重力基本网。国家1985重力基本网,由6个重力基准点、46个重力基本点和5个引点组成。1999年开始重建工作(台湾省资料暂缺)

5、54国家坐标系:

建国初期,为了迅速开展我国的测绘事业,鉴于当时的实际情况,将我国一等锁与原苏联远东一等锁相连接,然后以连接处呼玛、吉拉宁、东宁基线网扩大边端点的原苏联1942年普尔科沃坐标系的坐标为起算数据,平差我国东北及东部区一等锁,这样传算过来的坐标系就定名为1954年北京坐标系。因此,P54可归结为:

a.属参心大地坐标系;

b.采用克拉索夫斯基椭球的两个几何参数;

c. 大地原点在原苏联的普尔科沃;

d.采用多点定位法进行椭球定位;

e.高程基准为1956年青岛验潮站求出的黄海平均海水面;

f.高程异常以原苏联1955年大地水准面重新平差结果为起算数据。按我国天文水准路线推算而得。

自P54建立以来,在该坐标系内进行了许多地区的局部平差,其成果得到了广泛的应用。

1954北京坐标系参考椭球基本几何参数

长半轴a=6378245m

短半轴b=6356863.0188m

扁率α=1/298.3

第一偏心率平方

2

e=0.006693421622966 第二偏心率平方2'e=0.006738525414683

6、80国家坐标系:

采用国际地理联合会(IGU)第十六届大会推荐的椭球参数,大地坐标原点在陕西省泾和县永乐镇的大地坐标系,又称西安坐标系。C80是为了进行全国天文大地网整体平差而建立的。根据椭球定位的基本原理,在建立C80坐标系时有以下先决条件:

(1)大地原点在我国中部,具体地点是陕西省径阳县永乐镇;

(2)C80坐标系是参心坐标系,椭球短轴Z轴平行于地球质心指向地极原点方向,大地起始子午面平行于格林尼治平均天文台子午面;X轴在大地起始子午面内与Z轴垂直指向经度0方向;Y轴与Z、X轴成右手坐标系;

(3)椭球参数采用IUG 1975年大会推荐的参数

因而可得C80椭球两个最常用的几何参数为:

长半轴a=6378140±5(m)

短半轴b=6356755.2882m

扁率α=1/298.257

第一偏心率平方

2

e=0.00669438499959 第二偏心率平方2'e=0.00673950181947

椭球定位时按我国范围内高程异常值平方和最小为原则求解参数。

(4)多点定位;

(5)大地高程以1956年青岛验潮站求出的黄海平均水面为基准。

7、WGS-84大地坐标系

WGS-84大地坐标系

WGS-84(World Geodetic System,1984年)是美国国防部研制确定的大地坐标系,其坐标系的几何定义是:原点在地球质心,z轴指向 BIH 1984.0定义的协议地球极(CTP)方向,X轴指向 BIH 1984.0 的零子午面和 CTP赤道的交点。Y轴与 Z、X轴构成右手坐标系(如图所示)。

WGs-84椭球及有关常数:

对应于 WGS-8大地坐标系有一个WGS-84椭球,其常数采用 IUGG第 17届大会大地测量常数的推荐值。下面给出WGS-84椭球两个最常用的几何常数:

长半轴:6378137± 2(m)

短半轴b=6356752.3142m

扁率α=1/298.257223563

e=0.00669437999013

第一偏心率平方2

第二偏心率平方2'e=0.00673949674223

8、高斯-克吕格坐标

适用于高克吕格投影的一种坐标系统。高斯- 克吕格投影是按分

带方法各自进行投影,故各带坐标成独立系统。以中央经线投影

为纵轴(x), 赤道投影为横轴(y),两轴交点即为各带的坐标原点。

纵坐标以赤道为零起算,赤道以北为正,以南为负。我国位于北

半球,纵坐标均为正值。横坐标如以中央经线为零起算,中央经

线以东为正,以西为负,横坐标出现负值,使用不便,故规定将

坐标纵轴西移500公里当作起始轴,凡是带内的横坐标值均加

500公里。在地形图上为了区别某一坐标系统属于哪一带,在靠

近图廓西边的第一条坐标网纵线和东边的第一条坐标网纵线的坐

标值之前,需加注这一图幅所在的带号,例如,第一条纵线的横

坐标值是 6370公里

9、高斯投影分带

高斯投影分带

按一定经差将地球椭球面划分成若干投影带,这是高斯投影中限制长度变形的最有

效方法。分带时既要控制长度变形使其不大于测图误差,又要使带数不致过多以减少换

带计算工作,据此原则将地球椭球面沿子午线划分成经差相等的瓜瓣形地带,以便分带投影。通常按经差6度或3度分为六度带或三度带。六度带自0度子午线起每隔经差6度

自西向东分带,带号依次编为第 1、2…60带。三度带是在六度带的基础上分成的,它的中央子午线与六度带的中央子午线和分带子午线重合,即自 1.5度子午线起每隔经差3

度自西向东分带,带号依次编为三度带第 1、2…120带。我国的经度范围西起 73度东

至135度,可分成六度带十一带或三度带二十二带。六度带可用于中小比例尺(1:25000以下)测图,三度带可用于大比例尺(如 1:10000)测图。在某些特殊情况下,高斯投影也可采用宽带或窄带,如按经差9度或1.5度分带。分带图如下:

10、全球定位系统

②地面控制部分:由主控站(负责管理、协调整个地面系统的工作)、注入站(即地面天线,在主控站的控制下向卫星注入导航电文和其他命令)、监测站(数据自动收集中心)和通讯辅助系统(数据传输)组成;

③用户装置部分:由天线、接收机、微处理机和输入输出设备组成。

全球定位系统(Global Positioning System ,简称GPS )

全球定位系统是美国布设的第二代卫星无线电导航系统。它

是在地球上空布设24颗 GPS 专用卫星,卫星轨道即每时刻的精确位置由地面监控站测定,并通过卫星用无线电波向地面发播;地面上用GPS 接收机同时接收4颗以上卫星信号,根据卫星的精确位署以求得地面点位置。它能为用户提供全球性、全天候、连续、实时、高精度的三维坐标、三向速度和时间信息。

GPS 具有精度高、速度快、全天候、距离远等特点,促使大地测量的作用大大向外扩展延伸。其作用可归纳如下一些:

(1)为飞机、船舶、运载体提供定位和导航信息;

(2)布设城市、矿山、海洋等各类控制网,不需造标观测,可灵活方便又廉价的满足经济建设和国防建设的需要;

(3)布设地面监测网,可监测地壳形变、板块运动、固体潮、海平面升降等地球动力学现象; (4)可用于标定国界、海疆和联测沿海岛屿;

(5)用于建立以地球质心为坐标系原点的地心坐标系,为建立大地测量参考框架提供资料; ( 6)利用GPS 和水准测量资料精化大地水准面;

(7)应用在已知点上的GPS 观测资料,可反求大气对流层的气象元素等。

1、GPS 发展的背景

1957年世界上第一颗人造卫星发射成功后,利用卫星导航定位的研究提到了议事日程。1973年12月,美国陆、海、空三军继“海军导航卫星系统”(简称“NNSS”,1958年开始研制,1964年正式运行)后,开始联合研制新一代空间卫星导航定位系统,历时20多年,耗资300亿美元。其目的主要是为陆、海、空三大领域提供实时、全天候和全球性的导航服务,并用于情报收集、核爆监测和应急通讯等军事目的,是美国独霸全球战略的重要组成部分。 2、GPS 的工作原理

GPS 是目前世界公认最先进的被动式卫星导航定位系统。即卫星全天时地发射包含自身三维速度、三维坐标和准确时间等信息的导航电文,设在代定点上的接收机通过接受导航电文进行测时、测距,利用空间后方距离交会技术反算出代定点的三维速度和三维坐标,实现导航定位的目的。 3、GPS 的组成部分

①空间部分:由分布在6个轨道面上的24颗卫星组成(21颗工作卫星和三颗备用卫星),卫星上安置了精确的原子钟、发射和接受系统等装置;

