常用地震属性的意义之欧阳家百创编

常用地震属性的意义之欧阳家百创编
常用地震属性的意义之欧阳家百创编

常用地震属性的意义

欧阳家百(2021.03.07)

地震反射波来自地下地层,地下地层特征的横向变化,将导致地震反射波特征的横向变化,进而影响地震属性的变化,因此,地震属性中携带有地下地层信息,这是利用地震属性预测油气储层参数的物理基础。随着地震属性处理及提取技术的大量涌现,属性种类多达几百种,实际应用人员应用起来遇到了很大困难,迫切需要按实用的角度,总结各地震属性参数与储层特征参数间的内在联系,为进一步研究建立地震信息与储层参数之间的关系提供可靠的前提条件,做到信息提取有方向、有目标。为了达到这一目的,首先按类别较全面总结了目前常用地震属性,从算法开始,分析了各属性所表达的在地震波波形上的意义,从正向上分析地震属性变化与油气储层特征变化的关系,进而探讨总结了它的潜在地质应用。

1、属性体、属性剖面

这类属性是按剖面(或体)处理的,是一个体文件(或剖面文件),属性值对应空间位置,即(x、y、t0、属性值),可以用于常规地震剖面的方式显示与使用,常用的属性有:相干体(方差体、相似体等)、波阻抗、道积分数据体,经希尔伯特变换得到的瞬时属性体、倾角、倾向数据体等,这些属性体可以直接应用于解释,也可以用解释层位提取出来转变为属性层,下表为常用属性体属性意义及潜

2、沿层地震属性

这种属性是用解释层位在地震数据体(剖面)中提取出来的属性,它的数值对应一个层位或一套地层,每个属性值对应一个x、y 坐标。提取方式有两类:沿一个解释层开一个常数时窗,在此时窗内

提取地震属性,提取方式有4种(图2-1a)。用两个解释层提取某一段地层对应的地震属性,提取方式也有4种(图2-1b)。

常用地震属性的计算方法总结如下:

(1)、均方根振幅(RMS Amplitude)

均方根振幅是将振幅平方的平均值开平方。由于振幅值在平均前平方了,因此,它对特别大的振幅非常敏感。

(2)、平均绝对值振幅(Average Absolute Amplitude)

平均绝对值振幅没有均方根振幅那样,对特别大的振幅敏感。

(3)、最大波峰振幅(Maximum Peak Amplitude)

最大波峰振幅的求取方法是,对于每一道,PAL在分析时窗里做一抛物线,恰好通过最大正的振幅值和它两边的两个采样点,沿着这曲线内插可得到最大波峰值振幅值。

PAL画一个使这三个采样点适合曲线并且

沿这一曲线确定出最大值。

MaximumPeak Amplitude = 125

(4)、平均波峰振幅 (Average Peak Amplitude)

平均峰值振幅是对每一道在分析时窗里的所有正振幅值相加,得到总数除以时窗里的正振幅值采样数得到的。

(5)、最大波谷振幅 (Maximum Trough Amplitude)

最大波谷振幅的求取方法是,对于每一道,PAL在分析时窗里做一抛物线,恰好通过最大负的振幅值和它两边的两个采样点,沿着这曲线内插可得到最大波谷振幅值。

PAL 画一个适合这三个采样点的曲线

并且沿着这一曲线确定出最大值。

Maximum Trough Amplitude = |-90| = 90

(6)、平均波谷振幅(Average Trough Amplitude)

平均波谷振幅是对每一道在分析时窗里的所有负振幅值相加,得到总数除以时窗里的负振幅值采样数得到的。

(7)、最大绝对值振幅 (Maximum Absolute Amplitude)

计算每道的最大绝对值振幅的求取方法是,首先在分析时窗内计算出波峰和波谷的值,得出最大的波峰或波谷值,然后,PAL画一抛物线,恰好通过最大波峰或波谷振幅值和它两边的两个采样点,沿着这曲线内插可得到最大绝对值振幅值。

PAL 画一个适合这三个采样点的曲线

并且沿着这一曲线确定出最大值。

Maximum Absolute Amplitude = 123.6

(8)、总绝对值振幅 (Total Absolute Amplitude)

总绝对值振幅是计算确定时窗内的所有道的绝对值振幅值。

Total Absolute Amplitude = sum of absolute values ofamplitudes

= 1045

(9)、总振幅 (Total Amplitude)

每一道的总振幅是,在层内对采样点求取总的振幅值。

Total Amplitude = sum of amplitudes

= 559

(10)、平均能量 (Average Energy)

对于每一道的平均能量的求取方法是,对分析时窗内的振幅值平方相加,对总数除以时窗内的采样数求得。

(11)、总能量(Total Energy)

对于每一道总能量的求取方法是,对分析时窗内的振幅值平方相加求和得到的。

Total Energy = sum of squared amplitudes

= 83,945

(12)、平均振幅 (Mean Amplitude)

对于每一道的平均振幅的求取方法是,对分析时窗内的振幅值相加,总数除以非零采样点数得到的。

(13)、振幅的平方差 (Variance in Amplitude)

对于每一道的振幅的平方差的求取方法是,对分析时窗内的每个

振幅值减去平均值累加,总数除以非零采样点数得到的。

(14)、振幅的立方差 (Skew in Amplitude)

对于每一道的振幅的立方差的求取方法是,对分析时窗内的所有采样点求取平均值,然后减去每道的平均值,计算差值的立方,求出这些值的总和,除以采样点数就可得到。

(15)、振幅的峰态 (Kurtosis in Amplitude)

对于每一道的振幅的峰态的求取方法是,对分析时窗内的所有采样点求取平均值,然后减去每道的平均值,计算差值的四次方,求出这些值的总和,除以采样点数就可得到。

(16)、有效带宽(Effective Bandwidth)

数据体时窗的有效带宽是由数据体的零延时的自相关除以采样周期与道两边所有自相关的总和之积而求得的。

r(t) = the two-sided auto-correlation of the data in thewindow

T = sample period

Window length= M+1

有效带宽被看作是定量化的相似数据体。狭窄的带宽就是比较相似的数据体;而较宽的带宽是不太相似的数据体。因此,宽的带宽表示不均质的反射特征,被认为是复杂的地层;窄的带宽表示的是较简单的或平滑的反射特征,认为是均质的地层模式。带宽能帮助我们在数据体中识别噪声区,有噪声的数据体比没有噪声的纯数据体有很明显宽的带宽。

应用地震地层学的方法,可以从与其它属性相配合的有效带宽中推断出一系列地震反射所代表的沉积环境。如一个狭窄的带宽区域,低振幅,高频,连续的平行反射代表了低能量沉积环境,认为是深海页岩。

(17)、弧长(Arc Length)

弧长是作为地震道的波形长度来定义的,它是在时窗内对所有地震道的变化范围的比例测量。假想,用道的波形样式绘制地震道曲线,然后想象一根绳子放在地震道上跟着每个波形波动。地震道的弧长就是当绳子伸展开的总长度。

a(i)= amplitude at the i th sampleT = sample period

N = number of samples in the window

弧长是用于高振幅高频率和高振幅低频率之间与低振幅高频率和低振幅低频率之间的区别。如因为页岩和砂岩的界面,一般有一些突变和高阻抗的反差,弧长就用于页岩层序和含砂量较高的层序之间的识别,带宽越小,弧长就越接近总绝对值振幅。这一属性相似于反射的非均质性。

(18)、过零值平均频数(Average Zero Crossings Frequency)过零值平均频率的计算方法是通过数据体时窗中的过零点的个数(N zc),和求出第一个通过零值的反射时间和最后一个通过零值的反射时间,根据下式计算出过零点平均次数(f zc)。

t 1 = time of first zero crossing

t 2 = time of last zero crossing

对于过零值平均频数的用途相似于瞬时频率,由于它不会有尖脉冲,并且它的值不会为负值或无穷大,因此它是一个比较稳定的量。当时窗比较小时,过零值平均频数对波形中较小的变化比平均瞬时频率敏感。

(19)、Dominant Frequency Series F1、F2、F3(主频系列

F1、F2、F3)

对于所确定时窗的每一个输入道的估算值是由能量谱中的三个最主要频率分量组成,如下图中的F1、F2、F3。其中F1是低频段中的峰值,F2是中间频段中的峰值,F3是高频段中的峰值。运行这些属性,PAL就会用最大熵方法,对每道进行谱分析,六次多项式是用

