纤维素复合膜

纤维素复合膜
纤维素复合膜

国内外纤维素复合膜的研究概况

学生姓名:\

综述:

复合材料一般包括两种成份:基体材料和增强组分。按照纤维素在复合材料中的组分分类,纤维素复合材料可以分为两类:一类是纤维素为基体,加入其他功能性组分;另一类是高分子作为基体,加入纤维素为增强组分。

生物纤维素具有许多优良的性能,可直接开发作为材料,然而为了增强生物纤维素材料的其它性能,制备生物纤维素复合材料的发展趋势越来越明显。生物纤维素复合材料的制备,可以通过生物合成和物理加工两种方法实现。

1.生物合成法

在微生物合成纤维素的过程中,可在其培养基中加入各种材料,以获得生物纤维素复合材料。Brown在培养基里添加聚环氧乙烷,Serafica等在培养基中加入碳酸钙、氧化铁和纸纤维微粒,Yano等在培养基中加入硅溶胶,Phisalaphong 等在发酵培养基中添加低分子质量的壳聚糖,颜志勇等在培养基里加入多壁碳纳米管,朱清梅等在培养基中加入透明质酸,制得了性能各异的生物纤维素复合材料。

1.物理加工法

利用生物方法制备生物纤维素复合材料不需利用有毒溶剂,其产物的生物相容性较好,但产量低和培养周期过长。而采用物理加工方法所制备的生物纤维素复合材料,周期短、制备工序简单。Nakagaito等将生物纤维素膜浸泡于酚醛树脂溶液中,制得的生物纤维素复合材料具有更好的机械强度;Yoon SeokHo等先将碳纳米管分散在阳离子型表面活性剂溶液中,然后将生物纤维素膜在溶液浸入一段时间,从而得到生物纤维素/碳纳米管复合材料;Gindl W等利用溶液浇注法制备了纤维素醋酸丁酸酯/生物纤维素复合材料;赵梓年等采用溶液浇铸的方法,将生物纤维素粉末加入到聚乳酸的二氯甲烷溶液中,制备了聚乳酸/生物纤维素复合膜;赵梓年将聚乙烯醇添加到生物纤维素的悬浮液中,通过冷冻-解冻法制得了生物纤维素/聚乙烯醇复合水凝胶;张秀菊等将生物纤维素膜浸泡在钛酸异丙酯和三氯甲烷的混合溶液中,制得了生物纤维素/二氧化钛复合材料。

纤维素复合膜

定义1:

先用一种聚合物制成多孔支撑膜,然后用另一种聚合物在支撑膜表面形成一层极薄的致密分离层的方法制成的反渗透膜。

定义2:

用两种不同的膜材料,分别制成具有分离功能的致密层和起支撑作用的多孔支撑层组成的膜。

制备方法分为四类:(1)层压法,首先制备很薄的致密均质膜,而后层压于微孔

支撑膜上;

(2)浸涂法,把聚合物溶液浸涂于微孔膜上,然后干燥而成,

也可以把活性单体或预聚物溶液浸涂于微孔膜上,用热

或辐射固化;

(3)等离子体气相沉积法,用等离子辉光使微孔支撑膜的表

面产生致密的均质膜;

(4)界面聚合法,在微孔支撑膜表面上,用活性单体进行界

面聚合

纤维素复合膜的用途

一:复合膜主要用于反渗透、气体分离、渗透蒸发等分离过程中。

二:关于纤维素复合膜的应用:医用材料,膜材料,固定材料。

三:不同纤维素复合材料的应用

1:聚乳酸/ 乙基纤维素复合膜

医用材料:可用作片剂黏合剂、薄膜包衣材料; 亦可用作骨架材料膜制备多种类型的骨架缓释片; 用作混合材料制备包衣缓释制剂、缓释微丸; 用作包囊辅料制备缓释微囊;还可作为载体材料广泛的用于制备固体分散体。但是,乙基纤维素( EC)的行为像玻璃,脆而硬,这种性质对药物缓释膜非常不利,因此需要添加其他组分提高其成膜性能。

经过查找,可以将水不溶性的乙基纤维素作为主要成分, 以烯基琥珀酸酐( ASA) 作为新型增塑剂, 辅以聚乳酸( PLA) 来调节药物释放。采用溶液共混法成功制备出聚乳酸/ 乙基纤维素复合膜, 该复合膜作为一种潜在的药物缓释材料, 将具有广阔应用前景。

2:壳聚糖/ 纳米微晶纤维素复合膜

医用材料:壳聚糖( CS) 是甲壳素的脱乙酰产物, 是天然多糖中唯一的碱性多糖, 其具有许多特殊的物理化学特性[ 1 2] . 但壳聚糖吸水性强, 所形成的纤维或膜材料的湿态机械强度差, 作为医用材料的应用受到限制提高壳聚糖材料湿态机械性能的主要方法为与无机材料进行复合.

纳米微晶纤维素具有类似于晶须的特性, 可由纤维素的微晶化制得, 具有与壳聚糖相似的化学结构.纳米微晶纤维素与聚乙二醇复合之后, 在纤维素晶须的纳米效应下其拉伸强度增加了10 多倍, 拉伸模量也大幅度提升. 以纳米微晶纤维素和壳聚糖制成的复合材料, 在保持壳聚糖良好的生物相容性、生物可降解性及优良的使用性能的同时, 改善了壳聚糖的力学性能. 将壳聚糖溶于经醋酸酸化的含有一定纳米微晶纤维素的悬浮液中的方法, 制备了含纳米微晶纤维素的壳聚糖膜, 并对它的结构、结晶性能、热稳定性及力学性能进行了研究. 3:甲基纤维素复合膜

可食用膜材料:在食品包装上, 塑料膜包装容易产生有毒气体和出现异味, 对人体的健康有害, 遗弃于环境中不易分解腐烂, 会造成环境污染.可食性膜可以改变以上缺点。可食性膜分为以下五种蛋白质类、多糖类、微生物共聚聚酯类和脂质类。多糖类可食性M C 膜以甲基纤维素( M C) 作为主要的成膜材料, 但由于用材简单及自身结构特点, 往往在抗张强度, 防透气和防水等方面的性能较差, 为克服这些问题, 将其制成复合膜是一种有效的方法.本文介绍了在制备M C膜的基础上,通过添加琼脂、硬脂酸、甘油等物质制备出可食性M C复合膜的方法,在一定程度上改善了膜的性能,取得了较好的效果.

4:醋酸纤维素/聚四氟乙烯复合膜固定化磷脂酶A1

固定材料:以醋酸纤维素/聚四氟乙烯复合膜为载体固定磷脂酶,醋酸纤维素/聚四氟乙烯复合膜具有一定的吸附性、化学稳定性好、疏水性、机械性能优异等优点。根据复合膜的吸附特性固定化磷脂酶,提高了酶在反应体系中的活性和稳定性,调节和控制酶的活性与选择性,从而有利于酶的回收和产品的生产。

影响膜性能的因素:

①膜本身荷电与否、荷电种类以及荷电强度对膜分离性能的影响很大. 绝大多

数的荷电膜都是由聚合物基膜和聚电解质功能层组成的复合膜,表层的荷电基团与水溶液的相互作用使膜带电。膜表面的电荷效应是离子吸附在膜表面的主要原因,膜的选择性受到表面电性能和离子尺寸的共同影响。

②目前的报道中仅测试了不同条件下的脱硫性能,没有涉及底膜对复合膜pv

脱硫性能及传质的影响而很多研究表明由于底膜和活性层的物理化学性质以及制膜方法等众多因素的存在使得底膜在一定程度上影响复合膜的分离性能.在相关实验中改变底膜的加工工艺可以使复合膜对硫化物的选择性增加渗透性降低。