4、SA和AS技术及对策

美国为了维护其军事利益和国家安全,分别对GPS实施了AS和SA技术。AS(Anti-Spoofing)技术也叫反电子欺骗技术,他是一种GPS保护技术,是为了防止敌方和黑客对GPS信息的破坏和干扰以及防止非授权用户(民用用户)使用精密导航信息(军用码)。SA(Selective Availability)技术即选择可用技术,是通过在非精密导航信息(民用码)里人为地加入高频干扰信号和降低卫星星历精度,从而降低了普通用户的定位精度,使民用单点定位误差达到100米。SA政策是影响民用定位精度的主要原因。

为了应对美国SA政策,提高定位精度,世界各国纷纷采用差分技术。即利用多台接收机同时接受同一颗卫星信号,采用一次或多次求差的方法,抵消同一颗卫星的各种人为干扰误差和大气误差,从而提高定位精度。在此基础上又发展了的广域差分、实时差分等定位技术,有效的减弱了SA和AS政策的影响。5、GPS技术的发展方向

为了促进GPS的发展,1998年美国政府提出了GPS现代化计划,总体上可归纳为以下三个方面:

①保护。采用各种措施保护GPS不受敌方和黑客的干扰,增加军用讯好的强度,增强抗干扰能力。

②阻止。阻止敌方利用GPS军用讯号,设计新的信号结构,将军用频道和民用频道彻底分开。

③改善。改善GPS定位和导航精度,增加2个民用频道,提前结束SA政策。

为了促进GPS产业发展,2000年5月1日,克林顿总统宣布取消SA干扰,使GPS单点定位精度提高了10倍。为了不给美国国家安全带来威胁,美军升级了军用GPS系统并声称在其认为国家安全受到威胁时,还将增加地区性的认为干扰。

GPS定位原理概述

第1节GPS的组成

GPS(Global Positioning System)即全球定位系统,是由美国建立的一个卫星导航定位系统,利用该系统,用户可以在全球范围内实现全天候、连续、实时的三维导航定位和测速;另外,利用该系统,用户还能够进行高精度的时间传递和高精度的精密定位。

GPS计划始于1973年,已于1994年进入完全运行状态(FOC[2])。GPS的整个系统由空间部分、地面控制部分和用户部分所组成:

空间部分

GPS的空间部分是由24颗GPS工作卫星所组成,这些GPS工作卫星共同组成了GPS卫星星座,其中21颗为可用于导航的卫星,3颗为活动的备用卫星[3]。这24颗卫星分布在6个倾角为55°的轨道上绕地球运行。卫星的运行周期约为12恒星时。每颗GPS工作卫星都发出用于导航定位的信号。GPS用户正是利用这些信号来进行工作的。

控制部分

GPS的控制部分由分布在全球的由若干个跟踪站所组成的监控系统所构成,根据其作用的不同,这些跟踪站又被分为主控站、监控站和注入站。主控站有一个,位于美国克罗拉多(Colorado)的法尔孔(Falcon)空军基地,它的作用是根据各监控站对GPS的观测数据,计算出卫星的星历和卫星钟的改正参数等,并将这些数据通过注入站注入到卫星中去;同时,它还对卫星进行控制,向卫星发布指令,当工作卫星出现故障时,调度备用卫星,替代失效的工作卫星工作;另外,主控站也具有监控站的功能。监控站有五个,除了主控站外,其它四个分别位于夏威夷(Hawaii)、阿松森群岛(Ascencion)、迭哥伽西亚(Diego Garcia)、卡瓦加兰(Kwajalein),监控站的作用是接收卫星信号,监测卫星的工作状态;注入站有三个,它们分别位于阿松森群岛(Ascencion)、迭哥伽西亚(Diego Garcia)、卡瓦加兰(Kwajalein),注入站的作用是将主控站计算出的卫星星历和卫星钟的改正数等注入到卫星中去。

用户部分

GPS的用户部分由GPS接收机、数据处理软件及相应的用户设备如计算机气象仪器等所组成。它的作用是接收GPS卫星所发出的信号,利用这些信号进行导航定位等工作。以上这三个部分共同组成了一个完整的GPS系统。

第2节 GPS信号

GPS卫星发射两种频率的载波信号,即频率为1575.42MHz的L1载波和频率为1227.60HMz的L2载波,它们的频率分别是基本频率10.23MHz的154倍和120倍,它们的波长分别为19.03cm和24.42cm。在L1和L2上又分别调制着多种信号,这些信号主要有:

C/A码

C/A码又被称为粗捕获码,它被调制在L1载波上,是1MHz的伪随机噪声码(PRN码),其码长为1023位(周期为1ms)。由于每颗卫星的C/A码都不一样,因此,我们经常用它们的PRN号来区分它们。C/A码是普通用户用以测定测站到卫星间的距离的一种主要的信号。

P码

P码又被称为精码,它被调制在L1和L2载波上,是10MHz的伪随机噪声码,其周期为七天。在实施AS时,P码与W码进行模二相加生成保密的Y码,此时,一般用户无法利用P码来进行导航定位。

Y码

见P码。

导航信息

导航信息被调制在L1载波上,其信号频率为50Hz,包含有GPS卫星的轨道参数、卫星钟改正数和其它一些系统参数。用户一般需要利用此导航信息来计算某一时刻GPS卫星在地球轨道上的位置,导航信息也被称为广播星历。

第3节 SPS和PPS

GPS系统针对不同用户提供两种不同类型的服务。一种是标准定位服务(SPS–Standard Positioning Service),另一种是精密定位服务(PPS–Precision Positioning Service)。这两种不同类型的服务分别由两种不同的子系统提供,标准定位服务由标准定位子系统(SPS–Standard Positioning System)提供,精密定位服务则由精密定位子系统(PPS–Precision Positioning System)提供。

SPS主要面向全世界的民用用户。

PPS主要面向美国及其盟国的军事部门以及民用的特许用户。

第4节 GPS定位的常用观测值

在GPS定位中,经常采用下列观测值中的一种或几种进行数据处理,以确定出待定点的坐标或待定点之间的基线向量:

L1载波相位观测值

L2载波相位观测值(半波或全波)

调制在L1上的C/A码伪距

调制在L1上的P码伪距

调制在L2上的P码伪距

L1上的多普勒频移

L2上的多普勒频移

实际上,在进行GPS定位时,除了大量地使用上面的观测值进行数据处理以外,还经常使用由上面的观测值通过某些组合而形成的一些特殊观测值,如宽巷观测值(Wide-Lane)[4]、窄巷观测值(Narrow-Lane)[5]、消除电离层延迟的观测值(Ion-Free)[6]来进行数据处理。

第5节 GPS定位的误差源

我们在利用GPS进行定位时,会受到各种各样因素的影响。影响GPS定位精度的因素可分为以下四大类:

一、与GPS卫星有关的因素

SA

美国政府从其国家利益出发,通过降低广播星历精度(技术)、在GPS基准信号中加入高频抖动(技术)等方法,人为降低普通用户利用GPS进行导航定位时的精度。

卫星星历误差

在进行GPS定位时,计算在某时刻GPS卫星位置所需的卫星轨道参数是通过各种类型的星历[7]提供的,但不论采用哪种类型的星历,所计算出的卫星位置都会与其真实位置有所差异,这就是所谓的星历误差。

卫星钟差

卫星钟差是GPS卫星上所安装的原子钟的钟面时与GPS标准时间之间的误差。

卫星信号发射天线相位中心偏差

卫星信号发射天线相位中心偏差是GPS卫星上信号发射天线的标称相位中心与其真实相位中心之间的差异。

二、与传播途径有关的因素

电离层延迟

由于地球周围的电离层对电磁波的折射效应,使得GPS信号的传播速度发生变化,这种变化称为电离层延迟。电磁波所受电离层折射的影响与电磁波的频率以及电磁波传播途径上电子总含量有关。