于能量谱模式和识别它的三个峰值。它应用的优点是能够输入有限的数据得到可靠的估算值。对于一定的输出格式必须由40ms的数据,当分析时窗在40ms以下时, PAL将会输出无效值。

上图所绘的能量谱图是通过对所有道进行快速傅立叶变换得到的,主频估算值是在50ms的分析时窗中得到的。最大熵方法是在有限的时间时窗内得到可靠的估算值,但这些是对三个主频的数学方法估算值,并且这些估算值可能不总是于与你在实际能谱上看到的峰值一样。

这三组属性帮助你在数据时窗内来确定主频特征,在任意或所有主频系列属性里的侧向变化可能有由油气饱和度或断裂导致的频率吸收效应的特征。例如,油气饱和的砂体削弱了较高的频率,这样你就会看到较低的一个或所有的主频。

虽然同样的是计算峰值谱频率,因为它可以显示在振幅谱中的最重要的三个点,所以主频系列有更多的信息。通过更多的振幅谱特征,主频系列可以揭示与地层或岩性有关的频率趋势。

(20)、峰值谱频率(Peak Spectral Frequency)

对于所确定时窗内的每一输入道,峰值谱频率的估算值是由能量谱中单一的最主要的频率组分组成。峰值谱频率相似于主频系列,主频系列估算值是由能量谱中的三个最主要的频率段组成。大体上,峰值谱频率将描述的是主频系列(F1、F2、F3)中所给任意道的最主要的谱组分。

运行这些属性,PAL就会用最大熵方法,对每道进行谱分析,多

系数多项式是用于能量谱模式和识别它的最重要的峰值谱频率。它的应用的优点是能够输入有限的数据得到可靠的估算值。对于一定的输出格式必须由40ms的数据,当分析时窗在40ms以下时,PAL将会输出无效值。

上图所绘的能量谱图是通过对所有道进行快速傅立叶变换得到的,主频估算值是在50ms的分析时窗中得到的。最大熵方法是在有限的时间时窗内得到可靠的估算值,但这些是峰值谱频率数学方法估算值,并且这些估算值可能不总是于与你在实际能谱上看到的峰值一样。峰值谱频率提供了一种追踪主频特征的方法,主频特征可能由油气饱和度、断裂、岩性、地层的变化有关现象导致的频率吸收效应所带来的的特征。例如,油气饱和砂体吸收了较高的地震频率,这样你可能看到较低的峰值谱频率值。

任何大于门槛值的频率都将从峰值谱频率分析中被排除的。在数据体中设定门槛值为最大有效频率,一般来说,这个值是信噪比为1的频率值。在这个频率值以上,许多的噪声的存在比信息多。因此这个数据不会对整个时间道有建设性的作用。

(21)、从谱的峰值到最高频率的斜率(Spectral Slope from Peak to Maximum Frequency)

这个属性表明了在分析时窗内高频成分被吸收的特点。你确定了一个感兴趣的最大值,PAL就计算出在谱中的峰值频率到你设定的门槛值衰减比率。如果斜率是一个高值,高频成分很快被吸收;如果斜率是一个低值,就没有信息被吸收。

对每一输入道,PAL会用最大熵方法计算峰值谱频率,多系数多项式是用于能量谱模式和识别它的最主要的峰值。

这个过程是用最小二次方回归法确定一个线性关系,适合于在峰值频率和对于谱估算的最大频率之间的所有能量谱模式的线性关系。斜率用db/HZ表示。

下图实例中,所绘的能量谱图是通过对所有道进行快速傅立叶计算得到的,波峰谱频率和从波峰到70HZ最大频率的斜率是用PAL在50ms的分析时窗中得到的。

这个属性想通过对能量谱的衰减的估算,用频率在典型的能量谱内定量表示频率的吸收效应。谱斜率的侧向变化可能由于油气饱和度或断裂或与岩性或地层的变化有关现象导致的频率吸收效应所带来的特征。例如,油气饱和砂体衰减了较高的地震频率,谱斜率就会比较陡峭。

谱估算的最大频率值用于规定了峰值谱频率的上限,也就是,当峰值谱频率计算出来时,任何高于这个门槛值的频率都会被排除。在数据体中设定门槛值为最大有效频率,一般来说,这个值是信噪比为1的频率值。在这个频率值以上,存在的噪声比信息多。因此这个数据不会对整个时间道有建设性的作用。

(22)、大于门槛值百分比(Percent Greater than Threshold)对于每一道来说,在分析时窗中,大于设定的门槛值的采样个数除以总采样个数,乘以100。

Threshold = 90

当在时窗内振幅属性采样率为平均采样率时,为求得的振幅大值或小值所占比例,大于门槛值的百分比就决定了大于设定的振幅门槛值的采样数的多少。在某种意义上,你所计算的主要是在时窗中的相对高振幅部分。这一方法的优点是,它是对某一层统计计算,并且对数据体特征中的侧向变化是非常敏感的。

小于门槛值的百分比主要用于分析地层的延伸,海进和海退垂直序列层序会在高振幅砂岩面和低振幅页岩面之间产生。通过计算大于门槛值的振幅百分比,你可以确定这些垂直变化和绘出横向变化的范围图。

同样的,这一属性可以帮助你区分出整合基底(高振幅)、丘状起伏基底(较低振幅)和杂乱反射基底(低振幅)之间的不同。

另一个应用是在层序或沿确定的反射层内可以画出异常振幅图,例如由油气或流体的聚集,不整合和调谐效应所导致的异常。

(23)、小于门槛值百分比(Percent Less than Threshold)

对于每一道来说,在分析时窗中,小于设定的门槛值的采样个数除以总采样个数,结果乘以100。

Threshold = 90

当在时窗内振幅属性采样率为平均采样率时,为求得的振幅的大值或小值所占比例,小于门槛值的百分比就决定了,小于设定的振幅门槛值的采样数的多少。在某种意义上,你所计算的是在时窗中的相对低振幅部分。这一方法的优点是,它是对某一层的统计计算,并且对数据体特征中的侧向变化是非常敏感的。

小于门槛值的百分比主要是用于地层走向方面的。在特定的第三纪盆地内,三角洲层序是从富含砂,高均方根振幅,到富含页岩前三角洲或深海平原里面的低振幅来划分的。这些油页岩比率的变化通过看图中的小于门槛值的百分比就可以很容易确定。

同样的,这一属性可以帮助你区分出整合基底(高振幅)、丘状起伏基底(较低振幅)和杂乱反射基底(低振幅)之间的不同。

另一个应用是在层序或沿确定的反射层内可以画出异常振幅图,例如由油气或流体的聚集,不整合和调谐效应所导致的异常。

(24)、能量半衰时(Energy Half-Time)

在研究的时窗内,从上到下根据样点数求能量累加之和。当能量之和达到计算时窗内总能量的一半时,到这点的样点个数除以总的样点个数为这点的能量半衰时。

能量半衰时是在一个周期内时间达总时间的一半测量时间所需要的能量。它用这个周期的时间域的百分数来表示。

如果在分析时窗内振幅是相对一致的,那么总能量的一半就会在时窗中心附近(能量半衰时=40%-60%);如果在时窗中较浅的部分是强振幅,那么它就会用较少的时间到达总能量的一半(能量半衰时=10%-40%);相反的,如果在时窗中较深的部分是强振幅,那么能量半衰时就会较长(能量半衰时=60%-90%)。

下面是一道的例子:

这一属性是在分析时窗内定量的测量能量的分布,能量半衰时的横向变化可能表示的是地层的变化或由流体含量、不整合或岩性有关

所造成的振幅异常。

例如,海进和海退层序常常具有高能的砂岩的反射和低能的页岩的分布变化特征。当从页岩向下到砂岩层序分层时,能量半衰时将大于50%。当从砂岩向下到页岩层序分层时,能量半衰时将小于50%。能量半衰时中的横向变化图可以帮助整个地层解释。

能量半衰时也能对振幅异常描述由帮助。例如,亮点和暗点与油气含量有关,当这些异常在分析时窗内改变了能量的分布时,你可以看到能量半衰时中的变化。对于可以被检测出来的在中心的能量分布的时移,时窗必须包括最前或尾部的数据体作为异常振幅的参考。

(25)、能量半衰时斜率(Slope at Energy Half-Time)