纤维素复合材料研究的主要限制及解决方法

纤维素是最具代表性的天然高分子。是典型的刚性高分子,同时分子链上含有大量的羟基使其容易形成分子内和分子间氢键,因而难溶难融,在很大程度上限制了纤维素的实际应用。近年来,纤维素科学研究集中于开发新型溶剂以及新型功能材料。

其中利用预凝胶法控制纤维素分子链再生过程中的运动能力调节纤维素产品结构与性能,相比于传统的流延法,预凝胶法制备的复合膜具有更紧密的结构、更低的结晶度和更优异的力学性质,复合膜的形貌和结晶度可以通过甲壳素含量和预凝胶温度调控。

纤维素的研究现状

常规纤维素材料如纤维素纤维、膜、微球及海绵一般都是三维网络结构,单一的材料使其功能单一。如果以纤维素网络结构作为基体,复合其他功能性材料如无机纳米粒子,则可以得到性能改善或具有特定功能的复合材料。由于纳米粒子独特的表界面性质、体积效应和宏观量子隧道效应,能赋予复合材料特殊的光学、电磁及化学性质;加上纤维素本身的生物相容性、生物可降解性等生物学优势特征,为高性能、多功能复合材料的制备提供了新的途径。White等,采用经过前处理的蒙脱土(montmorillonite)在DMAc/LiCl和NMMO溶剂体系中与纤维素复合,制备了高热稳定性的纤维素/蒙脱土复合材料。纤维素的醚氧原子与羟基能够稳定金属离子和生成的金属纳米粒子。Kunitake等,将金属离子浸入多孔纤维素纤维,并利用NaBH4还原制备了负载贵金属(Au、Ag、Pd、Pt)纳米粒子的功能纤维,制备的复合纤维具有高稳定性和高催化活性。张俐娜实验室里最近开发了一系列以NaOH/尿素、NaOH/硫脲、LiOH/尿素为溶剂的纤维素复合功能材料。例如,利用原位还原和超临界CO2技术,制备了复合纳米Ag、Au、Pt粒子的纤维素气凝胶薄膜,纳米粒子能很好地分散在纤维素膜中[68];开发了在纤维素膜、微球中复合的Fe3O4纳米粒子的磁性纤维素材料;通过原位生成或者共混将量子点(CdS、ZnS)或荧光染料与纤维素复合得到了具有良好荧光性质的纤维素薄膜以及水凝胶。随着量子点粒径的变化,复合了CdSe/ZnS量子点的纤维素水凝胶中在紫外光激发下呈现不同的激发荧光,其荧光信号与量子点在溶液中一致,表明纤维素水凝胶基体不会影响量子点的荧光性质,可以用于制备性能优异的荧光材料。

纤维素材料的研究方向

(1)通过先进的研究手段进行进一步

的探讨纤维素在该溶剂体溶解的机理,并将这一快速的溶解理论拓展到其余高分子的溶解。

(2)由于纤维素复合微球在催化反应中表现出与其余材料不同的现象,应当研究纤维素组分在复合材料所起的相关作用。(3)引入其余功能性组分,开发多种新型功能性纤维素复合材料。

参考文献:

[1]吴俊杰.天然纤维素复合功能材料的结构调控及性质研究[D]湘潭大学

[2]时敏,周晓丹,李越,李志平,于殿宇。醋酸纤维素/聚四氟乙烯复合膜固定化磷脂酶A1的研究

[3]渠慧敏, 孔瑛, 张玉忠, 杨金荣, 卢福伟, 史德青.底膜对脱硫用羟乙基纤维素复合膜性能的影响[J]郑州大学学报( 工学版)2008.12

[4]傅燕,王薇1,2,芮玉青复合膜表面电性能对截留性能的影响.天津工业大学学报[J]2010.8

[5]唐焕威, 张力平, 李帅, 赵广杰, 秦竹, 孙素琴.聚醚砜/ 微纳纤维素复合膜材料的光谱表征与性能研究[J]光谱学与光谱分析2010.3

[6]沈一丁, 赖小娟, 王磊.聚乳酸/ 乙基纤维素复合膜的制备及其性能[J]复合材料学报.2007.6

[7]石光, 孙林, 罗穗莲, 孙丰强.壳聚糖/ 纳米微晶纤维素复合膜的制备及性能研究.[J]材料研究与应用.2008.12

[8]范闽光, 李斌.可食性甲基纤维素复合膜的制备及性能研究[J]广西大学学报( 自然科学版)2006.12

[9]王柳.生物纤维素复合膜的制备及性能研究[D]武汉纺织大学

纤维素的选择性氧化及发展趋势

2.纤维素的选择性氧化及发展趋势 【作者】耿存珍;夏延致;全凤玉; 【Author】 GENG Cun-zhen,XIA Yan-zhi,QUAN Feng-yu(Cultivating Base of National Key Laboratory of Novel Fibers and Modern Textiles,Qingdao University,Qingdao 266071,China) 【机构】青岛大学纤维新材料与现代纺织国家重点实验室培育基地; 【摘要】纤维素是自然界取之不尽用之不竭的可再生资源,改变纤维素的结构,便赋予其许多新的功能。选择性氧化纤维素成为纤维素科学与纤维素基新材料研究领域中的热点。综述了纤维素的各种选择性氧化体系,重点介绍了 TEMPO/NaClO/NaBr选择性氧化体系的反应条件、反应机理及最新的研究进展,并分析了氧化纤维素应用及发展前景。 【关键词】氧化纤维素;选择性氧化;TEMPO/NaClO/NaBr氧化体系; 【基金】国家高技术研究发展计划(863计划)重点资助项目(2010AA093701)【所属期刊栏目】综述(2012年15期) 【参考文献】说明:反映本文研究工作的背景和依据 中国期刊全文数据库 共找到 2 条 ?[1] 王怀芳,朱平,张传杰. 氢氧化钠/尿素/硫脲溶剂体系对纤维素溶解性能研究[J]. 合成纤维. 200 8(07) ?[2] 王海云,朱永年,储富祥,蔡智慧. 溶解纤维素的溶剂体系研究进展[J]. 生物质化学工程. 2006(0 3) 中国图书全文数据库 共找到 2 条 ?[1] 许冬生编.纤维素衍生物[M]. 化学工业出版社, 2001 ?[2] 北京造纸研究所编.造纸工业化学分析[M]. 轻工业出版社, 1979 国际期刊数据库 共找到 4 条

醋酸纤维素薄膜电泳指导

醋酸纤维素薄膜电泳指导

醋酸纤维薄膜电泳法分离血清蛋白目的和要求? 目的和要求? 掌握醋酸纤维薄膜电泳的原理及操作方法原理? 原理? 带电质点在电场中向着反向电极移动的现象称为电泳其移动方向及速度取电泳,电泳决于本身所带电荷的性质和数量、电场强度以及溶液pH 等因素。蛋白质分子在溶液中的电泳是因其分子具有一些游离的可解离基团如-COOH、-NH2、-OH 等,因而在某种pH 值溶液中蛋白质分子带有一定的电荷。混合蛋白样品中由于各蛋白质的等电点不同,在同一pH 溶液中所带的电荷性质及电荷数目不同,因此在电场中各种蛋白质泳动的方向和速度也不同,从而使蛋白质混合样品得以分离。血清中含有白蛋白、α-球蛋白、β-球蛋白和γ-球蛋白等,其氨基酸组分、立体构象、相对分子质量、等电点及形状等均有所不同。由下表可见,血清中 5 种蛋白质的等电点大多低于pH7.0,pH8.6 的缓冲液中都电离成负离子(羧基解在离),故在电场中均向阳极移动。蛋白质种类清/白蛋白α1-球蛋白α2-球蛋白β-球蛋白γ-球蛋白等电点(pI) 4.88 5.06 5.06 5.12 6.85~7.50 相对分子量(Mr) 69 000 200 000 300 000 90 000~150 000 156 000~300 000 在一定范围内,蛋白质的含量与结合的染料量成正比,故可将各蛋白质区带剪下,分别用0.4 mol/L NaOH 溶液浸洗下来,通过比色法或将染色后的薄膜直接用光密度计扫描,以测定特定电泳区带的蛋白质相对含量。本实验采用的醋酸纤维薄膜电泳法是以醋酸纤维薄膜为支持物。醋酸纤维素是将纤维素的羟基乙酰化后形成的纤维醋酸酯,将其溶于有机溶剂(如丙酮、氯仿、乙酸乙酯等)后于聚乙烯材料上涂

