中央处理器的基本功能

中央处理器的基本功能

CPU的发展趋势

CPU的发展趋势 1. 技术发展趋势 (1)工艺的影响。在过去30多年的发展过程中,高性能微处理器基本上都是按照著名的摩尔定律在发展。根据世界半导体行业共同制订的2003年国际半导体技术发展路线图及其2004年更新,未来15年集成电路仍将按摩尔定律持续高速发展。预测到2010年,高性能CPU 芯片上可集成的晶体管数将超过20亿个(到2018年超过140亿个)[4]。半导体技术的这些进步,为处理器的设计者提供了更多的资源(无论是晶体管的数量和种类)来实现更高性能的芯片,从而有可能在单个芯片上创造更复杂和更灵活的系统。 随着晶体管集成度的越来越高、频率和计算速度的越来越快,芯片的功耗问题、晶体管的封装、芯片的蚀刻等越来越难以处理。这些因素使得摩尔定律本身的发展及其对处理器的影响发生了一些深刻的变化。 首先,根据上述的路线图,摩尔定律指出的发展趋势已经变缓,由原来的1.5年一代变为2-3年一代。除了技术本身的难度增加以外,集成电路生产线更新换代的成本越来越昂贵,生产厂家需要更多的时间来收回生产线成本也是一个重要原因。 其次,处理器主频正在和摩尔定律分道扬镳。摩尔定律本质上是晶体管的尺寸以及晶体管的翻转速度的变化的定律,但由于商业的原因,摩尔定律同时被赋予每1.5年主频提高一倍的含义[4,5,6]。事实

上过去每代微处理器主频是上代产品的两倍中,其中只有1.4倍来源于器件的按比例缩小,另外1.4倍来源于结构的优化,即流水级中逻辑门数目的减少。但目前的高主频处理器中,指令流水线的划分已经很细,很难再细分。例如,Pentium IV的20级流水线中有两级只进行数据的传输,没有进行任何有用的运算。另外,集成度的提高意味着线宽变窄,信号在片内传输单位距离所需的延迟也相应增大,连线延迟而不是晶体管翻转速度将越来越主导处理器的主频。功耗和散热问题也给进一步提高处理器主频设置了很大的障碍。因此,摩尔定律将恢复其作为关于晶体管尺寸及其翻转速度的本来面目,摩尔定律中关于处理器主频部分将逐渐失效。 此外,虽然集成度的提高为处理器的设计者提供了更多的资源来实现更高性能的芯片,但处理器复杂度的增加将大大增加设计周期和设计成本。 针对上述问题,芯片设计越来越强调结构的层次化、功能部件的模块化和分布化,即每个功能部件都相对地简单,部件内部尽可能保持通信的局部性。 (2)结构的影响。在计算机过去60年的发展历程中,工艺技术的发展和结构的进步相得益彰,推动着计算机功能和性能的不断提高。工艺技术的发展给结构的进步提供了基础,而结构的进步不仅给工艺技术的发展提供了用武之地,同时也是工艺技术发展的动力[3]。 在过去60年的发展历程中,计算机的体系结构每20年左右就出现一个较大突破,已经经历了一个由简单到复杂,由复杂到简单,又由简

嵌入式微处理器未来市场趋势

嵌入式微處理器未來市場趨勢 CPU的架構大致上可分為CISC CPU & RISC CPU。 CISC CPU適用於大量資料運算的應用(INTEL、AMD、VIA的x86 CPU)。 RISC CPU所強調的是執行的效率與省電的要求(ARM、MIPS、ARC …)。 不論是CISC或是RISC CPU,都可以依據CPU內部處理資料匯流排的寬度,可區分成8位元、16位元、32位元與64位元等四種。根據In-Stat的統計,成長最快的是64位元嵌入式CPU,主要應用在STB、DTV與電視遊戲機等需要大量資料處理的產品。 8至64位元主要產品中所使用嵌入式CPU種類 全球的嵌入式CPU供應商第一大廠商是ARM,排名第二是MIPS。但兩家的產品定位並不完全相同。 ARM的CPU會強調省電應用;MIPS則主打高效能的產品。 因此在過去強調省電訴求的行動電話是嵌入式產品最大應用產品情況下,ARM 的營收皆優於MIPS。MIPS已逐漸淡出16位元CPU的市場,而專注於32位元以上的CPU。ARM與其最大競爭對手MIPS的差異處在於,以交易機制來分析,一般而言,ARM的授權金比重較高,而MIPS則收取比例較高的權利金。 早期台灣廠商CPU或MCU相關技術可區分成三類,8051架構、6502架構與自行研發等三種。INTEL的8051與Motorola的6502都是8位元的架構,初期都是由工研院所授權獲得,並推廣至國內業者。另外自行研發的也不在少數,例如凌陽、盛群、金麗或十速等公司,但都是32位元以下的架構。