能量半衰时斜率所计算的是当所累计的能量是总能量的一半时所需时间的能量曲线的斜率。

Slope at Energy Half-Time= E(nhalf) - E(nhalf-1)

E (energy) = amplitude squaredof the trace

nhalf = sample where accumulated energy is one-half the energy inthe gate 下面是一道的例子:

Slope at Energy Half-Time= 87 2 - 76 2

= 7569 - 5776

= 1793

能量半衰时斜率的用途与能量半衰时相似。然而,能量半衰时斜率时更敏感的显示工具。当层中的能量一致时,它的值很容易归零。当能量向下增加时,它的值为正值。当能量向下减少时,它的值为负

值。

(26)、正采样点数与负采样点数的比率(Ratio of Positive to Negative Samples)

在分析时窗内对于每一道正采样数到负采样数的比率是由正采样数除以负采样数得到的。

在所给时窗内,正采样点数与负采样点数比率的变化,与地层的变化相联系的,因此可用于分析地层厚度变化。

(27)、波峰数(Number of Peaks)

波峰数计算的是分析时窗内的正波峰数。这个结果总是整数。因为波峰在这里被认为是任意相对的最大值。

Number of Peaks = 3

它主要用于相邻层理间的集中部分很明显而不是其它方面。对最简单的频率属性,它对分层是敏感的,它们通常在过零频率或平均瞬时频率中是发现不了的。

(28)、波谷数(Number of Troughs)

波谷数计算时窗内负波谷数。这个结果总是整数,因为波谷在这里被认为是任意相对的负最小值。

波谷数属性与波峰数属性是相同的。虽然,对波峰数的说明也可以用于波谷数。实际上,它们的不同也是很明显的,这取决于在分析时窗里的地震子波和反射系数两方面因素。因此,波谷数属性与波峰数属性相配合使用是更可取的。可以用地震层位的计算与这两个属性一起用。

Number of Troughs = 3

(29)、协变系数(Covariance Coefficient to Next CDP)

协变性系数是由两个相邻道之间所求的标准互相关计算得到的。这个属性用于计算指定道和它相邻两道的相似性。值为0时,表示两道完全不相关。值为1.0时表明是相同的道。

作为对信噪比的估算值,这个属性图叠到另一张图上,作为在所给范围内相对地震资料品质的预测。

(30)、相关时移(Correlation Window Time Shift to Next CDP)

选择这个属性是用于计算时移的,是在一道和它的相邻道之间互相关。

当这个属性值突然变化时,表示断层关系、不整合和挤压。

(31)、平均信噪比(Average Signal- to-Noise Ratio)

平均信噪比是在层间计算时窗中多道的中心道平均信噪比。

这一属性能在分析时窗内确定数据的质量。如果这个值很高,所用的时窗中地震资料质量比较可靠。

这些低信噪比的道之间不相似实际上代表了断层或其它地质特征。

(32)、相关长度(Correlation Length)

相关长度计算时窗里中心道和相邻道之间的相关系数减小的快慢的属性,长度的计算是中心道两边相关值变化,当相关值到达0.5时,中心道到这两点的平均距离。这个平均距离是通过线性内插所估算的。下图X1、O和X2为中心道和相关

值到达0.5时的距离。

相关长度是用对跳到0.5这个值的所有道的互相关为标准的道来确定的平均距离。如果在时窗中道的边界一直大于0.5这个值,那么所需距离为间距一半长度。

相关长度是横向连续性的指示器,它在时窗区间内对于确定连续介面(尤其是页岩面)是很有利的。高值代表非常相似性和一致性。低值表示干扰数据。

(33)、相关分量(Correlation Components)

这一属性是计算三个相关分量(P1、P2和P3)。

第一个主要分量P1是线性相关量。标准值 1.0表示相邻道的相似。低值表示不连续性或不相干性的程度。这一属性对描述地震的不连续性是非常有用的,例如,断层和不整合。

第二个主要分量P2是对剩余特征的第二次描述。

第三个主要分量P3是对剩余特征的第三次描述。

(34)、Karhunen-Loevs 复合信息 (Karhunen-Loevs Singnal Complexity)

Karhunen-Loevs 复合信息是下面主要组分的不同比率。

(P1-P3)/(P1-P2)

这个属性是由三个相关组成的,通常对所描述的结果的特征接近相关P1。

为了便于查阅,总结了常用地震属性的意义及潜在应用表,见表1。

振幅统计类:表1

按复数道的统计分为:

频谱统计分类:

按序列统计分类:

地震勘探的一些基础知识.doc

接收条件received condition:指地震勘探中接收地震波的仪器的工作状态和条件。广义地说, 接收条件包括地震检波器的安置情况、组合个数与方式,以及地震仪的各种因素等。但通常将接收条件狭义地指地震检波器的安置情况。地震资料的质量与接收条件有密切关系。陆地工作中埋置检波器,海洋工作中使检波器处于水面下一定深度,都是为了避免风、浪等影响而改善接收条件。 界面速度interface velocity:指折射波沿折射界面滑行的速度。界面速度主要反映折射界面以下地层中岩石的物理性质。由于组成地层的岩石颗粒排列有方向性,通常界而速度大于层速度。界面速度可通过折射波测得。 加速度检波器accelerometer:即“压电地震检波器”。 激发条件excited condition:地震勘探中将震源种类、能最、周围介质的情况总称为激发条件。对于炸药震源来说,激发条件一般包括炸药量大小、药包形状,个数,分布方式及埋置岩性和沉放深度等。对于非炸药震源,激发条件则包括装置的种类、能量、参数选择及安置情况等。激发条件的选择是否适当,对地震勘探原始资料质量的影响很大。一般认为,陆地工作中, 风化层下的含水可塑性岩层是有利的激发条件,因此往往采用井中爆炸,在海洋工作小,主要是以减小气泡影响作为合适的激发条件。 海洋地震勘探marine seismic survey:是利用勘探船在海洋上进行地震勘探的方法°其特点是在水中激发,水中接收,激发,接收条件均一;可进行不停船的连续观测。震源多使用非炸药震源,接收常用压电地震检波器,工作时,将检波器及电缆拖曳于船后一定深度的海水中由于上述特点,使海洋地震勘探具有比陆地地震勘探高得多的生产效率,更需要用数字电子计算机处理资料。海洋地震勘探中常遇到一些特殊的干扰波,如鸣震和交混问响,以及与海底有关的底波干扰。海洋地震勘探的原理,使用的仪器,以及处理资料的方法都和陆地地震勘探基本相同。由于在大陆架地区发现大量的石汕和天然气,因此.海洋地震勘探有极为广阔的前景。 高频地震high frequency seismic survey:在水文地质、工程地质调杏和金属矿床勘探中,勘测深度只在儿米到儿百米之间,需要精细分层和精确地测定波的传播时间。为了提高仪器的分辨能力,要用专门的高频地震仪,记录震波的高频分量。高频地震仪的通频带?般在60-350周 /秒之间,专门测定岩石波速时需提高到500-600周/秒。为了压制低频干扰,仪器频率特性的低频一边应有较大的陡度。 干扰波noise:地震勘探中妨碍分辨有效波的振动都属于干扰波。干扰波大体上可分为两种:其中具有明显传播规律的称为规则干扰或干扰波,如声波、面波,多次波等等;没有明显传播规律性的振动称为随机干扰,或简称干扰,如微震等。抗干扰的问题是关系到地震勘探中提高勘探的质量和能力的极其重要的问题。因此,在野外工作和资料处理上采用多种措施,以提高有效波而压制干扰波。干扰波有时也是相对的概念,如在反射法中,折射波就常

