简述大坝安全监测技术探讨

简述大坝安全监测技术探讨
简述大坝安全监测技术探讨

简述大坝安全监测技术探讨

发表时间:2020-03-13T15:20:04.720Z 来源:《福光技术》2019年32期作者:李俊卓

[导读] 在大坝原型中通过利用观测仪器来进行现场测量,以此方式来获取大坝结构变化。本文作者探讨了大坝安全监测技术。

龙滩水电开发有限公司龙滩水力发电厂 547000

摘要:大坝安全监测系统作为一种新型技术,在大坝原型中通过利用观测仪器来进行现场测量,以此方式来获取大坝结构变化。本文作者探讨了大坝安全监测技术。

关键词:大坝;安全监测技术;观测仪器

引言

大型水电站坝址地质条件复杂,多处于高震区和高地应力区,一旦失事,将会给下游人民的生命和财产带来重大损失,因此,对大坝进行安全监测非常必要。为了保障大坝建设以及全生命周期运行过程中的长久安全,100 多年以来,人们一直在探索建设更好大坝的相关理念和技术,大坝的施工与运行管理模式经历了简易工具时代,大型机械化时代,直到今天的自动化、数字化、智能化时代。所谓智能大坝(Idam),是基于物联网、自动测控和云计算技术,实现对结构全生命周期的信息实时、在线、个性化管理与分析,并实施对大坝性能进行控制的综合系统 ; 其基本特征是施工、监测数据智能采集进入数据库,监测数据与仿真分析一体化、施工管理和运行控制实时智能化,减少在大坝结构建设运行过程中的人为干预。

1、工程概况

某水库建立于 1985 年,水库的占地总面积为 160.3 平方公里,并且水库的容量为 4780 万立方米。同时这个水库自从建成到至今,给附近的很多省份和市做出了很大的贡献。但是水库在运行的过程中,也出现了很多方面的问题,例如:在 2005 年,就发生了比较严重的管涌和集中渗漏,这样就很大程度的影响了水库运行的安全,倘若其发生安全事故,不仅会直接影响本市的供水情况,还会造成严重的经济损失。针对这样的现状,水利工作人员对水库进行了排险加固,并且完善了水库安全监测设施,与此同时还采用了比较先进的监测方式对大坝进行监测,这样就可以有效的满足水库大坝的安全监测要求,从而就能确保工程项目的顺利实施和开展。

2、大坝的监测内容

检查观测

检查监测是利用人员本身通过观察、手摸或者利用一些简单的工具对建筑物进行简单的观测。使用仪器观测虽然可以得到更为准确的信息,但一个建筑物的仪器安设点数是有限的,太多的仪器设备不利于经济方面的考虑,另外水工建筑物裂缝、渗水等缺陷部位也不一定反生在仪器设备的观测点上,所以人员的检查观测具有相当重要的地位。有利于及时的弥补仪器的不足,及时的发现异常情况的发生。检查观察主要检测建筑物有无裂缝,在坝脚、迎水坡部位有无塌陷、流土和沼泽化的现象,在伸缩缝部位是否有渗漏,混凝土表面有没有松软、侵蚀的危害,有泄水作用的部位检查有无磨损、剥落金属部位的焊缝、铆钉等是否生锈变形。

仪器的量测

仪器量测既是在相应的建筑部位预设仪器设备,通过规律性的采集数据,来判定建筑物的工作状态。

(1)变形观测变形观测是原型观测中较为重要的一部分,要对土工、混凝土、土坝等建筑物观测水平位移和垂直位移、地基的固结沉降情况、伸缩缝的变形等。(2)渗透观测对于土坝类的渗透观测,浸润线的位置变化情况可以通过孔隙水压力仪来确定,根据结构形式、工程等级以及施工方法和地质情况等定出观测断面,观测断面要能够反应出主要的渗流情况和问题可能发生的地点,根据断面的大小确定测量点数。其他还包括渗流量的观测、绕坝渗流观测、坝基渗压观测、土坝孔隙水压力观测以及渗水透明度观测。对混凝土建筑物的渗透观测还要包括坝基场压力观测和混凝土内部渗透渗透压观测。(3)应力与温度观测以混凝土坝的观测为例,通过在混凝土内部埋设应力应变计和无应力计,来观测混凝土内部因为温度、湿度、化学变化以及应力引起的总应变。无应力计主要用来量测温度、湿度以及化学变化引起的应变,总应变减去这一部分就可以得到有荷载引起的应变,换算成应力,既可得出想要的结果。温度对混凝土坝体也有重要的影响,温度观测要在坝体内布设温度计,在靠近坝体表面、在坝体钢管、宽缝、伸缩缝等附近要加大测点的布设密度,和坝体周围的水文地质条件结合起来,对坝体内部温度的出合理的观测处理。(4)水流的观测

主要对水流形态观测,从而得出水流带给建筑物的作用力,避免不利的水流影响。水流平面形态包括水流的流向、回流、旋窝、折冲水流、翻滚。观测时从泄水建筑物开始向上下游两端一直到水流正常的地方。对于高速水流,要着重观测水流引起的振动、压力以及负压进气量等,观测数据可以提供宝贵的经验资料,为维修维护建立有效的依据。

3、大坝安全监测技术

水库大坝的安全监测,首先应该设计科学的大坝安全监测网络系统,选择合适的测点定时定点对大坝坝体和周边地区进行监测,在洪涝季节,还应该加强人工的观察和巡查。对大坝安全监测进行科学的管理,及时对所测得的数据进行分析,及时发现大坝存在的安全隐患。

大坝安全监测系统的设计

水库大坝的安全问题往往比较隐蔽,如果没有科学的监测系统和相关的仪器设备,有些细微隐变难以及时发现,因此,建立一个科学合理的大坝安全监测自动化网络系统,显得尤为重要。大坝安全监测系统首先应该拥有相关的监测仪器和设备,利用仪器对大坝进行变形监测、渗流监测、应力监测和气象水文监测,同时,还应充分利用现代网络技术,利用大坝安全监测软件和计算机网络技术,将所监测到的相关数据及时自动化反馈到计算机平台上,为专家分析相关数据和资料提供方便。

雨水情数据采集前端 RTU 采集降水、库水位等数据,并按整点或超限上报等方式上报给中心,中心的平台软件将数据汇入到水库群监测数据库(2)图片拍照前端RTU 可通过摄像头对现场定时拍照,并将图片上报中心,中心平台可将图片、雨水情监测量关联查看,以准确了解现场实情(3)数据展示与分析平台可提供 GIS 地图综合数据展示、测站综合数据管理、测站详细监测量管理等多种数据分析与展示方式,便于用户快速了解相关信息,也可对某测站进行深入分析(4)通迅方式中心与前端设备的通信以 GPRS/CDMA 通迅方式为主,短信备份为辅(北斗卫星可定制)(5)数据报表库水位、降水量数据据可以生成曲线及报表,支持打印输出(6)监测站管理中心