嵌入式微處理(CPU)器與微控制器(MCU) 微處理器強調運算效能,而微控制器著重控制功能。 在SoC整合趨勢下,嵌入式微處理器加上記憶體、邏輯與I/O等IP將構成強大效能的微控制器;而增強位元數後的微控制器亦具有MPU的強大處理功能。 微處理器若以應用產品的軟體平台來區分,可分成特定應用型與泛用型兩種。特定應用型: 操作軟體大致是依據終端產品所需的功能加以設計,其最大特色是封閉的操作環境,終端產品的使用者大致上不需了解軟體的構造,也不能修改其操作功能,應用產品有印表機、數位相機、車用設備與遊戲機等,這類型產品通常較簡單其穩定性也要求較高。 泛用型: 如簡易的電腦一樣,有著相似而共通的作業系統,主要應用在PDA、Smart Phone、STB(視訊轉換器)、Thin Client等。此類產品因具有資訊交換的功能,其作業系統較複雜,相容性的要求也較高。 微控制器主要是負責系統產品中控制功能的IC元件。目前電子產品朝向輕薄短小、功能強大、價格低廉等目標發展,加上開發時程日益縮短,微控制器具有整合諸多功能於一身的特性,不但節省開發時間,在降低體積與成本上也有相當大的助益。 微控制器因有下列優點: 1.低價 2.較小的程式碼 3.可使用C語言編譯,開發更容易 4.耗電量較低 5.最高的效能與價格比 16位元以上的微控制器主要應用在通訊(如ISDN、USB等)、車用與工業等項目;由於需要符合工業規格,必須認證後才能出貨,技術層次較高。 隨著系統產品功能的多樣化,人機介面必須具有親和力…等,微控制器的效能亦不斷要求提升,近年來32/64位元微控制器成長率有越來越高的趨勢。

计算机组成原理及汇编语言_cpu未来发展方向

CPU未来发展方向 1、CPU发展历史: 集成的晶体管数量增加,内存扩大,时钟频率增加,地址总线增加,运行速度加快,兼容性提高。总体走向运算更快,体积更小,频率更高,兼容性更好的方向。通过大规模集成电路的发展,在更小的面积上可以集成更多的晶体管,从而使运算速度迅速增长。但是当集成电路增多后,运行产生的热量会是CPU的材料硅受到影响,所以散热问题阻碍了高度集成的进程。 CPU发展史可以说Intel公司的历史就是一部CPU的发展史。 1971 年,Intel 推出了世界上第一款微处理器 4004,它是一个包含了2300个晶体管的4位CPU。 1978年,Intel公司首次生产出16位的微处理器命名为i8086,同时还生产出与之相配合的数学协处理器i8087,这两种芯片使用相互兼容的指令集。由于这些指令集应用于i8086和i8087,所以人们也把这些指令集统一称之为X86指令集。这就是X86指令集的来历。1978年,Intel还推出了具有 16 位数据通道、内存寻址能力为 1MB、最大运行速度 8MHz 的8086,并根据外设的需求推出了外部总线为 8 位的 8088,从而有了 IBM 的 XT 机。随后,Intel 又推出了 80186 和 80188,并在其中集成了更多的功能。 1979年,Intel公司推出了8088芯片,它是第一块成功用于个人电脑的CPU。它仍旧是属于16位微处理器,内含29000个晶体管,时钟频率为4.77MHz,地址总线为20位,寻址范围仅仅是1MB内存。8088内部数据总线都是16位,外部数据总线是8位,而它的兄弟8086是16位,这样做只是为了方便计算机制造商设计主板。 1981年8088芯片首次用于IBM PC机中,开创了全新的微机时代。 1982年,Intel推出80286芯片,它比8086和8088都有了飞跃的发展,虽然它仍旧是16位结构,但在CPU的内部集成了13.4万个晶体管,时钟频率由最初的6MHz逐步提高到20MHz。其内部和外部数据总线皆为16位,地址总线24位,可寻址16MB内存。80286也是应用比较广泛的一块CPU。IBM 则采用80286 推出了AT 机并在当时引起了轰动,进而使得以后的PC 机不得不一直兼容于PC XT/AT。 1985年Intel推出了80386芯片,它X86系列中的第一种32位微处理器,而且制造工艺也有了很大的进步。80386内部内含27.5万个晶体管,时钟频率从12.5MHz发展到33MHz。80386的内部和外部数据总线都是32位,地址总线也是32位,可寻址高达4GB内存,可以使用Windows操作系统了。但80386芯片并没有引起IBM 的足够重视,反而是 Compaq 率先采用了它。可以说,这是 P C 厂商正式走“兼容”道路的开始,也是AMD 等 CPU 生产厂家走“兼容”道路的开始和 32 位 CPU的开始,直到今天的 P4 和 K7 依然是 32 位的 CPU(局部64位) 1989年,Intel推出80486芯片,它的特殊意义在于这块芯片首次突破了100万个晶体管的界限,集成了120万个晶体管。80486是将80386和数学协处理器80387以及一个8KB的高速缓存集成在一个芯片内,并且在80X86系列中首次采用了RISC(精简指令集)技术,可以在一个时钟周期内执行一条指令。它还采用了突发总线(Burst)方式,大大提高了与内存的数据交换速度。 1989 年,80486 横空出世,它第一次使晶体管集成数达到了 120 万个,并且在一个时钟周期内能执行 2 条指令。