复合膜制备技术发展

反渗透膜的制备技术发展 反渗透是利用反渗透膜只透过溶剂而截留离子或小分子物质的选择透过性,以膜两侧的静压差为推动力,实现对混合物分离的膜过程。 在一定温度下,用一个只能使溶剂透过而不能使溶质透过的半透膜把稀溶液与浓溶液隔开,由于浓溶液中水的化学势小于稀溶液中水的化学势,水就会自发地通过半透膜从稀溶液进入到浓溶液中,使浓溶液液面上升,直到浓溶液液面升到一定高度后达到平衡状态。这种现象称为渗透(osmosis)或正渗透。如图1所示,半透膜两侧液面高度差所产生的压差称为浓溶液和稀溶液的渗透压差Δπ,如果稀溶液的浓度为零,渗透压差即为(浓)溶液的渗透压π;如果在浓溶液上方施加压力ΔP,如果ΔP大于Δπ,则浓溶液中的水便会透过半透膜向稀溶液方向流动,这一与渗透相反的过程称为反渗透(reverse osmosis,RO)[1]。 由于反渗透膜的截留尺寸为0.1-1nm左右,因此能够有效地去除水中的溶解盐类、胶体、微生物、有机物等(去除率达97~98%),系统具有水质好、能耗低、无污染、工艺简单、操作方便等优点,其已广泛应用在苦咸水脱盐、海水淡化、废水处理、纯水制备、食品和医药等方面,被称为“2l世纪的水净化技术”。[2] 1.1 反渗透复合膜发展概括 人类发现渗透现象至今已有260多年历史。1748年,法国的Abble Nollet

发现水能自发地扩散进入装有酒精溶液的猪膀胱内,并首创osmosis一词用来描述水通过半透膜的现象,成为第一例有记载的描述膜分离的试验。在接下来的100多年里,渗透作用引起了科学家们极大的兴趣。最初实验用膜都是动物或植物膜,直到1864年,Traube才成功研制了人类历史上第一张人造膜—亚铁氰化铜膜。该膜对稀电解质溶液表现出显著的选择通过性,尤其渗透压现象引起了极大的关注。Preffer用这种膜以蔗糖和其他溶液进行实验,把渗透压和温度及溶液浓度联系起来,给出了计算渗透压的关联式。1887年Van't Hoot依据Preffer的结论。 Sollner进行了反渗透的初步研究,当时人们称之为“反常渗透”。1949年,美国加利福尼亚州立大学洛杉矶分校(UCLA)的Gerald Hassler教授开始了“将海水作为饮用水的水源’’的研究,描述了“阻挡盐分渗透的膜”和“选择性渗透膜层",最早提出了膜法脱盐的概念。尽管Hassler教授的研究未取得理想的结果,但这为后来的反渗透研究工作奠定了基础。1953年,美国的C.E Reid教授首先发现醋酸纤维素类具有良好的半透性;同年,反渗透在Reid教授的建议下被列入美国国家计划。1960年UCLA的Samuel Yuster,Sidney Loeb和Srinivasa Sourirajan等在对膜材料进行了大量的筛选工作后,以醋酸纤维素(E-398-3,乙酰含量39.8%)为原料,采用高氯酸镁水溶液为添加剂,经反复研究和试验,终于首次制成了世界上具有历史意义的高脱盐(98.6%)、高通量(10.1MPa下水透过速度为O.3×10-3cm3/s,合259L/d*m2)的不对称反渗透膜。该膜由一层很薄的致密层(厚度约15~25nm)和一个多孔支撑层(>100um)组成。不对称膜的制备成功成为膜发展史上的第一个里程碑,极大地促进了反渗透膜技术的发

醋酸纤维素纳滤膜的制备方法

[54]发明名称 醋酸纤维素纳滤膜的制备方法 [57]摘要 本发明公开了一种醋酸纤维素纳滤膜的制备方法,包括以下步骤:1)将醋酸纤维素放入溶剂中搅拌,然后再加入非溶剂添加剂搅拌,最后静置,得铸膜液;2)将上述铸膜液刮制成250u m厚度的湿膜,然后静置在空气中;3)将上述步骤处理后的湿膜浸入蒸馏水中进行凝胶浴处理,得到不对称膜;4)将上述不对称膜依次经乙醇水溶液交换和纯环己 烷交换处理后,得醋酸纤维素纳滤膜。利用本发明方法所制得的纳滤膜通量大、分离效果明显。 权利要求书 第1/1页 1、一种醋酸纤维素纳滤膜的制备方法,其特征是包括以下步骤: 1)、将醋酸纤维素放入溶剂中搅拌22~26小时,然后再加入非溶剂添加剂搅拌2~5小时,最后静置65~75小时,得铸膜液; 2)、于10~30℃温度和50~75%相对湿度条件下,将上述铸膜液刮在洁净玻璃板或无纺布上制成250ltm厚度的湿膜,再使湿膜静置在空气中进行溶剂的挥发,静置时间为1~30分钟; 3)、将上述挥发处理后的湿膜浸入5~25℃蒸馏水中进行凝胶浴处理,直至湿膜充分凝胶;得到不对称膜; 4)、将上述不对称膜依次经体积浓度为30 --70%乙醇水溶液交换和纯环己烷交换处理后,得醋酸纤维素纳滤膜。 2、根据权利要求1所述的醋酸纤维素纳滤膜的制备方法,其特征是:所述步骤1)中溶剂与醋酸纤维素的用量比为100 ml:8~20g,溶剂与非溶剂添加剂的体积比为4~25:1。 3、根据权利要求2所述的醋酸纤维素纳滤膜的制备方法,其特征是:所述步骤1)中的溶剂为丙酮、1,4一二氧六环、四氢呋喃或氯仿。 4、根据权利要求3所述的醋酸纤维素纳滤膜的制备方法,其特征是:所述步骤1)中的非溶剂添加剂为水、甲醇或乙醇。 说明书 醋酸纤维素纳滤膜的制备方法 技术领域 本发明涉及一种醋酸纤维素纳滤膜的制备方法。 背景技术 膜分离技术是一项新兴的物质分离提纯和浓缩工艺,可在常温下连续操作,无相变;大规模生产中有节能、环保的优势;尤其适宜加热易变性的热敏性物质,因而在食品、医药、水处理等领域发展迅猛。膜技术在中药领域的应用主要是从中药中提取活性物质。中药中活