水库大坝安全监测自动化与除险加固技术研究 林永松

水库大坝安全监测自动化与除险加固技术研究林永松 摘要:水库大坝的作用就是蓄水、防洪,调节河水流量,大坝的质量关系到河 流两岸和下有生活居民的生命财产安全,所以大坝的安全问题不容忽视。大坝维 护人员要加强对大坝的安全监测工作,提高水坝加固技术方法,在大坝日常管理 工作中,要优先考虑大坝安全问题。大坝安全监测自动化系统,可以精准的控制 水库蓄水量,在水库的安全范围内,最大限能的蓄水。本文将对大坝安全监测自 动化与除险加固技术进行分析。 关键词:水库大坝;安全监测自动化;除险加固技术 大坝的安全问题,除了施工质量不过关外,主要的还有大坝安全监测技术落后、大坝监控人员失误、大坝监测结果误差较大等问题,导致大坝存在安全隐患,一旦发生突发情况,可能就会导致大坝溃堤。所以,当下大坝在前期设计时,就 要提前做好监测工作设计。搭建一套安全系数较高的安全监测自动化系统,有了 先进软件系统还要配合一套先进的除险加固技术,二者同时使用,并结合大坝自 身实时状态,设计一套符合大坝监控系统。安全监测自动化系统优势在于能够全 天实时监控大坝的各项安全问题,还能够对大坝进行除险加固技术完善。监测系 统的安装可以对大坝整体项目进行归纳,通过不断完备大坝安全监测自动化系统,早日追赶上国外水利工程脚步。 一、安全监测自动化系统构成和组织 大坝建设投入巨大,所以为了保证大坝的安全性和使用能够长久,大坝在建 设建设初期要进行项目分析,相关数据的收集分析研究,通过多方面数据汇总设 计一套安全系数最高的大坝建设方案。 1.变形监测 水库大坝变形监测分为两方面:表面变形监测和防渗墙扰度监测。大坝在建 设阶段这俩点就是最为主要的监测方式。在日常工作分析中,大坝表面变形标注 要更改成综合位移标注,综合位移标注还要同还要具备水平和竖向两个方向位移。在监测大坝水平位移变形时候经常使用俩种方式,第一种就是真空激光准直法, 第二种是边角前方交会法。两种监测方式在实际工作中比较分析得出,这俩种监 测方法都可以有效自动化监测,得到监测数据可以满足大坝监测要求。在项目观 测的过程中,需要在大坝左、右岸坝肩进行基础稳定位置的选择,具体的测量方 案可以如图 1 所示。通过对大坝变形观测状态的分析,发现其中共有 5 个断面,5 条视准线,其中共有 25 个综合位移标点,在坝长超过 500m的状态下,需要通过 对相关规范要求的分析,增加中间项目的工作基准点,也就是在中间横断面综合 位移点中进行工作基点的确定。而且,在观测采用边角前方交汇法中,通过两台 测量机器人进行观测,并在观测的过程中进行数据校核以及严密数据的平差分析,在研究中,需要计算误差以及置信度,全面提高观测项目的精确度,并在研究的 过程中保证水平位移观测项目满足观测的基本要求。 图1 安全监测系统测量方案 第二,应力应变监测。在混凝土防渗墙应力应变状况分析的过程中,需要通 过对变形监测系统的分析,进行防渗墙的布设,通常情况下会布设两个防渗应力 应变监测面,每个断面的上游及下游需要布设4支应变计,并将其分别放置在防

混凝土大坝安监测技术规范

中华人民共和国能源部、水利部 混凝土大坝安全监测技术规范 SDJ 336-89 (试行) 主编部门:《混凝土大坝安全监测技术规范》编制组 批准部门:中华人民共和国能源部、水利部 试行日期:1989年10月1日 水利电力出版社 1989北京 能源部、水利部文件 关于颁发《混凝土大坝安全监测技术规范》SDJ336-89(试行)的通知 能源技[1989]577号 《混凝土大坝安全监测技术规范》(编号: SDJ336-89)由水利电力部在一九八五年底组织有关单位开始编制,于一九八八年底前完成,一九八九年一月在能源部主持下由能源、水利两部共同审定,现已交水利电力出版社出版,于一九八九年十月一日颁发试行。 这是我国首次编制的包括有设计、施工、运行各阶段监测工作较系统的技术规范。试行中有何意见。,请函告能源部科技司或水利部科教司。 一九八九年三月二十日 简要说明 本规范是根据原水利电力部科学技术司(83)技水电字第273号文进行编制的。 在原水利电力部科学技术司、电力生产司及水利水电建设总局(水利水电规划设计院)的组织领导下,由水利水电科学研究院、华东勘测设计院、原西南电业管理局、中国水力发电工程学会、东北勘测设计院、南京自动化研究所、长江流域规划办公室勘测总队、天津勘测设计院、西北勘测设计院、上海勘测设计院、长江科学研究院、水电部第七工程局、葛洲坝工程局、葛洲坝水电厂、新安江水电厂、刘家峡水电厂等16个单位派员组成编制组。水利水电科学研究院、华东勘测设计院、原西南电业管理局为编制组组长单位。 本规范在编制过程中,得到了有关勘测设计、施工、运行、管理、科研、高等院校等单位的大力支持;进分了广泛的调查研究;总结了我国30多年来混凝土大坝安全监测时实践经验;参考了《混凝土重力坝设计规范》(SDJ 21-78)、《混凝土拱坝设计规范》( SD145-85)、《水电站大坝安全管理暂行办法》,以及其他有关规范的内容。在编制过程中,曾先后召开了六次全国性的专题讨论会,相应地进行了七次修改。 参加本规范编制的主要人员有:叶丽秋、李光宗、唐寿同、庄万康、夏诚、胡其裕、储海宁、赵志仁、柳载舟、舒尚文等同志;参加编制的还

大坝安全监测仪器简介

大坝安全监测仪器简介 一、大坝安全监测仪器选型的基本原则 二、监测仪器的检验 三、监测仪器及监测系统的验收 四、监测仪器分类 五、两种主要监测仪器的基本原理 六、主要监测仪器简介 七、国内外数据自动化采集设备