对流层延迟

由于地球周围的对流层对电磁波的折射效应,使得GPS信号的传播速度发生变化,这种变化称为对流层延迟。电磁波所受对流层折射的影响与电磁波传播途径上的温度、湿度和气压有关。

多路径效应

由于接收机周围环境的影响,使得接收机所接收到的卫星信号中还包含有各种反射和折射信号的影响,这就是所谓的多路径效应。

三、与接收机有关的因素

接收机钟差

接收机钟差是GPS接收机所使用的钟的钟面时与GPS标准时之间的差异。

接收机天线相位中心偏差

接收机天线相位中心偏差是GPS接收机天线的标称相位中心与其真实的相位中心之间的差异。

接收机软件和硬件造成的误差

在进行GPS定位时,定位结果还会受到诸如处理与控制软件和硬件等的影响。

四、其它

GPS控制部分人为或计算机造成的影响

由于GPS控制部分的问题或用户在进行数据处理时引入的误差等。

工程测量常用的规范及限差参数归纳

测绘常用规范及限差参数 《工程测量规范》(GB50026─93) 发布与实施时间:1993-03-26发布,1993-08-01实施, 适用范围:城镇、工矿企业、交通运输和能源等工程建设的勘察、设计、施工以及生产(运营)阶段的通用性测绘工作。 内容:控制测量、采用非摄影测量方法的1:500~1:5000比例尺测图、线路测量、绘图与复制、施工测量、竣工总图编绘与实测和变形测量。 《水利水电工程施工测量规范》(SL52─93) 发布与实施时间:1993-06-25发布,1993-12-01实施 适用范围:水利水电工程施工阶段的测量工作。 内容:控制测量、放样的准备与方法、开挖工程测量、立模与填筑放样、金属结构和机电设备安装测量、地下洞室测量、辅助工程测量、施工场地地形测量、疏浚及渠堤施工测量、竣工测量、施工期间的外部变形监测。 《建筑变形测量规程》(JGJ/T 8-97) 发布与实施时间:1998年6月1日施行 适用范围:工业与民用建筑物(包括构筑物)的地基基础、上部结构及其场地的各种沉降(包括上升)测量和位移测量。 《城市测量规范》(CJJ 8-99) 发布与实施时间:1999-02-10发布,1999-07-01施行 适用范围:城市规划、城市地籍管理和城市各项建设工程的勘测、设计、竣工以及城市管理的通用性测绘工作。 《全球定位系统城市测量技术规程》(CJJ 73-97) 发布与实施时间:1997-04-25发布,1997-10-01施行 适用范围:城市各等级控制网测量,城市地籍控制网测量和工程控制网测量。当进行城市地形形变监测控制网测量时,可参照本规范执行。

《水利水电工程施工测量规范》(SL52─93) 表1 光电测距附合(闭合)导线技术要求 注:表中所列的技术要求,符合最弱点点位中误差不大于10mm(三、四等)和20mm(五等) 1. 当导线网作为首级控制时,应布设成环形结点网,各导线环的长度不应大于表1中规定总长的0.7倍。 2. 加密导线,宜以直伸形状布设,附合于首级网点上。各导线点相邻边长不宜相差过大。 表2 水平角方向观测法技术要求 注:当观测方向的垂直角大于±3o时,按相邻测回同方向进行比较,其差值仍应符合上表规定。 一、水平角观测误差超限时,应在原位置上进行重测,并符合下列规定: 1. 上半测回归零差或零方向2c 超限,该测回应立即重测,但不计重测测回数。 2. 同测回2c 较差或各测回同一方向值较差超限,可重测超限方向(应联测原零方向)。一测回中,重测方向数,超过测战方向总数的1/3时,该测回应重测。 3. 因测错方向、读错、记错、气泡中心位置偏移超过一格或个别方向临时被挡,均可随时进行重测。 二、观测手簿的记录、检查和观测数据的划改,应遵守下列规定: (1)、水平角观测的秒值读、记错误,应重新观测,度分读、记错误可在现场更正。但同一方向盘左、盘右不得同时更改相关数字。 (2)、天顶距观测中,分的读数在各测回中不得连环更改。 (3)、距离测量中,每测回开始要读、记完整的数字,以后可读、记尾数。厘米以下数字不得划改。米和厘米部分的读、记错误,在同一距离的往返测量中,只能划改一次。 三、水平角观测结束后,其测角中误差按下列公式计算: 导线(网)测角中误差的计算方法分两种情况: (1)、按左、右角闭合差计算:[]n m 2??± =β (1-1)

测绘规范、限差及基础知识

测绘规范、限差及基础知识 字体: 小中大| 打印发布: 作者: 佚名来源: 本站原创查看: 1094 次评论: 0条好评: 0 分 测绘规范及限差 《工程测量规范》(GB50026-93 ) 发布与实施时间:1993-03-26 发布,1993-08-01 实施,适用范围:城镇、工矿企业、交通运输和能源等工程建设的勘察、设计、施工以及生产(运营)阶段的通用性测绘工作。 内容:控制测量、采用非摄影测量方法的 1 : 500?1: 5000比例尺测图、线路测量、绘图与复制、 施工测量、竣工总图编绘与实测和变形测量。 《水利水电工程施工测量规范》(SL52-93 ) 发布与实施时间:1993-06-25 发布,1993-12-01 实施适用范围:水利水电工程施工阶段的测量工作。 内容:控制测量、放样的准备与方法、开挖工程测量、立模与填筑放样、金属结构和机电设备安装测量、地下洞室测量、辅助工程测量、施工场地地形测量、疏浚及渠堤施工测量、竣工测量、施工期间的外部变形监测。 《建筑变形测量规程》(JGJ/T 8-97) 发布与实施时间:1998年6月1日施行 适用范围:工业与民用建筑物(包括构筑物)的地基基础、上部结构及其场地的各种沉降(包括上升)测量和位移测量。

城市测量规范》(CJJ 8 -99) 发布与实施时间:1999-02-10 发布,1999-07-01 施行 适用范围:城市规划、城市地籍管理和城市各项建设工程的勘测、设计、竣工以及城市管理的通用性测绘工作。 《全球定位系统城市测量技术规程》(CJJ 73 -97) 发布与实施时间:1997-04-25 发布,1997-10-01 施行 适用范围:城市各等级控制网测量,城市地籍控制网测量和工程控制网测量。当进行城市地形形变监测控制网测量时,可参照本规范执行。

地铁施工测量限差(规范)摘要

城市轨道交通工程测量规范 一、地面平面控制测量 1.导线测量的主要技术要求 2.精密导线测量主要技术要求 3.水平角观测的主要技术要求 4.水平角观测 水平角观测所使用的全站仪、电子经纬仪和光学经纬仪,应符合下列相关规定:

3.1照准部旋转轴正确性指标:管水准气泡或电子水准器长泡在各位置的读数较差,1″级仪器不应超过2格,2″级仪器不应大于1格,6″级仪 器不应超过1.5格。 3.2光学经纬仪的测微器行差及隙动差指标:1″级仪器不应大于1″,2″级仪器不应大于2″。 3.3水平轴不垂直于垂直轴之差指标:1″级仪器不应超过10″,2″ 级仪器不应超过15″,6″级仪器不应超过20″。 3.4仪器的基座在照准部旋转时的位移指标:1″级仪器不应超过0.3″,2″级仪器不应超过1″,6″级仪器不超过1.5″。 3.5光学对中器的视轴与竖直的重合度不应大于1mm。 4. 水平角方向观测法的技术要求 二、地面高程控制测量 水准测量的主要技术要求

水准网测量的主要技术要求 水准测量测站的视线长度、视距差、视线高度的要求(m) 水准测量的测站观测限差(mm) 各等水准测量的主要技术指标(mm)

