利用三次谐波电压构成的100%发电机定子接地保护

利用三次谐波电压构成的100%发电机定子接地保护
利用三次谐波电压构成的100%发电机定子接地保护

利用三次谐波电压构成的100%发电机定子接地保护的工作原理?

由于发电机气隙磁通密度的非正旋分布和铁芯饱和的影响,其定子中的感应电动势除基波外,还含有三、五、七次等高次谐波。因为三次谐波具有零序分量的性质,在线电动势中它们虽然不存在,但在相电动势中亦然存在,设以E3表示之。

为便于分析,假定:

(1)把发电机每相绕组对地电容CG分成相等的两部分,每部CG/2分等效地分别集中在发电机的中性点N和机端S。

(2)将发电机端部引出线、升压变压器、厂用变压器以及电压互感器等设备的每相对地电容CS 也等效的集中放在机端。

根据理论分析,在上述加设条件下,可得出下列结论:

(1)当发电机中性点绝缘时,发电机在正常运行情况下,机端S和中性点N处三次谐波电压之比为

US3/UN3=CG/(CG+2CS)<1

(2)当发电机中性点经消弧线圈接地时,若基波电容电流被完全补偿,发电机在正常运行情况下,机端S和中性点N处三次谐波电压之比为

US3/UN3=(7CG-2CS)/9(CG+2CS)<1

(3)不论发电机中性点是否接有消弧线圈,当在距发电机中性点α(中性点到故障点的匝数占每相分支总匝数的百分比)处发生定子绕组金属性单相接地时,中性点N和机端S处的三次处的三次谐波电压恒为

UN3=αE3 US3=(1-α)E3

如图所示:

从上图中可以看出,UN3=f(α)、US3=f(α)皆为线性关系,它们相交于α=0.5处;当发电机中性点接地时,α=0,UN3=0,US3=E3;

当机端接地时,α=1,UN3=E3,US3=0;

当α<O.5时,恒有US3>UN3;

当α>O.5时,恒有 UN3>US3。

综上所述,用US3作为动作量,UN3作为制动量构成发电机定子绕组单相接地保护,且当US3>

UN3时保护动作,则在发电机正常运行时保护不会误动,而在发电机中性点附近发生接地时,保护具有很高的灵敏度。

用这种原理构成的发电机定子绕组单相接地保护,可以保护定子绕组中性点及其附近范围内的接地故障,对其余范围则可用反应基波零序电压的保护,从而构成了100%发电机定子绕组接地保护。

三次谐波与失真度

[编辑本段] 谐波失真简介 谐波失真(THD)指原有频率的各种倍频的有害干扰。放大1kHZ的频率信号时会产生2kHZ的2次谐波和3kHZ及许多更高次的谐波,理论上此数值越小,失真度越低。 由于放大器不够理想,输出的信号除了包含放大了的输入成分之外,还新添了一些原信号的2倍、3倍、4倍……甚至更高倍的频率成分(谐波),致使输出波形走样。这种因谐波引起的失真叫做谐波失真。 [编辑本段] 谐波失真解析 总谐波失真指音频信号源通过功率放大器时,由于非线性元件所引起的输出信号比输入信号多出的额外谐波成分。谐波失真是由于系统不是完全线性造成的,我们用新增加总谐波成份的均方根与原来信号有效值的百分比来表示。例如,一个放大器在输出10V的1000Hz时又加上Lv的2000Hz,这时就有1 0%的二次谐波失真。所有附加谐波电平之和称为总谐波失真。一般说来,10 00Hz频率处的总谐波失真最小,因此不少产品均以该频率的失真作为它的指标。但总谐波失真与频率有关,因此美国联邦贸易委员会于1974年规定,总谐波失真必须在20~20000Hz的全音频范围内测出,而且放大器的最大功率必须在负载为8欧扬声器、总谐波失真小于1%条件下测定。国际电工委员会规定的总谐波失真的最低要求为:前级放大器为0.5%,合并放大器小于等于0.7%,但实际上都可做到0.1%以下:FM立体声调谐器小于等于1.5%,实际上可做到0.5%以下;激光唱机更可做到0.01%以下。 由于测量失真度的现行方法是单一的正弦波,不能反映出放大器的全貌。实际的音乐信号是各种速率不同的复合波,其中包括速率转换、瞬态响应等动态指标。故高质量的放大器有时还注明互调失真、瞬态失真、瞬态互调失真等参数。 (l)互调失真(IMD):将互调失真仪输出的125Hz与lkHz的简谐信号合成波,按4:1的幅值输入到被测量的放大器中,从额定负载上测出互调失真系数。 (2)瞬态失真(TIM):将方波信号输入到放大器后,其输出波形包络的保持能力来表达。如放大器的转换速率不够,则方波信号即会产生变形,而产生瞬态失真。主要反映在快速的音乐突变信号中,如打击乐器、钢琴、木琴等,如瞬态失真大,则清脆的乐音将变得含混不清。

发电机保护现象、处理

发电机保护1对于发电机可能发生的故障和不正常工作状态,应根据发电机的容量有选择地装设以下保护。 (1)纵联差动保护:为定子绕组及其引出线的相间短路保护。 (2)横联差动保护:为定子绕组一相匝间短路保护。只有当一相定子绕组有两个及以上并联分支而构成两个或三个中性点引出端时,才装设该种保护。 (3)单相接地保护:为发电机定子绕组的单相接地保护。 (4)励磁回路接地保护:为励磁回路的接地故障保护。 (5)低励、失磁保护:为防止大型发电机低励(励磁电流低于静稳极限所对应的励磁电流)或失去励磁(励磁电流为零)后,从系统中吸收大量无功功率而对系统产生不利影响,100MW及以上容量的发电机都装设这种保护。 (6)过负荷保护:发电机长时间超过额定负荷运行时作用于信号的保护。中小型发电机只装设定子过负荷保护;大型发电机应分别装设定子过负荷和励磁绕组过负荷保护。 (7)定子绕组过电流保护:当发电机纵差保护范围外发生短路,而短路元件的保护或断路器拒绝动作,这种保护作为外部短路的后备,也兼作纵差保护的后备保护。 (8)定子绕组过电压保护:用于防止突然甩去全部负荷后引起定子绕组过电压,水轮发电机和大型汽轮发电机都装设过电压保护,中小型汽轮发电机通常不装设过电压保护。 (9)负序电流保护:电力系统发生不对称短路或者三相负荷不对称(如电气机车、电弧炉等单相负荷的比重太大)时,会使转子端部、护环内表面等电流密度很大的部位过热,造成转子的局部灼伤,因此应装设负序电流保护。 (10)失步保护:反应大型发电机与系统振荡过程的失步保护。 (11)逆功率保护:当汽轮机主汽门误关闭,或机炉保护动作关闭主汽门而发电机出口断路器未跳闸时,从电力系统吸收有功功率而造成汽轮机事故,故大型机组要装设用逆功率继电器构成的逆功率保护,用于保护汽轮机。 发电机保护简介 1、发电机失磁保护失磁保护作为发电机励磁电流异常下降或完全消失的失磁故障保护。由整定值自动随有功功率变化的励磁低电压Ufd(P)、系统低电压、静稳阻抗、TV断线等判据构成,分别动作于发信号和解列灭磁。励磁低电压Ufd(P)判据和静稳阻抗判据均与静稳边界有关,可检测发电机是否因失磁而失去静态稳定。静稳阻抗判据在失磁后静稳边界时动作。

