常用坐标转换方法

常用坐标转换方法
常用坐标转换方法

空间直角坐标系坐标转换方法

坐标转换方法 空间直角坐标系如果其原点不动,绕着某一个轴旋转而构成的新的坐标系,这个过程就叫做坐标旋转。在旧坐标系中的坐标与在旋转后新坐标系中的坐标有一定的转换关系,这种转换关系可以用转换矩阵来表示。 如图5.7,直角坐标系XYZ,P点的坐标为(x, y, z),其相应的在XY 平面,XZ平面,YZ平面分别为M(x, y,0),Q(x,0, z)和N(0, y, z)。 图5.7直角坐标系XYZ 设?表示第j 轴的旋转角度,R j (?) 表示绕第j 轴的旋转,其正方向是沿坐标轴向原点看去的逆时针方向。很明显当j 轴为旋转轴时,它对应的坐标中的j 分量是不变的。由于直角坐标系是对称的,下面我们以绕Z轴旋转为例推导其旋转变换矩阵,其它两个轴推导和它是一样的。 设图5.7的坐标绕Z轴逆时针旋转θ角度,新坐标为X 'Y'Z',如图5.8所示: 图5.8 坐标绕Z 轴逆时针旋转θ角度 由于坐标中的z 分量不变,我们可以简化地在XY 平面进行分分析,如图

5.9所示: 图5.9坐标绕Z 轴逆时针旋转θ 角度的XY 平面示意图 点 M X 和点M X ' 分别是M 点在X 轴和X '轴的投影。如图5.9 cos cos() sin sin() X X X X x OM OM MOM OM y MM OM MOM OM ?θ?θ==∠=-??==∠=-? (5-1) cos cos sin sin X X X X x OM OM MOM OM y MM OM MOM OM ? ?'''''==∠=??'==∠=? (5-2) 把(5-1)式按照三角函数展开得: cos cos sin sin sin cos cos sin x OM OM y OM OM ?θ?θ ?θ?θ=+??=+? (5-3) 把(5-2)式代入(5-3)式得: cos sin sin cos x x y y x y θθ θθ''=+??''=-+? (5-4) 坐标中的z 分量不变,即z = z'这样整个三维坐标变换就可以写成(用新坐标表 示旧坐标) cos sin sin cos x x y y x y z z θθ θθ''=+? ?''=-+??' =? (5-5) 把式(5-5)用一个坐标旋转变换矩阵R Z (θ) 表示可以写成:

空间大地坐标系与平面直角坐标系转换公式

§2.3.1 坐标系的分类 正如前面所提及的,所谓坐标系指的是描述空间位置的表达形式,即采用什么方法来表示空间位置。人们为了描述空间位置,采用了多种方法,从而也产生了不同的坐标系,如直角坐标系、极坐标系等。 在测量中常用的坐标系有以下几种: 一、空间直角坐标系 空间直角坐标系的坐标系原点位于参考椭球的中心,Z 轴指向参考椭球的北极,X 轴指向起始子午面与赤道的交点,Y 轴位于赤道面上且按右手系与X 轴呈90°夹角。某点在空间中的坐标可用该点在此坐标系的各个坐标轴上的投影来表示。空间直角坐标系可用图2-3来表示: 图2-3 空间直角坐标系 二、空间大地坐标系 空间大地坐标系是采用大地经、纬度和大地高来描述空间位置的。纬度是空间的点与参考椭球面的法线与赤道面的夹角;经度是空间中的点与参考椭球的自转轴所在的面与参考椭球的起始子午面的夹角;大地高是空间点沿参考椭球的法线方向到参考椭球面的距离。空间大地坐标系可用图2-4来表示:

图2-4空间大地坐标系 三、平面直角坐标系 平面直角坐标系是利用投影变换,将空间坐标空间直角坐标或空间大地坐标通过某种数学变换映射到平面上,这种变换又称为投影变换。投影变换的方法有很多,如横轴墨卡托投影、UTM 投影、兰勃特投影等。在我国采用的是高斯-克吕格投影也称为高斯投影。UTM 投影和高斯投影都是横轴墨卡托投影的特例,只是投影的个别参数不同而已。 高斯投影是一种横轴、椭圆柱面、等角投影。从几何意义上讲,是一种横轴椭圆柱正切投影。如图左侧所示,设想有一个椭圆柱面横套在椭球外面,并与某一子午线相切(此子午线称为中央子午线或轴子午线),椭球轴的中心轴CC ’通过椭球中心而与地轴垂直。 高斯投影满足以下两个条件: 1、 它是正形投影; 2、 中央子午线投影后应为x 轴,且长度保持不变。 将中央子午线东西各一定经差(一般为6度或3度)范围内的地区投影到椭圆柱面上,再将此柱面沿某一棱线展开,便构成了高斯平面直角坐标系,如下图2-5右侧所示。 图2-5 高斯投影 x 方向指北,y 方向指东。 可见,高斯投影存在长度变形,为使其在测图和用图时影响很小,应相隔一定的地区,另立中央子午线,采取分带投影的办法。我国国家测量规定采用六度带和三度带两种分带方法。六度带和三度带与中央子午线存在如下关系: 366 N L =中; n L 33=中 其中,N 、n 分别为6度带和3度带的带号。

