习题6-2 定积分在几何学上的应用(二)

习题6-2  定积分在几何学上的应用(二)
习题6-2  定积分在几何学上的应用(二)

定积分的简单应用求体积

定积分的简单应用求体 积 Document number:BGCG-0857-BTDO-0089-2022

定积分的简单应用(二) 复习: (1) 求曲边梯形面积的方法是什么 (2) 定积分的几何意义是什么 (3) 微积分基本定理是什么 引入: 我们前面学习了定积分的简单应用——求面积。求体积问题也是定积分的一个重要应用。下面我们介绍一些简单旋转几何体体积的求法。 1. 简单几何体的体积计算 问题:设由连续曲线()y f x =和直线x a =,x b =及x 轴围成的平面图形(如图甲) 绕x 轴旋转一周所得旋转体的体积为V ,如何求V 分析: 在区间[,]a b 内插入1n -个分点,使0121n n a x x x x x b -=<<<<<=,把曲线()y f x =(a x b ≤≤)分割成n 个垂直于x 轴的“小长条”,如图甲所示。设第i 个“小长条”的宽是1i i i x x x -?=-,1,2,,i n =。这个“小长条”绕x 轴旋转一周就得到一个厚度是i x ?的小圆片,如图乙所示。当i x ?很小时,第i 个小圆片近似于底面半径为()i i y f x =的小圆柱。因此,第i 个小圆台的体积i V 近似为2()i i i V f x x π=? 该几何体的体积V 等于所有小圆柱的体积和:

2221122[()()()]n n V f x x f x x f x x π≈?+?+ +? 这个问题就是积分问题,则有: 22()()b b a a V f x dx f x dx ππ==?? 归纳: 设旋转体是由连续曲线()y f x =和直线x a =,x b =及x 轴围成的曲边梯形绕x 轴旋转而成,则所得到的几何体的体积为2()b a V f x dx π=? 2. 利用定积分求旋转体的体积 (1) 找准被旋转的平面图形,它的边界曲线直接决定被积函数 (2) 分清端点 (3) 确定几何体的构造 (4) 利用定积分进行体积计算 3. 一个以y 轴为中心轴的旋转体的体积 若求绕y 轴旋转得到的旋转体的体积,则积分变量变为y ,其公式为 2()b a V g y dy π=? 类型一:求简单几何体的体积 例1:给定一个边长为a 的正方形,绕其一边旋转一周,得到一个几何体,求它的体积 思路: 由旋转体体积的求法知,先建立平面直角坐标系,写出正方形旋转轴对边的方程,确定积分上、下限,确定被积函数即可求出体积。 解:以正方形的一个顶点为原点,两边所在的直线为,x y 轴建立如图所示的平面直角 坐标系,如图:BC y a =。则该旋转体即为圆柱的体积为: 22300|a a V a dx a x a πππ=?==?

定积分在几何学上的应用(比赛课教案)

教学题目: 选修2-2 1.7.1定积分在几何中的应用 教学目标: 一、知识与技能: 1.让学生深刻理解定积分的几何意义以及微积分的基本定理; 2.通过本节课的探究,学生能够应用定积分解决不太规则的平面图形的面积,能够初步掌握应用定积分解决实际问题的基本思想和方法 3.初步掌握利用定积分求曲边梯形的几种常见题型及方法 二、过程与方法: 1. 探究过程中通过数形结合的思想,加深对知识的理解,同时体会到数学研究的基本思路和方法。 三、情感态度与价值观: 探究式的学习方法能够激发学生的求知欲,培养学生对学习的浓厚兴趣;探究式的学习过程能够培养学生严谨的科学思维习惯和方法,培养学生勇于探索和实践的精神; 教学重点: 应用定积分解决平面图形的面积,使学生在解决问题的过程中体会定积分的价值。 教学难点: 如何恰当选择积分变量和确定被积函数。 课型、课时: 新课,一课时 教学工具: 常用教具,多媒体,PPT课件 教学方法: 引导法,探究法,启示法 教学过程

积分?b a f (x )dx 在几何上表示 x =a 、x =b 与x 轴所围成的曲边梯形 的面积。 当f (x )≤0时由y =f (x )、x =a 、x =b 与 x 轴所围成的曲边梯形面积的负值 类型1.求由一条曲线y=f(x)和直线x=a,x=b(a