四川地质构造

四川地质构造四川地质构造复杂多样,它跨中国三大构造域:西部是特提斯-喜马拉雅构造域,东部属滨太平洋构造域,北部为古亚洲构造域。四川境内东、西部构造分带明显,大致以北川-汶川-康定-小金河为界,该界以东为扬子准地台(台区),以西是松潘-甘孜褶皱系和三江褶皱系(槽区)。此外,玛沁、略阳、城口、房县一带以北属秦岭褶皱系。东部扬子准地台基底具双层结构,下构造层为结晶基底,由康定群及其相当岩群组成,同位素年龄 19 — 29.5 亿年。上构造层是褶皱基底,由会理群及其相当岩层组成,同位素年龄 8.5 - 17.0 亿年。西部槽区也发现上构造层岩群,如恰斯群,它与会理群相似。东部台区的盖层是上震旦统-中三叠统,属海相地台型沉积。西部槽区的震旦系-三叠系为冒地槽型沉积。各类构造形态及空间分布,东西两部明显不同。台区川中为舒缓斜、穹隆与向斜,川东为梳状褶皱,川东南是垛状褶皱,川西北为短轴褶皱。西部槽区构造线多为北西和北北西向,或呈向南凸出的弧型褶皱。 四川地质构造孕震形势图 为了更好地普及地震地质知识,我们特作此图。这里我还想用几句通俗易懂的话简单地解释一下。 (1)一根三股拧在一起的绳子,突然断了其中一股,还要拉与原来一样大小的力,未断的那两股上于是就多了一份附加的载荷,这一份附加 力很可能就成为“压死骆驼的最后一根稻草”。换句话说,本来还需 积聚若干年才能达到发震(岩石发生脆性破裂或摩擦滑动)的临界剪 切应力,由于5.12汶川大地震及其后的众多余震多了一份附加力而 提前达到了。所以,潜在孕震区就是附加力较高的区域,即今后几年重 点的防范区域。 (2)松潘-甘孜地块像一个巨大的抽屉,两边是水平走滑断层(北边的昆仑山断裂和南边的鲜水河断裂,前端是龙门山推覆(斜冲)断裂。 过去两千年,这个“抽屉”的前端被坚硬的彭灌杂岩顽强地抵着,龙门 山中部相对稳定。5.12那天“抽屉”的前端向东猛冲了几米,“抽屉” 两侧的走滑运动今后也要跟上,以免落后。加之西边的青藏高原还紧 紧地在后面推着,前拉后推,“抽屉”那有不动之理?

北京地区的地震地质(转载)

北京地区的地震地质 表2-9 北京及邻近地区强震(Ms≥6)一览表(l000—1976年)

表2-10 1957—1977年的二十年间ML≥3.5的地震次数表 表2—11 北京市郊区房屋破坏情况表单位:间

表2-12 北京市市区建筑物破坏情况表 四、北京地区的地震地质 (一)北京历史上的地震 本市地处燕山地震带与华北平原中部地震带的交汇处,又紧邻汾渭地震带和郯庐深大断裂地震带,是个多震区,历史上曾遭受过多次强烈地震的破坏和影响,其中以1679年马坊地震和1730年西郊地震的影响最大(见表2-9)。 自有史记载以来,北京地区曾遭受有感地震592次(到1957年3月4日止),其中Ms≥ 有67次(1976年7月28日唐山地震止)。 至于近年来利用仪器记录的地震(ML≥3.5)多达几千次。(见表2-10)。 共计5362次 震中在北京城区的有两次五级地震,曾使城内一些房屋被破坏: 1076年12月(辽道宗太康二年十一月)震中烈度六度,记载:民舍多坏。 1627年3月5日(明熹宗天启正月十八日)震中烈度六—七度。记载:京师地震有声,起自西南以至东北,房屋倾倒,伤人无数。 (二)地质构造与地震烈度 北京地区经历多次地震危害。震害的分布是不均一的,但有一定规律。现根据近年来对

唐山地震对北京地区震害的调查研究成果,从地质基础条件方面简述如下: 1.灾害概况:震害主要表现以下几方面: (1)房屋建筑物的破坏情况据北京市地质地形勘测处等有关单位调查结果列表2-11,2-12如下: 注:此表不包括近郊居民住房和单位房屋损坏数。 单位:平房一间,楼房、厂房一栋 从上表可以看出,房屋和其它建筑物的破坏程度,从东南部向西北逐渐减轻,与地震波衰减方向基本一致。在城区房屋倒塌比较少,破坏多属墙倒。 (2)地表破坏现象唐山地震在北京地区产生的地表灾害有地裂缝、喷水、冒沙和山崩。它们都分布在七度区或六度区与七度区的分界处。 地裂缝规模最大的在顺义县城东,潮白河大桥东的公路上。该地裂缝总长约1400米,宽1.25米,可见深度2米,呈斜列式,总体走向近东西,拉张裂开。震后沿这条裂缝喷水冒沙。 喷水冒沙沙水一部分是沿地裂缝喷出,一部分是由孤立的水孔喷出。前者多呈条带分布,例如平谷县门楼庄乡的南宅和高家庄一带,喷水冒沙大致呈北西方向分布,震后喷水水头高出地面一尺多;后者则往往聚集成群,例如通县的郎府乡耿楼村,喷水冒沙口就达1000 多个,最大喷沙孔直径可达1米以上。 (3)水利工程破坏惜况主要分布于东部地区,如密云水库白河主坝迎水面护坡层出现滑坡,滑坡土石方量约30万立方米。此外,桥、涵、闸建筑物受到损坏的有110多座,损坏机井1773眼(占全市机井总数的4.6%),北运河河堤有3000多米受到严重破坏。 (4)山石滚落仅见于平谷县的靠山集乡将军关村,陡峭山坡的风化岩块发生崩落,形成多处山崩。

地震属性的含义

*说明:谱属性(Spectral Attribute)谱分解(Spectral Decompose)轨迹属性类(Local Attribute)

*

瞬时频率(Inst Frequency ):定义为瞬时相位对时间的导数,用Hz 表示。经常用来估计地震振幅的衰减,往往油气的存在引起高频成分的衰减,可用这一属性检测油气。 瞬时相位(Inst Phase ): 表示在所选样点上各道的相位值,以度或弧度表示。主要用于增强油藏内弱同相轴,对噪音也有放大作用,最终成图的彩色色标应考虑到 反射强度(Reflection Magnitudes ):反映了岩性差异、地层连续、地层空间、孔隙度的变化。 反(负)二阶微商变换(Negative of Second Derivative ) :显著地提升了连续性,有助于更快、更准确的层位解释。 道积分(Integrated Seismic Trace ):能起到伪波阻抗剖面的作用. 并不是说用它替代反演, 它可以起到快速指示孔隙度变化的作用. 谱分解技术(Spectral Decomposition )—— 分频:用于揭示薄层岩性横向的变化,指示可能的含烃地层圈闭。最后分频属性和井砂岩厚度结合作出目标层段的砂岩厚度图。由于不同频率段所看到的东西是有区别的,所以分频还可以观察到河道的形状更清晰,河道内的岩性细节变化。 砂岩厚度图流程图: Find the Power Spectrum using SYNTHETICS Extract Tuning Frequency SATK Run Spectral Decomposition SATK Net Thickness Determination Correlate using LPM

GeoFrame地震属性列表

GeoFrame地震属性列表 传统的CSA计算的地震属性: RMS Amplitude RMS 振幅 Energy half-time 半幅能量 Average Magnitude 平均能量 Maximum Magnitude 最大能量 Computed Inst. Frequency 瞬时频率算术平均值 Computed Inst. Phase 瞬时相位算术平均值 Max. Amplitude 最大振幅 Min. Amplitude 最小振幅 Mean Amplitude 中值振幅 Average Peak Value 平均波峰值 Ave. Peak Value(zero X) 过零最大平均波峰值 Ave. Trough Value 平均波谷值 Ave. Trough Value(zero X) 过零最大平均波谷值 Arc Length 弧形长度 Threshold Value 门槛值 Average Energy 平均能量 Number of Zero Crossings 过零个数 Ratio of Pos to Neg samples(RPN) 正/负样点比 Dominant Frequency 主频 Bandwidth 带宽 Bandwidth Rating(Bias) Bandwidth Rating(Debias) 带宽比(偏差)校偏频宽比(去斜) Sum of Amplitudes 总振幅 Sum of Magnitudes 总能量 Window Length 时窗 Blip Horizon 假想标志层 Local Attributes Lower Loop Duration 下半周时间 Upper Loop Duration 上半周时间 Lower Loop Area 上半周面积 Upper Loop Area 下半周环面积 Upper Loop Skewness 上半周偏移 Upper Loop Kurtosis 上半周尖峰 Upper Loop Asymmetry 上半周环不对称 Duration Attributes Average Duration of Negative Loops 负周时间平均值 Average Duration of Positive Loops 正周时间平均值 Average Duration 平均周时间 Minimum Loop Duration 最小周时间 Maximum Loop Duration 最大周时间 Standard Deviation of Loop Duration 周时间的标志偏差