计算机中央处理器CPU的发展

计算机中央处理器CPU的发展 (兰州大学信息科学与工程学院10级电信基地班胡亚昆) 摘要:上个世纪中期至今,计算机的发展日新月异。CPU是计算机的核心。本文以美国Intel 公司推出的CPU为例,详细介绍了计算机CPU的发展。 关键词:CPU 数据总线时钟频率80X86 Pentium Core 1. 引言 自1946年第一台计算机问世以来,计算机的发展已经历了电子管、晶体管、中小规模集成电路、大规模集成电路和超大规模集成电路4个阶段。而中央处理器(Central Processing Unit,简称CPU)正是现代计算机系统的核心和引擎,计算机日新月异的发展在很大程度上归结为CPU技术的发展。通常,计算机的发展是以CPU的发展为表征的。根据摩尔定律,我们知道微处理器集成度每个18个月翻一番,芯片的性能也随之提高一倍左右。目前世界上生产CPU最强的公司是美国著名的Intel公司。本文将从Intel公司推出的第一台微处理器4004逐个介绍到Intel最近推出的Core系列处理器,通过这些介绍来让大家深刻地了解计算机中央处理器CPU的发展。 2. Intel 4004 1971年,Intel公司推出了世界上第一款微处理器4004,这是第一个可用于微型计算机的四位微处理器。它包含2300个晶体管,功能相当有限,而且速度还很慢,被当时的蓝色巨人IBM以及大部分商业用户不屑一顾,但是它毕竟是划时代的产品。从此以后,Intel便与微处理器结下了不解之缘。 3. 8086/8088/80186/80188 1978年,Intel公司正式推出了8086CPU,这是该公司生产的第一个16位芯片,内外数据总线均为16位,地址总线20位,主存寻址范围为1MB,时钟频率为5MHz,集成度只有0.040百万件/个。 由于当时的外设接口是8位,8086的16位外设数据线不能直接与外设接口连接,这一点限制了8086的推广。于是,1979年,Intel公司推出了准16位处理器8088,它只是将数据总线改为8位,其他设计都没有交大的改变,应用较为广泛。 8086/8088CPU内部结归纳起来可分为控制单元、逻辑单元和存储单元三大部分。这三大部分互相协调,对命令各数据进行分析、判断、运算并控制计算机协调工作。以后不管什么样的CPU,其内部结构都可归纳为这三部分。 8086/8088的指令是以字节为基础构成的,建立了指令预取队列,将取指令和执行指令这两个操作分别由总线接口单元(BIU)和执行单元(EU)来完成,提高了微处理器的指令执行速度。 8086/8088内有8个通用寄存器(AX,BX,CX,DX,SP,BP,SI,DI),4个段寄存器(SS,ES,DS,CS)和2个控制寄存器(IP,FLAGS),这些寄存器全部是16位寄存器。 8086/8088无高速缓存。 随后,Intel公司80186/80188,它们的核心分别是8006/8088,配以定时器、中断控制器、DMA控制器等支持电路,功能更多,速度更快。80186/80188指令系统比8086/8088增加了若干实用的指令,涉及堆栈操作、位移指令、输入输出指令、过程指令、边界检测及乘法指令。

ARM微处理器体系结构及其发展趋势

ARM微处理器体系结构及其发展趋势 摘要:嵌入式微处理器是体系结构研究领域的一个热点。本文从微处理器设计者的角度出发,对在嵌入式系统当中应用广泛的32位ARM微处理器系列的体系结构作了研究和探讨,同时分析了其发展趋势。 关键词: ARM;体系结构;嵌入式微处理器;发展趋势 1. 概述 嵌入式系统一般指非PC系统,它包括硬件和软件两部分。硬件包括处理器/微处理器、存储器及外设器件和I/O端口、图形控制器等。软件部分包括操作系统软件(OS)(要求实时和多任务操作)和应用程序编程。有时设计人员把这两种软件组合在一起。应用程序控制着系统的运作和行为;而操作系统控制着应用程序编程与硬件的交互作用。 嵌入式系统的核心是嵌入式微处理器。嵌入式微处理器一般具备以下4个特点:(1)对实时多任务有很强的支持功能,能完成多任务并且有较短的中断时间;(2)具有功能较强的存储区保护功能;(3)可扩展的处理器结构,以能最迅速地开发出满足应用的各种性能的嵌入式微处器;(4)功耗很低。 嵌入式处理器的基础是通用计算机中的CPU。但在工作温度、抗电磁干扰、可靠性等方面一般都作了各种增强。具有体积小、重量轻、成本低、可靠性高的优点,芯片中往往包括少量ROM和RAM甚至一定容量的FLASH,一般还包括总线接口、常用设备的控制器、各种外设等器件,从而极大的减少了构成系统的复杂性,因此又称之为片上系统(SystemOnchip,SOC)。 ARM(AdvancedRISCMachine)是英国ARM公司设计开发的通用32位RISC微处理器体系结构,其主要优势在于简单的设计和高效的指令集。ARM的设计目标是微型化、低功耗、高性能的微处理器实现。目前,ARM微处理器家族在嵌入式系统、掌上电脑、智能卡和GSM中断控制器等领域获得了广泛地应用,几乎占据了嵌入式处理器的半壁江山。 2. ARM体系结构 作为一种RISC体系结构的微处理器,ARM微处理器具有RISC体系结构的典型特征。还具有以下特点: (1)在每条数据处理器指令当中,都控制算术逻辑单元(ALU)和移位器,以使ALU 和移位器获得最大的利用率; (2)自动递增和自动递减的寻址模式,以优化程序中的循环; (3)同时Load和Store多条指令,以增加数据吞吐率; (4)所有指令都条件执行,以增大执行吞吐量。 这些是对基本RISC体系结构的增强,使得ARM处理器可以在高性能、小代码尺寸、低功耗和小芯片面积之间获得好的平衡。 作为一种RISC微处理器,ARM指令集的效率比基于CISC的系统高得多。指令集由11个基本指令类型组成,两种用于片上ALU、环形移位器和乘法器,3种用于控制存储器和寄存器之间的数据传送,另外3种控制执行的数据流和特权级别。最后3种指令用于控制外部协处理器,这使得指令集的功能可以在片外得到扩展。对于一些高级语言的编译器来说,ARM 的指令集是比较理想的。而且汇编器的编码也非常简单。ARM指令集的另一个特征是所有的