10KVPT含3次谐波

10kV系统的电压谐波分析 南京供电公司计量中心曹根发 摘要:本文对10kV小电流接地系统的电压谐波,由于10kV电压互感器中 性点的消谐电阻,及接地变一侧的灭弧线圈等原因,而造成的错误测试结果,进行了分析,并针对这种现象提出改进的测试方法。 1.前言 由于生产发展的需要和国家电力总公司及江苏省公司的要求,我市公司对所辖范围内的电网,配网电能质量,(电压谐波占有率)进行了一次普测、普查。 由于10kV配网系统采用了小电流接地的运行方式,10KV配网的电压互感器接线方式如图1所示。在PT的一次侧中性点到地串接一只电阻,称消谐电阻。此电阻一般由氧化锌阀片构成,在正常运行方式下,无电流通过此电阻。一次侧中心点与地等电位。近似与Y/Y型接法。而主变接线方式则是Y/Δ型接法。所以在10kV母线上并一只接地变,采用Y/Y型接法。在变一侧中心点串一只电抗器,俗称灭弧线圈。在10kV系统形成中心点接地的运行方式。 国标规定电压失谐率是相电压的谐波百分比含量做为判别限值的标准。从而规范了测试信号是相电压,与之相应的测试设备的接线方式是“Y”型接法。若取线电压为取样信号。测试设备需按“△”接法,结果将造成取样信号中的3n次谐波被抵消,抵消量大小,与3n次谐波电压与同相的基波电压相位及相电压的不平衡度有关。 在普查进程中,我们发现有6座110kV变电站中的9条10kV母线严重超标。共同特征是3次电压畸变率是造成超标的最主要因素。其余各次谐波含量不大。且占比例极低。同时所有电压谐波超标的10kV母线,电压三相不平衡度也接近或超过国标值。(国标Σu <2%) 切除变电站10kV侧的补偿电容器组,仅五次谐波有所下降,三次谐波下降量不大总畸变率仍居高不下。在10kV电源侧110KV测得,3次电压谐波仅有1%左右。而在这9条母线供电范围内,并无大型工矿企业,和大型非线性生产用户。

利用三次谐波电压构成的100%发电机定子接地保护

利用三次谐波电压构成的100%发电机定子接地保护的工作原理? 由于发电机气隙磁通密度的非正旋分布和铁芯饱和的影响,其定子中的感应电动势除基波外,还含有三、五、七次等高次谐波。因为三次谐波具有零序分量的性质,在线电动势中它们虽然不存在,但在相电动势中亦然存在,设以E3表示之。 为便于分析,假定: (1)把发电机每相绕组对地电容CG分成相等的两部分,每部CG/2分等效地分别集中在发电机的中性点N和机端S。 (2)将发电机端部引出线、升压变压器、厂用变压器以及电压互感器等设备的每相对地电容CS 也等效的集中放在机端。 根据理论分析,在上述加设条件下,可得出下列结论: (1)当发电机中性点绝缘时,发电机在正常运行情况下,机端S和中性点N处三次谐波电压之比为 US3/UN3=CG/(CG+2CS)<1 (2)当发电机中性点经消弧线圈接地时,若基波电容电流被完全补偿,发电机在正常运行情况下,机端S和中性点N处三次谐波电压之比为 US3/UN3=(7CG-2CS)/9(CG+2CS)<1 (3)不论发电机中性点是否接有消弧线圈,当在距发电机中性点α(中性点到故障点的匝数占每相分支总匝数的百分比)处发生定子绕组金属性单相接地时,中性点N和机端S处的三次处的三次谐波电压恒为 UN3=αE3 US3=(1-α)E3 如图所示: 从上图中可以看出,UN3=f(α)、US3=f(α)皆为线性关系,它们相交于α=0.5处;当发电机中性点接地时,α=0,UN3=0,US3=E3; 当机端接地时,α=1,UN3=E3,US3=0; 当α<O.5时,恒有US3>UN3; 当α>O.5时,恒有 UN3>US3。 综上所述,用US3作为动作量,UN3作为制动量构成发电机定子绕组单相接地保护,且当US3>