一、大坝安全监测仪器选型的基本原则 1、总原则 大坝安全监测系统的监测项目、测点布置及系统的功能、性能应满足《土石坝安全监测技术规范》(SL60-94)、《土石坝安全监测资料整编规程》(SL169-96)和《混凝土坝安全监测技术规范》(DL/T5178-2003)要求,如建立自动化监测系统,还应满足《大坝安全自动化监测系统设备基本技术条件》(SL268-2001)的要求。 2、监测任务、测量范围的界定及仪器技术性能分析 首先,应明确监测仪器的任务,是变形监测,渗流监测,压力应力监测还是环境量监测?一次还是二次? 其次,应根据工程实际情况,预测并确定仪器的量程、范围;根据仪器量程范围、工程对监测精度的要求以及相关规范规定,确定仪器精度等级。 第三,选择仪器型式。仪器型式的选择最重要的是仪器的可靠性,在可靠性的前提下,再考虑仪器的精确度或准确度。 第四,技术经济评价。对不同型式的仪器、不同厂家的同类型仪器,比较其采购、运输、室内检测/校准、现场检验、安装方式、可维护性及维护程序、施工期观测及数据处理、(如建立自动化监测系统)占用系统资源等,进行技术、经济评价,选择合适的性价比。 3、监测设施的布设 首先,划分监测项目。 其次,根据监测项目及监测目的,确定监测设施安装/埋设位置(包括平面坐标、高程及相应层位),仪器、设施、设备工程编号(唯一性),并以表、平面图、断面图等形式逐一标注。 4、监测设施的安装/埋设 根据坝的性质(混凝土坝/土石坝?在建坝/已建坝?混凝土坝『重力坝、拱坝、砌石坝』?土石坝『均质坝、心墙坝<宽心墙坝、窄心墙坝?>、斜墙坝、堆石面板坝、复合坝型』?)设计合适的安装方式及施工工艺。 5、监测仪器选型原则 ①监测仪器应采用可靠性好,并经过长期现场考验的仪器设备;大坝安全监测和管理自动化系统,推荐采用分布式自动化数据采集系统。 ②监测仪器应尽可能实现人工比测。

大坝安全监测

浅谈大坝安全监测及其自动化系统 摘要:大坝安全监测具有重要的工程意义,只要建立合理的大坝安全监测机制,溃坝事故时可以避免的。如何通过安全监测及时提供大坝性态及其变化信息,降低大坝风险已成为大坝安全管理者最关心的问题。 关键词:大坝、安全监测、自动化 大坝安全监测的内涵及意义 通常,通过仪器观测和巡视检查对水利水电工程主体结构、地基基础、两岸边坡、相关设施以及周围环境所作的测量及观察,界定为大坝安全监测。监测,既包括对建筑物固定测点按一定频次进行的仪器观测,也包括对建筑物外表及内部大范围对象的定期或不定期的直观检查和仪器探查。 大坝监测与大坝检测在某种意义上有相同之处,均为对水利工程工况及运营性状进行量测。同时,两者也有不同之处,监测重点放在实时监视测量上,检测则重点以规则标准对量测结果作出评判。监测常表现为持续不断的对水利工程性状监视记录,检测多表现为某一时段的检测结果评判。 正在运行的大坝,由于受到各种自然因素的影响,其工程状态和运行情况都在随时变化,所以必须对大坝进行系统全面地检查,随时掌握工程状态,分析判断大坝及基础、岸坡是否能安全运行,予报工程发展趋势及安全度。 可以说,安全监测(包括检查、观测)是大坝安全管理的耳目,是判断水库能否安全运用充分发挥效益的前提,也是检查施工质量、验证设计是否正确的手段,它能为水利科学试验研究供给宝贵的原型观测资料,也为水库除险加固设计和水库调度维修养护提供依据。①总之大坝安全监测是了解大坝安全性态、对大坝安全实施科学管理必不可少的重要手段。 大坝安全监测主要项目 大坝安全监测的范围应根据坝址、枢纽布置、坝高、库容、投资及失事后果等进行确定, 根据具体情况由坝体、坝基推广到库区及梯级水库大坝。大坝安全监测的时间应从设计时开始直至运行管理。大坝安全监测的内容不仅是坝体结构及地质状况, 还应包括辅助机电设备及泄洪消能建筑物等。② 根据大坝安全监测的目的,监测的主要项目有:变形、渗流、压力、应力应变、水力学及环境量等。其中变形和渗流监测是最为重要的监测项目,因为这些监测量直观可靠,可基本反映在各种荷载作用下的大坝安全性态。对大坝的内部性态进行监测也是比较重要的,其监测成果可以用来反馈和检验设计、施工质量。 1.变形监测 大坝在自重、水压力、扬压力、泥沙淤积压力及温度等荷载作用下,会产生变形,变形监测是了解大坝工作性态的重要内容,主要包括表面变形、内部变形、挠度、倾斜、

地表水和污水监测技术规范试题

地表水和污水监测技术 规范试题 Company Document number:WTUT-WT88Y-W8BBGB-BWYTT-19998

地表水和污水监测技术规范试题 部门:姓名:分数: 一、单项选择题(把正确答案的字母填写在括号内,每题4分共40分) 1. 具体判断某一区域水环境污染程度时,位于该区域所有污染源上游、能够提供这一 区域水环境本底值的断面称为。( B ) A. 控制断面 B. 对照断面 C. 消减断面 2. 当水面宽大于100米时,在一个监测断面上设置的采样垂线数是条。( C ) A. 5 B. 2 C. 3 3. 饮用水水源地、省(自治区、直辖市)交界断面中需要重点控制的监测断面采样频次为( C ) A. 每年至少一次 B. 逢单月一次 C. 每月至少一次 4. 测定油类的水样,应在水面至水面下毫米采集柱状水样。采样瓶(容器)不能用 采集水样冲洗。( C ) A. 100 B. 200 C. 300 5. 需要单独采样并将采集的样品全部用于测定的项目是。( C ) A. 铅 B. 氰化物 C. 油类 6. 等比例混合水样为。( A ) A. 在某一时段内,在同一采样点所采水样量随时间与流量成比例的混合水样 B. 在某一时段内,在同一采样点按等时间间隔采等体积水样的混合水样 C. 从水中不连续地随机(如时间、流量和地点)采集的样品 7. 废水中一类污染物采样点设置在。( A ) A. 车间或车间处理设施排放口 B. 排污单位的总排口 C. 车间处理设施入口

8. 以下水质项目中不属于第一类污染物的是。( C ) A. 总铅 B. 总铬 C. 总锌 D. 总砷 9. 验收监测应在正常生产工况并达到设计规模的以上运行情况下进行,并记录监测时 的生产工况和其他有关参数。( B ) % B. 75% C. 80% D. 85% 10. 以下数据中,其中是3位有效数字的是。( D ) 二、判断题(正确的在括号内√,错的打×,每题3分,共30分) 1. 为评价某一完整水系的污染程度,未受人类生活和生产活动影响、能够提供水环境 背景值的断面,称为对照断面。(×) 2. 控制断面用来反映某排污区(口)排放的污水对水质的影响,应设置在排污区 (口)的上游、污水与河水混匀处、主要污染物浓度有明显降低的断面。(×)3. 污水的采样位置应在采样断面的中心,水深小于或等于1米时时,在水深的1/4处采。(×) 4. 在建设项目竣工环境保护验收监测中,对有污水处理设施并正常运转或建有调节池 的建设项目,其污水为稳定排放的可采瞬时样,但不得少于3次。(√) 5. 所谓有效数字就是保留末一位不准确数字,其余数字均为准确数字。(√) 6. 空白值的测定方法是:每批做平行双样测定,分别在一段时间内(隔天)重复测定 一批,共测定5~6批。(√) 7. 校准曲线的相关系数只舍不入,保留到小数点后出现非9的一位。(√) 8. 测溶解氧、生化需氧量和有机污染物等项目时,水样不用注满容器,上部可留空 间,不用水封。(×)