国产CPU市场情况与发展趋势分析

目录 1 CPU概念阐述 2 指令集架构的代表 3 国内CPU产品简介 4 海光不中科曙光 5 重点公司投资机会分析

指令计数器 存储单元 指令地址 代码段 指令 控制单元 控制指令 数据段 操作数地址 数据 数据 指令寄存器 运算器 输入设备 输出设备 控制器 秳序 CPU 的概念及其工作原理 ? 中央处理器(CPU ),是电子计算机的运算核心和控制核心。 ? 功能主要是解释计算机指令以及处理计算机软件中的数据。 ? 中央处理器主要包括运算器和高速缓冲存储器,及相关数据、总线。 ? 物理结构包括运算逡辑部件、寄存器部件和控制部件等。 操作命 数据 令 存储器 数据信号 控制信号 结果 反 控 馈 地 指 控 制 信 址 令 制 信 号 信 号 号 内存 请求信号 请求信号 CPU 运算单元 迕秳 指令1 指令2 指令3 … 指令n 数据1 数据2 … 数据m 中央处理器工作原理图

CISC 与RISC 对比 CPU 的两种指令集架构(x86 vs ARM ) ? 目前CPU 主要有两种指令集架构: ? 复杂指令集架构CISC (Complex Instruction Set Computer ):x86 ? 精简指令集架构RISC (Reduced Instruction Set Computer ):ARM 、MIPS 和RISC-V ? 为了使计算机的性能更快更稳定,人们对计算机指令系统的构造迕行了调整。最初,通过设 置一些功能复杂的指令,把原来软件的常用功能改用硬件的指令系统实现,以提高执行速度 ,即CISC 。另一种方法是尽量简化计算机指令功能,只保留那些功能简单的指令,而把较 复杂的功能用一段子秳序来实现,即 RISC 。 ? CISC 和RISC 是设计制造微处理器的两种典型技术,虽然都是在诸多因素中寻求平衡,以达 到高效的目的,但采叏的方法丌同导致二者在很多方面差异巨大。 CISC RISC 指令系统 丰富,有与用指令来完成特定的功能 对经常使用的指令设计得简单高效 存储器操作 指令多,操作直接 操作有陉制,控制简单化 秳序 编秳需要较大内存,实现特殊功能时秳序复杂,丌易设计 编秳相对简单,科孥计算及复杂操作的秳序设计相对容易,效率较高 CPU 包含丰富的电路单元,功能强、面积大、功耗大 包含较少的电路单元,面积小、功耗低 设计周期 微处理器结构复杂,设计周期长 微处理器结构简单,布局紧凑,设计周期短 用户使用 结构复杂,功能强大,实现特殊功能容易 结构简单,指令规整,性能容易把握,易孥易用 应用范围 适合亍与用机 适合亍通用机

微型计算机和微处理器的发展

微型计算机和微处理器的发展 本篇报告的目的讲述微型计算机和微处理器的发展史,以此来深化对计算机功能结构的认识,并进一步了解计算机工作的模式,在此基础上对未来的计算机发展做一个合理的推测和预期。其实微型计算机的发展和微处理器的发展其实是紧密结合,密不可分的,微型计算机的发展主要表现在其核心部件——微处理器的发展上,每当一款新型的微处理器出现时,就会带动微机系统的其他部件的一并发展,比如在微机体系结构上,存储器存取容量、存取速度上,以及外围设备都在不断改进,在此基础上新设备也在不断出现并推动微型计算机的进一步发展。 第一篇 微机的发展上根据微处理器的字长和功能,将微型计算机的发展简单划分为以下几个阶段。 第一阶段: 概述:4位和8位低档微处理器(第1代) 基本特点:采用PMOS工艺,集成度低(4000个晶体管/片), 指令系统:系统结构和指令系统简单,主要采用机器语言或简单的汇编语言,指令数目少,基本指令周期为20~50μs,用于简单的控制场合。 举例:Intel4004和Intel8008微处理器和分别由它们组成的MCS-4和MCS-8微机 第二阶段: 概述:8位中高档微处理器(第二代) 特点:采用NMOS工艺,集成度提高约4倍,运算速度提高约10~15倍 指令系统:比较较完善,具有典型的计算机体系结构和中断、DMA等控制功能 软件方面:除汇编语言外,还有BASIC、FORTRAN等高级语言和相应的解释程序和编译程序,在后期出现操作系统。 举例:Intel8080/8085、Motorola公司、Zilog公司的Z80 第三阶段: 概述:16位微处理器(第三代) 特点:用HMOS工艺,集成度(20000~70000晶体管/片)和运算速度都比第2代提高了一个数量级 指令系统:指令系统更加丰富、完善,采用多级中断、多种寻址方式、段式存储机构、硬件乘除部件,并配置了软件系统 产品举例:Intel公司的8086/8088,Motorola公司的M68000,Zilog公司的Z8000 第四阶段: 概述:32位微处理器(第四代) 产品举例:Intel公司的80386/80486,Motorola公司的M69030/68040 基本特点:采用HMOS或CMOS工艺,集成度高达100万个晶体管/片,具有32位地址线和32位数据总线 评价:微型计算机的功能已经达到甚至超过超级小型计算机,完全可以胜任多任务、多用户的作业 第五阶段: 概述:奔腾系列微处理器(第5代) 产品举例:Intel公司的奔腾系列芯片及与之兼容的AMD的K6系列微处理器芯片 特点:AMD与Intel分别推出来时钟频率达1GHz的Athlon和PentiumⅢ。00年11月,Intel又推出了Pentium4微处理器,集成度高达每片4200万个晶体管,主频为1.5GHz。2002