发电机定子接地故障排查

龙源期刊网 https://www.360docs.net/doc/1418857761.html, 发电机定子接地故障排查 作者:贾鹏 来源:《科技与创新》2015年第09期 摘要:阐述了发电机出口离相式封闭母线受潮,使得发电机组定子接地跳闸的情况,并 分析了具体的处理过程和防范措施。 关键词:定子接地故障;绝缘子;封闭母线;驱潮工作 中图分类号:TM31 文献标识码:A DOI:10.15913/https://www.360docs.net/doc/1418857761.html,ki.kjycx.2015.09.144 1 事故概述 某电厂2×300 MW发电机组采用哈尔滨电机厂生产制造的QFSN-300-2型水氢氢发电机,机端额定电压为20 kV,中性点经消弧线圈接地。发电机保护采用的是南京国电南自凌伊电力自动化有限公司生产的DGT-801A保护装置,定子接地保护采用的是基于稳态基波零序电压和三次谐波原理构成的100%保护。 该厂#1机组在负荷为226 MW的情况下运行时,发电机突然跳闸解列,汽机跳闸,锅炉 灭火,监控画面首出“发电机保护动作”,就地检查保护屏,发出了“发电机定子3U0定子接地”报警,而双套保护均动作,发出信号为发电机“定子接地”保护动作。下面,结合此次发电机定子接地故障的实际情况,简单分析了大型发电机定子接地故障的排查。 2 事故处理过程 2.1 二次系统检查 跳机后,应先全面检查保护装置,2套发电机保护装置A柜、B柜的“定子接地”保护均动作,基波3UO发跳闸信号,3次谐波3 W发报警信号,查看保护定值零序电压为8 V,延时4 s动作。查看故障录波图,发电机机端电流A,B,C三相峰值分别为3.28 A、3.30 A、3.26 A,发电机机端电压A,B,C三相峰值分别为86.979 V、80.182 V和74.518 V,C相电压下降得较快。发电机“定子接地”保护动作时,发电机机端零序电压2套保护动作值分别为8.643 9 V、8.647 4 V和8.668 8 V、8.665 2 V,零序电压达到8.6 V保护动作。对发电机出口PT一次侧做加压试验,保护屏电压显示正确,PT二次回路绝缘测试合格,基本排除了保护误动的可能。但是,这些故障数据并不能确定是发电机内部故障还是外部故障。 2.2 一次系统检查 初步检查发电机非电气系统,未发现发电机有积水、漏氢、漏油等情况,且系统工作正常。定子冷却水电导率化验合格,在发电机本体、励磁变、出线离相封母、出口PT、中性点

发电机定子单相接地处理(仅给借鉴)

发电机定子绕组单相接地,是发电机最常见的一种电气故障。非故障相对地电压上升为线电压,可能导致绝缘薄弱处发生接地形成两点接地短路,扩大事故。定子绕组单相接地的危害性主要是流过故障点的电容电流产生电弧可能烧坏定子铁心,进一步造成匝间短路或相间短路(铁心灼伤后造成磁场分布不均,定子绕组局部温度高,后果必然是相间短路损坏发电机。),使发电机遭受更为严重的破坏。 6kV发电机为中性点不接地系统,当发生定子绕组单相接地时,故障点将出现零序电压。下面以A相定子绕组任一点发生金属性接地故障为例进行分析。如图1所示,假设A相在距中性点a处(a表示由中性点到故障点的匝数占该相总匝数的百分数)的d点发生接地故障。 则零序电压为(推导过程略):Ud0=-aEA 上式表明,故障点的零序电压与a成正比, 即接地点离中性点越远,零序电压越高。这样,可以利用接于机端的电压互感器开口三角形侧取得零序电压,构成单相接地保护,如图2所示。 零序电压型单相接地保护,是从机端电压互感器开口三角形侧取得零序电压,接入保护用的过电压继电器。理想情况下,发电机正常运行时,TV开口三角形侧无零序电压,继电器不动作。但实际上,发电机在正常运行情况下,其相电压中存在三次谐波电压;另外,在变压器高压侧发生接地短路时,由于变压器高低压绕组之间有电容存在,发电机机端也会产生零序电压。为了保证保护动作的选择性,保护的整定值应躲开上述三次谐波电压与零序电压。根据运行经验,电压值一般整定为15~20V之间。按此值整定后,由于靠近中性点附近发生接地故障时,零序电压低,保护可能不会起动,故此种保护的保护范围约为由机端到中性点绕组的85%左右,保护存在死区。 规程规定,对于出口电压为6 3kV的发电机,当接地电流等于或大于5A时,单相接地保护作用跳闸;小于5A时,一般只发信号不跳闸,这是基于保护发电机定子绕组而作出的规定。 保护动作时间国家有关规程对发电机定子绕组单相接地保护的动作时间未作明确规定,各电厂应根据本厂机组的实际运行情况给出延时时间。根据运行经验,延时时间应躲过变压器高压侧后备保护的动作时间,一般为3~5s为宜,否则容易误动。 发电机定子绕组单相接地保护,对于中小型发电机,可采用零序电压型保护,实际运行中,应根据系统接线与运行方式,决定保护接线、定值整定、跳闸方式等,以利于发电机定子单相接地保护准确而可靠地动作。 如果查明接地点在发电机内部(在窥视孔能见到放电火花或电弧),应立即减负荷停机,并向上级调度汇报。如果现场检查不能发现明显故障,但“定子接地”报警又不消失,应视为发电机内部接地,30min内必须停机检查处理。 一、零序电压式定子接地保护的整定计算 1、零序动作电压 零序电压式定子接地保护的动作电压,应按躲过发电机正常工况下及恶劣条件下发电机系统

9 变压器联结方式对三次谐波电压和电流的影响

9、变压器联结方式对三次谐波电压和电流的影响 本章的目的,首先是阐述对称三相系统三次谐波电压和电流的基本原理,其二是表明变压器三次谐波的起因,第三是归纳整理事实并列表予以阐述;最后是表明三次谐波的不利影响。 一般情况下,在任何新的理论公布之后,常常不同程度的难以被人们接受,本节将较为详细的论述,以便于读者接受。 本节的分析仅限于对三相双绕组变压器的分析。只要明白了三相双绕组变压器的基本原理,三相自耦变压器则很容易分析了。 9.1、对称三相系统的三次谐波原理 三相系统有两种基本的联结方式,其三次谐波电压和电流的表现方式明显不同,因此需要单独考虑。 1、星形 在任何星形联结的系统中,有一条基本规律,即任意瞬间流入和流出公共接点或中性点的电流之和均为零。 在对称三相系统,在基波频率下,三线呈星形联结的系统,每相电流和电压相位差是120°。在任意瞬间,最大负载相中的瞬时电流等于其他两相的电流之和,但方向与其相反,在基波频率下,整个周期均保持这种平衡。然而,三次谐波频率,每个相位的电流相位差是3x120°=360°,在同一瞬间,每相电流互相同相,但电流方向相同。因此,星形联结变压器的电流之和不等于零,在对称三相、三线制星形联结系统中,不存在三次谐波电流。 然而,如果以这种方式从中性点引出中性线,该引出线可使变压器每相形成独立的回路(即使中性线为各相公用),这样可使基波频率的三倍电流在每相绕组和从中性点引线构成的回路中循环。第四条线路起到疏导三次谐波电流维持系统电流平衡的作用,当然它不影响基波频率电流,因为基波频率电流始终是平衡的。 另一方面,对称三相、三线制星形联结系统的每个相位都可存在三次谐波电压,即电压为每条线路的对地电压(中性点不接地或中性点接),但是却不存在线电压。由于在每个相位的谐波电压互相同相,因此,仅仅存在一个三次谐波相量,而星形联结的中性点位于这一相量的末端。这样,中性点的电位并不为零,但是三次谐波电压却在零点附近波动。图139说明了这种状态,图中还表明所论及的线电压如何抵消三次谐波对地电压,使线路端子电压免受三次谐波电压的影响。 以这种方式从中性点引出中性线时,是为三次谐波电流提供了流通路径,它迫使电路周围的电流抵消线对中性点的三次谐波电压。因此,根据有三次谐波电流通过的电路特点可以看出,三次谐波电压可以被全部抑制或部分被抵消。 2、三角形 在任何三角形联结系统中,三角形内的总基波电压为零。即在基波频率下,相位差为360°/m(m为相位数)的电压相量和构成一个封闭的等边三角形。 在对称三相三角形联结系统中,每相出现的三次谐波电压相位差为:因此它们互相同相,并且在封闭的三角形电路中相当于三次谐波频率的单相电压。然而,实际上,在封闭的三角形系统,并不存在这种电压,所以三角形联结的线路中并没有出现三次谐波电流,三次谐波电压受到抑制。