功能化纤维素纤维的制备【开题报告】

毕业论文开题报告 高分子材料与工程 功能化纤维素纤维的制备 一、选题的背景和意义 现今世界, 石油、天然气资源的有限储存量以及它们的生产对地球和人类及生态环境的影响日趋严重,促使以天然资源为原料的高分子材料得以大力发展。其中, 尤以纤维素、纤维素衍生物和木质纤维素的功能材料的研究与开发, 最引起世界各国的兴趣和关注, 这主要是由于这一天然资源价廉易得, 既可收获又能再生, 且具有生物可降解特点。此外, 纤维素是一多羟基葡萄糖聚合物, 可以经由一系列的化学改性反应, 制取不同用途的功能材料。并且, 纤维素可以粉状、片状膜、纤维以及溶液等不同形式出现, 这便进一步提高了纤维素功能化之灵活性和功能材料应用的广泛性。 要获得功能材料, 必须进行功能设计。所谓功能设计, 就是赋予高分子材料以功能特性的科学方法。其主要途径有通过特殊加工改变纤维素的物理形态;通过分子设计包括结构设计和官能团设计是使高分子材料获得具有化学结构等特征性功能团;通过对材料进行各种表面处理等方法等(既化学方法、物理方法、表、界面化学修饰方法等)。纤维素纤维的功能化使纤维具有了抗菌、防紫外线、除臭、吸水、吸油和过滤等功能,具有功能化的纤维给人们的生活带来许多利益。 随着科技的进步和研究的深入,更多的具有特异功能的新型纤维素功能材料将得到开发和利用,纤维素功能材料在未来将发挥更大的作用。 二、研究目标与主要内容(含论文提纲) 功能化纤维素纤维的制备主要途径有化学方法、物理方法和表、界面化学修饰方法等。化学方法:通过分子设计包括结构设计和官能团设计是使高分子材料获得具有化学结构本征性功能团特征的主要方法。物理方法:通过特殊加工, 使纤维素的物理形态发生变化, 如薄膜化、球状化、微粉化等, 赋予纤维素新的性能。表面、界面化学修饰法:通过对材料进行各种表面处理以获得新功能。 本实验采用化学的方法在纤维素纤维上负载钴酞菁,使得纤维素纤维具有催化氧化功能,用于染料废水的处理,最终通过实验得出最优的负载路线。具体的思路与目标如

血清蛋白质醋酸纤维薄膜电泳实验报告

血清蛋白质醋酸纤维薄膜电泳实验报告 实验名称血清蛋白醋酸纤维薄膜电泳及其定量 实验日期实验地点xx实验室 合作者xxx 指导老师xxx 评分教师签名批改日期 一、实验目的 1.1.学习醋酸纤维薄膜电泳的基本原理和操作方法; 1.2.了解电泳技术的一般原理; 1.3.掌握电泳分离血清蛋白质及其定性定量的方法。 二、实验原理 2.1.血清中各种蛋白质的等电点不同,一般都低于pH7.4。它们在pH8.6的缓冲液中均解离带负电荷,在电场中向正极移动。由于血清中各种蛋白质分子大小、形状及所带的电荷量不同,在醋酸纤维素薄膜上电泳的速度也不同。 血清蛋白质等电点分子量占总蛋白的% 清蛋白 4.64 69,000 57~72 α1-球蛋白 5.06 200,000 2~5 α2-球蛋白 5.06 300,000 4~9 β-球蛋白 5.12 90,000~150,000 6.5~12 γ-球蛋白 6.85~7.3 156,000~950,000 12~20 缓冲液pH=8.6,pI<pH。

血清蛋白带负电荷,在电场中向正极移动。 预测血清蛋白电泳区带图 血清蛋白依次分为清蛋白,球蛋白的α1、α2、β、γ五个区带 2.3.①膜条经过氨基黑10B染色后显出清晰色带;②各色带蛋白质含量与染料结合量基本成正比;③可将各色带剪开,分别溶于碱性溶液中;④用分光光度法计算各种蛋白质的百分数。 三、材料与方法: 3.1.实验材料: 3.1.1.实验试剂:①样品:健康人血清(新鲜、无溶血);②巴比妥-巴比妥钠缓冲液(pH8.6,离子强度0.06mol/L);③氨基黑10B染色液;④漂洗液;⑤洗脱液:0.4mol/NaOH溶液。 3.1.2.实验器材:①V-1100分光光度计(×1);②恒温水浴箱(×1);③试管(×6)、试管架(×1);④1000μL加样枪(×1)、加样枪架(×1);⑤醋酸纤维薄膜(2cm*8cm,厚度120μm);⑥培养皿(×5);⑦点样器或载玻片(×1);⑧平头镊子(×2);⑨剪刀(×1);⑩电泳槽(×1);?直流稳压电泳仪(×1) 3.2.实验步骤 1.准备与点样:①取2×8cm的膜条;②亚光面距一端1.5cm处取一点样线;③充分浸透在巴比妥缓冲液中;④取出膜条,用滤纸吸去多余的缓冲液;⑤点样器下端粘上薄层血清;⑥垂直点样。 点样示意图:

纤维素的结构及性质

一.结构 纤维素是一种重要的多糖,它是植物细胞支撑物质的材料,是自然界最非丰富的生物质资源。在我们的提取对象-农作物秸秆中的含量达到450-460g/kg。纤维素的结构确定为β-D-葡萄糖单元经β-(1→4)苷键连接而成的直链多聚 体,其结构中没有分支。纤维素的化学式:C 6H 10 O 5 化学结构的实验分子式为 (C 6H 10 O 5 ) n 早在20世纪20年代,就证明了纤维素由纯的脱水D-葡萄糖的重复 单元所组成,也已证明重复单元是纤维二糖。纤维素中碳、氢、氧三种元素的比例是:碳含量为%,氢含量为%,氧含量为%。一般认为纤维素分子约由8000~12000个左右的葡萄糖残基所构成。 O O O O O O O O O 1→4)苷键β-D-葡萄糖 纤维素分子的部分结构(碳上所连羟基和氢省略)二.天然纤维素的原料的特征 做为陆生植物的骨架材料,亿万年的长期历史进化使植物纤维具有非常强的自我保护功能。其三类主要成分-纤维素、半纤维素和木质素本身均为具有复杂空间结构的高分子化合物,它们相互结合形成复杂的超分子化合物,并进一步形成各种各样的植物细胞壁结构。纤维素分子规则排列、聚集成束,由此决定了细胞壁的构架,在纤丝构架之间充满了半纤维素和木质素。天然纤维素被有效利用的最大障碍是它被难以降解的木质素所包被。 纤维素和半纤维素或木质素分子之间的结合主要依赖于氢键,半纤维素和木质素之间除了氢键外还存在着化学健的结合,致使半纤维素和木质素之间的化学健结合主要在半纤维素分子支链上的半乳糖基和阿拉伯糖基与木质素之间。 表:植物细胞壁中纤维素、半纤维素、和木质素的结构和化学组成

项目纤维素木质素半纤维素 结构单元吡喃型D-葡萄 糖基G、S、H D-木糖、苷露糖、L-阿拉伯糖、 半乳糖、葡萄糖醛酸 结构单元间连接键β-1,4-糖苷键多种醚键和C-C 键,主要是 β-O-4型醚键 主链大多为β-1,4-糖苷键、 支链为 β-1,2-糖苷键、β-1,3-糖苷 键、β-1,6-糖苷键 聚合度几百到几万4000200以下 聚合物β-1,4-葡聚糖G木质素、GS木质 素、 GSH木质素木聚糖类、半乳糖葡萄糖苷露聚糖、葡萄糖甘露聚糖 结构由结晶区和无 定型区两相 组成立体线性 分子α不定型的、非均一 的、非线性 的三维立体聚合 物 有少量结晶区的空间结构不 均一的分子,大多为无定型 三类成分之间的连接氢键与半纤维素之间 有化学健作用 与木质素之间有化学健作用 天然纤维素原料除上述三大类组分外,尚含有少量的果胶、含氮化合物和无机物成分。天然纤维素原料不溶于水,也不溶于一般有机溶剂,在常温下,也不为稀酸和稀碱所溶解。 三.纤维素的分类 按照聚合度不同将纤维素划分为:α-纤维素、β-纤维素、γ-纤维素,据测α-纤维素的聚合度大于200、β-纤维素的聚合度为10~100、γ-纤维素的聚合度小于10。工业上常用α-纤维素含量表示纤维素的纯度。 综纤维素是指天然纤维素原料中的全部碳水化合物,即纤维素和半纤维素的总和。