(完整版)CPU的发展趋势

2016-2017年第1学期 CPU的发展趋势 学院:电子信息与电气工程学院专业班级:通信工程2 0 1 4 级1班姓名: 学号: 指导教师: 2016年10月

CPU的发展趋势 摘要CPU是计算机的核心部件,CPU的性能当然能够体现出现代化社会计算机的发展程度。为了能满足计算机市场的需求,研究人员不断的对CPU进行更新迭代,来使CPU 的性能得以提高。本文通过对CPU发展历史的研究,和对现状的分析来对CPU的发展趋势进行探讨。 关健词 CPU 性能发展历史发展趋势 一、CPU的概述 CPU中文名是中央处理器,是计算机的核心部位,在计算机的运行中主要负责对指令的执行和数据的处理。在CPU 的内部由上百万个微型的晶体管共同组成控制单元、逻辑单元和存储单元。CPU 在计算机中主要的功能有以下四个方面: (1)处理指令 这是指控制程序中指令的执行顺序。程序中的各指令之间是有严格顺序的,必须严格按程序规定的顺序执行,才能保证计算机系统工作的正确性工作。 (2)执行操作 一条指令的功能往往是由计算机中的部件执行一序列的操作来实现的。CPU要根据指令的功能,产生相应的操作控制信号,发给相应的部件,从而控制这些部件按指令的要求进行动作。 (3)控制时间 时间控制就是对各种操作实施时间上的定时。在一条指令的执行过程中,在什么时间做什么操作均应受到严格的控制。只有这样,计算机才能有条不紊地工作。 (4)处理数据 即对数据进行算术运算和逻辑运算,或进行其他的信息处理。 其功能主要是解释计算机指令以及处理计算机软件中的数据,并执行指令。在微型计算机中又称微处理器,计算机的所有操作都受CPU控制,CPU的性能指标直接决定了微机系统的性能指标。CPU具有以下4个方面的基本功能:数据通信,资源共享,分布式处理,提供系统可靠性。运作原理可基本分为四个阶段:提取、解码、执行和写回。 二、CPU 的发展历史 1971年。世界上第一块微处理器4004在Intel公司诞生了。它出现的意义是划时代的,比起现在的CPU,4004显得很可怜,它只有2300个晶体管,功能相当有限,而且速度还很慢。 1978年,Intel公司首次生产出16位的微处理器命名为i8086,同时还生产出与之相配合的数学协处理器i8087,这两种芯片使用相互兼容的指令集。由于这些指令集应用于i8086和i8087,所以人们也把这些指令集统一称之为X86指令集。这就是X86指令集的来历。 1979年,Intel公司推出了8088芯片,它是第一块成功用于个人电脑的CPU。它仍旧是属于16位微处理器,内含29000个晶体管,时钟频率为4.77MHz,地址总线为20位,寻址范围仅仅是1MB内存。8088内部数据总线都是16位,外部数据总线是8位,而它的兄弟8086是16位,这样做只是为了方便计算机制造商设计主板。 1981年8088芯片首次用于IBM PC机中,开创了全新的微机时代。 1982年,Intel推出80286芯片,它比8086和8088都有了飞跃的发展,虽然它仍旧是16位结构,但在CPU的内部集成了13.4万个晶体管,时钟频率由最初的6MHz逐步提高到20MHz。其内部和外部数据总线皆为16位,地址总线24位,可寻址16MB内存。80286也是应用比较广泛的一块CPU。

CPU的发展历程和趋势.

CPU的发展历程和趋势 文计081-2班李香 200890513216号 CPU是Central Processing Unit(中央微处理器)的缩写,它是计算机中最重要的一个部分,由运算器和控制器组成。它的发展非常迅速,个人电脑从8088(XT)发展到现在的Pentium 4时代,只经过了不到二十年的时间。从生产技术来说,最初的8088集成了29000个晶体管,而PentiumⅢ的集成度超过了2810万个晶体管;CPU的运行速度,以MIPS(百万个指令每秒)为单位,8088是0.75MIPS,到高能奔腾时已超过了1000MIPS。CPU的内部结构归纳起来可分为控制单元、逻辑单元和存储单元三大部分,这三个部分相互协调,对命令和数据进行分析、判断、运算并控制计算机各部分协调工作。按照其处理信息的字长,CPU可以分为: 4位微处理器、8位微处理器、16位微处理器、32位微处理器以及正在酝酿构建的64位微处理器。 Intel 8086/8088:1978年英特尔公司生产的8086是第一个16位的微处理器.8086微处理器最高主频速度为8MHz,具有16位数据通道,内存寻址能力为1MB。1979年,英特尔公司又开发出了8088。8086和8088在芯片内部均采用16位数据传输,所以都称为16位微处理器,但8086每周期能传送或接收16位数据,而8088每周期只采用8位。8088采用40针的DIP封装,工作频率为6.66MHz、7.16MHz或8MHz,微处理器集成了大约29000个晶体管。8086和8088问世后不久,英特尔公司就开始对他们进行改进,他们将更多功能集成在芯片上,这样就诞生了80186和80188。这两款微处理器内部均以16位工作,在外部输入输出上80186采用16位,而80188和8088一样是采用8位工作。1981年8088芯片首次用于IBMPC机中,开创了全新的微机时代。最早的i8086/8088是采用双列直插(DIP)形式封装,从i80286开始采用方形BGA扁平封装(焊接),从 i80386开始到Pentiumpro开始采用方形PGA(插脚),1982年,INTEL推出了80286芯片,该芯片含有13.4万个晶体管,时钟频率由最初的6MHz逐步提高到20MHz。其内部和外部数据总线皆为16位,地址总线24位,可寻址16MB内存。 Intel 80286:1982年,英特尔公司在8086的基础上研制出了80286微处理器,该微处理器的最大主频为20MHz,内、外部数据传输均为16位,使用24位内存储器的寻址,内存寻址能力为16MB。80286可工作于两种方式,一种叫实模式,另一种叫保护方式。80286集成了大约130000个晶体管。8086~80286这个时代是个人电脑起步的时代,当时在国内使用甚至见到过PC机的人很少,它在人们心中是一个神秘的东西。到九十年代初,国内才开始普及计算机。它除具有实模式和保护模式外,还增加了一种叫虚拟86的工作方式,可以通过同时模拟多个8086处理器来提供多任务能力。