关于三次谐波

三次谐波电流主要来自于单相整流电路。 图示的是一个典型的单相整流电路,电路中的电容是平滑电容,大部分整流电路中都包含这个电容,否则直流电压的纹波很大。这个电容是导致三次谐波电流的主要原因。 熟悉电路的人都知道,平滑电容的电压被充电到交流电的峰值后,就维持在交流电峰值附近。当交流电的电压低于电容上的电压时,电网上没有电流流入负载。这时,负载的电流由电容供给,随着输出电流,电容的电压开始降低,在某个时刻,交流电的电压会高于电容上的电压,这时,电网上才会有电流流入电容(给电容充电,使电容上的电压升高)和负载中。因此,电网仅在接近电压峰值的时刻向负载输入电流,电流的形状为脉冲状。 通过付立叶分析可知,这种脉冲状的波形包含丰富的三次谐波成分。 脉冲状的电流中包含了高次谐波成分,3次谐波电流最大。传统负荷与现代符合的重要区别是,传统负荷大部分是线性负荷,现代负荷大部分是非线性负荷:

1.通信设备、UPS电源 2.电脑为代表的信息设备、办公自动化设备 3.大型医疗设备 4.电视机为代表的家用电器,特别是变频空调、电磁炉等 5.节能灯、调光灯等照明设备 6.大尺寸的LED屏幕 电视机和计算机电流波形 调光灯和节能灯电流波形

电视机和计算机的电流为很窄的脉冲波,这是很典型的单相整流电路的电流波形,实际上,任何使用开关电源作为直流电源的设备都。会产生这种电流的波形。这是三次谐波电流的主要来源。 目前大量使用的大尺寸LED屏幕,采用很多开关电源并联供电,因此LED 屏幕产生的3次谐波电流很大。 节能灯也是目前常见的负载,他的电流也是脉冲状的。实际上,现代建筑物中,节能灯导致的三次谐波电流已经成为主要的危害。 三次谐波引起跳闸 常识告诉我们,电流的持续时间短了,要保持一定的有效值,就必须具有更高的峰值。

发电机定子单相接地保护

发电机定子绕组单相接地保护方案综述 发布: 2009-8-07 09:59 | 作者: slrd8888 | 查看: 882次 1 前言 定子绕组单相接地故障是发电机最常见的一种故障,而目往往是更为严重的绕组内部故障发生的先兆,因此定子接地保护意义重大。目前实际应用中比较成熟的定子接地保护有基波零序电压保护、三次谐波电压保护及二者组合构成的保护,国外的发电机中性点大都是经高阻接地,较多的采用的是外加电源式的保护。近十几年微机保护的飞速发展,为新保护原理的开发提供了强大的硬件平台和广阔的软件空间。其中基于自适应技术、故障分量原理和小波变换的保护比较突出,它们有力地推动了单相接地保护技术的发展。 扩大单元接线的发电机定子接地保护迫切需要具有选择性的保护方案,由于零序方向保护自身的缺陷、基于行波原理的保护在理论和技术上尚不够成熟,因此将小波变换应用到选择性定子接地保护有着重要的意义。 2 定子绕组单相接地保护方案 发电机定子绕组单相接地时有如下特点:内部接地时,流经接地点的电流为发电机所在电压网络对地电容电流的总和,此时故障点零序电压随故障点位置的改变而改变;外部接地故障时,零序电流仅包含发电机本身的对地电容电流。这些故障信息对接地保护非常重要,下面就介绍几种定子接地保护方法。 2.1 零序电流定子接地保护 由单相接地故障特点可知,对直接连在母线上的发电机发生内部单相接地时,外接元件对地电容较大,接地电流增大超过允许值,这就是零序电流接地保护的动作条件。这种保护原理简单,接线容易。但是当发电机中性点附近接地时,接地电流很小,保护将不能动作,因此零序电流保护存在一定的死区。 2.2 基波零序电压定子接地保护

发电机定子接地处理及原因分析(完稿)

中国华能集团公司 2017年技师考评申报材料 (论文) 申报单位:华能九台电厂 姓名:赵丽丽 工种:电气试验工 专业:电气检修

发电机定子接地处理及原因分析 华能吉林发电有限公司九台电厂赵丽丽 摘要:发电机是电力之源,作为火力发电厂主要设备,发电机的定子和转子绕组绝缘和接头由于电、热和机械振动影响会逐渐老化和接触不良,运行中易产生事故。发电机在日常生产中起着至关重要的作用,它的健康运行与否直接关系到发电厂能否经济运行,当发电机发生接地故障时,对事故发生原因进行分析和判断,并根据现场保护动作及设备情况及时分析原因,准确判断出是一次设备还是二次设备造成,并快速消除设备隐患,保证机组安全稳定运行。本文介绍了我厂发电机定子接地故障的查找过程、处理经过、原因分析及防范措施等。 关键词:发电机绝缘定子接地直流耐压故障分析 1、机组概述 我电厂2号发电机组为670MW超临界燃煤发电机组,汽轮发电机(QFSN-670—2型)由哈尔滨电机厂有限责任公司制造。机组型式为水-氢-氢冷670MW发电机组。本型发电机为三相交流隐极式同步发电机。发电机采用整体全密封、内部氢气循环、定子绕组水内冷、定子铁芯及端部结构件氢气表面冷却、转子绕组气隙取氢气内冷的冷却方式。定子电压20KV,定子电流21.49KA。该机组于2009年12月6日投运至今,曾发生过励侧主引线并联环上下接头处漏氢已处理好,本次故障发生前机组运行稳定,已持续运行一年多。 2、机组运行方式及动作情况 故障前,我厂1号、2号机组正常双机运行,1号发电机有功功率540MW,2号发电机有功功率465MW,频率50Hz。,2号发电机组于2014年08月22日19时06分跳闸,发变组保护正确动作,厂用电切换正确。主机联跳2号炉机组打闸停机,500KV开关场内5021、5022断路器跳闸,检查发变组保护动作报告为:2014-08-22 19:06:22:111,01000ms,定子零序电压,01005ms,定子零序电压高段。查看发变组保护起动后1至2个周波内发电机机端电压UA1=16.67V,UB1=82.24V,UC1=89.28V,发电机机端零序电压值72.18V,发电机中性点零序电压值40.12V。(详见附图1)