简述大坝安全监测技术探讨

简述大坝安全监测技术探讨 发表时间:2020-03-13T15:20:04.720Z 来源:《福光技术》2019年32期作者:李俊卓 [导读] 在大坝原型中通过利用观测仪器来进行现场测量,以此方式来获取大坝结构变化。本文作者探讨了大坝安全监测技术。 龙滩水电开发有限公司龙滩水力发电厂 547000 摘要:大坝安全监测系统作为一种新型技术,在大坝原型中通过利用观测仪器来进行现场测量,以此方式来获取大坝结构变化。本文作者探讨了大坝安全监测技术。 关键词:大坝;安全监测技术;观测仪器 引言 大型水电站坝址地质条件复杂,多处于高震区和高地应力区,一旦失事,将会给下游人民的生命和财产带来重大损失,因此,对大坝进行安全监测非常必要。为了保障大坝建设以及全生命周期运行过程中的长久安全,100 多年以来,人们一直在探索建设更好大坝的相关理念和技术,大坝的施工与运行管理模式经历了简易工具时代,大型机械化时代,直到今天的自动化、数字化、智能化时代。所谓智能大坝(Idam),是基于物联网、自动测控和云计算技术,实现对结构全生命周期的信息实时、在线、个性化管理与分析,并实施对大坝性能进行控制的综合系统 ; 其基本特征是施工、监测数据智能采集进入数据库,监测数据与仿真分析一体化、施工管理和运行控制实时智能化,减少在大坝结构建设运行过程中的人为干预。 1、工程概况 某水库建立于 1985 年,水库的占地总面积为 160.3 平方公里,并且水库的容量为 4780 万立方米。同时这个水库自从建成到至今,给附近的很多省份和市做出了很大的贡献。但是水库在运行的过程中,也出现了很多方面的问题,例如:在 2005 年,就发生了比较严重的管涌和集中渗漏,这样就很大程度的影响了水库运行的安全,倘若其发生安全事故,不仅会直接影响本市的供水情况,还会造成严重的经济损失。针对这样的现状,水利工作人员对水库进行了排险加固,并且完善了水库安全监测设施,与此同时还采用了比较先进的监测方式对大坝进行监测,这样就可以有效的满足水库大坝的安全监测要求,从而就能确保工程项目的顺利实施和开展。 2、大坝的监测内容 检查观测 检查监测是利用人员本身通过观察、手摸或者利用一些简单的工具对建筑物进行简单的观测。使用仪器观测虽然可以得到更为准确的信息,但一个建筑物的仪器安设点数是有限的,太多的仪器设备不利于经济方面的考虑,另外水工建筑物裂缝、渗水等缺陷部位也不一定反生在仪器设备的观测点上,所以人员的检查观测具有相当重要的地位。有利于及时的弥补仪器的不足,及时的发现异常情况的发生。检查观察主要检测建筑物有无裂缝,在坝脚、迎水坡部位有无塌陷、流土和沼泽化的现象,在伸缩缝部位是否有渗漏,混凝土表面有没有松软、侵蚀的危害,有泄水作用的部位检查有无磨损、剥落金属部位的焊缝、铆钉等是否生锈变形。 仪器的量测 仪器量测既是在相应的建筑部位预设仪器设备,通过规律性的采集数据,来判定建筑物的工作状态。 (1)变形观测变形观测是原型观测中较为重要的一部分,要对土工、混凝土、土坝等建筑物观测水平位移和垂直位移、地基的固结沉降情况、伸缩缝的变形等。(2)渗透观测对于土坝类的渗透观测,浸润线的位置变化情况可以通过孔隙水压力仪来确定,根据结构形式、工程等级以及施工方法和地质情况等定出观测断面,观测断面要能够反应出主要的渗流情况和问题可能发生的地点,根据断面的大小确定测量点数。其他还包括渗流量的观测、绕坝渗流观测、坝基渗压观测、土坝孔隙水压力观测以及渗水透明度观测。对混凝土建筑物的渗透观测还要包括坝基场压力观测和混凝土内部渗透渗透压观测。(3)应力与温度观测以混凝土坝的观测为例,通过在混凝土内部埋设应力应变计和无应力计,来观测混凝土内部因为温度、湿度、化学变化以及应力引起的总应变。无应力计主要用来量测温度、湿度以及化学变化引起的应变,总应变减去这一部分就可以得到有荷载引起的应变,换算成应力,既可得出想要的结果。温度对混凝土坝体也有重要的影响,温度观测要在坝体内布设温度计,在靠近坝体表面、在坝体钢管、宽缝、伸缩缝等附近要加大测点的布设密度,和坝体周围的水文地质条件结合起来,对坝体内部温度的出合理的观测处理。(4)水流的观测 主要对水流形态观测,从而得出水流带给建筑物的作用力,避免不利的水流影响。水流平面形态包括水流的流向、回流、旋窝、折冲水流、翻滚。观测时从泄水建筑物开始向上下游两端一直到水流正常的地方。对于高速水流,要着重观测水流引起的振动、压力以及负压进气量等,观测数据可以提供宝贵的经验资料,为维修维护建立有效的依据。 3、大坝安全监测技术 水库大坝的安全监测,首先应该设计科学的大坝安全监测网络系统,选择合适的测点定时定点对大坝坝体和周边地区进行监测,在洪涝季节,还应该加强人工的观察和巡查。对大坝安全监测进行科学的管理,及时对所测得的数据进行分析,及时发现大坝存在的安全隐患。 大坝安全监测系统的设计 水库大坝的安全问题往往比较隐蔽,如果没有科学的监测系统和相关的仪器设备,有些细微隐变难以及时发现,因此,建立一个科学合理的大坝安全监测自动化网络系统,显得尤为重要。大坝安全监测系统首先应该拥有相关的监测仪器和设备,利用仪器对大坝进行变形监测、渗流监测、应力监测和气象水文监测,同时,还应充分利用现代网络技术,利用大坝安全监测软件和计算机网络技术,将所监测到的相关数据及时自动化反馈到计算机平台上,为专家分析相关数据和资料提供方便。 雨水情数据采集前端 RTU 采集降水、库水位等数据,并按整点或超限上报等方式上报给中心,中心的平台软件将数据汇入到水库群监测数据库(2)图片拍照前端RTU 可通过摄像头对现场定时拍照,并将图片上报中心,中心平台可将图片、雨水情监测量关联查看,以准确了解现场实情(3)数据展示与分析平台可提供 GIS 地图综合数据展示、测站综合数据管理、测站详细监测量管理等多种数据分析与展示方式,便于用户快速了解相关信息,也可对某测站进行深入分析(4)通迅方式中心与前端设备的通信以 GPRS/CDMA 通迅方式为主,短信备份为辅(北斗卫星可定制)(5)数据报表库水位、降水量数据据可以生成曲线及报表,支持打印输出(6)监测站管理中心