论地震勘探资料解释

论地震勘探资料解释 论文提要 地震勘探资料解释是地震勘探工程的最终环节。它包括了地层、构造、沉积以及盆地分析和油气勘探等多方面内容,成为油气勘探以及盆地基础地质研究中不可缺少的重要方法。它也是要把地震勘探所取得的地震资料转化成我们对勘探区地下地质情况的认识。应用数字处理后提供的大量水平叠加剖面、偏移剖面或者一块三维数据体等地震资料,再结合地质、钻井、测井等资料,应用解释工作站等现代科技手段,对这些资料进行综合分析、模拟计算、反复对比,最后给出比较符合地下实际情况的认识,并将这些认识绘制成图幅和图表。 地震勘探资料解释在正式工作中是非常重要的,没有这一步那就不会得出最后的结果。在野外把数据采集回来,要经过最后的资料解释才能够把数据转换成图表,为后续的工作打好基础。 正文 一、地震资料解释 包括地震构造解释、地震地层解释及地震烃类解释或地震地质解释。 地震构造解释以水平叠加时间剖面和偏移时间剖面为主要资料,分析剖面上各种波的特征,确定反射标准层层位和对比追踪,解释时间剖面所反映的各种地质构造现象,构制反射地震标准层构造图。 地震地层解释以时间剖面为主要资料,或是进行区域性地层研究,或是进行局部构造的岩性岩相变化分析。划分地震层序是地震地层解释的基础,据此进行地震层序之沉积特征及地质时代的研究,然后进行地震相分析,将地震相转换为沉积相,绘制地震相平面图,划分出含油气的有利相带。 地震烃类解释利用反射振幅、速度及频率等信息,对含油气有利地区进行烃类指标分析。通常需综合运用钻井资料与测井资料进行标定分析与模拟解释,对地震异常作定性与定量分析,进一步识别烃类指示的性质,进行储集层描述,估算油气层厚度及分布范围等。 二、地震剖面特点 地震勘探方法是在地面上布置一条条的测线,沿各条测线进行地震施工采集地震信息,然后经过电子计算机处理就得出一张张地震剖面图。经过地质解释的地震剖面图就象从地面向下切了一刀,在二维空间(长度和深度方向)上显示了地下的地质构造情况。 垂直地震剖面是相对于前面讲的地震勘探而言。那么什么叫垂直地震剖面(简称VSP)呢? 20世纪70年代提出的、70年代后期和80年代很流行的垂直地震剖面技术和以往提到的地震勘探不同,它是将接收器放在已打好的深井中,接收线沿井孔布置,并借助推靠器将接收器紧紧贴在井壁上。也就是说,前面讲的地震勘探的接收器是放在地面上,而垂直地震剖面的接收器是垂直地面放在井下,故而得名。工作时首先将一组接收器下

地震属性含义及其应用..

地震属性含义及其应用 一、 瞬时属性 19 假定复数道表示为:)t (iy )t (x )t (u +=,则 1. 瞬时实振幅 IReAmp ( Instantaneous Amplitude ) 是在选定的采样点上地震道时域振动振幅。是振幅属性的基本参数。 广泛用于构造和地层学解释。用来圈定高或低振幅异常,即亮点、暗点。反映不同储集层、含气、油、水情况及厚度预测。 2. 瞬时虚振幅 IQuadAmp (Inst. Quadrature Amplitude) 是复数地震道的虚部,与复数地震道的相位为90o时的时域振动振幅。即正交道,为虚振幅。 因它只能在特定的相位观测到,多用来识别与薄储层中的AVO 异常。 3. 瞬时相位IPhase ( Instantaneous Phase) ))t (x )t (y tan(A )t (=γ, 定义为正切,输出相位已转换为角度,数值范围是 [-180o ,180o ]。为q(t)/f(t)的一个角,是采样点处地震道的相位。 有助于加强储层内部的弱反射同相轴,但同时也加强了噪声,可用于指示横向连续性;显示与波传播有关的相位部分;用于计算相速度;因为没有振幅信息因此能够显示所有同相轴;用于显示不连续;断层、显示层序边界。由于烃类聚集常引起局部相位变化,也可以做烃类直接指示之一。 4. 瞬时相位余弦 CIP ( Cosine of Inst. Phase ) 是瞬时相位导出的属性。其计算式为))t ((Cos γ 常用来改进瞬时相位的变异显示。并用于相位追踪和检查地震剖面对比、解释的质量。多与瞬时相位联用。 5. 瞬时频率 IFreq (Inst. Frequeney) 定义为瞬时相位对时间的函数 dt )t (d γ(以度/毫秒或弧度/毫秒表示),其量纲为频率的量纲(Hz),是地震道在频率方面的瞬时属性。 用来计算、估算地震波的衰减。油气储层常引起高频成分衰减及杂乱反射显示,所以横向上可用于碳氢指示。高频成份多显示为尖锐的界面或薄层,亦可反映岩相的粗、细变化及地层旋回。

地震地质综合解释基础知识试卷

地震地质综合解释基础知识试卷 一、填空题(每题2分) 1.地震反射同相轴的基本属性振幅、频率、相位。 2.影响地震速度的主要因素岩性、流体、埋深、温度、压力、密度等。3.AVO是指地震反射波振幅随炮检距的关系, AVA是指地震反射波振幅随方位角的关系。 4.振幅类地震属性主要有均方根振幅、平均振幅、最大峰值振幅、最大谷值振幅、平均能量、瞬时真振幅、反射强度、视极性平均振动能量、波峰振幅极大值、波谷振幅极大值总能量等(答对三种即可); 地震解释中振幅类地震属性主要用于识别油气流体的聚集、岩性概况、孔隙度情况、三角洲与河道砂的展布、礁体异常、不整合、调谐效应、层序变迁等(答对三种即可) 5.地震解释中相干属性主要用于识别断裂构造、岩性变化、地层物性、流体变化等 (答对两种即可)。 6.圈闭的要素有储集层、盖层、遮挡条件。 7.含油气盆地由基底、周边和沉积地层三个基本部分组成。 8.孔隙类型视其划分依据不同而异,主要流行三种方案:按孔隙的成因,可将孔隙类型分为原生孔隙、次生孔隙和混合孔隙;据孔隙的大小,分为超毛细管孔隙、毛细管孔隙和微毛细管孔隙;将成因和大小结合的分类,如E.D.Pittman对碎屑岩储集体孔隙分为粒间孔、溶蚀孔、微孔和裂缝。 9.成藏期的构造应力场必将有利于正确揭示油气藏的形成条件、分布规律和高产富集控制因素,同时对指导油气田的勘探和开发以及油气田施工设计都具有重要意义。 10.测井曲线的形态是岩性、物性和所含流体的综合反映,因此测井曲线的对比实质上就是岩性对比。 二、名词解释(每题5分) 1.圈闭:圈闭是具有储集层,盖层和遮挡条件,使油气能够在其中聚集并形成油气的场所。

地震属性的意义

1、属性名称:反射强度(Reflection Strength),振幅包络(Amplitude Envelope),瞬时振幅(Instaneous Amplitude)REFLSTAN(缩写) 定义: 在解释中的应用:用于振幅异常的品质分析;用于检测断层、河道、地下矿床、薄层调谐效应;从复合波中分辨出厚层反射。 属性特征:提供声阻抗差的信息。横向变化常与岩性及油气聚集有关。值总是正的。 2、属性名称:瞬时相位(Instaneous Phase)INSTPHAS(缩写) 定义: 在解释中的应用:进行地震地层层序和特征的识别;加强同相轴的连续性,因此使得断层、尖灭、河道更易被发现。可对相位反转成图,有可能指示含气与否。 属性特征:描述了复相位图中实部和虚部之间的角度。它的值总在±180°之间。瞬时相位是不连续的,从+180°到-180°的反转可引起锯齿状波形 3、属性名称:瞬时频率(Instaneous Frequency)INSTFREQ(缩写) 定义: 在解释中的应用:用于气体聚集带和低频带的识别;确定沉积厚度;显示尖灭、烃水界面边界等突变现象属性特征:瞬时相位对时间的变化率。值域为(-fw, + fw)。然而,大多数瞬时相位都为正。可提供同相轴的有效频率吸收效应及裂缝影响和储层厚度的信息 4、属性名称:正交道(Quadrature Trace),希尔伯特变换(Hilbert Transform)QUADRATR(缩写) 定义:h(t)是f(t)的希尔伯特变换,也是f(t)的90°相移 在解释中的应用:用于复数道分析的品质控制 属性特征:当实地震道代表地震响应中质点位移的动能时,正交道相当于质点位移的势能 5、属性名称:视极性(Apparent Polarity)APPAPOLA(缩写) 定义:在振幅包络峰值处实地震道的极性 在解释中的应用:用于振幅异常的品质分析 属性特征:为实地震道的符号位,假设零相位子波、视极性与反射系数的极性相同 6、属性名称:响应相位(Response Phase)RESPPHAS(缩写) 定义:在振幅包络峰值处的瞬时相位值 在解释中的应用:地震地层层序的识别、检测。由于流体含量或岩性引起的横向变化,在具有相似的振幅响应时,用来区分有利和不利带 属性特征:强调反射界面的主相位特征。与瞬时相位的应用相同 7、属性名称:响应频率(Response Frequency)RESPFREQ(缩写) 定义:在振幅包络峰值处的瞬时频率值 在解释中的应用:识别与气藏聚集有关的可能区带 属性特征:相应频率在区域上更具可解释性。与瞬时频率的应用相同 8、属性名称:反射强度交流分量(Perigram)PERIGRAM(缩写) 定义:消除了反射强度中的均值(直流分量)部分后的偏差 在解释中的应用:用于振幅异常的品质分析。与反射强度的应用相同,但更适合于分析和处理,因为它有