利用三次谐波电压构成的100%发电机定子接地保护的工作原理

由于发电机气隙磁通密度的非正旋分布和铁芯饱和的影响,其定子中的感应电动势除基波外,还含有三、五、七次等高次谐波。因为三次谐波具有零序分量的性质,在线电动势中它们虽然不存在,但在相电动势中亦然存在,设以E3表示之。 为便于分析,假定: (1)把发电机每相绕组对地电容CG分成相等的两部分,每部CG/2分等效地分别集中在发电机的中性点N和机端S。 (2)将发电机端部引出线、升压变压器、厂用变压器以及电压互感器等设备的每相对地电容CS也等效的集中放在机端。 根据理论分析,在上述加设条件下,可得出下列结论: (1)当发电机中性点绝缘时,发电机在正常运行情况下,机端S和中性点N处三次谐波电压之比为 US3/UN3=CG/(CG+2CS)<1 (2)当发电机中性点经消弧线圈接地时,若基波电容电流被完全补偿,发电机在正常运行情况下,机端S和中性点N处三次谐波电压之比为 US3/UN3=(7CG-2CS)/9(CG+2CS)<1 (3)不论发电机中性点是否接有消弧线圈,当在距发电机中性点α(中性点到故障点的匝数占每相分支总匝数的百分比)处发生定子绕组金属性单相接地时,中性点N和机端S处的三次处的三次谐波电压恒为 UN3=αE3US3=(1-α)E3 如图所示:

从上图中可以看出,UN3=f(α)、US3=f(α)皆为线性关系,它们相交于α=0.5处;当发电机中性点接地时,α=0,UN3=0,US3=E3;当机端接地时,α=1,UN3=E3,US 3=0;当α<O.5时,恒有US3>UN3;当α>O.5时,恒有UN3>US3。 综上所述,用US3作为动作量,UN3作为制动量构成发电机定子绕组单相接地保护,且当US3>UN3时保护动作,则在发电机正常运行时保护不会误动,而在发电机中性点附近发生接地时,保护具有很高的灵敏度。用这种原理构成的发电机定子绕组单相接地保护,可以保护定子绕组中性点及其附近范围内的接地故障,对其余范围则可用反应基波零序电压的保护,从而构成了100%发电机定子绕组接地保护。

发电机保护配置

发电机保护基本原理 发电机可能发生的故障 定子绕组相间短路 定子绕组匝间短路 定子绕组一相绝缘破坏引起的单相接地 励磁回路(转子绕组)接地 励磁回路低励(励磁电流低于静稳极限对应的励磁电流)、失磁 发电机主要的不正常工作状态 过负荷 定子绕组过电流 定子绕组过电压 三相电流不对称 过励磁 逆功率 失步、非全相、断路器出口闪络、误上电等 发电机的主要保护和作用 纵差保护 作用:发电机及其引出线的相间短路保护 规程:1MW以上发电机,应装设纵差保护。对于发电机变压器组:当发电机与变压器间有断路器时,发电机装设单独的纵差保护;当发电机与变压器间没有断路器时,100MW及以下发电机可只装设发电机变压器组公用纵差保护;100MW及以上发电机,除发电机变压器组公用纵差保护还应装设独立纵差保护,对于200MW及以上发电机变压器组亦可装设独立变压器纵差保护。 与发变组差动区别:发变组差动需要考虑厂用分支,要考虑涌流制动、各侧平衡调节。 纵向零序电压 作用:发电机匝间短路(也能反映相间短路)。 规程:50MW以上发电机,当定子绕组为星形接线,中性点只有三个引出端子时,根据用户和制造厂的要求,也可装设专用的匝间短路保护。 定子接地 作用:定子绕组单相接地是发电机最常见的故障,由于发电机中心点不接地或经高阻接地,定子绕组单相接地并不产生大的故障电流。 常用保护方式:基波零序电压(90%)、零序电流、三次谐波零序电压(100%) 定子接地 规程:与母线直接连接的发电机:当单相接地故障电流(不考虑消弧线圈的补偿作用)大于允许值时,应装设有选择性的接地保护装置。保护装置由装于机端的零序电流互感器和电流继电器构成,其动作电流躲过不平衡电流和外部单相接地时发电机稳态电容电流整定,接地保护带时限动作于信号,但当消弧线圈退出运行或由于其它原因,使残余电流大于接地电流允许值时应切换为动作于停机。 发电机变压器组:对100MW以下发电机应装设保护区不小于90%的定子接地保护,对100MW及以上的发电机应装设保护区为100%的定子接地保护。保护装置带时限动作于信号必要时也可动作于停机。 励磁回路接地保护 作用:励磁回路一点接地故障对发电机并未造成危害。但若继而发生两点接地将严重危害发电机安全。 实现方法:采用乒乓式原理。 规程:1MW及以下水轮发电机,对一点接地故障宜装设定期检测装置,1MW以上水轮发电机应装设一点接地保护装置。 100MW以及汽轮发电机,对一点接地故障可采用定期检测,装置对两点接地故障应装设两点接地保护装置。 转子水内冷汽轮发电机和100MW及以上的汽轮发电机,应装设励磁回路一点接地保护装置,并可装设两点接地保护装置,对旋转整流励磁的发电机宜装设一点接地故障定期检测装置。 一点接地保护带时限动作于信号两点接地保护应带时限动作于停机。 失磁保护 作用:为防大型发电机低励(励磁电流低于静稳极限所对应的励磁电流)或失去励磁(励磁电流为零)后,从系统