大坝安全监测的内涵及扩展参考文本

大坝安全监测的内涵及扩 展参考文本 In The Actual Work Production Management, In Order To Ensure The Smooth Progress Of The Process, And Consider The Relationship Between Each Link, The Specific Requirements Of Each Link To Achieve Risk Control And Planning 某某管理中心 XX年XX月

大坝安全监测的内涵及扩展参考文本使用指引:此安全管理资料应用在实际工作生产管理中为了保障过程顺利推进,同时考虑各个环节之间的关系,每个环节实现的具体要求而进行的风险控制与规划,并将危害降低到最小,文档经过下载可进行自定义修改,请根据实际需求进行调整与使用。 众所周知,大坝是一种特殊建筑物,其特殊性主要表 现在如下3个方面:①投资及效益的巨大和失事后造成灾 难的严重性;②结构、边界条件及运行环境的复杂性;③ 设计、施工、运行维护的经验性、不确定性和涉及内容的 广泛性。以上特殊性说明了要准确了解大坝工作性态,只 能通过大坝安全监测来实现,同时也说明了大坝安全监测 的重要性。事实上,大坝安全监测已受到人们的广泛重 视,我国已先后颁布了差阻式仪器标准及监测仪器系列型 谱、《水电站大坝安全检查实施细则》、《混凝大坝安全 监测技术规范》、《水库大坝安全管理条例》、《土石坝 安全监测技术规范》等,同时,国际大坝会议也多次讨论 过大坝安全问题[1]。

大坝安全监测是人们了解大坝运行性态和安全状况的有效手段。随着科学技术的发展、管理水平的提高及人们观念的转变,大坝安全监测的内涵也进一步加深。为此,笔者从分析影响大坝安全的因素入手,对大坝安全监测的若干问题进行探讨。 1 影响大坝安全的因素 影响大坝安全的因素很多,据国际大坝会议“关于水坝和水库恶化”小组委员会记录的1100座大坝失事实例,从1950年至1975年大坝失事的概率和成因分析中得出大坝失事的频率和成因分别为:30%是由于设计洪水位偏低和泄洪设备失灵引起洪水漫顶而失事;27%是由于地质条件复杂,基础失稳和意外结构事故;20%是由于地下渗漏引起扬压力过高、渗流量增大、渗透坡降过大引起;11%是由于大坝老化、建筑材料变质(开裂、侵蚀和风化)以及施

浅析水利工程大坝安全监测应用技术 付青萍

浅析水利工程大坝安全监测应用技术付青萍 发表时间:2018-04-08T16:24:07.690Z 来源:《基层建设》2017年第36期作者:付青萍 [导读] 摘要:现阶段来看,应用大坝安全监测方案是非常必要的,为了满足提高对已建水利工程安全监测系统评价的有效性,针对现行安全监测技术规范和设计规范对水利工程安全监测系统评价针对性不强的实际,采用风险分析结合现有相关规范比较的方法,对大坝安全监测系统的评价内容进行了分类,对评价依据进行了深入分析,指出了上述各因素之间的关系。 国网江西省电力公司柘林水电厂江西九江 332000 摘要:现阶段来看,应用大坝安全监测方案是非常必要的,为了满足提高对已建水利工程安全监测系统评价的有效性,针对现行安全监测技术规范和设计规范对水利工程安全监测系统评价针对性不强的实际,采用风险分析结合现有相关规范比较的方法,对大坝安全监测系统的评价内容进行了分类,对评价依据进行了深入分析,指出了上述各因素之间的关系。研究认为安全监测系统评价应根据工程安全现状和所面临的风险进行,不同阶段、不同结构形式和不同赋存环境对安全监测的要求不同,安全监测系统评价必须借助安全监测专家的科学分析。 关键词:水利工程;安全检测;安全现状 1大坝安全监测的特点 大坝安全监测具有重要性和严谨性两个特点,要想准确地掌握大坝的运行规律,只有通过对大坝的连续全面观测才能够实现。大坝的安全监测主要包括对大坝坝体的固定测点按照一定频率连续地进行仪器测量、对采集来的数据进行资料整编和分析,通过计算和查证原始观测数据来实现监测资料的连续性与准确性。在监测过程中发现异常或疑点,应立即进行重测和计算。特别是影响大坝安全运行的主要问题,应该及时上报主管部门。 2不同时期工程对安全监测的要求 水利工程的生命周期包括施工期、初蓄期、运行期(除险加固期、除险加固后运行期)和退役期等过程,每个过程中,其安全监测的重点既有相同点也有不同点。施工期面临的安全风险主要包括勘探中未全面了解地质缺陷及施工相互作用、突发气象和地质灾害、卸荷破坏及滑坡、水化热诱导过高温度应力、施工导流和围堰安全、过大过快与不均匀变形、爆破震动、大型机电设备安装等风险源引起的工程安全问题。初蓄水期面临的安全风险主要来自水压力和渗透压力给水工程(包括与工程安全有密切关系的边坡和附属建筑物)带来的安全风险,主要原因或现象包括水压力导致的变形、渗透破坏、压力或渗透压力增加引起的滑动失稳、浸水湿化变形和强度劣化、水锤和水力劈裂等安全风险。正常运行期是水利工程安全风险比较低的时期,其安全风险主要是材料和结构长期缓慢劣化导致工程安全问题和由于突发气象、地质或人为灾害诱导的工程安全问题。在此期间,可以根据工程安全鉴定或评价的结论,结合工程安全监测系统运行情况对大坝安全监测进行优化。除险加固期由于水位变化导致新的不利工况或由于施工开挖诱导的安全风险是除险加固时安全监测必须考虑的问题。对于除险加固过程中采用的新材料、新结构和新施工方法以及用于指导除险加固施工的必须有针对性的安全监测措施。 3案例分析 3.1工程概述 某水电站位于江西省修河干流中游,是一座以发电为主兼顾防洪、灌溉、航运和水产养殖等综合效益的大(1)型水利水电工程,坝址以上控制流域面积9340km2,水库总库容79.2亿m3,为多年调节水库。枢纽工程由主坝、副坝(3座)、溢洪道(2座)、泄洪洞、发电引水系统(2套)、灌溉隧洞和通航建筑物等组成。主坝为粘土及混凝土防渗心墙土石坝;发电进水闸和接头混凝土重力坝紧靠主坝左端,与主坝共同组成挡水建筑物。 3.2监测内容 大坝安全监测系统涉及的工程部位主要有:主坝、Ⅰ副坝、Ⅲ副坝、第一溢洪道、第二溢洪道、F7断层、进水闸、“80山包”、厂区边坡和B厂引渠与进水口边坡、B厂引水发电系统等。布置的监测项目有:平面控制网、水准网、变形监测、渗流监测、应力应变及温度监测(应变计、无应力计、钢筋计、土压力盒、渗压计、锚索测力计等仪器)、环境量监测等。工程运行四十余年,监测系统不断更新改造,近年来主要更新改造项目有:因进水闸坝段部分测孔扬压力增大,2012年在进水闸增设了5根扬压力监测管;厂房后坡测点水平位移偏大,且路面出现了多处裂缝,设计院进行稳定复核后提出了加固处理方案,于2014年增设了一排47根1200KN的预应力锚索,并加装了7套锚索测力计对该部位重点监测。 4自动化系统方案 主坝区大坝渗流、内观监测设施进行自动化改造,建立大坝渗流、内观监测自动化数据采集和信息管理系统,并于2005年投入使用。 4.1通讯部分 监测中心站到Mcu的通讯全部采用了光缆。系统的通讯方式采用自愈式的闭环网络,即接在监控主机COM1口的光端机和9个观测房的9个光端机,通过光缆依次串联,。平时默认为COM1口进行通讯,在其中任意一个光端机出现故障时,系统会自动通过COM2口反向进行通讯,以保证除出现故障的光端机所连接的MCU无法进行通讯、测量外,其它设备可以正常工作。通讯光缆采用直埋式铠装多模光缆,能耐寒、耐潮、阻燃、耐磨、耐化学的腐蚀,能防止啮齿动物破坏,可露天安装或直埋。通讯光缆采用6芯光缆,工作时只需用到4芯,另外2芯作为备用。 4.2电源部分 各观测房的工作电源根据实际情况以及系统设备对防雷的要求,采用不同的供电方式。观测房设备采用太阳能电池板配合大容量蓄电池供电,其余各观测房设备则使用220V市电就近供电。 4.3测控装置 MCU是整个数据自动采集系统的关键设备,是完全智能模块化结构,每个模块均自带CPU,形成整个MCU多CPU并行运行的模式。智能分布式数据采集系统的MCU具有以下功能: (1)测量控制功能 本装置能对接入的各类传感器进行测量,实现巡回检测、单点选测和人工测量。具有便携式计算机接口和键盘显示接口,只要接入一台装有数据采集软件的便携式计算机就可以作为临时中央控制装置:也可采用专用键盘显示器,操作人员在现场进行检查、率定、诊断