中央处理器的发展

中央处理器的发展 CPU的英文全称是Central Processing Unit,意思是中央处理单元,我们通常也称之为中央处理器。CPU是电脑中最重要的核心组件。通常,一块CPU都要包含运算/逻辑单元、控制单元和寄存器这三部分,这些单元都被集成在一块面积不大的硅晶片中。 要了解CPU,首先要了解一些CPU方面的术语,拿这颗Intel新推出的P4 (图1)来看,它的一些参数已经在金属外壳上刻有了,1M/800分别代表CPU的主频、二级缓存和前端总线频率。 主频就是这颗CPU的工作频率,一般来说主频越高CPU的速度越快,性能也就越强,主频、倍频和外频之间有一个换算关系:主频=外频×倍频。这颗CPU的外频是200MHz,于是我们可以推算出它的倍频应该是14。缓存是很重要的一个指标,Int el通常按照二级缓存的多少来划分Pentium和Celeron,通常两者之间有一倍的差距。前端总线(FSB)在Intel P4系列CPU 中和外频之间也有个换算关系:前端总线频率(FSB)=外频×4,所以通过这里给出的800MHz,我们可以推算出外频为200MH z。 目前,市面上的CPU主要是Intel和AMD两家公司的,下面我们从这两个公司的发展旅程来看看CPU的发展。 CPU双雄:Intel & AMD 一、早期的CPU 早期我们接触的电脑,大部分使用的是Intel的处理器,386、486其实说的就是CPU的型号。例如486是指CPU为Intel 80486(图2)处理器的电脑,Intel的处理器价格昂贵,并不是每个人都能够买得起的,当时一台普通的486电脑售价接近1 0000RMB。这个时候的AMD公司一直都在努力仿照Intel的CPU,推出一系列与之兼容的处理器,而且采取和Intel同样的命名方式,也取名叫386、486。 二、Pentium与K5出现 1993年3月,Intel发布了继80486之后的又一款CPU,并正式取名为Pentium(奔腾),俗称“586”。最初有Pentium

微型计算机和微处理器的发展

微型计算机和微处理器的发展微型计算机简称"微型机"、"微机",由于其具备人脑的某些功能,所以也称其为"微电脑"。微型计算机是由大规模集成电路组成的、体积较小的电子计算机。它是以微处理器为基础,配以内存储器及输入输出(I/0)接口电路和相应的辅助电路而构成的裸机。 微型计算机的发展具体分为以下几个阶段: 1.电子管数字计算机 计算机的逻辑元件采用电子管,主存储器采用汞延迟线、磁鼓、磁芯;外存储器采用磁带;软主要采用机器语言、汇编语言;应用以科学计算为主。其特点是体积大、耗电大、可靠性差、价格昂贵、维修复杂,但它奠定了以后计算机技术的基础。 2.晶体管数字计算机 晶体管的发明推动了计算机的发展,逻辑元件采用了晶体管以后,计算机的体积大大缩小,耗电减少,可靠性提高,性能比第一代计算机有很大的提高。主存储器采用磁芯,外存储器已开始使用更先进的磁盘;软件有了很大发展,出现了各种各样的高级语言及其编译程序,还出现了以批处理为主的操作系统,应用以科学计算和各种事务处理为主,并开始用于工业控制。 3.集成电路数字计算机 20世纪60年代,计算机的逻辑元件采用小、中规模集成电路(SSI、MSI),计算机的体积更小型化、耗电量更少、可靠性更高,性能比第十代计算机又有了很大的提高,这时,小型机也蓬勃发展起来,应用领域日益扩大。主存储器仍采用磁芯,软件逐渐完善,分时操作系统、会话式语言等多种高级语言都有新的发展。 4.大规模集成电路数字计算机 计算机的逻辑元件和主存储器都采用了大规模集成电路(LSI)。所谓大规模集成电路是指在单片硅片上集成1000~2000个以上晶体管的集成电路,其集成度比中、小规模的集成电路提高了1~2个以上数量级。这时计算机发展到了微型化、耗电极少、可靠性很高的阶段。大规模集成电路使军事工业、空间技术、原子能技术得到发展,这些领域的蓬勃发展对计算机提出了更高的要求,有力地促进了计算机工业的空前大发展。随着大规模集成电路技术的迅速发展,计算机除了向