光电测距三角高程导线技术要求 三、联系测量 1.隧道贯通前的联系测量工作不少于3次,宜在隧道掘进到100m、300m以及距贯通面100~200m时分别进行一次。当地下起始方位角较差小于12″时,可取各次测量成果的平均值作为后续测量的起算数据指导隧道贯通。 2.隧道内定向边边长应大于60m,视线距隧道边墙的距离应大于0.5m。 3.隧道内控制点间平均边长宜为150m。曲线隧道控制点间距不应小于60m。 4.水准线路往返较差、附和或闭合差为±8√Lmm。 5.水准测量应在隧道贯通前进行三次,并应与传递高程测量同步进行。重复测量的高程点间的高程较差应小于5mm,满足要求时,应取逐步平均值作为控制点的最终成果指导隧道掘进。 四、暗挖隧道、车站施工测量 1.地下施工高程测量采用水准测量方法,水准点宜每50m设置一个。 2.施工高程测量可采用不低于DS3级水准仪和区格式木质水准尺,并按城市四等水准测量技术要求进往返观测,其闭合差为±20√Lmm(L

GPS控制测量各种规范限差

《卫星定位城市测量规范》CJJ/T 73—2010 GPS网的主要技术要求表1-1 注:边长小于200米时,边长中误差≤2cm。二、三、四等网相邻点最小边长不宜小于平均边长的1/2,最长边长不宜超过平均边长的2倍。一、二级网最大边长可在平均边长的基础上放宽1倍。 GPS接收机的选用表1-3

各项限差规定 σ())((2 2 bd a +=σ采用表1-1加乘常数) 同步环闭合差限差 σω5 3x ≤ , σω5 3y ≤ , σω5 3z ≤ , σω5 3≤ 同步环只计算三边同步环,))((2 2 bd a +=σ,d 按照该等级平均边长计算,ω—环闭合差, 2 22z y x ωωωω++= 异步环闭合差限差 σωn 2x ≤, σωn 2y ≤, σωn 2z ≤, σωn 32≤ n —独立环的边数,d 按照该等级平均边长计算,))((2 2 bd a += σ,ω—环闭合差, 2 22z y x ωωωω++= 重复基线限差 复测基线的长度较差ds ,同一基线不同时段较差应满足 σ23ds ≤(σ按照实际边长 计算) 三维无约束平差中,基线分量的改正数(X V ?,Y V ?,Z V ?)绝对值应满足下列要求 σ?3V X ≤,σ?3V Y ≤,σ?3V Z ≤ ))((2 2 bd a +=σ d 按照基线边长计算 约束平差中,基线分量的改正数与经过剔除粗差后的无约束平差结果的同一基线相应改正数较差应满足下列要求(或者进行已知点检查,已知点点位变化相对于约束点的边长相对中误差不应低

于表1-1规定的上一等级控制网中最弱边相对中误差) σ?2dV X ≤,σ?2dV Y ≤,σ?2dV Z ≤ ))((2 2 bd a +=σ d 按照基线边长计算

各种测量的规范及限差

测绘规范及限差 《工程测量规范》(GB50026─93) 发布与实施时间:1993-03-26发布,1993-08-01实施, 适用范围:城镇、工矿企业、交通运输和能源等工程建设的勘察、设计、施工以及生产(运营)阶段的通用性测绘工作。 内容:控制测量、采用非摄影测量方法的1:500~1:5000比例尺测图、线路测量、绘图与复制、施工测量、竣工总图编绘与实测和变形测量。 《水利水电工程施工测量规范》(SL52─93) 发布与实施时间:1993-06-25发布,1993-12-01实施 适用范围:水利水电工程施工阶段的测量工作。 内容:控制测量、放样的准备与方法、开挖工程测量、立模与填筑放样、金属结构和机电设备安装测量、地下洞室测量、辅助工程测量、施工场地地形测量、疏浚及渠堤施工测量、竣工测量、施工期间的外部变形监测。 《建筑变形测量规程》(JGJ/T 8-97) 发布与实施时间:1998年6月1日施行 适用范围:工业与民用建筑物(包括构筑物)的地基基础、上部结构及其场地的各种沉降(包括上升)测量和位移测量。 《城市测量规范》(CJJ 8-99) 发布与实施时间:1999-02-10发布,1999-07-01施行 适用范围:城市规划、城市地籍管理和城市各项建设工程的勘测、设计、竣工以及城市管理的通用性测绘工作。 《全球定位系统城市测量技术规程》(CJJ 73-97) 发布与实施时间:1997-04-25发布,1997-10-01施行 适用范围:城市各等级控制网测量,城市地籍控制网测量和工程控制网测量。当进行城市地形形变监测控制网测量时,可参照本规范执行。

《水利水电工程施工测量规范》(SL52─93) 表1 光电测距附合(闭合)导线技术要求 注:表中所列的技术要求,符合最弱点点位中误差不大于10mm(三、四等)和20mm(五等) 1. 当导线网作为首级控制时,应布设成环形结点网,各导线环的长度不应大于表1中规定总长的0.7倍。 2. 加密导线,宜以直伸形状布设,附合于首级网点上。各导线点相邻边长不宜相差过大。 表2 水平角方向观测法技术要求 注:当观测方向的垂直角大于±3o时,按相邻测回同方向进行比较,其差值仍应符合上表规定。 一、水平角观测误差超限时,应在原位置上进行重测,并符合下列规定: 1. 上半测回归零差或零方向2c 超限,该测回应立即重测,但不计重测测回数。 2. 同测回2c 较差或各测回同一方向值较差超限,可重测超限方向(应联测原零方向)。一测回中,重测方向数,超过测战方向总数的1/3时,该测回应重测。 3. 因测错方向、读错、记错、气泡中心位置偏移超过一格或个别方向临时被挡,均可随时进行重测。 二、观测手簿的记录、检查和观测数据的划改,应遵守下列规定: (1)、水平角观测的秒值读、记错误,应重新观测,度分读、记错误可在现场更正。但同一方向盘左、盘右不得同时更改相关数字。 (2)、天顶距观测中,分的读数在各测回中不得连环更改。 (3)、距离测量中,每测回开始要读、记完整的数字,以后可读、记尾数。厘米以下数字不得划改。米和厘米部分的读、记错误,在同一距离的往返测量中,只能划改一次。 三、水平角观测结束后,其测角中误差按下列公式计算: 导线(网)测角中误差的计算方法分两种情况: (1)、按左、右角闭合差计算:[]n m 2??± =β (1-1)

各种测量限差规范

各种测量限差规范

————————————————————————————————作者: ————————————————————————————————日期: ?

一、建筑变形测量 1建筑变形测量的等级及其精度要求 变形测量等级沉降观测位移观测 适用范围观测点测站高差 中误差(mm) 观测点坐标 中误差(mm) 特级≤0.05≤0.3 特高精度要求的特种精密工程和重要科研项目变形观测一级≤0.15≤1.0 高精度要求的大型建筑物和科研项目变形观测 二级≤0.50 ≤3.0 中等精度要求的建筑物和科研项目变形观测:重要建筑物主体倾斜观测、场地滑坡观测 三级≤1.50≤10.0低精度要求的建筑物变形观测:一般建筑物主体倾斜观测、场地滑坡观测 2 建筑变形水准观测的视线长度、前后视距差和视线高度(m) 等级视线长度前后视距差前后视距累积差视线高度特级≤10≤0.3 ≤0.5 ≥0.5 一级≤30≤0.7 ≤1.0≥0.3 二级≤50 ≤2.0≤3.0≥0.2 三级≤75≤5.0≤8.0 三丝能读数3建筑变形水准观测的限差(mm) 等级基辅分划 (黑红面) 读数之差 基辅分划 (黑红面)所 测高差之差 往返较差及 附合或环线 闭合差 单程双测站所测高 差 较差 检测已测 测段高差 之差 特级0.15 0.2 ≤0.1≤0.07≤0.15一级0.30.5 ≤0.3≤0.2≤0.45 二级0.5 0.7≤1.0≤0.7≤1.5 三级光学测微 法 1.0 1.5 ≤3.0 ≤2.0 ≤4.5 中丝读数 法 2.03.0 I角对于特级水准观测的仪器不得大于10″,对于一二级水准观测仪器不得大于15″,铟瓦水准尺、尺垫。 二、城市测量规范 1平面控制 光电测距导线的主要技术指标 等 级 城测 导线 城测平 均边长 工测 导线 工测平 均边长 测角中 误差" 测距 中误 城测导线 相对闭合 工测导线 相对闭合 测回数方位角 闭 J1 J2 DJ6