地震属性分析技术综述

【全文】地震属性分析技术综述 [摘要] 地震属性是从地震资料中提取的隐藏有用信息,因而地震属性分析技术近几年在油气勘探开发中得到了广泛的应用与研究。本文对地震属性分析技术的发展状况进行了归纳、总结,简单阐述了地震属性分析技术的在不同时期所用到的基本原理和方法。特别对新地震属性进行了具体介绍。最后对该技术进一步的研究工作进行了总结和展望。 摘要:在勘探和开发周期的各个阶段,地震资料在复杂油藏系统的解释过程中,扮演着至关重要的角色。然而,缺少一种有效地将地质知识应用于地震解释中的上具。随着一系列属性新技术的出现,对地震属性进行充分研究,就给地质家提供了快速地从三维地震数据中获得地质信息的能力。尤其在用常规解释手段难以识别日的储层的情况下,属性分析技术更是给地质上作人员指出了新的方向。 [关键词] 地震属性储层预测叠前数据叠后数据 关键词:储层;波形分析;地震属性 1.引言 地震属性是指叠前或叠后的地震数据经过数学变换而导出的有关地震波的几何形态、运动学特征、动力学特征和统计学特征的特殊度量值。地震属性的发展大致从20世纪60年代的直接烃类检测和亮点、暗点、平点技术开始,经历了70年代的瞬时属性(主要是振幅属性)和复数道分析,90年代的多维属性(特别是相干体属性)分析,21世纪的地震相分析等阶段[1一SJ。随着地震属性分析技术的发展与研究,该技术已广泛应用于储层预测、油气藏动态监测、油气藏特征描述等领域,并取得了很好的效果。总之,地震属性分析技术可以从地震资料中提取隐藏其中的多种有用信息,这为油气勘探与开发提供了丰富宝贵的资料,也为解决复杂地质体评价提供了实用的分析手段。因此,对该技术进行深人调查研究具有很强的现实意义。 地震属性是指从地震数据中导出的关于儿何学、运动学、动力学及统计特性的特殊度量值。它可包括时问属性、振幅属性、频率属性和吸收衰减属性,不同的属性可指示不同的地质现象。地震属性分析则是从地震资料中提取其中的有用信息,并结合钻井资料,从不同角度分析各种地震信息在纵向和横向上的变化,以揭示出原始地震剖面中不易被发现的地质异常现象及含油气情况。 地震属性分析技术的研究已由线、面信息扩展到三维体信息,从分类提取扰化发展为一项系统的应用技术。随着地震技术的日趋成熟,地震属性技术近儿年也发展迅速,其中有多属性联合解释技术、波形分析技术、吸收滤波技术等。应用地震属性分析技术去完善勘探生产中的油藏描述工作,已经成为油藏地球物理的核心内容。利用地震属性分析技术预测岩性和有利储集体,描述油藏特征及孔隙度变化,寻找难以发现的隐蔽油区,以至于监测流体运动和进行其它综合研究,一直是石油工作人员追求的目标。 1波形分析技术的研究与应用 通常的层段属性只是表示了某儿个地震信号的物理参数(振幅、相位、频率等),但它们没有一个能够单独描述地震信号的异常,而地震信号的任何物理参数的变化总是对应着反映地震道形状的变化,所以,研究和分析地震资料中代表各种属性总体特征的地震道形状(波形),应该能有非常不错的效果[,]。 1. 1波形分析技术的原理及处理过程

地质构造题目

1.试述生物层序律的涵义 答:在漫长的地质历史时期内,生物从无到有、从简单到复杂、从低级到高级发生不可逆转的发展演化;所以不同地质时代的岩层中含有不同类型的化石及其组合。而在相同地质时期的相同地理环境下形成的地层,则都含有相同的化石,这就是生物层序律。根据生物层序律,寻找和采集古生物化石标本,就可以确定岩层的地质年代。 2.简述如何根据岩浆岩与沉积岩的接触关系及其本身的穿插构造来确定岩浆岩的相对地质年代。 答:根据岩浆岩体与周围已知地质年代的沉积岩的接触关系,来确定岩浆岩的相对地质年代。(1)侵入接触:当岩浆侵入于沉积岩中,使围岩发生变质现象,说明岩浆侵入体的地质年代,晚于变质的沉积岩层的地质年代;(2)沉积接触:岩浆岩形成之后,经长期风化剥蚀,后来在侵蚀面上又有新的沉积。侵蚀面上部的沉积岩层无变质现象,而在沉积岩的底部往往有由岩浆岩组成的砾岩或岩浆岩风化剥蚀的痕迹。说明岩浆岩的形成年代早于沉积岩的地质年代。穿插的岩浆岩侵入体总是比被它们所侵入的最新岩层还要年轻,而比不整合覆盖在它上面的最老岩层还老。如果两个侵入岩接触,岩浆侵入岩的相对地质年代也可由穿插关系确定,一般是年轻的侵入岩脉穿过较老的侵入岩。 3.如何确定沉积岩的相对地质年代? 答:岩石(体)相对地质年代的确定可依据地层层序律生物演化律以及地质体之间的接触关系三种方法。 (1)地层层序律:未经构造变动影响的沉积岩原始产状应当是水平的或近似水平的。并且先形成的岩层在下面,后形成的岩层在上面。 (2)生物演化律:由于生物是由低级到高级,由简单到复杂不断发展进化的。故可根据岩层中保存的生物化石来判断岩层的相对新老关系。 (3)地质体之间的接触关系:根据沉积岩层之间的不整合接触判断。与不整合面上底砾岩岩性相同的岩层形成时间较早。另外与角度不整合面产状一致的岩层形成时间较晚。如果岩层与岩浆岩为沉积接触,则沉积岩形成较晚,如果岩层与岩浆岩为侵入接触,则沉积岩形成时间较早。