纤维素共价固定功能化酞菁【任务+翻译+开题+综述+正文】

一、题目
任务书 纤维素共价固定功能化酞菁
二、主要内容和基本要求(指明本课题要解决的主要问题和大体上可从哪几
个方面去研究和论述该主要问题的具体要求)
主要目标和任务:金属酞菁衍生物由于其特殊的结构而具有优良的催化氧化性 能,广泛运用于各行各业。本实验首先合成酞菁化合物,再制备纤维素薄膜,然后 采用直接将金属酞菁衍生物负载到纤维素上的方法,制备得到一种金属酞菁负载纤 维催化剂。本文采用微波消解-火焰原子吸收光谱法测定酞菁衍生物中的金属元素的 含量,从而根据金属元素的含量换算出金属酞菁在纤维素纤维上的负载量。
主要内容包括: (1)合成外环有氨基官能团的金属酞菁化合物 (2)以乙酸纤维素原料制备薄膜,通过水解得到纤维素薄膜,并对其进行氧化 处理使其表面形成功能化基团。 (3)通过共价键的方式将酞菁固定于纤维素纤维表面,制备得到一种负载型的 催化剂。 (4)考察各反应条件对负载量的影响。

三、起止日期及进度安排
起止日期: 2010 年 11 月 8 日 至 2011 年 4 月 18 日
进度安排: 序号
时间
1 2010.11.08 至 2010.11.18
2 2010.11.21 至 2010.12.23
3 2011.12.26 至 2011.01.10
4 2011.01.10 至 2011.01.24
5 2011.02.19 至 2011.03.10
6 2011.03.15 至 2011.3.31
7 2011.04.15 至 2011.04.18
内容 文献的查阅与实验方案制定 完成开题报告、英文翻译和文献综述
合成四氨基金属酞菁 完成纤维素薄膜的制备与固定 完成反应温度和时间对固定量的影响 根据实验结果,完成论文初稿 修改毕业论文,最终完稿
四、推荐参考文献(理工科专业应在 5 篇以上,文科类专业应在 8 篇以上,其中外文文
献至少 2 篇。) 3. 沈永佳,酞菁的合成及应用[M],北京:化学工业出版社,2000,2 第一版. 4. 姚玉元,陈文兴,吕素芳.催化纤维的制备及催化性能[J] .纺织学报,2007,28(4):5-7 5. 陈文兴,陈世良,吕慎水,等.负载型酞菁催化剂的制备及其光催化氧化苯酚[J].中国科学, 2007,50(3):379-384. 6. 殷焕顺.易溶性金属酞菁衍生物的合成及其性质研究:学位论文.湖南:湘潭大学,2004 [5] B. Kippelen, S. Yoo, J. A. Haddock, B. Domercq, S. Barlow,B. A. Minch, W. Xia, S. R. Marder and N. R. Armstrong,in Organic Photovoltaics: Mechanisms, Materials, and Devices,ed. S. sariciftic and S. Sun, CRC Press, Boca Raton, FL,2005. [6]F. Armand, H. Perez, S. Fouriaux, O. Araspin, J.-P. pradeau,C. G. Claessens, E. M. Maya, P. Va′quez and T. Torres, synth.Met., 1999, 102, 1476; Z. Wang, A.-M. Nygrd, M. J. Cook andD. A. Russell, Langmuir, 2004, 20, 5850.

实验三-血清蛋白醋酸纤维素薄膜电泳

实验三血清蛋白醋酸纤维素薄膜电泳 醋酸纤维素薄膜电泳分析技术是目前临床常规测定中应用最广的方法,具有微量、快速、简便、吸附作用和电渗作用小、分离区带清晰、灵敏度及分辨率高等特点。醋酸纤维素薄膜还可进行透明化处理,便于照相和扫描计算结果。广泛应用于血清蛋白、血红蛋白、糖蛋白、脂蛋白、结合球蛋白、同工酶的分离和测定。 【目的】 1.掌握电泳法分离蛋白质的原理、操作方法。 2.了解电泳法分离蛋白质的临床意义。 【原理】 带电粒子在电场中向与其电性相反的电极泳动的现象称为电泳。血清中各种蛋白质的等电点大多在pH4.0~7.3之间,在pH8.6的缓冲液中均带负电荷,在电场中都向正极移动。由于血清中各种蛋白质的等电点不同,因此在同一pH环境中所带负电荷多少不同,又由于其分子大小不同,所以在电场中泳动速度也不同。分子小而带电荷多者,泳动速度较快;反之,则泳动速度较慢。因此通过电泳可将血清蛋白质分为5条区带,从正极端依次分为清蛋白、α1球蛋白、α2球蛋白、β-球蛋白和γ球蛋白等,经染色可计算出各蛋白质含量的百分数。 【器材】 醋酸纤维素薄膜(2cm×8cm)、培养皿、滤纸、无齿镊、剪子、加样器(可用盖玻片或或微量加样器)、直尺、铅笔、玻璃板(8cm×12cm)、试管、试管架、吸管、电泳仪、电泳槽、分光光度计或吸光度扫描计。 【试剂】 1. 巴比妥缓冲液(pH8.6,0.07mol/L,离子强度0.06) 称取巴比妥钠12.76g、巴比妥1.66g,加500毫升蒸馏水,加热溶解。待冷至室温后,再加蒸馏水至1000毫升。 2. 氨基黑10B染色液 称取氨基黑10B 0.5g加入冰醋酸10ml、甲醇50ml,混匀,加蒸馏水至100ml。 3. 漂洗液 甲醇45ml、冰醋酸5ml,混匀后加蒸馏水至100ml。 4. 洗脱液 0.4mol/LNaOH溶液。

纤维素总结

一:纤维素的结构分类及应用: 1)纤维素的结构: 2)纤维素的分类: 根据其在特定条件下的溶解度,可以分级为:α—纤维素,β-纤维素,γ-纤维素,α—纤维素指的是聚合度大于200的纤维素,β-纤维素是指聚合度为10一200的纤维素,γ-纤维素是指聚合度小于10的纤维素。 3)纤维素的应用: 纤维素是一多羟基葡萄糖聚合物,经过特定的物理或化学改性后,具有不同的功能特性,可以粉状,片状,膜,纤维以及溶液等不同形式出现,因此用纤维素开发的功能材料极具灵活性及应用的广泛性。 3.1 高性能纤维材料: 纤维素纤维是现代纺织业的重要原料之一,同时也是纤维素化工和造纸业的重要原料,当前,纸己经成为社会发展的必需品,不仅大量应用于印刷,日用品及包装物,还可以用于绝缘材料,过滤材料以及复合材料等领域,具有广泛而重要的用途。 3.2 可生物降解材料