测量常用规范、规程主要技术要求、规定汇总

常用规范、规程主要技术规定、要求汇总 一、城市测量规范(CJJ 8——99) 1. 城市平面控制测量 1.1 坐标系统:1980西安坐标系或1954北京坐标系或城市坐标系。 1.2 城市平面控制网的等级划分: GPS网、三角网和边角结合网:依次为二、三、四等和一、二级; 导线网:依次为三、四等和一、二、三级。 说明: ⑴.导线网中结点与高级点间或结点与结点间的导线长度不应大于附合导线规定长度的 0.7倍;

⑵.当附合导线长度短于规定长度的1/3时,导线全长的绝对闭合差不应大于13cm; ⑶.光电测距导线的总长和平均边长可放长至1.5倍,但其绝对闭合差不应大于26cm。当 附合导线的边数超过12条时,其测角精度应提高一个等级; ⑷.导线相邻边长之比不宜超过1:3。 1.6 三角测量水平角观测的技术要求 0d 1.7 导线测量水平角观测的技术要求 注:n为测站数。 ⑴.凡超出以上规定限差的结果,均应进行重测。重测应在基本测回完成后并对成果综

合分析后再进行。

⑵.2C较差或各测回较差超限时,应重测超限方向并联测零方向。因测回较差超限重测 时,除明显孤值外,原则上应重测观测结果中最大和最小值的测回。 ⑶.零方向的2C较差或下半测回的归零差超限,该测回应重测。方向观测法一测回中, 重测方向数超过方向总数的1/3时(包括观测三个方向有一个方向重测),该测回应重测。 ⑷.采用方向观测法时,每站基本测回重测的方向测回数,不应超过全部方向测回总数 的1/3,否则整站重测。 ⑸.基本测回成果和重测成果,应载入记簿。重测与基本测回结果不取中数,每一测回 只取一个符合限差的结果。 ⑹.因三角形闭合差、极条件、基线条件、方位角条件自由项超限而重测时,应进行认 真分析择取有关测站整站重测。 1.10 光电测距各项较差的限值 2. (a+b·D)为仪器标称精度。 2. 城市高程控制测量 2.1 高程系统:1985国家高程基准或沿用1956年黄海高程系统。 2.2 城市高程控制测量方法与等级:水准测量和三角高程测量。 水准测量等级依次分为二、三、四等,首级高程控制不 应低于三等水准。 光电测距三角高程测量可代替四等水准测量。

测绘规范限差速查表01936

测绘规范限差速查表 时间:2010-06-10 23:04:16 来源:本站作者:未知我要投稿我要收藏投稿指南 《工程测量规范》(GB50026─93) 发布与实施时间:1993-03-26发布,1993-08-01实施, 适用范围:城镇、工矿企业、交通运输和能源等工程建设的勘察、设计、施工以及生产(运营)阶段的通用性测绘工作。 内容:控制测量、采用非摄影测量方法的1:500~1:5000比例尺测图、线路测量、绘图与复制、施工测量、竣工总图编绘与实测和变形测量。 《水利水电工程施工测量规范》(SL52─93) 发布与实施时间:1993-06-25发布,1993-12-01实施 适用范围:水利水电工程施工阶段的测量工作。 内容:控制测量、放样的准备与方法、开挖工程测量、立模与填筑放样、金属结构和机电设备安装测量、地下洞室测量、辅助工程测量、施工场地地形测量、疏浚及渠堤施工测量、竣工测量、施工期间的外部变形监测。 《建筑变形测量规程》(JGJ/T 8-97) 发布与实施时间:1998年6月1日施行 适用范围:工业与民用建筑物(包括构筑物)的地基基础、上部结构及其场地的各种沉降(包括上升)测量和位移测量。 《城市测量规范》(CJJ 8-99) 发布与实施时间:1999-02-10发布,1999-07-01施行 适用范围:城市规划、城市地籍管理和城市各项建设工程的勘测、设计、竣工以及城市管理的通用性测绘工作。 《全球定位系统城市测量技术规程》(CJJ 73-97) 发布与实施时间:1997-04-25发布,1997-10-01施行 适用范围:城市各等级控制网测量,城市地籍控制网测量和工程控制网测量。当进行城市地形形变监测控制网测量时,可参照本规范执行。

控制测量规范与要求

第一部分茅荆坝(蒙冀界)至承德公路(第15标)控制网复测技术设计书 一、编制依据及技术标准 (1)、《大广高速公路蒙冀界至承德高速公路GPS控制网成果表》(设计院交给的)(2)、《全球定位系统(GPS)铁路测量规程》(TB10054) (3)、《工程测量规范》(GB50026-2007) (4)、《国家三四等水准测量规范》(GB/T12898-2009) (5)、《公路勘测规范》(JTGC10-2007) 二、平面GPS、四等水准加密方法与精度要求 根据《全球定位系统(GPS)铁路测量规程》平面控制测量等级规定和本项目实际情况,隧道段控制网采用GPS观测方法时,精度按四等网技术要求施测。为确保线路衔接的平顺性,加密点必须联测其相邻的GPS平面控制点。 平面加密控制网的施测精度控制按:加密GPS网最弱边相对中误差小于1/70000,基线边方向中误差不大于1.7″的要求进行。 2.1具体精度控制标准 2.2 四等水准施测技术要求 四等水准测量的主要技术标准见表6.3-3. 注:表中L为往返测段、符合或环线的水准路线长度,单位Km。 三、平面控制网复测实施计划 3.1 GPS复测组网实施

为保证线路上所有控制点成果具有较高的可靠性和尽量保证点位精度的均匀性,平面控制网复测采用4太GPS接收机同时作业的观测模式,以此提高GPS观测网形的图形强度。GPS 网各时段全部以边连接方式构网,形成由大地四边形组成的带状网。 3.2 采用GPS测量方法的平面复测 遵循与设计单位建网时相同的构网原则,本次GPS方法的控制网复测组网以大地四边形为基本构网图形组成带状网,采用边联式构网。实际外业测量必须遵循基线组网设计所确定的作业模式,并在接收机或控制器上配置GPS外业观测参数,参与作业的接收机所配制的参数应相同。 每天出工之前,必须检查电池容量是否满足作业要求,数据存储设备应有足够的存储空间,仪器及其附件必须齐全。 天线安置应符合下列要求: —在开始GPS外业观测前,必须确认天线安置基座的对中器合格,天线安置基座的对中精度要求为1mm。天线应利用脚架和天线安置基座直接实现队中—在开始GPS外业观测前,必须确认天线安置基座的管水准器合格,天线安置基座必须严格整平。脚架必须稳定、牢固安置。 —如天线有指北定向标志,则应借助指北针或罗盘,在开始观测和观测过程中都使接收机天线指北标志指向正北方向。 —雷雨季节架设天线时,要注意防雷击。雷雨过境时,应立即停止观测,并卸下天线。GPS测量需要遵循的操作要点有: —观测组必须严格遵守调度命令,按规定时间开始同步观测。当没按计划到达点位时,应及时通知其他组,并经观测计划编制者同意后对观测时段作必要调整,观测者不得擅自更改观测计划。 —经检查,接收机的电源电缆、天线电缆等各项连接正确,接收机设置状态和工作状态正常后,方能启动接收机开始测量。 —每时段观测前后分别量取天线高,天线高丈量必须按接收机使用规定,从天线相位中心标志处丈量至地面点位标志,丈量的天线高是垂直高还是斜高必须在记录手薄上清楚的表明,且无论是垂直高还是斜高,直接丈量距离的误差在前后2次丈量中必须小于等于1mm,方取两次直接距离丈量的平均值作最终距离丈量的结果。 —不同时段的观测间隔期间必须重新进行天线安置基座的整平、对中操作,并重新丈量仪高。 —接收机开始记录数据后,应及时将观测站名、测站号、时段号、天线高等信息完整地记录在观测手薄上。同时严密注意仪器的警告信息,及时汇报和处理各种特殊情况。