坐标转换之计算公式

坐标转换之计算公式 一、参心大地坐标与参心空间直角坐标转换 1名词解释: A :参心空间直角坐标系: a) 以参心0为坐标原点; b) Z 轴与参考椭球的短轴(旋转轴)相重合; c) X 轴与起始子午面和赤道的交线重合; d) Y 轴在赤道面上与X 轴垂直,构成右手直角坐标系0-XYZ ; e) 地面点P 的点位用(X ,Y ,Z )表示; B :参心大地坐标系: a) 以参考椭球的中心为坐标原点,椭球的短轴与参考椭球旋转轴重合; b) 大地纬度B :以过地面点的椭球法线与椭球赤道面的夹角为大地纬度B ; c) 大地经度L :以过地面点的椭球子午面与起始子午面之间的夹角为大地经度L ; d) 大地高H :地面点沿椭球法线至椭球面的距离为大地高H ; e) 地面点的点位用(B ,L ,H )表示。 2 参心大地坐标转换为参心空间直角坐标: ?? ???+-=+=+=B H e N Z L B H N Y L B H N X sin *])1(*[sin *cos *)(cos *cos *)(2 公式中,N 为椭球面卯酉圈的曲率半径,e 为椭球的第一偏心率,a 、b 椭球的长短半 径,f 椭球扁率,W 为第一辅助系数 a b a e 2 2-= 或 f f e 1*2-= W a N B W e =-=22sin *1( 3 参心空间直角坐标转换参心大地坐标

[]N B Y X H H e N Y X H N Z B X Y L -+=+-++==cos ))1(**)()(*arctan( )arctan(2 2222 二 高斯投影及高斯直角坐标系 1、高斯投影概述 高斯-克吕格投影的条件:1. 是正形投影;2. 中央子午线不变形 高斯投影的性质:1. 投影后角度不变;2. 长度比与点位有关,与方向无关; 3. 离中央子午线越远变形越大 为控制投影后的长度变形,采用分带投影的方法。常用3度带或6度带分带,城市或工 程控制网坐标可采用不按3度带中央子午线的任意带。 2、高斯投影正算公式: 5 2224253 2236 4254 42232)5814185(cos 120 )1(cos 6 cos )5861(cos sin 720 495(cos sin 24 cos sin 2l t t t B N l t B N Bl N y l t t B B N l t B B N Bl B N X x ηηηηη-++-++-+=+-+++-++=) 3、高斯投影反算公式:

坐标转换计算方式

72绝对坐标转换为相对坐标在直线段施工测量中,可以把绝对坐标转换为相对坐标进行放线测量,此方法比较快捷实用。 如,已知直线段线路中线A点的里程与绝对坐标X1,Y1.和其直线A点至线路前进方向的方位角a。同样已知附近的控制点Q的绝对坐标QX1,QY1.那么现在为了使用方便,要将其Q点的绝对坐标转换为相对于直线段的相对坐标,计算方法如下: 根据以上所知,根据坐标发算可以得出点A至控制点Q 的距离为L,以及点A至控制点Q方向的方位角简称R。已知线路中心线前进方向的方位角a,那么由点A至线路前进方向,和点A至控制点Q方向就形成一个夹角r,r=R-a。现在做控制点到线路中线的垂直线Y,(也就是所谓的Y坐标数据)。根据直角三角形计算方式得出Y=SIN r×L(L,是点A至点Q的距离)那么相对于线路X的坐标计算方式(X坐标表示里程)。X=COSr×L+A点里程。 即得出控制点Q相对于直线的相对坐标。 例题:例如,ZDK400至ZDK700为直线段,已知里程400的线路中心线坐标X=22580.40165 Y=27356.42893 里程700的线路中心线坐标X=22558.58105 Y=27655.63522 欲求J2点X=22562.1789 Y=27510.4874相对于400至700的相对坐标,图示如下:

解:根据已知,经过坐标反算可以求得点A至点B的坐标方位角为94 10 16 AB距离为300。 A 至D的坐标方位角为96 44 45.26 距离为155.132 那么可求得角FAD=2 34 29.26 因现已知AD=155.132 角FAD=2 24 29.26 根据三角函数可计算DF=sinfa d×AD=0.045×155.132=6.969 AF=cosfad×AD=0.999×155.132=154.975

南方CASS坐标转换方法

南方CASS坐标转换方法 摘要本文介绍了1954年北京坐标系、1980西安坐标系及其相互关系、转换原理及利用软件进行数据转换的两种方法。 关键词:坐标系坐标转换方法 近几年来,在测绘行政主管部门的推动下,我国西安80坐标系正在逐步得到使用,第二次全国土地调查已明确要求平面控制使用80西安坐标系统,省级基础测绘成果1:10000地形图也采用了1980西安坐标系,现有1954年北京坐标系将逐渐向1980西安坐标系过渡,但是,五十年来,我国在1954年北京坐标系下完成的大地控制及基本系列地形图数量巨大,价值巨大,必须充分利用。在当前测绘生产中既存在将54系转成80系的问题,也有相反的情况。