高等数学定积分应用习题答案

第六章 定积分的应用 习题 6-2 (A) 1. 求下列函数与 x 轴所围部分的面积: ] 3,0[,86)1(2+-=x x y ] 3,0[, 2)2(2x x y -= 2. 求下列各图中阴影部分的面积: 1. 图 6-1 3.求由下列各曲线围成的图形的面积: ; 1,)1(===-x e y e y x x 与 ; )0(ln ,ln ,0ln )2(>>====a b b y a y x x y 与 ;0,2)3(2==-=y x y x x y 与 ; )1(,2)4(22--==x y x y ;0,2)1(4)5(2=-=-=y x y x y 与 ; 2,)6(2x y x y x y ===与 ; )0(2sin ,sin 2)7(π≤≤==x x y x y ; 8,2 )8(222 (两部分都要计算)=+=y x x y

4.的图形的面积。 所围成与直线求由曲线e x e x y x y ====-,,0ln 1 5.的面积。处的切线所围成的图形和及其在点求抛物线)0,3()3,0(342--+-=x x y 6.的面积。处的法线所围成的图形及其在点求抛物线),2 (22p p px y = 7.形的面积。与两坐标轴所围成的图求曲线a y x =+ 8.所围图形的面积。求椭圆 12 2 2 2 =+ b y a x 9.。与横轴所围图形的面积(的一拱求由摆线)20)cos 1(),sin (π≤≤-=-=t t a y t t a x 10.轴之间的图形的面积。的切线的左方及下方与由该曲线过原点求位于曲线x e y x = 11.求由下列各方程表示的曲线围成的图形的面积: ;)0(sin 2)1(>=a a θρ ; )0()cos 2(2)2(>+=a a θρ ; 2cos 2)3(2(双纽线)θρ= 抛物体的体积。 轴旋转,计算所得旋转 所围成的图形绕及直线把抛物线x x x x ax y )0(4.12002>== 体的体积。 旋转轴旋转,计算所得两个轴及所围成的图形,分别绕由y x y x x y 0,2,.133=== 14.求下列已知曲线所围成的图形,按指定的轴旋转所产生的旋转体的体积: ;,0,,0)1(轴绕与x y a x x a x ch a y ==== ;,2sin )2(轴绕与x x y x y π = = ; ,)2 0(cos sin )3(轴绕与x x x y x y π ≤≤== ; 0,2,ln )4(轴绕与y y x x y === ;0,2)5(2轴绕与y y x y x x y ==-= ; , 16)5()6(22轴绕y y x =+- 。产生的旋转体的体积旋转 轴绕轴所围的图形处的切线和及其在求由抛物线x x x y )2,0()1(4.152-= 积。轴旋转所得旋转体的体所围图形绕求x y x y x 2223,4.16≥ ≤+ 求其体积。 , 图面都是等边三角形为底,垂直于长轴的截一立体以椭圆)26(125 100.1722 -≤+y x

§定积分的应用习题与答案

第六章 定积分的应用 (A ) 1、求由下列各曲线所围成的图形的面积 1)2 2 1x y =与822=+y x (两部分都要计算) 2)x y 1 =与直线x y =及2=x 3)x e y =,x e y -=与直线1=x 4)θρcos 2a = 5)t a x 3 cos =,t a y 3 sin = 1、求由摆线()t t a x sin -=,()t a y cos 1-=的一拱()π20≤≤t 与横轴所围成的图形的 面积 2、求对数螺线θ ρae =()πθπ≤≤-及射线πθ=所围成的图形的面积

3、求由曲线x y sin =和它在2 π= x 处的切线以及直线π=x 所围成的图形的面积和它绕 x 轴旋转而成的旋转体的体积 4、由3 x y =,2=x ,0=y 所围成的图形,分别绕x 轴及y 轴旋转,计算所得两旋转体 的体积 5、计算底面是半径为R 的圆,而垂直于底面上一条固定直径的所有截面都是等边三角形的 立体体积 6、计算曲线()x y -=33 3 上对应于31≤≤x 的一段弧的长度 7、计算星形线t a x 3 cos =,t a y 3 sin =的全长 8、由实验知道,弹簧在拉伸过程中,需要的力→ F (单位:N )与伸长量S (单位:cm )成