纤维素能够作为可降解材料的基材使用,因为纤维素具有很多独特的优点:(1)纤维素本身能够被微生物完全降解;(2)维素大分子链上有许多轻基,具有较强的反应性能和相互作用性能,使得材料便于加工,成本低,而且无污染;(3)纤维素具有很强的生物相容性;(4)纤维素本身无毒,可广泛使用,由于纤维素分子间存在很强的氢键,而且取向度和结晶度都很高,使得纤维素不溶于一般溶剂,高温下分解而不融,所以无法直接用来制作生物降解材料,必须对其进行改性,纤维素改性的方法主要有醋化,醚化以及氧化成醛,酮,酸等。纤维素生物降解材料应用广泛,例如园艺品,农,林,水产用品,医药用品,包装材料及光电子化学品等,这里要特别提出的是纤维素在医学,光电子化学,精细化工等高新技术领域应用的更好西川橡胶工业公司研制开发的纤维素,壳聚糖系发泡材料存在很好的应用前景,其特点是重量轻,绝热性好,透气,吸水等,这些特点使其广泛应用于农业,渔业,工业,包装,医疗等各个领域。 3.3 纤维素液晶材料: 天然纤维素及其衍生物液晶是一类新颖的液晶高分子材料,和其它的纤维素衍生物液晶相比,新型的复合型纤维素衍生物液晶在纤维素大分子链中引入了刚性介晶基元,使得控制其液晶性质能够成为现实"这同时就为开发具有特殊性能的液晶高分子提供了新的研究领域,并且其相应的理论基础研究对探索高分子液晶的形成也有十分重要的指导意义,另外,由于天然纤维素是自然界取之不尽,用之不竭的可再生天然高分子,那么在石油及能源日益枯竭的今天,我们就很有必

纤维素复合膜

国内外纤维素复合膜的研究概况 学生姓名:\

综述: 复合材料一般包括两种成份:基体材料和增强组分。按照纤维素在复合材料中的组分分类,纤维素复合材料可以分为两类:一类是纤维素为基体,加入其他功能性组分;另一类是高分子作为基体,加入纤维素为增强组分。 生物纤维素具有许多优良的性能,可直接开发作为材料,然而为了增强生物纤维素材料的其它性能,制备生物纤维素复合材料的发展趋势越来越明显。生物纤维素复合材料的制备,可以通过生物合成和物理加工两种方法实现。 1.生物合成法 在微生物合成纤维素的过程中,可在其培养基中加入各种材料,以获得生物纤维素复合材料。Brown在培养基里添加聚环氧乙烷,Serafica等在培养基中加入碳酸钙、氧化铁和纸纤维微粒,Yano等在培养基中加入硅溶胶,Phisalaphong 等在发酵培养基中添加低分子质量的壳聚糖,颜志勇等在培养基里加入多壁碳纳米管,朱清梅等在培养基中加入透明质酸,制得了性能各异的生物纤维素复合材料。 1.物理加工法 利用生物方法制备生物纤维素复合材料不需利用有毒溶剂,其产物的生物相容性较好,但产量低和培养周期过长。而采用物理加工方法所制备的生物纤维素复合材料,周期短、制备工序简单。Nakagaito等将生物纤维素膜浸泡于酚醛树脂溶液中,制得的生物纤维素复合材料具有更好的机械强度;Yoon SeokHo等先将碳纳米管分散在阳离子型表面活性剂溶液中,然后将生物纤维素膜在溶液浸入一段时间,从而得到生物纤维素/碳纳米管复合材料;Gindl W等利用溶液浇注法制备了纤维素醋酸丁酸酯/生物纤维素复合材料;赵梓年等采用溶液浇铸的方法,将生物纤维素粉末加入到聚乳酸的二氯甲烷溶液中,制备了聚乳酸/生物纤维素复合膜;赵梓年将聚乙烯醇添加到生物纤维素的悬浮液中,通过冷冻-解冻法制得了生物纤维素/聚乙烯醇复合水凝胶;张秀菊等将生物纤维素膜浸泡在钛酸异丙酯和三氯甲烷的混合溶液中,制得了生物纤维素/二氧化钛复合材料。 纤维素复合膜 定义1: 先用一种聚合物制成多孔支撑膜,然后用另一种聚合物在支撑膜表面形成一层极薄的致密分离层的方法制成的反渗透膜。 定义2: 用两种不同的膜材料,分别制成具有分离功能的致密层和起支撑作用的多孔支撑层组成的膜。 制备方法分为四类:(1)层压法,首先制备很薄的致密均质膜,而后层压于微孔 支撑膜上; (2)浸涂法,把聚合物溶液浸涂于微孔膜上,然后干燥而成, 也可以把活性单体或预聚物溶液浸涂于微孔膜上,用热 或辐射固化; (3)等离子体气相沉积法,用等离子辉光使微孔支撑膜的表 面产生致密的均质膜; (4)界面聚合法,在微孔支撑膜表面上,用活性单体进行界 面聚合

功能化离子液体对纤维素的溶解性能研究

第21卷第2期高分子材料科学与工程V o l.21,N o.2 2005年3月POL Y M ER M A T ER I AL S SC IEN CE AND EN G I N EER I N G M ar.2005功能化离子液体对纤维素的溶解性能研究Ξ 罗慧谋1,李毅群1,2,周长忍1 (1.暨南大学化学系,广东广州510632;2.中国科学院广州化学研究所纤维素化学重点实验室,广东广州510650) 摘要:功能化离子液体氯化12(22羟乙基)232甲基咪唑盐是纤维素的新型良溶剂,在70℃时微晶纤维素的溶解能力达到5%~7%。向离子液体纤维素溶液中加入去离子水可获得再生纤维素。用XRD,FT2I R 和T GA对再生纤维素进行了表征,I R和XRD数据表明,功能化离子液体是纤维素的直接溶剂,但T GA数据则表明再生纤维素的热稳定性有所降低,热失重残留物有所增加。对溶解机理进行了初步讨论。 关键词:功能化离子液体;纤维素;溶解 中图分类号:O631.1+1 文献标识码:A 文章编号:100027555(2005)022******* 在石油资源日益短缺的今天,充分利用丰富的纤维素资源发展纤维素工业具有深远的意义[1]。纤维素具有在大多数溶剂中不溶解的特点,因而,开发有效的直接溶解纤维素的溶剂体系是解决难题的关键。直接溶解纤维素可以最大限度地保留天然纤维素的特性。目前研究得较多的纤维素溶剂主要有铜氨溶液、N2甲基吗啉2N2氧化物(NMM O)溶剂体系等[2],这些溶剂或多或少存在着不稳定、有毒害、不易回收、价格昂贵等缺点。常见的离子液体通常由烷基吡啶或双烷基咪唑季铵阳离子与四氟硼酸根、六氟磷酸根、硝酸根、卤素等阴离子组成。离子液体具有强极性、不挥发、不氧化、对无机和有机化合物有良好的溶解性和对绝大部分试剂稳定等优良特性,被认为是代替易挥发化学溶剂的绿色溶剂[3,4]。最近,Sw atlo sk i等[5]发现氯化12丁基232甲基咪唑金翁盐([BM I M]C l)离子液体可溶解纤维素;任强等[6]发现离子液体氯化12烯丙基232甲基咪唑金翁盐([AM I M]C l)对纤维素具有较好的溶解性能。 本文合成了一种新型含羟基的功能化离子液体——氯化12(22羟乙基)232甲基咪唑盐([H e M I M]C l)(F ig.1),该功能化离子液体对纤维素有较好的溶解性。在相同的溶解条件下, [H e M I M]C l对纤维素的溶解性能优于文献报道的离子液体[BM I M]C l和[AM I M]C l 。 F ig.1 The structure of1-(2-hydroxylethyl)-3-methyl i m ida- zoliu m chlor ide 1 实验部分 1.1 主要仪器及试剂 溶解过程用XPT27偏光显微镜观察;红外光谱在B ruker Equ inox55上测定;核磁共振谱用B ruker AVAN CE300(300M H z)测定; XRD在M SAL2XD II上测定;热性能在N ET2 ZSCH T G209上测定。 所有试剂为市售分析纯或化学纯试剂,未作进一步纯化处理。 1.2 功能化离子液体氯化1-(2-羟乙基)-3-甲基咪唑盐的合成 按文献[7]制备,并经1H2NM R确证。 Ξ收稿日期:2004202202;修订日期:2004206216  作者简介:罗慧谋(1979-),男,硕士生. 联系人:李毅群.