地表水和污水监测技术规范

地表水和污水监测技术规范 一、水样的采集 水样的采集其中包括(1)瞬时水样指从水中不连续地随机(就时间和断面而言)采集的单一样品,一般在一定的时间和地点随机采取。(2)等比例混合水样指在某一段时间内,在同一采样点位所采水样量随时间或流量成比例的混合水样。(3)等时混合水样指在某一时段内,在同一采样点位(断面)按等时间间隔所采等体积水样的混合水样。 (1)采样断面指在河流采样时,实施水样采集的整个剖面。分背景断面、对照断面、控制断面和消减断面等。 (2)背景断面指为评价某一完整水系的污染程度,为受人类生活和生产活动影响,能够提供水环境背景值的断面。 (3)对照断面指具体判断某一区域水环境污染程度时,位于该区域所有污染源上游处,能够提供这一区域水环境本底值 的断面。 (4)控制断面指为了解水环境受污染程度及其变化情况的断面 (5)消减断面指工业废水或生活污水在水体内流经一定距离而达到最大程度混合,污染物受到稀释、降解,其主要污 染物浓度有明显降低的断面 二、地表水监测的布点与采样 监测断面的布设原则监测断面在总体和宏观上须能反应水系

或所在区域的水环境质量状况。各断面的具体位置须能反映所 在区域环境的污染特征;尽可能以最少的断面获取足够的有代 表性的环境信息;同时还须考虑实际采样时的可能性和方便 性。 三、采样频次与采样时间 (1)饮用水源地、省(自治区、直辖市)交界断面中需要重点控制的监测断面每月至少采样一次。 (2)国控水系、河流、湖、库上的监测断面,逢单月采样一次,全年六次 (3)水系的背景断面每年采样一次。 (4)如某必测项目连续三年均未检出,且在断面附近确定无新增排放源,而现有污染源排污量未增的情况下,每年可采 样一次进行测定。一旦检出,或在断面附近有新的排放源 或现有污染源有新增排污量时,即恢复正常采样。 (5)遇有特殊自然情况,或发生污染事故时,要随时增加采样频次 四、水样采集 采样前的准备 (1)确定采样负责人主要负责制定采样计划并组织实施。 (2)制定采样计划采样负责人在制定计划前要充分了解该项监测任务的目的和要求;应对要采样的监测断面周围情 况了解清楚;并熟悉采样方法、水样容器的洗涤、样品的