中央处理器cpu主要由什么组成

中央处理器cpu主要由什么组成 CPU作为电脑的核心组成部份,它的好坏直接影响到电脑的性能。下面是小编带来的关于中央处理器cpu主要由什么组成的内容,欢迎阅读! 中央处理器cpu主要由什么组成? 运算器和控制器是计算机的核心部件,这两部分合称中央处理单元(Centre Process Unit,简称CPU),如果将CPU集成在一块芯片上作为一个独立的部件,该部件称为微处理器(Microprocessor,简称MP)。 运算器进行各种算术运算和逻辑运算;控制器是计算机的指挥系统; 1、运算器 运算器是计算机中进行算术运算和逻辑运算的部件,通常由算术逻辑运算部件(ALU)、累加器及通用寄存器组成。

2、控制器 控制器用以控制和协调计算机各部件自动、连续地执行各条指令,通常由指令部件、时序部件及操作控制部件组成。 CPU 的主要性能指标是主频和字长。 字长表示CPU每次计算数据的能力。如80486及Pentium 系列的CPU一次可以处理32位二进制数据。 时钟频率主要以MHz为单位来度量,通常时钟频率越高,其处理速度也越快。 相关阅读推荐: Intel和AMD双双意识到到目前为止测温问题解决的并不好,于是用到了一个新的方式。这个方式仍然包括热敏二极管,但是热敏二极管是一个模拟器件,所以读数必须被转换成数字数据。这个工作由ADC(模数转换器)来完成。

一个热敏二极管加上一个模数转换器就构成一个被称为DTS(数字温度传感器)的部件。理论上来说这个DTS的工作方式十分简单:一个CPU核心上的电路从热敏二极管上采样然后把数字数据输出到CPU一个特定的寄存器中,从而任何程序都可以随意读取该数据。这种方式的长处就是所有工作都在CPU内部即时完成,和易于被干扰和衰弱的模拟信号相比,数字信号传输的时候不会损失精确性。 这个系统另一个优点就是你可以在一块芯片上集成若干个传感器。Intel和AMD都在CPU的每一个核心上集成了一个DTS,这意味着你可以看到你每一个核心的温度。例如当你在双核CPU上运行程序并把该程序的相关性设定到某一个核心的时候,你会看到只有一个核心会升温并且会升得非常之快。当然另一个核心温度也会上升,毕竟两个核心共处在一个硅片上,只是不会上升到全力工作的核心那么高罢了。 看了中央处理器cpu主要由什么组成文章内容的人还看: 1.cpu由什么和什么组成 2.计算机cpu由什么组成

中央处理器(教案)

第五章中央处理器(教案) a)学习目的与要求 学习目的:了解掌握计算机中央处理器的组成原理与控制方式 学习要求:了解CPU的总体结构,掌握指令的执行过程,时序产生器的工作与控制原理,微程序控制技术,各种控制器的结构和工作原理。 本章主要内容: ?CPU的总体结构 ?指令的执行与时序产生器 ?微程序设计技术和微程序控制器 ?硬布线控制器与门阵列控制器 ?CPU的新技术 b)应掌握的知识点 i. CPU的总体结构 CPU由控制器和运算器两个主要部件组成。控制器负责协调和指挥整个计算机系统的操作,控制计算机的各个部件执行程序的指令序列。由程序计数器、指令寄存器、指令译码器、时序产生器和操作控制器等组成;运算器接受控制器的命令并负责完成对操作数据的加工处理任务,由算术逻辑单元(ALU)、累加寄存器、数据缓冲寄存器和状态标志寄存器组成。 CPU主要完成以下几方面的功能:(1)控制指令执行顺序;(2)控制指令操作;(3)控制操作时间;(4)执行算术、逻辑运算。 CPU中完成取指令和执行指令全过程的部件是操作控制器,其主要功能是根据指令操作码和时序信号的要求,产生各种操作控制信号,以便正确地建立数据通路。 操作控制器有组合.逻辑控制器和微程序控制器两种,二者和差别是它们中的“控制信号形成部件”不同,反映了不同的设计原理和方法。根据设计方法不同可分为:①硬布线控制器;②微程序控制器;③门阵列控制器。 CPU中除了操作控制器外,还必须有时序产生器。时序产生器是对各种操作实施时间上的严格控制的部件。 CPU的组成如图5.1所示。

算术逻辑单元 CPU c c c ALU 取指 控制 执行 控制 时钟 状态反馈操作控制器 时序产生器 状态条件寄存器 累加器 c AC 指令 译码器 程序 计数器PC c c 指令寄存器 c IR c 地址寄存器AR 缓冲 寄存器 DR 存储器 输入/ 输出 数据总线 DBUS 地址总线 ABUS 图5.1 CPU主要组成部分逻辑结构图 ii. 指令的执行与时序产生器 1.指令周期 程序运行的过程是逐条执行指令的过程,而一条指令的执行又分为取指令、取操作数和执行指令等时间段,这些时间段在计算机中称为周期。 取出指令并执行该指令所需的时间称为指令周期。如图5.2所示。 1.取指令 1.取操作数 2.指令译码 2.完成操作 3.PC+! 3.结果回写 4.送操作数地址 4.AC送存储器 图5.2 指令周期、取指周期、执行周期和微操作 指令周期常常用若干个CPU周期数来表示。由于CPU内部的操作速度较快,而CPU 访问一次主存储器所花的时间比较长,故通常是用主存储器中读取一个指令字的最短时间来规定CPU周期。CPU周期也称为机器周期。这就是说,一条指令的取出阶段,简称取指,需要一个CPU周期时间。而一个CPU周期又包含有若干个时钟周期,时钟周期通常又称为节拍脉冲或T周期,是处理操作的最基本时间单位,它由机器的主频决定。一个CPU周期的时间宽度就由若干个时钟周期的总和决定。 几种典型指令的指令周期: (1)非访问内存的指令(如CLA)需要两个CPU周期。如图5.3所示。其中,取指令阶段需要一个CPU周期,执行指令阶段需要一个CPU周期。在第一个CPU周期,从内存