测量要求规范

RTK(含CORS图根点测量 在网络RTK覆盖的区域首先选用网络RTK技术,具体方法参照CH/T 2009-2010《全球定位系统实时动态测量(RTK技术规范》; 1、观测时采用三角架对中整平,不能使用对中杆,对中整平后量测仪器高度,并正确设置仪器高类型(斜高、垂高)和量取位置(天线相位中心、天线项圈、天线底部等)。图根点间平均边长大于100m为宜。每次观测历元数应大于20个,采样间隔2s-5s。 2、观测前应对仪器进行初始化,并得到固定解,当超过5分钟长时间不能获得固定解时,宜断开通信链路,再次初始化操作。 3、每个图根点均应有两次独立的观测结果,测回间应对仪器重新初始化,测回间的时间间隔应大于60秒,也可采用两个时段进行观测。两次测量结果的平面坐标较差不得大于土3cm,高程的较差不得大于土5cm,在限差内取平均值作为图根点的平面坐标和高程; 4、每次作业前、作业结束后或重新架设基准站后,均应进行至少一个高等级已知点检核,平面坐标较差不应大于7cm 5、获取测区正确的转换参数。平面残差不应大于图上土0.07mm (1:500图3.5cm),高程拟合残差不应大于1/12基本等高距(1米等高距,8cn)。 &每测回观测控制手簿设置,控制点的平面收敛精度不应大于2cm高程 收敛精度不应大于3cm 7、经、纬度精确至〃,平面坐标和高程精确至0.001m。天线高精确至0.001m。 8、卫星状况基本要求 9、RTK ffl根测量主要技术要求

10、R TK测量检查 对观测成果进行100%内业检查和不少于总点数10%勺外业检测,平面坐标外业检测采用相应等级全站仪测量边长方法进行,边长较差的相对误差w 1/3000 , 高程检测采用相应等级三角高程测量方法进行,高差较差w 1/7基本等高距,检测点均匀分布测区。 11、每天作业结束后,应及时将各类原始观测数据、中间过程数据、转换数据和成果数据等转存至计算机或移动硬盘等其它媒介上。外业观测数据应提交完整的原始观测记录、检查记录表、成果表、资料整理等,参照公司RTK资料整理样板。 3地籍图测绘 基本要求 1、野外测图,作业区域应沿明显线状地物划分,责任明确,避免重测和漏测。各作业组测图结束后,图形文件应进行接边检查。检查是否有重漏测现象,跨区域地物应合理接边,各作业小组必须对成果检查无误后,方可交项目负责人。 测量以村为单位,原则上按203图斑进行测绘,农村宅基地、集体建设用地均要测量,村庄外围农民私自搭建零星养殖场可以不测量,村庄外围相邻道路、沟渠等线状地物的应测绘完整。原来的203图斑外围现在已经扩大新建的房屋需测量。远离203图斑的房屋暂不测量。 2、电子图骨架线需保留,且面状填充类的植被(符号填充为35mm、地貌、水系等骨架线应闭合。图形文件及图面整饰应符合以下规定。 3、测绘前注意仪器的棱镜常数的改正,其常数应和测量点位与棱镜放置部位相对应,镜头必须为小镜头。 4、全站仪设站时注意定向点的选择,禁止短边定向测量长边。 5、每次设站应至少测量两个重复点(内业整理资料必需的),提交地籍图时将实测点展绘到电子图上和展点文件一并提交,(展点文件以日期命名)。

测量观测限差与允许限差

岩金矿山地质与测量条例规定(第52条) 井下各级经纬仪导线网,其闭合差不应超过下表要求: 岩金矿山地质与测量条例规定(第61条) 井下经纬仪导线水平角观测,采用仪器及要求: 岩金矿山地质与测量条例规定(第75条) 井下经纬仪导线的水平角闭合差限差(允许值)如下: n—闭(附)合导线的总站数; n1、n2—分别为支导线第一次和第二次测量的总站数;

《工程测量规范》(GB50026─93)(1993-08-01实施) 1.表中n为测站数; 2.测区测图的最大比例尺为1:1000时,一、二、三级导线的平均边长及总长可适当放长,但最大长度不应大于表中规定的2倍。 3.导线平均边长较短时,应控制导线边数,但不得超过表5-1相应等级导线长度和平均边长算得的边数;当导线长度小于表5-1规定长度的1/3时,导线全长的绝对闭合差不应大于13cm。 4.导线宜布设成直伸形状,相邻边长不宜相差过大。当附合导线长度超过规定时,应布设成结点网形。结点与结点、结点与高级点之间的导线长度,不应大于表5-1中规定长度的0.7倍。 当导线网用作首级控制时,应布设成环形网,网内不同环节上的点不宜相距过近。 方向进行比较。 表9 内业计算中数字取值精度的要求

M为每Km 注:n为水准路线单程测站数,每公里多于16站,按山地计算闭合差限差, W 高程测量高差中数的全中误差。二等水准视线长度小于20m时,其视线高度不应低于0.3m 表12 电磁波测距三角高程测量的技术要求

地形测量: 表 小一级比例尺地形图放大成图。 地形类别划分,应根据地面倾角(a)大小确定,并应符合下列规定:平坦地:a<3˙ 丘陵地:3˙≤a<10˙ 山地:10˙≤a<25˙ 高山地: a≥25˙ 表 表14-2 地形图的基本等高距(m)

测绘规范限差速查表

建筑施工测量方案示例 \一、校核起始依据,建立建筑物控制网 1.校核起始依据 定位测量前,应由甲方提供三个衣刷相互关联的坐标控制点,和两个高程控制点,作为场区控制依据点。以坐标控制点为起始点。作二级导线测量,作为建筑物平面控制网。以高程控制点为依据,作等外附合水准测量,将高程引测至场区内。 平面控制网导线精度不低于1/10000,高程控制测量闭合差不大于±30√L mm(L为附合路线长度以km计)。 在测设建筑物控制网时,首先要对起始依据进行校核。根据红线桩及图纸上的建筑物角点坐标,反算出它们之间的相对关系,并进行角度、距离校测。校测允许误差:角度为±12〃;距离相对精度不低于为1/15000. 对起始高程点应用附合水准测量进行校核,高程校测闭合差不大于±10mm√n(n为测站数)。 2.建立建筑物控制网 以导线点为依据,测设出距建筑物外边7米的矩形平面控制网ⅠⅡⅢⅣ(见附图)。建筑物平面控制网点必须妥善保护。 二、主轴线的测设 1.主轴线的选择 该工程的结构主体分为裙房和主楼两部分,裙房为3层,主楼为26层,中间留有后浇带。因此,定主轴线时,按流水段的划分将该工程分三部分进行主轴线的控制。选择3轴、5轴、6轴、11轴、12轴、14轴作为X方向的主轴线;B轴、G轴作为Y方向的主轴线。 2.主轴线的测设 根据图纸尺寸在Ⅰ点上架设经纬仪,后视Ⅱ点,在此方向上量测出3轴、5轴、6轴、11轴、12轴、14轴桩点,再后视Ⅳ点并量测出B轴、G轴桩点。同样在Ⅲ点架设经纬仪,分别测设出东侧、北侧的主轴线桩,并分别测设出引桩。测设完的主轴线桩及引桩应用围栏妥善保护,长期保存。 3.高程控制 利用高程点进行附合测法在场区内布设不少于八个点的水准路线abcdefgh,这些水准点作为结构施工高程传递的依据。 三、±0.000米以下及基础施工测量 该工程的基础标高为-15.80米。标高传递采用钢尺配合水准仪进行,并控制挖土深度。挖土

工程测量规范

1、工程测量规范 第2.1.8条:三边测量的主要技术要求 第2.4.10条:普通钢卷尺测距的主要技术要求 注:s为转点桩至中桩桩位的距离(m).