大坝安全监测技术研究 廖嘎

大坝安全监测技术研究廖嘎 发表时间:2019-06-21T11:06:56.980Z 来源:《电力设备》2019年第1期作者:廖嘎 [导读] 摘要:保证大坝安全运行的重要手段就是对大坝进行安全监测,并确保大坝安全监测系统能长期稳定、实时、精确及可靠地进行数据的采集。 (广西桂东电力股份有限公司合面狮水力发电厂广西省贺州市 542800) 摘要:保证大坝安全运行的重要手段就是对大坝进行安全监测,并确保大坝安全监测系统能长期稳定、实时、精确及可靠地进行数据的采集。国家在大坝安全监测自动化设备的研制和生产方面投入了大量的人力、物力和财力,从而使我国的大坝安全监测技术得以飞速发展。在发展的同时也暴露了一些问题,传统的大坝安全监测技术仍有待于发展,比如要对传感器的可靠性以及稳定性等方面进行优化,要做到因地制宜地选取适合于大坝的安全监测系统。本文就此展开了论述,以供参阅。 关键词:大坝安全;监测技术 1大坝安全监测的重要意义 大坝建造在复杂的水文地质和工程地质环境中,运行中的大坝不仅承受着巨大的水压力和温度等环境荷载,有时还会受到地震荷载的冲击,工作条件极为复杂。同时,由于材料性能、施工过程中造成的人为影响等因素,随着使用年限的增长,大坝也会出现不同程度的老化、病变和裂缝等问题。这些缺陷或隐患若不能及时被诊断发现并解决,将随时可能影响到大坝的安全运行,严重时还会造成灾难性事故。目前,国内已建成大坝8.6万多座,其中大部分是20世纪50~60年代修建的中小型土石坝,这些大坝或没有布设安全监测设备,或设备仪器落后,其病害十分严重。此外,随着时间流逝,一些早年布置了监测设备的大坝也出现了老化和安全问题。大坝安全监测问题已不容忽视,令人欣慰的是:近年来已得到国家的高度重视。造成大坝失事的原因很多,主要有:(1)坝体泄水能力不足或遭遇超标准的洪水;(2)坝体质量和基础存在问题;(3)其他运行管理方面引发的问题。土石坝失事的主要原因是渗透破坏和坝坡失稳,表现为坝体渗漏、坝基渗漏、塌坑、管涌、流土及滑坡等现象。据统计,在失事大坝中,仅有35%是由于其自身泄洪能力不足,也就是勘测设计中存在洪水计算和防洪能力方面的问题;大部分大坝失事仍是由于其他工程原因或运行管理问题造成的,而这些问题却是可以通过加强安全监测及早发现问题并及时处理解决的。因此,建设和完善大坝安全监测设施重要且必需。 2大坝安全监测系统结构 2.1集中式监测数据采集系统 集中式监测数据采集系统只有一台测控单元,安放于远离测点现场的监控室内,测点现场安装切换单元(集线箱、开关箱),由电缆将传感器信号通过切换单元接入到测控单元中。测量时由测控单元直接控制切换单元,对所有测点的传感器进行逐个测量。这种系统在传感器-切换单元-测控单元之间传送的是电模拟量,且连接电缆一般较长,易于受到干扰,所以对连接电缆的要求较高(芯数、阻抗特性、屏蔽、绝缘电阻等)。集中式系统虽然结构简单,但其可靠性较低,且测量时间长,不易扩展等。当测控单元发生故障时,整个系统运行即告中断。 2.2分布式数据采集系统 分布式数据采集系统由计算机、测控单元及传感器组成。这种系统将集中式测控单元小型化,并和切换单元集成到一起,安放于测点现场,每个测控单元连接若干个传感器,测控单元将监测量变换成数字量,由"数据总线"直接传送到监控微机中。分布式数据采集系统与集中式数据采集系统相比,有下列优点:(1)可靠性得到了提高,因为每台测控单元均独立进行测量,如果发生故障,只影响这台测控单元上所接入的传感器,不会使系统全部停测。(2)抗干扰能力强,分布式数据采集系统的数据总线上传输的是数据信号,因此采用一般的通讯电缆即可,接口方便,抗干扰能力强,目前普通采用的通讯制式有RS-232/RS-485/RS-422。(3)测量时间短,每台测控单元可同时进行测量,系统测量时间只取决于单台测控单元的时间,因此测量速度快,特别适合于那些物理量和效应量变化较快的水工建筑物,能够满足实时安全监控的需要。同时,测量速度快,保证了各测点各类监测量在一个几乎相同的短时间内测完,使监测参数基本同步,便于比较分析。(4)便于扩展,只需在原有系统上延伸数据总线,增加测控单元,就可以在不影响原有系统正常运行的情况下扩展系统,将更多的传感器接入。目前在国内已建成的大坝安全监测数据采集系统中绝大部分是分布式监测数据采集系统。 2.3现场总线式数据采集系统 现场总线技术于80年代初提出,经过近二十年的发展,技术上越来越成熟。现场总线是用于现场仪表与测控系统和监控中心之间的一种全分散、全数字化、智能、双向、多变量、多点、多站的分布式通讯系统,按ISO的OSI标准提供网络服务,其可靠性高,稳定性好,抗干扰能力强,通讯速率快,造价低,维护成本低。现场总线的基本内容是在测控现场建立一条高可靠性的数据通讯线路,实现传感器之间及传感器与监控计算机之间的数据交换。这条数据通讯线路在传输方面不追求商业计算机网络那种高速度,而把注意力集中在系统的可靠性方面。在可靠性方面,不是简单采用传统的多机冗余方式,而是试图提高网络自身的可靠性。在这种网络中,引入自带测量、状态检测、控制器和数据通讯能力的智能传感器,组成现场总线监测网络,原来前置机的测控功能和数据通讯功能,被下装到传感器中,而原来的系统管理、后台数据处理、系统组态等功能被上装到管理级计算机中。在这种系统中,系统监测功能和监测点可根据需要在网络上的任何一点灵活设置,实现动态组态功能。 3针对大坝安全监测采取的有效措施 3.1加强组织管理工作 部分管理层对大坝的安全监测问题不够重视,他们将工作重心放在了投资建设方面,不能意识到大坝安全监测的重要性。因此,为了防患于未然,需要大力提高管理层对大坝安全性的认识,使其意识到组织管理工作的重要性。管理人员要制定好相关的规章制度,做好考核与监督工作,通过管理使大坝安全监测工作顺利进行,这样才能尽可能避免因人为因素而导致大坝安全监测方面发生的意外情况。 3.2提高水利工程大坝安全监测技术人员的专业素质 目前,我国水利工程大坝的安全监测技术人员都存在专业素质不高的问题,为了加强对我国水利工程大坝的安全监测控制,水利部门要提高安全监测技术人员的专业素质。首先,要定期地对安全监测技术人员进行培训,加强对安全监测技术人员的操作培训,特别是在引进相关的安全监测计算机系统和信息系统等技术的情况下,要保证这些先进系统的运行,就必须提高安全监测技术人员的专业素质,保证技术人员能熟地练操作这些系统,从而更好地对水利工程大坝开展安全监测,保证水利工程大坝的安全运行。

大坝安全监测

论述大坝安全监测分析与数值模拟在水工结 构中的应用及新进展 一、大坝安全监测分析 1.大坝监测的内容 大坝安全监测的范围应根据坝址、枢纽布置、坝高、库容、投资以及失事后果等确定,根据具体情况由坝体、坝基、坝肩,推广到库区及梯级水库大坝;监测的时间应从设计时开始至运行管理;监测的内容包括坝体结构、地质状况、辅助机电设备及消洪泄能建筑物等。 1.1大坝安全监测的分类 1.1.1 仪器监测 仪器监测是选择有代表性的部位或断面,按需要使用或安装、埋设仪器设备,对某些物理量进行系统的观测,取得反映建筑物性状变化的实测数据。仪器监测的项目主要有“变形监测”、“渗流监测”、“应力、应变及温度监测”和“环境量监测”。随着监测范围的扩展,诸如水力学监测、地震监测、动力监测等一些新兴监测项目不断涌现。 1.1.2 巡视检查 监测技术人员通过目视或借助一些专用设备(如在某些部位安装摄像头,辅设人工巡视专用栈道等)对建筑物现场包括坝体、坡脚、坝肩、廊道、排水设施、机电设备、船闸、航道、高陡边坡等部位进行查看、比较、分析,进而发现建筑物在施工、挡水、运行中可能危及工程安全的异常现象。它弥补了监测仪器仅埋设在指定部位的不足。而且能直观

地发现某些监测仪器不易监测到的非正常现象.提供有关建筑物安全等一些重要信息,是监测系统的组成部分。巡视检查和仪器监测是不可分割的。巡视检查也要尽可能利用当今的先进仪器和技术对大坝特别是隐患进行检查,以早发现早处理。如土石坝的洞穴、暗缝、软弱夹层等很难通过简单的人工检查发现,因此,必须借用高密度电阻率法、中间梯度法、瞬态面波法等进行检查.从而完成对其定位及严重程度的判定。因此,在大坝监测中多数采用两种监测手段结合起来的方法。 1.2大坝安全监测的目的和意义 1.2.1掌握大坝的工作状态。 指导工程的运行管理通过大坝的安全监测及时获取大坝安全的第 一手资料.掌握大坝工作状态,实现对大坝的在线、实时安全监控。在发生异常现象时,分析产生的原因和危险程度,预测大坝的安全趋势。及时采取措施,把事故消灭在萌芽状态中,保证工程安全。 1.2.2 验证坝工设计理论和选用参数的合理性 到目前为止。因实际情况复杂多变,水工建筑的设计尚不能完全与实际情况相吻合,作用在建筑物上的荷载除水压力和自重力,都难以精确计算。因此在水工设计中不得不采用一些经验系数和简化公式进行计算。通过大坝安全监测认识监测物量变化规律,检验坝工基本理论的正确性、设计方法和计算参数的合理性。验证施工措施、材料性能、工程质量的效果。