EMC电源谐波整改

LED电源总谐波失真(THD)分析及对策 1.总谐波失真 THD 与功率因数 PF 的关系 市面上很多的 LED 驱动电源,其输入电路采用简单的桥式整流器和电解电容器的整流滤波电路,见图 1. 图1 该电路只有在输入交流电压的峰值附近,整流二极管才出现导通,因此其导通角θ比较小,大约为 60°左右,致使输入电流波形为尖状脉冲,脉宽约为 3ms,是半个周期(10ms)的 1/3.输入电压及电流波形如图 2 所示。由此可见,造成 LED 电源输入电流畸变的根本原因是使用了直流滤波电解电容器的容性负载所致。 图2 对于 LED 驱动电源输入电流产生畸变的非正弦波,须用傅里叶(Fourier)级数描

述。根据傅里叶变换原理,瞬时输入电流可表为: 式中,n 是谐波次数,傅里叶系数 an 和 bn 分别表为: 每一个电流谐波,通常会有一个正弦或余弦周期,n 次谐波电流有效值 In 可用下式计算: 输入总电流有效值 上式根号中,I1 为基波电流有效值,其余的 I2,3,分别代表 2,3,… n 次谐波电流有效值。用基波电流百分比表示的电流总谐波含量叫总谐波失真(THD) ,总谐波含量反映了波形的畸变特性,因此也叫总谐波畸变率。定义为 根据功率因数 PF 的定义,功率因数 PF 是指交流输入的有功功率 P 与输入视在功率 S 之比值,即

其中,为输入电源电压; U cosΦ1 叫相移因数,它反映了基波电流 i1 与电压 u 的相位关系,Φ1 是基波相移角;输入基波电流有效值 I1 与输入总电流有效值Irms 的百分比即 K=I1 / Irms 叫输入电流失真系数。上式表明,在 LED 驱动电源等非线性的开关电源电路中,功率因数 PF 不仅与基波电流 i1 电压 u 之间的相位有关,而且还与输入电流失真系数 K 有关。将式(6)代入式(7) ,则功率因数 PF 与总谐波失真 THD 有如下关系: 上式说明,在相移因数 cosΦ1 不变时,降低总谐波失真 THD,可以提高功率因数 PF;反之也能说明, PF 越高则 THD 越小。例如,通过计算,当相移角Φ1=0 时,THD=30% @ PF=0.9578;THD=10% @ PF=0.9950. 2.谐波测量与分析 为了很好地分析如图 1 所示的 LED 驱动电源的谐波含量,介绍一种使用示波器测量输入电流的方法。先在电源输入回路串接一个 10-20W 或以上的大功率电阻如 R=10 OHM,通电后测量大功率电阻上两端的电压波形,由于纯功率电阻上两端的电压与电流始终是同相位,因此电阻上的脉冲电压波形亦即代表了输入电流的脉冲波形,但数值大小不同。由波形显示可知,其脉冲电流 i(t)与图 2 的电流波形是一致的,见图3. 图3 此电流脉冲波近似于余弦脉冲波,因此可用余弦脉冲函数表为:

发电机保护现象、处理

发电机保护1 对于发电机可能发生的故障和不正常工作状态,应根据发电机的容量有选择地装设以下保护。 (1)纵联差动保护:为定子绕组及其引出线的相间短路保护。 (2)横联差动保护:为定子绕组一相匝间短路保护。只有当一相定子绕组有两个及以上并联分支而构成两个或三个中性点引出端时,才装设该种保护。 (3)单相接地保护:为发电机定子绕组的单相接地保护。 (4)励磁回路接地保护:为励磁回路的接地故障保护。 (5)低励、失磁保护:为防止大型发电机低励(励磁电流低于静稳极限所对应的励磁电流)或失去励磁(励磁电流为零)后,从系统中吸收大量无功功率而对系统产生不利影响,100MW及以上容量的发电机都装设这种保护。 (6)过负荷保护:发电机长时间超过额定负荷运行时作用于信号的保护。中小型发电机只装设定子过负荷保护;大型发电机应分别装设定子过负荷和励磁绕组过负荷保护。 (7)定子绕组过电流保护:当发电机纵差保护范围外发生短路,而短路元件的保护或断路器拒绝动作,这种保护作为外部短路的后备,也兼作纵差保护的后备保护。 (8)定子绕组过电压保护:用于防止突然甩去全部负荷后引起定子绕组过电压,水轮发电机和大型汽轮发电机都装设过电压保护,中小型汽轮发电机通常不装设过电压保护。 (9)负序电流保护:电力系统发生不对称短路或者三相负荷不对称(如电气机车、电弧炉等单相负荷的比重太大)时,会使转子端部、护环内表面等电流密度很大的部位过热,造成转子的局部灼伤,因此应装设负序电流保护。 (10)失步保护:反应大型发电机与系统振荡过程的失步保护。 (11)逆功率保护:当汽轮机主汽门误关闭,或机炉保护动作关闭主汽门而发电机出口断路器未跳闸时,从电力系统吸收有功功率而造成汽轮机事故,故大型机组要装设用逆功率继电器构成的逆功率保护,用于保护汽轮机。 发电机保护简介 1、发电机失磁保护 失磁保护作为发电机励磁电流异常下降或完全消失的失磁故障保护。由整定值自动随有功功率变化的励磁低电压Ufd(P)、系统低电压、静稳阻抗、TV断线等判据构成,分别动作于发信号和解列灭磁。励磁低电压Ufd(P)判据和静稳阻抗判据均与静稳边界有关,可检测发电机是否因失磁而失去静态稳定。静稳阻抗判据在失磁后静稳边界时动作。TV断线判据在满足以下两个条件中任一条件:│Ua+Ub+Uc-3U0│≥Uset(电压门坎)或三相电压均低于8V,且0.1A

发电机定子接地3W

发电机3W定子接地保护 一、保护原理 保护反应发电机机端和中性点侧三次谐波电压大小和相位,反应发电机中性点向机内20%或100%左右的定子绕组单相接地故障,与发电机3U0定子接地保护联合构成100%的定子接地保护。见图一: 图一发电机定子接地3W保护逻辑 二、一般信息