第5.2.19条中桩高程测量,应布设附和路线,其闭合差不应超过50√Lmm.。 第7.2.13条建筑物的控制网,应根据建筑物结构、机械设备传动性能及生产工艺连续程度,分别不舍一级或二级控制 第7.3.1条工业与民用建筑的施工放样,应具备下列资料: 一、总平面图; 二、建筑物的设计与说明; 三、建筑物、构筑物的轴线平面图; 四、建筑物的基础平面图; 五、设备的基础图; 六、土方的开挖图; 七、建筑物的结构图。

第7.4.1条灌注桩应根据设计的数据进行定位测量,其定位误差,不宜大于5cm。当精度要求较高,需建立灌注桩举行控制网时,其技术要求应符合表7.4.1的规定。 第2.1.11导线和导线网的主要技术要求应符合下列规定: 光电测距导线的主要技术要求 第7.2.8定线、拨地测量的校核限差

第7.4.2山地线路导线测量的的主要技术要求 第7.4.8纵、横断面测量应符合下列规定: 1纵断面测量(即中平测量)应逐点附和于基平测量水准点上,按图跟水准测量(包括图根光电测距三角高程测量)精度要求沿中线逐桩进行,并检查里程桩号。相临水准点高差与纵段检测的较差,不应超过2cm.设计所依据的重要高程点位如铁路轨顶、桥面、路中、下水道井底与坑深测高点灯影按转点施测。水准点和赚点的读数取值毫米,各中视点的读数则取至厘米。 2横断面测量的宽度应能满足需要。横断面的方向,在直线部分应与中线垂直,再去线部分应在法线上。作业过程中,是横向地形变化在不影响设计质量的情况下,可适当的增减断面数,加测断面时应在中线上补桩号及高程。旧路展宽和排水沟等工程,可选有代表性的位置施测横断面。 3在测量横断面时,应根据不同工程的需要测出横向遇到的建筑地坪、各街巷与单位出入口地面、地下室采光口的窗台、地下管线检修井井盖、进出水口、不同路面结构界限、沿岸水工建筑物顶面等处高程。测路拱大样时应适当加密点位。 4按轴线桩施测横断面时、到中线处应加测高程并注明,以备择绘中线纵断面图。5横断面可采用全站仪测量或用水准仪测高、用皮尺或绳尺量距,高差读数至厘米;距离读数至分米。

《测绘规范及限差》(参考Word)

测绘规范及限差 默认分类 2010-04-17 20:30:15 阅读203 评论0 字号:大中小订阅 《工程测量规范》(GB50026─93) 发布与实施时间:1993-03-26发布,1993-08-01实施, 适用范围:城镇、工矿企业、交通运输和能源等工程建设的勘察、设计、施工以及生产(运营)阶段的通用性测绘工作。 内容:控制测量、采用非摄影测量方法的1:500~1:5000比例尺测图、线路测量、绘图与复制、施工测量、竣工总图编绘与实测和变形测量。 《水利水电工程施工测量规范》(SL52─93) 发布与实施时间:1993-06-25发布,1993-12-01实施 适用范围:水利水电工程施工阶段的测量工作。 内容:控制测量、放样的准备与方法、开挖工程测量、立模与填筑放样、金属结构和机电设备安装测量、地下洞室测量、辅助工程测量、施工场地地形测量、疏浚及渠堤施工测量、竣工测量、施工期间的外部变形监测。 《建筑变形测量规程》(JGJ/T 8-97) 发布与实施时间:1998年6月1日施行 适用范围:工业与民用建筑物(包括构筑物)的地基基础、上部结构及其场地的各种沉降(包括上升)测量和位移测量。 《城市测量规范》(CJJ 8-99) 发布与实施时间:1999-02-10发布,1999-07-01施行 适用范围:城市规划、城市地籍管理和城市各项建设工程的勘测、设计、竣工以及城市管理的通用性测绘工作。 《全球定位系统城市测量技术规程》(CJJ 73-97) 发布与实施时间:1997-04-25发布,1997-10-01施行 适用范围:城市各等级控制网测量,城市地籍控制网测量和工程控制网测量。当进行城市地形形变监测控制网测量时,可参照本规范执行。

各种测量限差规范

一、建筑变形测量 I角对于特级水准观测的仪器不得大于10″,对于一二级水准观测仪器不得大于15″,铟瓦水准尺、尺垫。 二、城市测量规范 1 平面控制 光电测距导线的主要技术指标

n测站数 2 高程控制 水准测量主要技术要求(mm)

L—路线长度km,n—测站数 水准仪视子准轴与水准管轴的夹角I,在作业前开始的第一周内每天测定一次,稳定后每隔15天测定一次。二等测量I不大于15″,三、四等水准测量I不大于20″、尺垫。 水准观测的视线长度、前后视距差和视线高度(m) 常规测图开阔地区每平方公里控制点密度(点/km2) 光电测距图根导线测量要求 图根光电测距极坐标法测量技术要求

S为边长(km),H为基本等高距(m),D为测距边长(km),仪器和觇板高(棱镜中心高)精确量取至mm。 图根水准闭合差不得超过±40mm,山地千米超过16站时,不应超过±12mm。简单计算配赋。 三、地下铁道、轻轨交通工程测量规范 宜短于100米, 2)精密导线点上只有两个方向时,按左、右角观测,左、右角平均值之和与360°的较差应小于4″。 3)在附合精密导线两端的GPS点上观测时,应联测两个高级方向,若只能观测到一个时,应增加测回数。 4)导线边应往返观测二个测回,每测回三次读数较差小于5mm,测回较差小于3mm,往返测平均值较差小于5mm。 5)气象数据每条边在一端测定一次。精密导线按严密方法平差。

3 精密水准测量的观测方法: 1 往测奇数站:后—前—前—后, 2 返测奇数站:前—后—后--前 偶数站:前—后—后--前。偶数站:后—前—前—后。 三、铺轨基标测量 1 一般规定 1.1根据铺轨综合设计图,利用调整好的线路中线点或施工控制导线点和施工控制水准点测设铺轨基标, 1.2铺轨基标测设时,应首先测设控制基标,后在控制基标间测设加密基标和道岔铺轨基标。控制基标在直线段每120米设置一个。曲线线路除曲线元素点设置控制基标外,还应每60米设置一个。加密基标在直线线路每隔6米,曲线每隔5米设置一个。 1.3铺轨基标一般设置在线路中线上,或按设计要求可设置在线路中线一侧,道岔铺轨基标一般设置在直股和曲股的两侧。 1.4铺轨基标标志按规范要求设计。 2控制基标测量 2.1 控制基标测量方法 1)控制基标设置在线路中线上时,应在直线上采用截距法在曲线上采用偏角法测设。 2)控制基标设置在线路一侧时,可根据曲线要素点和控制基标与线路中线的关系,计算出其坐标后,直接按坐标测设。 3)也可先在线路中线上,测定设置控制基标位置的线路法线方向,然后在此方向上按控制基标与线路中线的距离确定控制基标位置。

各种测量限差规范标准[详]

一、建筑变形测量 1 建筑变形测量的等级及其精度要求 I角对于特级水准观测的仪器不得大于10″,对于一二级水准观测仪器不得大于15″,铟瓦水准尺、尺垫。 二、城市测量规 1 平面控制 光电测距导线的主要技术指标

n测站数 边长测距观测要求及限差 测量方向观测法的各项限差(") 2 高程控制 水准测量主要技术要求(mm)

L—路线长度km,n—测站数 水准仪视子准轴与水准管轴的夹角I,在作业前开始的第一周每天测定一次,稳定后每隔15天测定一次。二等测量I不大于15″,三、四等水准测量I不大于20″、尺垫。 水准观测的视线长度、前后视距差和视线高度(m) 常规测图开阔地区每平方公里控制点密度(点/km2) 光电测距图根导线测量要求 图根光电测距极坐标法测量技术要求