(技术规范标准)四川省污染源监督性监测比对监测技术规范

附件1: 四川省污染源监督性监测比对监测技术规范 1 内容与适用范围 根据国家有关污染源在线监测系统技术规范和我省污染源在线监测系统的安装、运行情况,结合污染源监督性监测的要求,在进行污染源监督性监测的同时,对废水在线监测系统和固定污染源废气在线监测系统开展比对监测。 本规范规定了四川省污染源监督性监测中废水在线监测系统和固定污染源废气在线监测系统比对监测的监测项目、监测频次、采样及分析、数据处理、判别指标、判别要求和评价结果表述等的技术要求。 本规范适用于在四川省污染源监督性监测过程中,对废水在线监测系统和固定污染源废气在线监测系统进行比对监测的活动。 2 规范性引用文件 本标准内容引用了下列文件中的条款。凡是不注日期的引用文件,其有效版本适用于本标准。 HJ/T 353 《水污染源在线监测系统安装技术规范》 HJ/T 354 《水污染源在线监测系统验收技术规范》 HJ/T 355 《水污染源在线监测系统运行与考核技术规范》 HJ/T 356 《水污染源在线监测系统数据有效性判别技术规范》HJ/T 15 《环境保护产品技术要求超声波明渠污水流量计》 CJ/T 3017《潜水电磁流量计》 HJ/T 75 《固定污染源烟气排放连续监测技术规范》

HJ/T 76 《固定污染源烟气排放连续监测系统技术要求及检测方法》 HJ/T 91 《地表水和污水监测技术规范》 HJ/T 92 《水污染物排放总量监测技术规范》 HJ/T 397 《固定源废气监测技术规范》 HJ/T 373 《固定污染源监测质量保证与质量控制技术规范》 3 术语和定义 3.1 废水在线监测系统 是指在污染源现场安装的用于监控、监测污染物排放的化学需氧量在线自动监测仪、氨氮水质自动监测仪、超声波明渠污水流量计、电磁流量计、数据采集传输仪等仪器、仪表及废水在线监测站房。 3.2 超声波明渠污水流量计 用于测量明渠出流及不充满管道的各类污水流量的设备,采用超声波发射波和反射波的时间差测量标准化计量堰(槽)内的水位,通过变送器用ISO流量标准计算法换算成流量。 3.3 电磁流量计 利用法拉第电磁感应定律制成的一种测量导电液体体积流量的仪表。 3.4 固定污染源废气在线监测系统 是指在污染源现场安装的用于监控、监测固定污染源中废气排放污染物的颗粒物监测子系统、气态污染物监测子系统、废气排放参数测量子系统、数据采集、传输与处理子系统及固定污染源废气在线监测站房。 3.5 比对监测

《混凝土大坝安全监测技术规范》修订意见

《混凝土大坝安全监测技术规范》修订意见的讨论 谭恺炎杨怀祖 (葛洲坝股份有限公司试验中心,宜昌443002) 摘要:根据国内安全监测实施的发展现状,结合多年施工经验,在整理大量检测数据的基础上,对《混凝土大坝安全监测技术规范》SDJ336-89(试行)应力应变及温度监测提出几点修订意见进行讨论,并对振弦式仪器率定检验的方法和技术要求进行了阐述。 关键词:规范应力应变率定检验质量控制差动电阻式振弦式 1 概述 《混凝土大坝安全监测技术规范》SDJ336-89(试行)(以下简称“规范”)自颁发实施10年以来,对我国混凝土大坝安全监测工作起到了很好的指导作用。统一规范了国内混凝土大坝安全监测包括设计、施工、运行各方面的工作,提高了监测数据的准确度和可比性,为我国水利水电工程建设做出了应有的贡献。但由于历史条件限制,“规范”还很不完善。随着我国经济建设步伐的不断加快,许多大、中型水利水电工程相继开工建设,安全监测技术水平有了很大提高,从传感器、仪表到整个测试系统都有很大改变,尤其是近几年来振弦式传感器在工程上的大量应用,都给规范提出了新的要求,对“规范”进行修订已迫在眉睫。作者结合三峡工程安全监测实施情况对“规范”中应力应变及温度监测提出几点修订意见进行讨论。 2仪器埋设 2.1仪器埋设施工 (1) 单向应变计埋设仅规定了表层仪器埋设,对于深层仪器埋设,为了保证仪器角度及位置误差满足要求,宜在前一层混凝土上预埋锚筋,将仪器绑扎固定在锚筋(锚筋用沥青麻布包裹)上埋设。 (2) 应变计组埋设时应特别强调剔除大于仪器标距1/4~1/5粒径的骨料。这是因为应变计埋设在混凝土内,对混凝土内部应变产生影响,一般来说混凝土中最大骨料粒径小于仪器长度的1/4~1/5,仪器所测应变可代表混凝土内点应变。 (3) 无应力计埋设时宜大口朝下,但在埋设时,应在振捣后将上盖打开并用干棉纱将筒内混凝土泌水吸干。无应力计筒大口朝上时,虽然湿度可保持与周围混凝土一致,但上覆混凝土荷载将对筒内应力产生一定影响。 (4) 测缝计埋设时,为使仪器获得最大量限,又保证仪器埋设时不致超量程损伤,宜针对不同种类测缝计,视不同坝型、部位和监测目的,在设计技术要求上对仪器埋设时的状态进行明确规定。 2.2电缆施工及保护 目前差动电阻式仪器系统均为五芯观测系统,采用恒流源进行测量的数字读数仪已取代了水工比例电桥,观测精度受电缆影响大为降低,所以“规范”中对水工观测电缆的芯线电阻及其差值要求应作适当修改。具体指标可参考机械工业部通讯电缆的技术要求。 近几年来塑套电缆在水工观测上应用已较普遍,“规范”中要求使用专用橡皮电缆应予以修改。电缆联接工艺对观测仪器的成活率和观测数据精度有很大影响,对于橡皮电缆宜采用硫化接头,亦可采用机械套管或热缩接头,塑套电缆应采用机械套管或热缩接头,一般采用机械套管(内填密封胶,两端O型止水)较热缩接头质量好,且易控制。 “规范”对电缆牵引作了较具体的规定,但尚需补充几点要求: (1) 电缆水平牵引应沿钢筋引线,并加以保护,若有条件可加槽钢保护。因为混凝土在下料平仓振捣过程中,会给电缆产生较大的水平推力使电缆被拉断。 (2) 电缆牵引路线除与上、下游坝面距离应大于1.5米外,与坝体纵横缝及永久结构面距离应大于10厘米,以保护电缆不

相关文档
最新文档