K1,K2,K3整定方法及试验:开机带负荷整定 2.5投入保护 开启液晶屏的背光电源,在人机界面的主画面中观察此保护是否已投入。(注:该保护投入时其运行指示灯是亮的。)如果该保护的运行指示灯是暗的,在“投退保护”的子画面点击投入该保护。 2.6参数监视 点击进入发电机3W定子接地保护监视界面,可监视保护的整定值、动作量和制动量;待整定动作量和待整定制动量,以及3W保护的自动整定界面。 二、保护动作特性测试 发电机3W定子接地K值整定 附图 ①待发电机并网后,最好带20%~30%的负荷,拔掉3W保护的投退压板;

②中性点先不挂电阻,带20%~30%的负荷,单击“自动计算K1/K2一次”按钮,此时待整 定三次谐波动作量接近于0,点击“设定允许修改定值状态”按钮,改变“禁止修改定值状态”为“允许”,单击“将自动计算K1K2值写入保护装置”按钮,将K1、K2定值写入保护装置; ③带20%~30%的负荷时,在中性点挂上电阻(建议:水电机组1~3K,火电机组3~5K), 单击K3调整按钮(K3下方的四个按钮分别表示增大、减小、粗调、细调),将“待整定三次谐波动作量”调整略大于“待整定三次谐波制动量”,单击“将自动计算K1K2值写入保护装置”按钮,将K3定值写入保护装置; ④注意:此时千万不要按“自动计算K1/K2一次”按钮及调整K1 、K2的值; ⑤撤除电阻,调试完毕。 ⑥如果采用绝对值比较式原理,写入定值K1=1,K2=0;依照步骤三、四和五整定K3 三、动作时间定值测试 在发电机机端TV开口三角电压侧突然加1.5倍三次谐波定值电压,记录动作时间。 四、TV断线闭锁逻辑测试 在发电机机端TV开口三角电压端子侧加入三次谐波电压,并超过整定值,定子接地3W信号亮(一般只发信不跳闸);在发电机机端TV加三相不平衡电压,使发TV断线信号,定子接地3W信号可复归,TV断线信号灯亮。 保护逻辑是否正确(打“√”表示):正确□错误□ 保护出口方式是否正确(打“√”表示):正确□错误□ 保护信号方式是否正确(打“√”表示):正确□错误□

关于发电机定子接地保护问题的探讨

第2期(总第97期) 2001年4月 山西电力技术 SHANXI ELECTRIC POWER No 12(Ser 197)Apr 12001 关于发电机定子接地保护问题的探讨 郑一凡 (山西大同热电有限责任公司,山西大同 037039) 摘要 :根据QFS —60—2型双水内冷发电机特点,对其定子接地保护典型设计回路中存在的问题以及应采取的改进措施进行了分析和讨论。关键词:发电机;定子保护;探讨 中图分类号:TM 311 文献标识码:B 文章编号:100526742(2001)022******* 1 发电机定子绕组单相接地的特点 由于发电机中性点不直接接地,因此它具有一般不接地系统单相短路的共性。不同之处在于故障点的零序电压将随定子绕组接地点的位置而改变。 例如,当距发电机中性点a 处发生单相(如A 相)接地故障时(图1),则各相机端对地电压为: 图1 发电机内部单相接地时的电流分布 U A d =(1-a )E A , U Bd =E B -aE A ,U Cd =E C -aE A 。 所以,故障点的零序电压为: U d0(a )=1 3(U A d +U Bd +U Cd )=-aE A =aU Υ, 故障点处总接地电容电流为(分析略): I jd ∑(a )=j 3Ξ(C 0f +C 0∑)aU Υ。 可见,当发电机内部单相接地时,流过零序电流互感器LH 0一次侧的零序电流为(分析略): 3I 0=j 3ΞC 0∑aU Υ, 式中:a ——发电机中性点到故障点的绕组占全 部绕组的百分数; 收稿日期:2001201221 作者简介:郑一凡(19562),男,山西山阴人,1983年毕业于太原理 工大学热能动力专业,高级工程师,总经理。 C 0∑——除本发电机以外的发电机电压网络 每相对地总电容; C 0F ——发电机每相对地电容。 2 定子接地保护 由于发电机的外壳是接地的,因此定子绕组因绝缘破坏而引起单相接地就比较普遍。当定子绕组发生单相接地时,从以上分析可以看出,有电流流过故障点,其值决定于定子绕组的接地电容电流和与发电机有电联系的电网接地电容电流。当接地电流较大且产生电弧时,将使绕组绝缘和定子铁芯烧坏。因此规程规定:当接地电流等于或大于5A 时,定子绕组接地保护应动作跳闸。211 零序电压保护 发电机定子绕组任意点单相接地时,在定子回路各点均有零序电压aU Υ,因此可以根据aU Υ的出现与否来构成零序电压保护(图2)。 图2 零序电压保护原理 正常运行时,由于发电机相电压中含有三次谐波电压,当变压器高压侧发生单相接地故障时,由于变压器高、低压绕组之间存在耦合电容,都会出现零序电压。为了保证动作的选择性,保护装置的整定值必须躲过上述电压的影响,继电器的动作电压一般整定在15V ~30V 。按上述条件,保护装置

发电机定子单相接地保护

发电机定子单相接地保护 发电运行部 钟应贵 一、 发电机定子单相接地的危害 设发电机定子绕组为每相单分支且中性点不接地,发电机定子绕组接线示意图及机端电压向量图(图1) A B C (a )定子绕组接地示意图 B C (b )定子绕组接地电压向量图 设A 相定子绕组发生接地故障,接地点距中性点的电气距离为α(所谓电气距离,就是发电机单相定子绕组的长度,α为中性点到故障点的绕组占全部绕组的百分数),此时,在接地点会出现一个零序电压。 由图1(b )向量图可以看出,A 相接地时,使B 相及C 相对地电压,由相电压升高到另一值。当机端A 相接地时,B 、C 两相的对地电压由相电压升高到线电压。 另外,发电机定子绕组及机端连接元件(包括主变低压侧及厂用变高压侧)对地有分布电容,零序电压通过分布电容向故障点供给电流。此时,如果发电机中性点经某一电阻接地,