醋酸纤维薄膜的应用-CLARIFOIL

醋酸纤维薄膜的应用--Clarifoil Clarifoil概述 Clarifoil既是产品醋酸纤维薄膜的商品名称,也是公司名 称,它具有很强的品牌识别度和悠久的历史。 Clarifoil公司一直致力于二醋酸纤维素薄膜复合印刷,丙酸,复 合膜, PVC膜,隔热膜,玻璃纸,以及其他包装薄膜的生产。 其使用的材料可回收再利用,生物降解,焚烧后对大气无污染。而且Clarifoil耐磨薄膜能大幅度降低包装磨擦带来的损耗。 醋酸纤维薄膜的应用--Clarifoil 复合膜,珠光膜--清晰度极高覆膜印刷,哑光膜以及半哑光膜 Satiné 和Semitone Clarifoil公司的产品品质是很多企业难以 项望其背的。清晰度极高的亮膜使得覆膜后的产品更熠熠升辉, 而哑光膜则赋予了包装沉稳高雅的效果。如果要想覆膜后有丝质 的效果,那么可以选择其他两种半哑光膜,一种是缎面,可用作 设计香水盒子,另一种是Semitone,它结合了精致的外表和高级 触感的特性,可用于化妆品盒子,公司介绍,饭店菜单,CD封面 和销售宣传单的覆膜。 所有Clarifoil出品的复合膜都显示了其先进的防划痕防标记性 能。而且,semitone独一无二的表面处理使其甚至可以防指纹印迹。所有用于印刷覆膜的复合膜都可以烫金,上胶和直接印刷,而且不需要做任何的预涂。 事实上,独立调查显示Clarifoil加强了复合膜的可循环利用的能力。Clarifoil 的灵活的生产方式促使其可以制造更多独特的特性,例如珠光膜(珠光薄膜是一种混合了不同颜色的透明复合膜,覆膜后仍可以看到原来底纸的颜色但是复合膜为整体添加了绝佳的光泽和颜色效果)和颜色膜。 带透明薄膜的硬纸盒--特别应用于食物包装 装在Clarifoil所生产的有透明薄膜的包装盒中售卖的商品的范围十分广泛:从意大利面条到香水,从衬衫到巧克力。 在货架上,奢侈品包装材料可以展示其产品最好的一面用以提高销售量。因此,透明薄膜的品质对此起到十分关键的作用。为加强消费者的兴趣,Clarifoil具备完全的透明度,表面光滑,并有良好的防痕

半纤维素的提取及功能化应用

半纤维素的提取及功能化应用 摘要:进入新世纪以后,全面可持续发展的科学发展观不断深入人心,为贯彻这一思想,可再生木质纤维素类生物质资源的开发和利用得到了人们的极大重视和关注。半纤维素是农林生物质的主要组分之一,含量仅次于纤维素,是地球上最丰富、最廉价的可再生资源之一。本文主要对半纤维素的提取及功能化应用进行综述。 关键词:生物质;半纤维素;功能化应用 Extraction and functional application of Hemicelluloses Abstract: After entering the new century, the comprehensive sustainable development of the concept of scientific development unceasingly thorough popular feeling, lignocelluloses biomass resources development and utilization of the people's great attention and concern to carry out the idea of renewable class. Hemicelluloses is a major component of forestry biomass, content, second only to cellulose is the most abundant on earth, one of the most cheap renewable resource. This article mainly summarized the extraction and functional application of hemicelluloses. Key Words: biomass ; hemicelluloses; functional applications 1.引言 植物体内通常含有纤维素、半纤维素、木质素、果胶和特种化合物。其中,半纤维素在自然界中的含量十分丰富,在木质纤维生物质中的含量占1/4 ~1/3,仅次于纤维素的含量,比木质素还高。长期以来纤维素和木质素的研究利用占据了人们的主导研究地位,近年来有关半纤维素的研究逐步得到了重视,特别是半纤维素的提取和改性技术的提高,使其在造纸、食品包装、生物医药等领域有着潜在的商业价值[1]。本文通过半纤维素的简介、提取方法及功能化应用三个方面进行详细阐述。 2.半纤维素的简介 半纤维素是植物细胞壁的主要组分之一,是由非葡萄糖单元组成的一类多糖的总称,约占细胞壁总重的20~35%。半纤维素与纤维素均一聚糖的直链结构不同,在参与细胞壁的构建中形成的种类很多,多为支链结构,结构复杂,且化学结构随植物种类不同呈现较大差异。 半纤维素主要由大量的非晶戊糖和己糖组成[2],既有均一聚糖也有非均一聚糖。根据一级结构,半纤维素可分为甘露聚糖、木聚糖、半乳聚糖、木葡聚糖和阿拉伯聚糖[3]。下图是半纤维素的主要结构单元。

纤维素功能化研究进展及其前景-周彤

陕西科技大学研究生考试试卷 考试科目纤维素化学 专业制浆造纸工程 年级造纸研10级 考生姓名周彤 考生类别日校生

纤维素功能化研究进展及其前景 周彤1001017 摘要:本文总结了纤维素功能化的最新进展,介绍了纤维素功能化新产品并对今后对纤维素的研究利用做出了展望。 关键词:纤维素功能化;纤维素新产品;展望 纤维素是无水葡萄糖残基通过β-1、4苷键连接的立体规整性高分子,是自然界中最为丰富的可再生资源,每年由光合作用可产生几百亿吨。近年来随着石油、煤炭储量的下降,纤维素这种可再生资源的重要性日益显著,尤其是在环境污染问题日益突出的今天,迫使人们把注意力重新集中到纤维素这一具有生物可降解性、环境协调性的可再生资源上来。纤维素大分子易于参与化学改性反应,因此可以制备各种用途的功能材料,例如高吸水材料、贵重金属吸取材料、医疗卫生用材料等。同时纤维素可以以粉状、片状、膜以及溶液等不同形式出现,进一步提高了纤维素功能化的灵活性和应用的广泛性[1]。 1、纤维素的改性 纤维素大分子每个基环均具有三个醇羟基,可以发生氧化。酯化、醚化、接枝共聚等反应;两个末端基性质各异,在一端的葡萄糖基第1个碳原子上存在1个苷羟基,当葡萄糖环结构变成开链式,次羟基即转变成为醛基而具有还原性,而另一端,在末端基的第4个碳原子上存在仲醇羟基,它不具有还原性[2]。纤维素化学改性主要依靠与纤维素羟基有关的反应来完成。例如酯化反应将纤维素的羟基转变为酯基,氢键减少或消失分子间相互作用减弱,纤维素成为热塑性的纤维素酯;醚化反应将纤维素转变为纤维素醚,具有较高的机械强度和柔韧性,可用于制造塑料、薄膜、清漆和胶黏剂等。利用纤维素的羟基作为接枝点,将聚合物连接到纤维素骨架上,称为纤维素的接枝反应。依据接枝聚合物的结构、性质、相对分子质量的不同,可赋予纤维素多种性能和用途[3]。 1.1纤维素酯 纤维素酯又可分为纤维素无机酸酯和有机酸酯。纤维素无机酸酯是指纤维素分子链中的羟基与无机酸如:硝酸、硫酸、磷酸等进行酯化反应的生成物。纤维素有机酸酯是指纤维素分于链中的羟基与有机酸、酸酐或酰卤反应的生成物。主要有纤维素的甲酸酯、乙酸酯、丙酸酯、丁酸酯、乙酸丁酸酯、高级脂肪酸酯、芳香酸酯和二元酸酯等,此外还有各种纤维素混合酯,如醋酸丙酸纤维素、醋酸丁酸纤维素、醋酸琥珀酸纤维素和醋酸邻苯二甲酸纤维素等[4]。