一、北京54坐标系、西安80坐标系及其相互关系 1954年北京坐标系是我国五十年代由原苏联1942年普尔科沃坐标系传算而来,采用克拉索夫斯基椭球体,其参数为:长半轴为6378245米,扁率为1/298.3。这个坐标系的建立在我国国民经济和社会发展中发挥了巨大的作用,但该坐标系存在着定位后的参考椭球面与我国大地水准面不能达到最佳拟合,在中国东部地区大地水准面差距自西向东增加最大达+68米;其椭球的长半轴与现代测定的精确值相比109米的缺陷;定向不明确,椭球短轴未指向国际协议原点CIO,也不是中国地极原点JYD1968.0;起始大地子午面也不是国际时间局BIH所定义的格林尼治平均天文台子午面。同时,该系统提供的大地点坐标是通过局部平差逐级控制求得的,由于施测年代不同、承担单位不同,不同锁段算出的成果相矛盾,给用户使用带来困难。 1978年4月,中国在西安召开了全国天文大地网平差会议,在会议上决定建立中国新的国家大地坐标系,有关部门根据会议纪要,开展并进行了多方面的工作,建成了1980西安国家大地坐标系(GDZ80),该坐标系全面描述了椭球的4个基本参数,同时反映了椭球的几何特性和物理特性,这4个参数的数值采用的是1975年国际大地测量与地球物理联合会第16届大会的推荐值(简称IGA-1975椭球) 。其主要参数为:长半轴为6378140 米,扁率为1/298.257。IAG-1975椭球参数精度较高,能更好地代表和描述地球的几何形状和物理特征。在其椭体定位方面,以我国范围内高程异常平方和最小为原则,做到了与我国大地水准面较好的吻合。

大地坐标转换成施工坐标公式

大地(高斯平面)坐标系工程坐标系转换大地坐标系--->工程坐标系 ======================== 待转换点为P,大地坐标为:Xp、Yp 工程坐标系原点o: 大地坐标:Xo、Yo 工程坐标:xo、yo 工程坐标系x轴之大地方位角:a dX=Xp-Xo dY=Yp-Yo P点转换后之工程坐标为xp、yp: xp=dX*COS(a)+dY*SIN(a)+xo yp=-dX*SIN(a)+dY*COS(a)+yo 工程坐标系--->大地坐标系 ======================== 待转换点为P,工程坐标为:xp、yp 工程坐标系原点o: 大地坐标:Xo、Yo 工程坐标:xo、yo 工程坐标系x轴之大地方位角:a dx=xp-xo dy=yp-yo P点转换后之工程坐标为xp、yp: xp=Xo+dx*COS(a)-dy*SIN(a)

yp=Yo+dx*SIN(a)+dy*COS(a) 坐标方位角计算程序 置镜点坐标:ZX ZY 后视点坐标:HX HY 方位角:W 两点间距离: S Lb1 0← {A, B, C, D}← A〝ZX=〞:B〝ZY=〞:C〝HX=〞:D 〝HY=〞:W=tg1((D-B)÷(C-A)):(D-B)>0=>(C-A)>0=>W=W:∟∟(D-B)>0=>(C-A)<0=>W=W+180:∟∟(D-B)<0=>(C-A)<0=>W=W+180:∟∟(D-B)<0=>(C-A)>0=>W=360+W∟∟W=W◢ S=√((D-B)2+(C-A)2) ◢ Goto 0← CASIO fx-4500p坐标计算程序 根据坐标计算方位角 W=W+360△W:“ALF(1~2)=”L1 A“X1=”:B“Y1=”:Pol(C“X2”-A,D“Y2”-B:“S=”▲W<0 直线段坐标计算 L1 X“X(0)”:Y“Y(0)”:S“S(0)”:A“ALF” L2 Lb1 2 L3 {L}:L“LX”

各种测量坐标转换

不同坐标系介绍及相互转换关系 一、各坐标系介绍 GIS的坐标系统大致有三种:Plannar Coordinate System(平面坐标系统,或者Custom用户自定义坐标系统)、 Geographic Coordinate System(地理坐标系统)、 Projection Coordinate System(投影坐标系统)。这三者并不是完全独立的,而且各自都有各自的应用特点。如平面坐标系统常常在小范围内不需要投影或坐标变换的情况下使用,地理坐标系统和投影坐标系统是相互联系的,地理坐标系统是投影坐标系统的基础之一。 1、椭球面(Ellipsoid) 地图坐标系由大地基准面和地图投影确定,大地基准面是利用特定椭球体对特定地区地球表面的逼近,因此每个国家或地区均有各自的大地基准面,我们通常称谓的北京54坐标系、西安80坐标系实际上指的是我国的两个大地基准面。我国参照前苏联从1953年起采用克拉索夫斯基(Krassovsky)椭球体建立了我国的北京54坐标系,1978年采用国际大地测量协会推荐的IAG 75地球椭球体建立了我国新的大地坐标系--西安80坐标系,目前GPS定位所得出的结果都属于WGS84坐标系统,WGS84基准面采用WGS84椭球体,它是一地心坐标系,即以地心作为椭球体中心的坐标系。因此相对同一地理位置,不同的大地基准面,它们的经纬度坐标是有差异的。采用的3个椭球体参数如下

2、高斯投影坐标系统 (1)高斯-克吕格投影性质 高斯-克吕格(Gauss-Kruger)投影简称“高斯投影”,又名"等角横切椭圆柱投影”,地球椭球面和平面间正形投影的一种。德国数学家、物理学家、天文学家高斯(Carl FriedrichGauss,1777一 1855)于十九世纪二十年代拟定,后经德国大地测量学家克吕格(Johannes Kruger,1857~1928)于 1912年对投影公式加以补充,故名。该投影按照投影带中央子午线投影为直线且长度不变和赤道投影为直线的条件,确定函数的形式,从而得到高斯一克吕格投影公式。投影后,除中央子午线和赤道为直线外,其他子午线均为对称于中央子午线的曲线。设想用一个椭圆柱横切于椭球面上投影带的中央子午线,按上述投影条件,将中央子午线两侧一定经差范围内的椭球面正形投影于椭圆柱面。将椭圆柱面沿过南北极的母线剪开展平,即为高斯投影平面。取中央子午线与赤道交点的投影为原点,中央子午线的投影为纵坐标x轴,赤道的投影为横坐标y轴,构成高斯克吕格平面直角坐标系。