则发电机零序电压通过电阻也为接地点供给电流。 综合上述分析,发电机定子绕组单相接地的危害是: 1、非接地相对地电压升高,将危及对地绝缘,当原来绝缘较 弱时可能会造成非接地相相间发生接地故障,从而造成相 间接地短路,损害发电机。 2、流过接地点的电流具有电弧性质,会产生电弧,可能烧 伤定子铁芯。 分析表明:接地点距发电机中性点越远,对发电机的危害越 大;反之越小。 二、发电机定子绕组单相接地保护的构成 1、利用零序电压构成的发电机定子绕组单相接地保护 由上述分析:画出零序电压3U0随故障点位置α变化的曲线,见图2。 3U0(v) 50 Uop 图2 定子绕组单相接地时3U0与α的关系曲线 越靠近机端,故障点的零序电压越高。利用基波零序电压构成定子单相接地保护,图中Uop为零序电压定子接地保 护的动作电压。定子绕组单相接地保护用的零序电压的获取 见图3。

发电机定子接地保护

大容量发电机为什么要采用100%定子接地保护?并说明附加直流电压的100%定子绕组单相接地保护的原理? 答:利用零序电流和零序电压原理构成的接地保护,对定子绕组都不能达到100%的保护范围,在靠近中性点附近有死区,而实际上大容量的机组,往往由于机械损伤或水冷系统的漏水原因,在中性点附近也有发生接地故障的可能,如果对之不能及时发现,就有可能使故障扩展而造成严重损坏发电机事故。因此,在大容量的发电机上必须设100%保护区的定子接地保护。发电机正常运行时,电流继电器线圈中没有电流,保护不动作。当发电机定子绕组单相接地时,直流电压通过定子回路的接地点,加到电流继电器上,使之有电流通过而动作,并发出信号。 根据3U。的计算公式,当故障发生在机端时U。的值最大,整定值容易选择,当故障发生在中性点附近时,U。很小无法确定整定值。于是零序电压接地保护在中性点附近存在死区。所以利用发电机相电压中固有的少量三次谐波做三次谐波接地保护,三相绕组中的三次谐波电势通过绕组对地分布电容和发电机所连接设备对地导纳形成Us和Un,大小与机端和中性点对地等值导纳成反比,由于机端所连接设备对地电容使机端等值电容增大,故通常Us≤Un。接地故障时,接地点迫使Us和Un发生变化,故障点越靠近中性点,Un减小得越多,而Us增大得越多,因此利用三次谐波电压Us与Un的相对变化,可以有效的消除中性点附近的保护死区,与前述的3U。构成100%接地保护

发电机定子接地是指发电机定子绕组回路及与定子绕组回路直接相连的一次系统发生的单相接地短路。定子接按接地时间长短可分为瞬时接地、断续接地和永久接地;按接地范围可分为内部接地和外部接地;按接地性质可分为金属性接地、电弧接地和电阻接地;按接地原因可分为真接地和假接地。1)定子接地的原因可能引起发电机定子接地的原因有:◆ 小动物引起定子接地。如老鼠窜入设备,使发电机一次回路的带电导体经小动物接地,造成瞬时接地报警。 ◆ 定子绕组绝缘损坏。除了绝缘老化的原因,主要还有各种外部原因引起绝缘损坏。如定子铁芯叠装松动、绝缘表面落下导电性物体(如铁屑)、绕组线棒在槽中固定不紧等,在运行中产生振动使绝缘损坏;制造发电机时,线棒绝缘留有局部缺陷,运转时转子零件飞出,定子端部固定零件帮扎不紧,定子端部接头开焊等因素均能引起绝缘损坏。◆ 定子绕组引出线回路的绝缘瓷瓶受潮或脏物引起定子回路接地;◆ 水冷机组漏水及内冷却水导电率严重超标,引起接地报警;◆ 发变组单元接线中,主变压器低压绕组或高压厂用变压器高压绕组内部发生单相接地,都会引起定子接地报警信号;发电机带开口三角形绕组的电压互感器高压熔断器熔断时,也会发出定子接地报警信号,这种现象通常称为“假接地”。2)定子接地的现象及判断当发电机定子绕组及与定子绕组直接连接的一次回路发生单相接地或发电机电压互感器高压熔断器熔断时,均发出“`定子接地”光字牌报警信号,按下发电机定子绝缘测量按钮,“定子接地”电压表出现零序电压指示。发电机发出“定子接地”报警后,应判断接地相别和真、假接地。判断的方法是:当定子一相接地为金属性接地时,通过切换定子电压表可测得接地相对地电压为零,非接地相对地电压为线电压,各线电压不变且平衡。按下定子绝缘测量按钮,“定子接地”电压表指示为零序电压值,其值应为100V。如果一点接地发生在定子绕组内部或发电机出口且为电阻性,或接地发生在发变组主变压器低压绕组内,切换测量定子电压表,测得的接地相对地电压大于零而小于相电压,非接地相对地电压大于相电压而小于线电压,“定子接地”电压表指示小于100V。当发电机电压互感器高压侧一相或两相熔断器熔断时,其二次侧开口三角形绕组端电压也要升高。如U相熔断器熔断,发电机各相一次对地电压未发生变化,仍为相电压,但电压互感器二次侧电压测量值因U相熔断器熔断发生了变化,即UUV、UWU降低,而UVW仍为线电压(线电压不平衡),各相对地电压UV0、UW0接近相电压,UU0明显降低(相对地无电压升高),“定子接地”电压表指示为100/3V,发出“定子接地”光字牌信号(假接地)。综上所述,真、假接地的根本区别在于:真接地时,定子电压表指示接地相对地电压降低(或等于零),非接地相对地电压升高(大于相电压但不超过线电压),而线电压仍平衡;假接地时,相对地电压不会升高,线电压也不平衡。这是判断真、假接地的关键。3)发电机定子接地的处理对于中性点不接地或经中性点经消弧线圈接地的发电机(200MW及以下),当发生单相接地时,接地点六均不超过允许值(2~4A),故可继续运行,并查找和处理接地故障,若判明接地点在发电机内,应立即减负荷停机,若接地点在机外,运行时间不超过2h;对于中性点经高阻接地的发电机(200MW及以上),当发生单相接地时,姐弟保护一般作用于跳闸,动作跳闸待机停转后,通过摇测接地电阻,找出故障点。这是考虑接地点发生在发电机内部时,接地电弧电流易使铁芯损坏,对大机组来说,铁芯损坏不易修复。另外,接地电容电流能使铁芯熔化,融化的铁芯又会引起损坏区扩大,使有效铁芯“着火”,由单相短路发展为相间短路。由上所述,当接到“定子接地”报警后,若判明为真接地,应检查发电机本体及所连接的一次回路,如接

相关文档
最新文档