浅析溶剂法纤维素纤维技术发展现状

浅析溶剂法纤维素纤维技术国内现状 2013-12-21 程斌 一、概述 溶剂法纤维素纤维技术,业界很多人对此已做过非常多的研究和探索,从纺丝原液的制备、纺丝技术的开发到溶剂回收、原纤化、织染技术的开发等等,为今天原料生产技术的引进和市场培育奠定了基础。只要稍微留意,便可在网络、专利及各种文献期刊中找到大量的相关报道。但这些报道,往往是表层的,片面的,缺乏系统性,而且,非常多的只是停留在实验室和教学层次,对涉及相关专业设备的技术方面的文章就更少,能经得住工业化生产技术论证的方法、工艺路线、参数及设备结构方面的就更少。笔者长期从事粘胶纤维、聚酯纤维生产以及工程设计以及溶剂法纤维素纤维的研发工作,同时深感溶剂法纤维素纤维这一新型纤维工艺对化学纤维行业的品质提升、环境改善和自控技术集成方面的优越特性以及在下游差别化品种开发上独有性能,在友人的怂恿下,就溶剂法纤维素纤维技术现状谈谈粗浅看法,不当之处望业界朋友指正。 溶剂法纤维素纤维自上世纪70年代由阿克苏.诺贝尔公司开始着手进行溶剂法纤维素纤维纺制方法的研究开始,到上世纪90年代初期考陶尔兹公司建立的第一条万吨级工业化生产装置,历经20余年,此后,溶剂法纤维素纤维工业化生产技术一直由奥地利兰精公司独享,直到今天,真正称得上溶剂法纤维素纤维工业化生产的仅奥地利兰精公司,印度博拉集团等少数几家企业有相关产品,但国内市场基本上由兰精公司独霸,品种不多,A100,G100,LF三个品种,以非原纤化的A100用量最大。我国自上世纪80年代后期开始进行相关技术的研发工作,到2001年上海里奥引进吉玛技术建设1000吨中试线到当前的保定天鹅新材料公司引进奥地利ONE-A公司万吨工业化生产线,该项目目前尚处投料调试阶段,整个过程长达25年,这25年来,国家、企业、科研院所等投入了大量的人力物力进行相

功能化纤维素纤维的制备【文献综述】

毕业论文文献综述 高分子材料与工程 功能化纤维素纤维的制备 引言 现今世界,石油、天然气资源的有限存储量以及它们的生产队地球和人类及生态环境的影响日趋严重,促使以天然资源为原料的高分子材料得以大力发展。其中,尤以纤维素、纤维素衍生物和木质纤维素的功能材料的研究和开发,最引起世界各国的兴趣和关注,这主要是由于这一天然资源廉价易得,既可以收获又可能再生,且具有生物可降解特点。早在100年前,纤维素纤维(如铜氨和粘胶纤维)就已得到了发展。过去的6年间,全球纤维素纤维生产年平均增长率在3.5%。2008年纤维素纤维产量达330万t,其中短纤维300万t,长丝纱37万t。2008年粘胶纤维产量254.49万t/a,主要产区在亚洲,约占世界粘胶纤维产量的80%,欧洲占17%。中国是粘胶纤维最大的生产国,约占全球产量的47%。 随着科技的发展,人们生活水平的提高和人们对全球性的认识,功能化纤维素纤维的研究得到了重视。功能化纤维是指具有吸附、分离、螯合、吸水、吸油、吸烟、导电、导光、光变色、远红外蓄热、蓄光、散发芳香、生物体吸收、生物降解、抗菌消臭、释放负氧离子、光催化、发光和纤维超微细带来的新功能等一大类纤维的总称,当纤维中兼有多种功能,称之为多功能纤维。目前已商化的功能纤维品种有21种:中空纤维分离膜、活性炭纤维、离子交换纤维、金属螯合纤维、超吸水纤维、吸油纤维、吸烟纤维、芳香纤维、森林浴纤维、负离子纤维、光催化纤维、光变色纤维、蓄光纤维、远红外蓄热纤维、发光纤维、光导纤维、导电纤维、抗菌消臭纤维、生物体吸收纤维、生物降解纤维和纳米纤维。 然而,随着人们生活水平的改善,印刷行业、纺织工业等不断发展的同时,世界面临着严重的污染问题。染料的使用使我们的生活环境更富有色彩,同时废水的排放危害着我们的环境,危害我们的生命。酞菁作为一种着色剂已广泛应用于涂料、印刷和纺织行业,近年来,金属酞菁因其结构特点在作为催化剂应用上也被广泛的研究,能够催化包括加氢反应、氮氧化物的还原反应等数10种有机反应,在催化氧化脱硫上已得到广泛应用。因此,人们把目光转向了利用金属酞菁来保护我们的环境。最初人们将金属酞

醋酸纤维薄膜电泳 实验报告

实验九醋酸纤维薄膜电泳 一、实验目的 学习掌握电泳原理 学习醋酸纤维薄膜电泳的操作方法及染色鉴定 二. 实验原理 带电质点在电场中向带有异相电荷的电极移动,这种现象称为电泳。电泳的基本原理 带电的胶粒或大分子在外加电场中,向带相反电荷的电极作定向移动的现象称为电泳。生物分子都带电荷,其电荷的多少取决于分子性质及其所在介质的pH及其组成。由于混合物中各组分所带电荷性质、电荷数量以及分子量的不同,在同一电场的作用下,各组分泳动的方向和速度也各异。因此,在一定时间内各组分移动的距离不同,从而达到分离鉴定各组分的目的。 在电场中,推动带电质点运动的力(F)等于质点所带净电荷量(Q)与电场强度(X)的乘积。F=QX 质点的前移同样要受到阻力( f )的影响,对于一个球形质点,服从Stoke定律,即:f =6πr ην(r为质点半径,η为介质粘滞系数,ν为质点移动速度) 当质点在电场中作稳定运动时:F=f 即:QX=6πrην 在具体实验中,移动速度V为单位时间t(单位为s)内移动的距离d(单位为cm),即V=d/t。电场强度X为单位距离L(单位为cm)内电势差E (单位为伏特),即 X=E/L。将这两个公式代入上述公式,得到 U=v/X=dL/Et d=u*Et/L 由此可以得到两种物质移动距离的差为 △d=(d A-d B)=(u A-u B)Et/L 从这个公式可以看出物质能否进行分离决定于二者的迁移率。 影响因素 1. 待分离大分子的性质:所带的电荷、分子大小和形状,分子带的电荷量越大、直径越小、形状越接近球形,则其电泳迁移速度越快 2. 缓冲液pH和离子强度:pH值距离其等电点愈远,其所带净电荷量就越大,电泳的速度也就越大;但是pH过高或过低引起蛋白变性,缓冲液通常要保持一定的离子强度;强度过低,则缓冲能力差,不易维持PH恒定,离子强度过高,在待分离分子周围形成较强的带相反电荷的离子扩散层(即离子氛),降低了蛋白质的带电量,使电泳速度减

相关文档
最新文档