地震资料综合解释

Landmark系统在地震资料解释中的应用摘要:随着计算机技术的高速发展和地震勘探资料解释技术的不断提高,应用解释工作站进行资料解释和综合研究越来越普遍。应用LandMark系统进行地震勘探解释成图与以往成图方法相比,具有省时、高效、成图质量高等优点,尤其对于工区面积大、断块复杂、地震勘探数据量大的项目,运用LandMark解释成图系统将会极大地提高工作效率。 一. Landmark软件简介 Landmark软件是美国哈里伯顿(Halliburton)公司开发的钻井工程专用软件,是一套知识集成系统,主要功能是利用所集成的软件模块协助用户进行专业分析并做出决策。Landmark软件包括六个功能模块,即数据、信息管理及分析软件IMI、地震资料目标处理软件Processing、地震地质综合研究应用软件GGT、油藏开发应用软件RM、钻井和完井服务应用软件Drilling和Windows平台应用软件Discovery,各个模块都具有自己的特殊功能。 Landmark软件主要由OpenWorks软件平台和各个应用程序两部分组成。应用程序都是OpenWorks软件平台的插件,均运行于OpenWorks的环境下,受它的管理,遵循其设置的规则和标准。例如,所有应用程序的数据测量系统,投影和坐标系统等都与OpenWorks软件平台的设置一致,这样有利于数据的交换。所有应用程序产生的各类数据包括地质、地震、测井、人文四大类数据,均存储于OpenWorks数据库中,形成了一个统一的数据体,即所谓的数据一体化,总体说来,主要有下列三个特点: (1)方便的数据交换:各个应用程序之间都可以很方便地进行数据交换,SeisWorks 和StratWorks中的断层多边形、层面网格线、等值线等可以方便地相互交换,MapView的图像也可以转成ZMAP+格式,输出高质量的图像。 (2)数据共享:OpenWorks是一个多用户系统,允许多个用户在一个工区内工作,你可以指定用哪些用户的数据,并可指定应用的次序,达到数据全面的共享。 (3)便利的数据通讯:通讯就是实时的数据交换。Landmark软件各个应用程序之间以及每个应用程序内部都存在广泛的通讯。 另外,Landmark软件还具有多平台系统的特点,软件可以运行在SUN、SGI、IBM三种工作站上。应用PetroWorks的软件开发工具包(ModelBuilder),用户可以开发自己的应用程序,增强软件的功能。OpenWorks有浮动许可的功能,因此网上的任意一台工作站都可通过许可证浮动的方式运行软件。OpenWorks软件平台所挂接的应用程序很多,其中包括单井处理软件(PetroWorks)和多井处理软件(StratWorks)。 Landmark软件服务对象包括任何国家的石油公司、国际石油公司、独立石油公司,以及石油服务公司和咨询公司,全世界超过90%的勘探与生产公司使用Landmark软件,为全球排名前20名的石油生产商中的18家提供技术服务,是业界最大的软件和服务供应商。目前有超过150个软件应用,发行了120000套软件许可证,覆盖勘探、开发、钻井、生产和信息管理等多方面。集成解决方案应用于地质和地球物理、油藏管理、钻完井、生产优化、信息管理等多个领域。下面以Processing模块为例,主要介绍一下Landmark软件的应用情况。 二.软件功能简介 1.SynTool(合成地震记录制作) SynTool是一体化的层位标定工具,用以将地质分层、岩性与地震数据精确地联结起来,它提供了建立精确的合成地震记录所需的特征参数,并提供了强大的曲线编辑处理功能来帮

中国地震分析(一) 我国地质构造与地震带分布特征

中国地震分析(一) 我国地质构造与地震带分布特征 1. 区域构造分布特征 新构造期以来,我国以东西部中间一级分区线为界,西部总体上升,其上升的速率以喜马拉雅山区为最高.依次向北越来越低.其中包括几个强烈的下沉区(盆地).中国东部有几大盆地,但总体上也是上升区.青藏高原和蒙古高原构成一个高原区.在这个高原区的三个边缘是产生8级地震的重要地带.中国东部以华北地区活动最为强烈.但整个东部地区的活动要比西部弱.活动构造的速率要比西部低.构造方向,东部以北东向为主,西部以北西向为主.这就是中国的区域构造特征。 2 .深部构造与地幔质量的均衡调整 从总的重力异常变化的趋势背景上,看我国地质的深部构造。见图(1) 全国重力异常示意图

有几条规模巨大的重力异常梯级带,纵横全国,大体上分为两组:在我国东部地区,以北北东向及北东向为主,纵贯全国南北的一条北北东向梯级带最大.它北起黑龙江大兴安岭,经由大行山,雪峰山、直至云南的滇东南地区。其南北两端有向外延伸之势。福建沿海及川西地区的梯带也很明显,它们都与该地区的山脉有关。在我国西部地区,则以北西西向或近东西向的梯级带为主,它与东部梯级带异常走向相互垂直甚至交会。这种异常走向截然不同的特征,反映出我国东西部不同的深部地壳构造走向的变化规律。从异常强度看,西部梯级带的梯度变化较东部大得多,而且与地形高度有密切关糸。如西藏南缘的梯度带与喜马拉雅山相吻合,北边的梯级带的西段与昆仑山相重合。东段则分成南北两支:北支与祁连山相连,南支与巴颜喀拉山一致。这种重力异常梯级带与山脉之间的相关关系表明,在地壳运动过程中,为使地壳达到均衡,由于山脉所导致的那部分质量剩余,正由上地幔物质的迅速转移给予补偿.也就是地壳正处于均衡调整过程中,伴随着褶皱山脉的出现,地壳厚度也产生了相应的变化。 3 .天然地震区域的分布规律 (1).纵贯全国区域的重力梯级带,反映出地壳深部构造的深大断裂带,上地幔物质的埋藏深度在梯级带内及其两则发生急剧向变化。 (2).区域性重力梯级带相互交会的地区是深部地壳构造最复杂,受破坏最厉害,而且也是地壳活动最强烈的地区。如云南省地处北东向、北西向和南北向三组深部构造的交会处。因此,震中分布几乎遍布于全剩 (3).在一级的重力正、负异常之间的梯级带上,上地幔深度变化也比较剧烈.因此,也是地震活动带。如新疆天山山脉的南北两翼,东北长白山山脉向南北两端,北端是比较活跃的深震区,而南端是海城,营口地震区。 4 .我国主要地震活动带见图(2)

QSH 0186.3-2008 地震勘探资料质量控制规范 第3部分:资料解释

ICS 73.020 E 11 Q/SH 地震勘探资料质量控制规范 第3部分:资料解释 Specifications for quality control of seismic data Part 3:Data interpretation 中国石油化工集团公司 发布

Q/SH 0186.3—2008 目 次 前言 (Ⅲ) 1 范围 (1) 2 规范性引用文件 (1) 3 术语与定义 (1) 4 地震资料解释质量控制流程 (2) 5 质量控制点的设置和分级 (2) 6 基础工作 (4) 7 地震构造解释 (5) 8 地震层序解释 (7) 9 地震岩性解释(非构造圈闭解释) (8) 10 地震储层预测 (9) 11 综合解释 (10) 12 成果报告与资料归档 (10) 附录A(规范性附录)地震资料解释质量检查表 (11) I

Q/SH 0186.3—2008 II

Q/SH 0186.3—2008 前 言 Q/SH 0186《地震勘探资料质量控制规范》分为三个部分: —— 第1部分:采集施工; —— 第2部分:数据处理; —— 第3部分:资料解释。 本部分为Q/SH 0186的第3部分。 本部分的附录A为规范性附录。 本部分由中国石油化工集团公司油田企业经营管理部提出。 本部分由中国石油化工股份有限公司科技开发部归口。 本部分起草单位:中国石油化工股份有限公司石油勘探开发研究院、中国石油化工股份有限公司胜利油田分公司物探研究院。 本部分主要起草人:查忠圻、闫昭岷、李维然、宋传春、董宁、贾友珠、周小鹰。 III

Q/SH 0186.3—2008 地震勘探资料质量控制规范 第3部分:资料解释 1 范围 Q/SH 0186的本部分规定了地震勘探资料解释质量控制的主要过程和内容。 本部分适用于地震勘探资料解释质量控制和检查。 2 规范性引用文件 下列文件中的条款通过Q/SH 0186的本部分的引用而成为本部分的条款。凡是注日期的引用文件,其随后所有的修改单(不包括勘误的内容)或修订版均不适用于本部分,然而,鼓励根据本部分达成协议的各方研究是否可使用这些文件的最新版本。凡是不注日期的引用文件,其最新版本适用于本部分。 SY/T 5331 石油地震勘探解释图件 SY/T 5481—2003 地震勘探资料解释技术规程 SY/T 5933 地震反射层地震地质层位代号确定原则 3 术语与定义 下列术语和定义适用于 Q/SH 0186的本部分。 3.1 地震资料解释seismic data interpretation 地震资料解释按资料类型分为二维资料解释和三维资料解释,按地质目标可分为地震构造解释、地震层序解释、地震岩性解释和地震储层综合预测。 3.2 地震构造解释seismic structural interpretation 地震构造解释主要是利用地震波反射时间、同相性和速度等划分构造层,确定反射层的地质层位,了解地层岩性和厚度变化、储集特征及油气富集规律,对目的层层位、断层做出解释,绘制时间和深度构造图等相关分析图件,在此基础上开展构造发育史和区域沉积环境的研究,预测有利油气聚集区,寻找和评价构造圈闭。 3.3 地震层序解释seismic sequences interpretation 地震层序解释是根据地震剖面反射结构和波组特征来划分不同类型的地震相。通过了解生、储、盖层的分布、空间组合关系和目的层段储层分布,研究地层的宏观特征;分析沉积层序、沉积岩相和沉积环境;恢复盆地(凹陷)内地层演化过程和空间分布格局;预测沉积盆地和区带的油气有利聚集带;评价非构造圈闭及识别含油气性。 3.4 地震岩性解释seismic lithological interpretation 地震岩性解释是在精细构造解释和层序地层解释的基础上,利用地震波速度、属性及地震反演资料进行岩性解释,研究地震波振幅、波形、频谱地震属性与岩性的关系;识别岩性、烃类指示的性质;了解区域性沉积岩相变化、地层的岩性变化;划分含油气的有利区带,进行岩性预测;寻找尖灭、不整合、地层超覆等地层圈闭或岩性圈闭等非构造圈闭类型油气藏。