对CPU现状及发展趋势的分析

对CPU现状及发展趋势的分析 The analysis of present situation and development trend of CPU 摘要:现在CPU处理器的发展真可谓日新月异,着重介绍中国的龙芯及国际的双核技术,并介绍其未来的发展趋势,在此基础上提出了一些新的看法。Abstract: now is the development of the CPU processor, changing the godson focuses on China and international dual core technology, and introduces its future development trend, based on this, advances some new opinions. 关键词:CPU,网络,双核技术 Keywords: CPU, network, dual-core technology 一、引言introduction 随着网络时代的到来,网络通信、信息安全和信息家电产品将越来越普及,而CPU正是所有这些信息产品中必不可少的部件。CPU的英文全称是Central Processing Unit,我们翻译成中文也就是中央处理器。CPU(微型机系统)从雏形出现到发展壮大的今天,由于制造技术的越来越先进,在其中所集成的电子元件也越来越多,上万个,甚至是上百万个微型的晶体管构成了CPU的内部结构。CPU的内部结构可分为控制单元,逻辑单元和存储单元三大部分。 With the advent of the era of network, network communications, information security and information appliances will become more and more popular, and the CPU is the indispensable part in all of these information products. The CPU's English full name is the Central Processing Unit, we translated into Chinese, that is, the Central processor. CPU (single-chip system) emerged from prototype to develop today, due to the more and more advanced manufacturing technology, in the integration of electronic components more and more, thousands, even millions of tiny transistors constitutes the internal structure of the CPU. Internal structure can be divided into the control unit of the CPU, a logic unit and storage unit three parts. 二、中国CPU现状及发展趋势 9月13日,中科院计算技术研究所承担的国家“863”项目“龙芯2号增强型处理器芯片设计”(即龙芯2E)正式通过了“863”专家组的验收。该通用CPU已经达到了奔腾4的水平,这标志着我国在通用CPU设计和生产方面,取得了巨大的进展。经专家鉴定,龙芯2号居国内通用CPU研制领先水平。 China's present situation and development trend of CPU on September 13, the Chinese academy of sciences institute of computing technology of national "863" project "the godson 2 enhanced processor chip design" (i.e. the godson 2 e) officially passed the acceptance of the "863" panel. The general has reached the pentium 4 CPU, this marked the our country in terms of general CPU design and production, has made great progress. Through

计算机发展现状与未来发展趋势

计算机发展现状 微处理器微处理器的发展很大地提高了计算机的性能,表现在 缩小处理器芯片内晶体管的尺寸上,基本方法在于改进光刻技术,即使用短波长的曝光源,然后经过掩膜曝光,把硅片上的晶体管做小,连接晶体管的导线做细,曝光源主要指紫外线但有几个限制: 1 )条宽接近或小于光的波长时,刻蚀技术会失败; 2 )电子行为的限制; 3 )量子 效应的限制等 纳米电子电子元件对计算机技术的发展十分重要,但随着计算 机技术的发展,现有的电子元件已不能满足计算机微型化和智能化的要求了,集成度和处理速度成为了计算机发展的双重制约而纳米电子技术解决了这一难题,它代表了一类新型的思维方式,而不仅仅单纯是尺寸的减小 计算机未来的发展趋势展望 随着硅芯片技术的高速发展,硅技术越来越接近了其自身的物理 发展极限,以此,迫切要求计算机从结构变革,到器件与技术的革命这一系列的技术都要产生一次质的飞跃才行新型的量子计算机光子计算机分子计算机和纳米计算机应运而生 1 )量子计算机量子计算机是基于量子效应基础上开发的,它利 用一种链状分子聚合物的特性来表示开与关的状态,利用激光脉冲来改变分子的状态,使信息沿着聚合物移动,从而进行运算 一个量子位可以存储2个数据(0和1可同时存取),同样数量的 存储位,量子计算机的存储量比普通计算机要大得多,而且能够实行量子并行计算,其运算速度可能比现有的个人计算机的奔腾3的晶片快将近10亿倍 2 )光子计算机光子计算机即全光数字计算机,以光子代替电子, 光互连代替导线互连,光硬件代替计算机中的电子硬件,光运算代替电运算 光的高速,天然地决定了光计算机有超高速运算速度;与只能在 低温下工作的超高速电子计算机相比,光计算机可在正常室温下工作;光计算机还具有容错性,从这个层面上,可以人脑相媲美;还有如果某一元件损坏,并不影响计算的结果 3 )分子计算机其运算过程指蛋白质分子与化学介质的相互作用, 计算机的转换开关是酶,而程序在酶合成和蛋白质中表现出来 其完成一项运算,所需的时间仅为10微微秒,是人的思维的100 万倍的速度;DNA分子计算机有1立方米的DNA溶液存储1万亿亿 的二进制数据的存储容量;DNA计算机消耗的能量只有电子计算机的十亿分之一;其芯片原材料是蛋白质,所以它既可自我修复,又能直接与生物体相连接

相关文档
最新文档