图根三角高程测量技术要求 精确量取至mm。 图根水准闭合差不得超过±40mm,山地千米超过16站时,不应超过±12mm。简单计算配赋。 三、地下铁道、轻轨交通工程测量规 1 精密导线测量主要技术要求 不宜短于100米, 2)精密导线点上只有两个方向时,按左、右角观测,左、右角平均值之和与360°的较差应小于4″。 3)在附合精密导线两端的GPS点上观测时,应联测两个高级方向,若只能观测到一个时,应增加测回数。 4)导线边应往返观测二个测回,每测回三次读数较差小于5mm,测回较差小于3mm,往返测平均值较差小于5mm。 5)气象数据每条边在一端测定一次。精密导线按严密方法平差。 6)全站仪分级标准

2 精密水准测量主要技术要求 3 精密水准测量的观测方法: 1 往测奇数站:后—前—前—后, 2 返测奇数站:前—后—后--前 偶数站:前—后—后--前。偶数站:后—前—前—后。 4精密水准观测视线长度、视距差、视线高的要求(m) 5精密水准测量的测站观测限差(mm) 1 一般规定 1.1根据铺轨综合设计图,利用调整好的线路中线点或施工控制导线点和施工控制水准点测设铺轨基标, 1.2铺轨基标测设时,应首先测设控制基标,后在控制基标间测设加密基标和道岔铺轨基标。控制基标在直线段每120米设置一个。曲线线路除曲线元素点设置控制基标外,还应每60米设置一个。加密基标在直线线路每隔6米,曲线每隔5米设置一个。 1.3铺轨基标一般设置在线路中线上,或按设计要求可设置在线路中线一侧,道岔铺轨基标一般设置在直股和曲股的两侧。 1.4铺轨基标标志按规要求设计。 2控制基标测量 2.1 控制基标测量方法 1)控制基标设置在线路中线上时,应在直线上采用截距法在曲线上采用偏角法测设。 2)控制基标设置在线路一侧时,可根据曲线要素点和控制基标与线路中线的关系,计算出其坐标后,直接按坐标测设。 3)也可先在线路中线上,测定设置控制基标位置的线路法线方向,然后在此方向上按控制基标与线路中线的距离确定控制基标位置。

测绘规范限差速查表

测绘规范限差速查表

《工程测量规范》(GB50026─93) 发布与实施时间:1993-03-26发布,1993-08-01实施, 适用范围:城镇、工矿企业、交通运输和能源等工程建设的勘察、设计、施工以及生产(运营)阶段的通用性测绘工作。 内容:控制测量、采用非摄影测量方法的1:500~1:5000比例尺测图、线路测量、绘图与复制、施工测量、竣工总图编绘与实测和变形测量。 《水利水电工程施工测量规范》(SL52─93) 发布与实施时间:1993-06-25发布,1993-12-01实施 适用范围:水利水电工程施工阶段的测量工作。 内容:控制测量、放样的准备与方法、开挖工程测量、立模与填筑放样、金属结构和机电设备安装测量、地下洞室测量、辅助工程测量、施工场地地形测量、疏浚及渠堤施工测量、竣工测量、施工期间的外部变形监测。 《建筑变形测量规程》(JGJ/T 8-97) 发布与实施时间:1998年6月1日施行 适用范围:工业与民用建筑物(包括构筑物)的地基基础、上部结构及其场地的各种沉降(包括上升)测量和位移测量。 《城市测量规范》(CJJ 8-99) 发布与实施时间:1999-02-10发布,1999-07-01施行 适用范围:城市规划、城市地籍管理和城市各项建设工程的勘测、设计、竣工以及城市管理的通用性测绘工作。 《全球定位系统城市测量技术规程》(CJJ 73-97) 发布与实施时间:1997-04-25发布,1997-10-01施行 适用范围:城市各等级控制网测量,城市地籍控制网测量和工程控制网测量。当进行城市地形形变监测控制网测量时,可参照本规范执行。 《水利水电工程施工测量规范》(SL52─93) 表1 光电测距附合(闭合)导线技术要求 等级附合(闭合) 导线总 长 (km) 平均 边 长 ( m) 测角 中 误差 ( 〞) 测距 中 误差 ( mm) 全长相对 闭合 差 方位角 闭合 差 ( 〞 ) 测距要求 测距仪 等 级 测回数 三3.2 3.5 5.0 400 6 00 8 00 1.8 5 5 2 1:55000 1:60 000 1:70 000 ±3.6√n 2 2 1 2 2 2 四1.8 3.0 3.5 300 5 00 7 00 2.5 7 5 5 1:35000 1:45 000 1:50 000 ±5√n 3 2 2 2 2 2

四等水准测量规范

四等及等外水准测量 水准测量 国家水准测量依精度不同分为一、二、三、四等。一、二等水准测量是国家高程控制的全面基础,三、四等水准测量直接为地形测图和各种工程建设提供所必须的高程控制。精度低于四等的水准测量称为等外水准测量。本节阐述四等及等外水准测量的布设形式、技术要求、选点埋石、外业施测和内业计算等有关内容。 一、水准路线的布设形式 由水准原点或任一已知高程点出发进行水准测量所经过的路线称为水准路线。水准路线每隔一定的距离需要埋设一个固定点,称为水准点。水准测量的目的就是以已知高程点为起算点,沿选定的水准路线逐站测定各水准点的高程。根据已知水准点的情况和测量工作的实际需要,水准路线可以布设成以下三种形式。 (1) 附合水准路线:从一已知高程的水准点出发,进行水准测量,最后附合到另一已知高程的水准点上。?(2) 闭合水准路线:从一已知高程的水准点出发,沿一条环形路线进行水准测量,测定沿线上水准点的高程,最后又回到该水准点。(3)支水准路线:从一已知高程的水准点出发,沿一条水准路线测定沿线上其他水准点的高程,最后不与任一已知高程点连测。为了提高成果的精度及其可靠性,规范规定支水准路线必须进行往返观测或单程双转点观测,且应限制支水准路线的长度。?(4)水准网 二、四等及等外水准测量的主要技术要求 各等水准测量对所使用的仪器类型、水准路线长度、不符值或闭合差的限差等都有相应的规定,其中四等及等外水准测量的主要技术要求如表4-27所列。?三、水准路线选线和水准标石埋设?(1)收集资料 在确定水准路线布设形式之前,首先要收集已有的水准测量资料,包括水准路线图、水准点“点之记”、成果表、技术总结等。而且还应到实地调查,确定已知成果可否利用。 (2)图上初步选线?在测区已有的地形图上设计拟定的水准路线。水准路线应尽量选设在地势平坦、土质坚实、施测方便的道路附近,尽量避免通过水滩、沙土、易塌陷易受雨水冲刷的地区。选线的同时还应考虑水准点的埋设位置。最后绘制一份水准路线布设图,图上按一定比例绘出水准路线、水准点的位置,注明水准路线的等级、水准点的编号。?(3)实地选线?在图上设计的基础上到实地选线。根据实地的具体情况,如沿线的实际坡度、土质特征来修改图上的设计路线,确定最有利的水准路线。同时选定水准标石埋设的确切地点。水准点应尽量埋设在土质坚实、便于保存、使用方便之处。墙脚水准点一定要选设在永久性的建筑物或构筑物上。水准点的密度应满足测量任务的需要,且符合有关“规范”的规定。 (4)埋设标志 水准点位置确定之后,按规范规定埋设水准标石(如图4-2)。水准标石的中央嵌有瓷质和金属标志,其式样如图4-38所示。?埋石结束后,应详细绘制水准点“点之记”,以便使用时易于寻找。图4-39所示为“点之记”示例。水准点“点之记”应与水准测量成果一起妥为保存,一并上交。 四、四等及等外水准测量的外业观测 (一) 观测方法与记录格式

相关文档
最新文档