大地坐标与直角空间坐标转换计算公式

大地坐标与直角空间坐标转换计算公式 一、参心大地坐标与参心空间直角坐标转换 1名词解释: A :参心空间直角坐标系: a) 以参心0为坐标原点; b) Z 轴与参考椭球的短轴(旋转轴)相重合; c) X 轴与起始子午面和赤道的交线重合; d) Y 轴在赤道面上与X 轴垂直,构成右手直角坐标系0-XYZ ; e) 地面点P 的点位用(X ,Y ,Z )表示; B :参心大地坐标系: a) 以参考椭球的中心为坐标原点,椭球的短轴与参考椭球旋转轴重合; b) 大地纬度B :以过地面点的椭球法线与椭球赤道面的夹角为大地纬度B ; c) 大地经度L :以过地面点的椭球子午面与起始子午面之间的夹角为大地经度L ; d) 大地高H :地面点沿椭球法线至椭球面的距离为大地高H ; e) 地面点的点位用(B ,L ,H )表示。 2 参心大地坐标转换为参心空间直角坐标: ?? ? ?? +-=+=+=B H e N Z L B H N Y L B H N X sin *])1(*[sin *cos *)(cos *cos *)(2 公式中,N 为椭球面卯酉圈的曲率半径,e 为椭球的第一偏心率,a 、b 椭球的长短半径,f 椭球扁率,W 为第一辅助系数 a b a e 2 2-= 或 f f e 1 *2-= W a N B W e = -=22 sin *1( 西安80椭球参数: 长半轴a=6378140±5(m )

短半轴b=6356755.2882m 扁 率α=1/298.257 3 参心空间直角坐标转换参心大地坐标 [ ] N B Y X H H e N Y X H N Z B X Y L -+= +-++==cos ))1(**)() (*arctan() arctan(2 22 2 2 二 高斯投影及高斯直角坐标系 1、高斯投影概述 高斯-克吕格投影的条件:1. 是正形投影;2. 中央子午线不变形 高斯投影的性质:1. 投影后角度不变;2. 长度比与点位有关,与方向无关; 3. 离中央子午线越远变形越大 为控制投影后的长度变形,采用分带投影的方法。常用3度带或6度带分带,城市或工程控制网坐标可采用不按3度带中央子午线的任意带。 2、高斯投影正算公式: 52224253 2236 425442232)5814185(cos 120 )1(cos 6 cos )5861(cos sin 720 495(cos sin 24cos sin 2l t t t B N l t B N Bl N y l t t B B N l t B B N Bl B N X x ηηηηη-++-++-+=+-+++-++ =) 3、高斯投影反算公式:

施工坐标系与测量坐标系之间的相互转换关系

施工坐标系与测量坐标系之间的相互转换 一、用Microsoft Excel 编辑转换 如图(1-1)所示:设Y O X -- 为测量坐标系,y o x -'- 为施工坐标,如果知道了施工坐标系的原点o '的测量坐标为('0X ,'0Y )、定向点I 的测量坐标为(XI,YI ),定向坐标方位角 x -'0α (即纵轴的旋转角,因为0=-X o α为正北方向,则x -'0α=X o -α+α)。则所求P 点由施工坐标P (p p y x ,)换算成为测量坐标P (p p Y X ,)的公式则为: α αsin *cos *0p p p y x X X -+=' ααcos *sin *0p p p y x Y Y ++=' 上面两式在Excel 中编辑公式为: [][]180/()*sin *180/()*cos *0Pi y Pi x X X p p p αα-+=' [][]180/()*cos *180/()*sin *0Pi y Pi x Y Y p p p αα++=' 而如果知道了施工坐标系(第二坐标系)的原点的测量坐标 o '为

('0X 、'0Y )、坐标方位角 x -'0α (即纵轴的旋转角,因为0=-X o α为正北方向,则x -'0α=X o -α+α)。则所求P 点由测量坐标P (p p Y X ,)转换算为施工坐标P (p p y x ,)其公式为: ααsin *)(cos *)(00''-+-=Y Y X X x p p p ααcos *)(sin *)(00''-+--=Y Y X X y p p p 上面两式在Excel 中编辑公式为: [][]180/()*sin *)(180/()*cos *)(00Pi Y Y Pi X X x p p p αα''-+-= [][]180/()*cos *)(180/()*sin *)(00Pi Y Y Pi X X y p p p αα''-+--= 以上各式中施工坐标系原点o ' 的测量坐标('0X ,'0Y )与方位角α ,可在设计资料中查找或用图解法得出。 附: 如(图1-2)直线AB 的坐标方位角 ? ?? ? ??--=-A B A B AB x x y y 1tan α B ( x ,y ) β B B C ( x ,y ) C C A ( x ,y ) A A α A B α A C 图(1-2) 如(图1-2)直线AB 与直线AC 的夹角 β ???? ??---???? ??--=-=--A B A B A C A C A B A C x x y y x x y y 11tan tan ααβ

坐标转换步骤

坐标转换步骤 1、总平图找个已知的点的坐标 2、首先用快捷键 D 调出标注样式 3、把精度调成0.00000000000 测量这个点的角度 4、因为总平图都是倾斜的和正交的情况下有一定的角度 5、把单项的图纸打开 6、全部框选 7、右键旋转 8、输入总平图的角度 9、然后enter 确认 10、从总平图中记录交点的坐标 11、在单项图纸中usc 命令N命定-鼠标左键点击交点,此时此交点已被定 义为0 点 12、输入zbbz 命令点击交点显示坐标为0,0,0 13、再次ucs 命令--- 鼠标左键移动到交点位置(切记不要点击)此时输入 坐标值