淄博市地震地质构造概况

淄博市地震地质构造概况 淄博地处我国东部最大的地震带—郯庐地震带西侧,境内地质构造复杂,断裂发育,近南北向的禹王山断裂和王母山断裂、北西向的益都—无棣断裂和张店—仁河断裂、北东东向的广饶—齐河断裂以及北东—北北东向的淄河断裂和上五井断裂在境内交汇成网。据历史记载,淄博及邻区共发生5.0—5.9级地震 6次,6.0—6.9级地震2 次,无7级以上地震。1829年11月19日青州6.25 级地震、 1888年渤海7.5级和1969年渤海7.4级地震对淄博的影响烈度均达到了Ⅵ度以上,1668年郯城8.5 级地震对淄博的影响烈度高达Ⅷ度。 地震动参数区划图 中国地震动参数区划图(GB18306-2001)包括两图一表,即"中国地震动峰值加速度区划图"、"中国地震动反应谱特征周期区划图"、"地震动反应谱特征周期调整表"及关于"地震基本烈度向地震动参数过渡的说明"等。 一、中国及邻区地震区、带划分 新编的中国及邻区地震区、带划分图将中国及邻近地区划分为7个地震区,4个地震亚区, 青藏地震区西昆仑-帕米尔地震亚区青藏高原北部地震亚区龙门山地震带六盘山-祁连山地震带柴达木-阿尔金地震带青藏高原中部地震亚区巴颜喀拉山地震带鲜水河-滇东地震带青

藏高原南部地震亚区喜玛拉雅地震带滇西南地震带藏中地震带ⅤⅤ1Ⅴ2Ⅴ2-1Ⅴ2-2Ⅴ2-3Ⅴ3Ⅴ3-1Ⅴ3-2Ⅴ4Ⅴ4-1Ⅴ4-2Ⅴ4-3 172422010110523 126372110101323293614157 5581695723201411611105216936162 168053819776625938331352561164171227 东北地震区Ⅳ 0 2 9 32 华北地震区长江下游-黄海地震带郯庐地震带华北平原地震带汾渭地震带银川-河套地震带朝鲜半岛地震带鄂尔多斯地震带Ⅲ-1Ⅲ-2Ⅲ-3Ⅲ-4Ⅲ-5Ⅲ-6Ⅲ-7 5011210 201657110 110371329207140 3685062104992112 华南地震区长江中游地震带华南沿海地震带ⅡⅡ-1Ⅱ-2 000 505 28226 1394693 台湾地震区台湾西部地震带台湾东部地震带ⅠⅠ-1Ⅰ-2 202 38830 26157204 89114576 南海地震区Ⅶ 2 7 12 二、潜在震源区划分 在中国大陆及邻区共划分出986个潜在震源区,其中东部地区488个,西部地区498个。8.5级潜在震源区15个(东部2个,西部13个);8级潜在震源区71个(东部13个,西部58个); 7.5级潜在震源区151个(东部38个,西部113个)。 华北地震区是我国东部大陆地区地震活动最强烈的一个地震区,也是我国晚第四纪构造活动强烈的地区,8级以上的地震就发生了5个,最大的地震为1668年郯城8.5级大地震。自西向东断裂活动具有明显的分带性,潜在震源区就沿这些构造活动带展布。 华北地震区包括6个地震带,我市主要受华北平原地震带和郯庐地震带的影响。其中华北平原地震带高级的潜在震源区有:8级潜在震源区2个,7.5级潜在震源区7个,7级潜在震源区7个;郯庐地震带高级潜在震源区有8.5级1个,7.5级5个,7级8个。 三、地震动参数衰减关系 衰减关系的形式引用目前常用的形式: lgY(M,R)=C1+ C2M+ C3M2+C4lg[R+R0(M)] Y(M,R)为EPA或EPV,与震级相关的近场距离饱和因子R0(M)取为: R0(M)= C5exp(C6,M) EPA=Sa/2.5,EPV=Sv/2.5,Tg=2π*EPV/EPA。EPA为水平有效峰值加速度,EPV为有效峰值速度。Sa为加速度反应谱在 T0至T1之间的平均值,Sv为拟速度反应谱在T1至T2之间的平均值,Tg 为反应普特征周期。 四、有关说明 ⒈对反应谱有重要影响的因素是震级、距离和场地条件,软厚土层对地震动长周期分量有放大作用,硬薄土层对地震短周期分量有放大作用。 2、峰值加速度分区主要是根据地震环境确定的,与行政区划边界无关。 3、峰值加速度分挡见下表: 加速度分挡参数值范围加速度分挡参数值范围 <0.05g <0.04g 0.20g (0.19g,0.28g) 0.05g (0.04g,0.09g) 0.30g (0.28g,0.38g) 0.10g (0.09g,0.14g) ≥0.40g ≥0.38g 0.15g (0.14g,0.19g) 4、反应普特征周期分区是根据地震环境划分的,对应建筑抗震设计规范的分组。1区中硬场地为0.35S(≤0.40s),2区中硬场地为0.40S (0.40-0.45S),3区中硬场地为0.45S(≥0.45S)。 5、区划图是一般工程抗震设防的最低要求,我国有一些地区场地覆盖土较厚且比较软,反应普特征周期应通过地震小区划详细确定。 6、下列工程不应直接采用本标准,需进行专门研究:A、重大工程、可能发生严重次生灾害的工程、核电站和其他有特殊要求的核设施建设工程。B、位于地震动区划分界线附近的新、扩、

常用地震属性的意义

常用地震属性的意义 地震反射波来自地下地层,地下地层特征的横向变化,将导致地震反射波特征的横向变化,进而影响地震属性的变化,因此,地震属性中携带有地下地层信息,这是利用地震属性预测油气储层参数的物理基础。随着地震属性处理及提取技术的大量涌现,属性种类多达几百种,实际应用人员应用起来遇到了很大困难,迫切需要按实用的角度,总结各地震属性参数与储层特征参数间的内在联系,为进一步研究建立地震信息与储层参数之间的关系提供可靠的前提条件,做到信息提取有方向、有目标。为了达到这一目的,首先按类别较全面总结了目前常用地震属性,从算法开始,分析了各属性所表达的在地震波波形上的意义,从正向上分析地震属性变化与油气储层特征变化的关系,进而探讨总结了它的潜在地质应用。 1、属性体、属性剖面 这类属性是按剖面(或体)处理的,是一个体文件(或剖面文件),属性值对应 、属性值),可以用于常规地震剖面的方式显示与使用,常空间位置,即(x、y、t 用的属性有:相干体(方差体、相似体等)、波阻抗、道积分数据体,经希尔伯特变换得到的瞬时属性体、倾角、倾向数据体等,这些属性体可以直接应用于解释,也可以用解释层位提取出来转变为属性层,下表为常用属性体属性意义及潜在地质应用一览表。

2、沿层地震属性 这种属性是用解释层位在地震数据体(剖面)中提取出来的属性,它的数值对应一个层位或一套地层,每个属性值对应一个x、y坐标。提取方式有两类:沿一个解释层开一个常数时窗,在此时窗内提取地震属性,提取方式有4种(图2-1a)。用两个解释层提取某一段地层对应的地震属性,提取方式也有4种(图2-1b)。 常用地震属性的计算方法总结如下: (1)、均方根振幅(RMS Amplitude) 均方根振幅是将振幅平方的平均值开平方。由于振幅值在平均前平方了,因此,它对特别大的振幅非常敏感。

相关文档
最新文档