再输入X 坐标(坐标值前输入负号)输入标14、输入坐标的方法为先输入Y 坐标(坐标值前输入负号)输入 标 点“,”- 八、、? 点 八、、 ---- 再输入Z 坐标(一般都为0) 15、连续点击两次enter 键,此时此交点已被定义为输入的坐标值 16、再次zbbz 命令此时会显示和从总平图中记录交点的坐标一致 17、大功告成 截图如下 1、打开总平图,总平图找个已知的点的坐标 2、快捷键 D -E Nter--- 如下 3、点击修改,调节右下角精度为最大 4、点击置为当前,点击关闭 5、点击标注角度 6、打开单项图纸如下 7、全部框选- 右键旋转点击交点 8、输入角度

9、enter 确定

再输入X 坐标(坐标值前输入负号)输入标10、ucs 命令输入N 11、enter 确定点击交点 12、输入zbbz 命令 13、e nter 确定 14、再次ucs 命令 15、enter 确定输入坐标 16、鼠标十字丝移动到交点位置(切勿点击)连续 点击两次enter 键 17、输入zbbz 命令 18、e nter 确定 大功告成

坐标转换模型

坐标转换模型 1.空间直角坐标系间的转换模型(七参数模型) ①公式(布尔莎模型): ②分析: (1)将O-XYZ中的长度单位缩放l+m倍,使其与O'-X'Y'Z'的长度单位一致; (2)从X反向看向原点O,以O为旋转点,让O-XYZ绕X轴顺时针旋转Wx角,使经过旋转后的Y轴与O'-X'Y'Z’平面平行; (3)从Y反向看向原点O,以O为旋转点,让O-XYZ绕Y轴顺时针旋转Wy角,使经过旋转后的X轴与O'-X'Y'Z'平面平行。显然,此时Z轴也与Z'轴平行; (4)从Z反向看向原点O,以O点为旋转点,O-XYZ绕Z轴顺时针旋转Wz角,使经过旋转后的X轴与X’轴平行。显然,此时O-XYZ的三个坐标轴己与O'-X'Y'Z’中相应的坐标轴平行; 原坐标为O-XYZ,转换到新坐标O-X’Y’Z’.(两坐标系都为空间直角坐标系)其中(dX dY dZ)为坐标原点的平移参数,即将坐标O-XYZ的原点分别沿三个坐标轴平移-dX,-dY,-dZ,使原坐标轴与O-X’Y’Z’的点重合。m为尺度参数,(w1 w2 w3)分别为坐标轴的旋转参量(角度),构成的旋转矩阵分别为: 分别将R1 R2 R3代入上式,可得:

当旋转角度w1 w2 w3很小时(<=10),cos(w)=1,sin(w)=0;在误差允许范围内可以将模型简化为:(同样七参数模型) 四参数模型是在七参数模型的特例,没有考虑坐标轴的旋转量,只考虑坐标轴的平移。 总结: 类似布尔莎模型(以坐标原点为参考点),还有莫洛金斯基坐标模型(以目标点为变换中心)、武测转换模型和范士转换模型(以控制网参考点的站心地平坐标系的三个坐标轴为旋转轴),这些坐标转换模型很容易实现相关坐标在不同坐标系的转换,但是参考位置的偏移向量的相关参数,在实际运用中这些参量是很难测定的,并且受地球重力等物理因素的影响,两个坐标系统即使经过相似变换,仍可能存在较大的残差,所以这些模型适用于简单且规则模型中。 ④程序: clc clear all dX=input('please input value of dX=');

坐标转换之计算公式

创作编号: GB8878185555334563BT9125XW 创作者: 凤呜大王* 坐标转换之计算公式 一、参心大地坐标与参心空间直角坐标转换 1名词解释: A :参心空间直角坐标系: a) 以参心0为坐标原点; b) Z 轴与参考椭球的短轴(旋转轴)相重合; c) X 轴与起始子午面和赤道的交线重合; d) Y 轴在赤道面上与X 轴垂直,构成右手直角坐标系0-XYZ ; e) 地面点P 的点位用(X ,Y ,Z )表示; B :参心大地坐标系: a) 以参考椭球的中心为坐标原点,椭球的短轴与参考椭球旋转轴重合; b) 大地纬度B :以过地面点的椭球法线与椭球赤道面的夹角为大地纬度B ; c) 大地经度L :以过地面点的椭球子午面与起始子午面之间的夹角为大地经度 L ; d) 大地高H :地面点沿椭球法线至椭球面的距离为大地高H ; e) 地面点的点位用(B ,L ,H )表示。 2 参心大地坐标转换为参心空间直角坐标: ?? ? ?? +-=+=+=B H e N Z L B H N Y L B H N X sin *])1(*[sin *cos *)(cos *cos *)(2 公式中,N 为椭球面卯酉圈的曲率半径,e 为椭球的第一偏心率,a 、b 椭球的长短半径,f 椭球扁率,W 为第一辅助系数

a b a e 2 2-= 或 f f e 1 *2-= W a N B W e = -=22 sin *1( 3 参心空间直角坐标转换参心大地坐标 [ ] N B Y X H H e N Y X H N Z B X Y L -+= +-++==cos ))1(**)() (*arctan() arctan(2 22 2 2 二 高斯投影及高斯直角坐标系 1、高斯投影概述 高斯-克吕格投影的条件:1. 是正形投影;2. 中央子午线不变形 高斯投影的性质:1. 投影后角度不变;2. 长度比与点位有关,与方向无关; 3. 离中央子午线越远变形越大 为控制投影后的长度变形,采用分带投影的方法。常用3度带或6度带分带,城市或工程控制网坐标可采用不按3度带中央子午线的任意带。 2、高斯投影正算公式:

坐标转换方法

在工作过程中许多朋友会遇到坐标转换的问题,下面笔者就经常使用的一个坐标转换软件的使用方法做一个稍微详细的说明。 1、坐标系的确定 图1 软件使用界面 图1为软件使用界面,目前我们在工作过程中碰到的XY坐标系大多为全国80(也称西安1980)坐标系,也会有少量的设计会使用北京54坐标系。 图2和图3为同一点转换成全国80和北京54后差别,从两个转换结果来看,两个坐标系相差较小,可能比系统误差还小。(坐标转换过程中会产生系统误差,在不同位置误差也会有差异,所以转换出来的坐标只能是大概位置的参考。有兴趣的可以去研究下大地坐标系和投影坐标系,研究明白了就知道了为啥会有一定程度的误差,而且偏离中心线越远,误差越大)

图2(北京54) 图3(全国80) 2、中央子午线的确定 中央子午线一般为三度带和六度带的中央子午线坐标(至于什么是三度带和六度带,有兴趣的可以自行去研究投影坐标系的由来)。三度带的中央子午线经度为3的整数倍,六度带的中央子午线经度为6的整数倍,以图3中坐标为例,经度为112°30′至115°30′以内的坐标均为以114°为中

央子午线经度的三度带分区内;经度为111°至117°以内的坐标均为以114°为中央子午线经度的六度带分区内。 无法确定所在区域的中央子午线经度,可将区域的经度转换成小数后除3或者6,四舍五入后再乘3或者6即为中央子午线经度,如图中114°30′,转换后为114.5°,除3,四舍五入后再乘3即为114°。 3、经纬度转XY坐标 图4 图4为经纬度转XY坐标方法示意,在确定区域的中央子午线经度后,在BL处填上相应的纬度和经度,点击转换即可转出所需坐标。 4、完整的XY坐标转经纬度 目前国内部分设计单位在设计时,出于某些目的,会省略XY坐标中的某些位数,因此在此处分完整的XY坐标转经纬度和不完整的XY坐标转经纬度。

公路测量中平面坐标系之间的转换方法

公路测量中平面坐标系之间的转换方法 一、公路测量中产生不同平面坐标系的原因 近二十年来,我国公路基础设施建设实现了跨越式的发展,取得了举世瞩目的成就。据交通部最新发布的统计数据,1989年全社会交通投资仅156亿元,“八五”期间年均投资619亿元,“九五”期间年均已达2062亿元,2002年达3150亿元,“十一五”开局之年的2006年,公路投资更高达6231.05亿元。1989年我国高速公路通车里程仅为271公里,到1999年突破1万公里,2002年已达2.52万公里,跃居世界第二,2006年更高达4.53万公里,至2020年,还将重点建设3.5万公里高等级公路,组成国道主干线“五纵七横”十二条路线。 公路基础设施的建设并不是一蹴而就的,是随着我国国民经济综合实力的不断增强,分段分批建设的,每一段建设的公路项目之间由于下列原因,所采用的平面测量坐标系是不相同的。 1、根据《公路勘测规范》规定,选择路线平面控制测量坐标系时,应使测区内投影长度变形值不大于2.5cm/km。大型构造物平面控制测量坐标系,其投影长度变形值不应大于1cm/km。 当采用标准高斯正形投影的3°带或6°带分带,投影基准为1954年北京坐标系或1980西安坐标系时,6°带边缘最大变形值可达1.4m/km,3°带边缘最大变形值可达0.4m/km,测量面高度为2000m时,投影变形将达到0.3m/km,因此,测量长度投影变形对公路、桥梁和隧道施工产生较大的影响是客观存在的,如果投影变形值大到一定程度,该部分因素对施工影响的程度比测量误差的影响还要显著。鉴于此,根据公路设计、施工的需要,《公路勘测规范》规定,选择路线平面控制测量坐标系时,应使测区内投影长度变形值不大于2.5cm/km。大型构造物平面控制测量坐标系,其投影长度变形值不应大于1cm/km。 根据这一规定,对于一个具体的公路工程项目,就要根据工程所处的位置和高度,采用选择任一中央子午线和投影面的方法,建立变形值符合要求的独立坐标系。这是造成不同的公路项目具有不同坐标系统的主要原因。 2、由于原有国家控制网精度较差以及测量误差积累的原因,即就是采用统一的标准高斯正形投影的3°带或6°带分带,投影基准为1954年北京坐标系或1980西安坐标系,不同时期以及不同公路工程段落相互衔接时,同样存在相互不能很好兼容的问题。某种意义上看,相当于两个相互衔接的公路工程项目采用了不同的坐标系统。 3、由于《公路勘测规范》和《公路勘测细则》]对路线平面控制测量和大型构造物平面控制测量的投影长度变形值要求不一样,导致在同一个公路工程项目中可能采用不同的坐标系统,大型构造物平面控制测量可能采用与路线平面控制测量相对独立的坐标系统。 上述原因导致了在公路工程建设中,经常出现相互衔接的路段出现不同平面坐标系统的问题,因此在公路设计、施工过程中必然经常遇到平面坐标系之间相互转换的问题。 二、平面坐标系之间的转换方法 1、三参数转换法

大地坐标转换成施工坐标公式

大地坐标转换成施工坐标 公式 The final revision was on November 23, 2020

大地(高斯平面)坐标系工程坐标系转换 大地坐标系--->工程坐标系 ======================== 待转换点为P,大地坐标为:Xp、Yp 工程坐标系原点o:大地坐标:Xo、Yo 工程坐标:xo、yo 工程坐标系x轴之大地方位角:adX=Xp-XodY=Yp-YoP点转换后之工程坐标为xp、 yp: xp=dX*COS(a)+dY*SIN(a)+xoyp=-dX*SIN(a)+dY*COS(a)+yo 工程坐标系--->大地坐标系======================== 待转换点为P,工程坐标为:xp、yp 工程坐标系原点o:大地坐标:Xo、Yo 工程坐标:xo、yo 工程坐标系x轴之大地方位角:adx=xp-xody=yp-yoP点转换后之工程坐标为xp、yp:xp=Xo+dx*COS(a)-dy*SIN(a)yp=Yo+dx*SIN(a)+dy*COS(a) 坐标方位角计算程序 置镜点坐标:ZX?ZY 后视点坐标:HXHY 方位角:W 两点间距离:S Lb10← {A,B,C,D}← A〝ZX=〞:B〝ZY=〞:C〝HX=〞:D〝HY=〞:W=tg1((D-B)÷(C-A)):(D-B)>0=>(C-A)>0=>W=W:∟∟(D-B)>0=>(C-A)<0=>W=W+180:∟∟(D-B)<0=>(C-A)<0=>W=W+180:∟∟(D-B)<0=>(C-A)>0=>W=360+W∟∟W=W◢ S=√((D-B)2+(C-A)2) ◢ Goto?0← CASIO?fx-4500p坐标计算程序 根据坐标计算方位角 W=W+360△W:“ALF(1~2)=”L1A“X1=”:B“Y1=”:Pol(C“X2”-A,D“Y2”-B:“S=”▲W<0 直线段坐标计算 L1 X“X(0)”:Y“Y(0)”:S“S(0)”:A“ALF” L2 Lb1 2 L3 {L}:L“LX” L4 M“X(Z)”=X+(L-S)cosA▲ L5 N“Y(Z)”=Y+(L-S)sinA▲ L6 {B}:B“B(L)”:Q“Q” L7 O“X(L)”=M+Bcos(A+Q+180)▲ L8 P“Y(L)”=N+Bsin(A+Q+180)▲ L9 {C}:C“B(R)” L10 U“X(R)”=M+Ccos(A+Q)▲ L11 V“Y(R)”=N+Csin(A+Q)▲ L12 Goto 2 园曲线段坐标计算 L1 S“S(0)-Km”:X“X(0)”:Y“Y(0)”:A“ALF”:R“R”:K“K(L=1,R=2)”

不同坐标系之间的变换

不同坐标系之间的变换 SANY GROUP system office room 【SANYUA16H-

§10.6不同坐标系之间的变换 10.6.1欧勒角与旋转矩阵 对于二维直角坐标,如图所示,有: ?? ? ?????????-=??????1122cos sin sin cos y x y x θθθθ(10-8) 在三维空间直角坐标系中,具有相同原点的两坐标系间的变换一般需要在三个坐标平面上,通过三次旋转才能完成。如图所示,设旋转次序为: ①绕1OZ 旋转Z ε角,11,OY OX 旋 转至0 0,OY OX ; ②绕0 OY 旋转Y ε角 10 ,OZ OX 旋转至0 2 ,OZ OX ; ③绕2OX 旋转X ε角, 0,OZ OY 旋转至22,OZ OY 。 Z Y X εεε,,为三维空间直角坐标变换的三个旋转角,也称欧勒角,与 它相对应的旋转矩阵分别为: ???? ? ?????-=X X X X X R εεεεεcos sin 0sin cos 00 01 )(1 (10-10)

????? ?????-=Y Y Y Y Y R εεεεεcos 0sin 010sin 0cos )(2 (10-11) ???? ? ?????-=10 0cos sin 0sin cos )(3Z Z Z Z Z R εεεεε (10-12) 令 )()()(3210Z Y X R R R R εεε= (10- 13) 则有: ???? ? ?????=??????????=??????????1110111321222)()()(Z Y X R Z Y X R R R Z Y X Z Y X εεε (10-14) 代入: ???? ??? ??? +-+++--=Y X Z Y X Z X Z Y X Z X Y X Z Y X Z X Z Y X Z X Y Z Y Z Y R εεεεεεεεεεεεεεεεεεεεεεεεεεεεεcos cos sin sin cos cos sin cos sin cos sin sin cos sin sin sin sin cos cos cos sin sin sin cos sin sin cos cos cos 0一般Z Y X εεε,,为微小转角,可取: sin sin sin sin sin sin sin ,sin ,sin 1cos cos cos =========Z Y Z X Y X Z Z Y Y X X Z Y X εεεεεεεεεεεεεεε 于是可化简

手持GPS坐标系转换方法

手持GPS坐标系转换方法 杜大彬,张宽房,张开盾,李明贵 (陕西省地质调查院,西安710058) 摘要:导航型手持GPS目前在中小比例地质调查等领域得到广泛应用,由于坐 标系之I'.-1存在差异,在实际应用过程中,必须将手持机的WGS84坐标系转换为我 国应用的BJ54或西安8O坐标系。坐标转换的准确与否,直接影响到工程测量定位 的精度,传统的坐标转换计算所需要的起算资料不易收集,计算过程过于繁琐,非 专业人员难以掌握。本文根据收集的三角点BJ54坐标(或西安8O坐标),和现场 测定的过渡坐标,求出各参数在本工作地区的变化率,建立参数方程,反向求出适 合于当地的各项改正参数,方法简便易行,为手持GPS定位的坐标转换方法提出 一种新的思路。 关键词:坐标转换;WGS84坐标系;BJ54坐标系;过渡坐标;变化率 中图分类号:P228.4 文献标识码:B 随着技术的不断完善,导航型GPS的定位精度及功能较之以前有很大提高。它以其全 天候工作、携带方便、数据记录及回放快捷等功能,倍受使用者青睐。经过参数校正后的GPS,其平面精度完全可以取代地形图定点,因而在中小比例尺地质矿产调查数字填图、地球物理、地球化学勘探野外作业的点位测量中有着广泛的应用前景。 坐标系转换问题提出 由于GPS卫星星历是以WGS84坐标系(经纬度坐标)为依据而建立的,我国目前应 用的地形图一般采用1954年北京坐标(以下简称BJ54坐标)系或西安8O大地坐标系,不 同的坐标系之间存在平移和旋转关系,在不同地区,同一点位的WGS84坐标值与我国应用的坐标系的坐标值,有约6O~150 In的差值。在实际应用中,不同的坐标系必须进行坐标转换。由于手持机测量通常是短时间近似测量,采用单次测量或多次测量值取平均值,一般不作差分处理,从某种意义上讲,手持机的相对定位精度受其接收信号强度影响,坐标转换参数的准确与否,直接影响其绝对定位精度。 坐标转换的关键是求出不同坐标系之间的坐标转换参数,在实际工作过程中,坐标系统 收稿日期:2OO7一O5一O8 作者简介:杜大彬,男,37岁,工程测绘工程师,主要从事物化探及地质测量工作。 维普资讯https://www.360docs.net/doc/141745045.html, 第1期杜大彬等:手持GPS坐标系转换方法 的转换通常采用方法是在应用区域内GPS“B”级网内,收集三个以上网点的WGS84坐标 系B、L、H值及我国坐标系(BJ54或西安80)B、L、h、x(高程异常),按其参考球体的 投影方式,计算各参数的差值。由于各地GPS建网及重力研究工作程度不同,通常在某些地区,常用参数尤其是高程异常,一般不易收集,并且其计算过程较为繁琐。 为了寻求一种快捷、方便、精度满足工作要求的GPS坐标转换方法,作者经反复试验, 总结出坐标转换的一些规律。以台湾GARMIN仪器公司的ETREX VISTA (展望)机型使 用为例,这里给出一种只用一个三角点,推算其BJ54(西安80)坐标改正参数的方法。 2 参数变化在坐标系转换的规律 作者曾在陕南某地从事物探电法工作时,特意在一已知三角点作GPS参数变化试验, 、该三角点的BJ54坐标值为:X—XXX0433.217;Y—XXX67605.110,三角点位于汉江南岸,视野开阔,有利于GPS观测。在观测时设置当地中央经线、DA、DF等参数,DX、 DY、DZ均为0,在星况稳定且仪器显示估计误差为5 m 时,在已知点上读取若干组数据,取得其平均值为x—XXX0445;Y—XXX644。此值作为WGS84与BJ54坐标系之间转换的 过渡坐标。

大地坐标转换为施工坐标

****大桥关于大地坐标 转化为施工坐标的报告 ****监理公司: ****大桥为特大型桥梁,对测量精度要求高、施工难度大。在实际施工测量当中,例如承台等结构尺寸比较简单的结构,在模板的安装的时候需要不断的测量、调整,直到满足要求。在上述过程中需要用放样模式来确定设计位置,待模板调整后又要切换到测量模式检查坐标的偏差,如果没有满足要求,又需要切换到放样模式来确定设计位置。如此反复,给我们施工放样带来了不必要的时间浪费,根据特大跨径桥梁施工的特点方便大桥测量定位,我项目部拟大地坐标系转化为独立的施工坐标系。 转化方法及过程 从国家坐标系转换到施工坐标系,具体转换公式: ()()θθsin cos 11?-+?-=Y Y X X E ()()θθsin cos 11?-+?--=X X Y Y F (做了修改) 施工坐标系以桥轴线为E 轴,且以桩号增加方向为正向;以垂直于E 轴为F 轴,水平向右为正向。高程采用设计提供的85黄海高程,式中E 、F 为转换后的施工坐标系坐标;X 、Y 为国家坐标系下坐标, 1X 、1Y 为施工坐标原点在国家坐标系下坐标;θ表示桥轴正向在国家 坐标系下的方位角。 本桥梁起点桩号为K119+375.781,大地坐标为X: 5034.6566,Y: 5380.6574,方位角为289°2′58″=289.289.0494444°

具体转化过程如下: 以DQ06为例 DQ06大地坐标为X: 5157.7791,Y: 4351.265。 ()()θθsin cos 11?-+?--=X X Y Y F ()()0494444 .289sin 5034.65665157.77910494444.289cos 5380.65744351.265?--?-= 2052.1013=(做了修改) ()()θθsin cos 11?-+?-=Y Y X X E ()()0494444 .289sin 5380.65744351.2650494444.289cos 5034.65665157.7791?-+?-= 1972.219-= 见下图: (0,0) 由上可知,DQ06的施工坐标为(X:1013.205,Y:-219.197)。 用以上公式同样可以求出控制点施工坐标,列表如下:

相关文档
最新文档