正比,即:kS =→ F (k 是比例常数),如果把弹簧内原长拉伸6cm , 计算所作的功 9、一物体按规律3 ct x =作直线运动,介质的阻力与速度的平方成正比,计算物体由0 =x 移到a x =时,克服介质阻力所作的功 10、 设一锥形储水池,深15m ,口径20m ,盛满水,将水吸尽,问要作多少功? 11、 有一等腰梯形闸门,它的两条底边各长10cm 和6cm ,高为20cm ,较长的底边与水 面相齐,计算闸门的一侧所受的水压力 12、 设有一长度为λ,线密度为u 的均匀的直棒,在与棒的一端垂直距离为a 单位处 有一质量为m 的质点M ,试求这细棒对质点M 的引力 (B) 1、设由抛物线()022 >=p px y 与直线p y x 2 3 = + 所围成的平面图形为D 1) 求D 的面积S ;2)将D 绕y 轴旋转一周所得旋转体的体积

§1.7定积分的简单应用

定积分的简单应用 一:教学目标 知识与技能目标 1、 进一步让学生深刻体会“分割、以直代曲、求和、逼近”求曲边梯形的思想方法; 2、 让学生深刻理解定积分的几何意义以及微积分的基本定理; 3、 初步掌握利用定积分求曲边梯形的几种常见题型及方法; 4、 体会定积分在物理中应用(变速直线运动的路程、变力沿直线做功)。 过程与方法 情感态度与价值观 二:教学重难点 重点 曲边梯形面积的求法 难点 定积分求体积以及在物理中应用 三:教学过程: 1、复习 1、求曲边梯形的思想方法是什么? 2、定积分的几何意义是什么? 3、微积分基本定理是什么? 2、定积分的应用 (一)利用定积分求平面图形的面积 例1.计算由两条抛物线2 y x =和2 y x =所围成的图形的面积. 【分析】两条抛物线所围成的图形的面积,可以由以两条曲线所对应的曲边梯形的面积的差得到。 解:2 01y x x x y x ?=??==? =??及,所以两曲线的交点为 (0,0)、(1,1),面积S=1 1 20 xdx x dx = -? ?,所以 ?1 2 0S =(x -x )dx 321 3 023 3x x ??=-????=13 【点评】在直角坐标系下平面图形的面积的四个步骤: 1.作图象;2.求交点;3.用定积分表示所求的面积;4.微积分基本定理求定积分。 2 x y =y x A B C D O

巩固练习 计算由曲线36y x x =-和2 y x =所围成的图形的面积. 例2.计算由直线4y x =-,曲线2y x = 以及x 轴所围图形的面积S. 分析:首先画出草图(图1.7 一2 ) ,并设法把所求图形的面积问题转化为求曲边梯 形的面积问题.与例 1 不同的是,还需把所求图形的面积分成两部分S 1和S 2.为了确定出被积函数和积分的上、下限,需要求出直线4y x =-与曲线2y x =的交点的横坐标, 直线4y x =-与 x 轴的交点. 解:作出直线4y x =-,曲线2y x =的草图,所求面积为图1. 7一2 阴影部分的 面积. 解方程组2, 4 y x y x ?=?? =-?? 得直线4y x =-与曲线2y x = 的交点的坐标为(8,4) . 直线4y x =-与x 轴的交点为(4,0). 因此,所求图形的面积为S=S 1+S 2 4 8 8 4 4 2[2(4)]xdx xdx x dx =+--? ? ? 334 82822044 2222140||(4)|23 x x x =+-=. 由上面的例题可以发现,在利用定积分求平面图形的面积时,一般要先画出它的草图, 再借助图形直观确定出被积函数以及积分的上、下限. 例3.求曲线], [sin 320π∈=x x y 与直线,,3 20π==x x x 轴所围成的图形面积。

定积分的几何应用例题与习题.doc

定积分的几何应用例题与习题 、曲线 的极坐标方程 1 cos ,(0 ), 求该曲线在 所对应的点处的切线 的 1 4 L 2 直角坐标方程,并求曲线 、切线 L 与x 轴所围图形的面积。 2、设直线 y ax 与抛物线 y x 2 所围成的面积为 S 1,它们与直线 x 1所围成的 面积为 S 2 ,并且 a 1 (1)试确定 a 的值,使 S 1 S 2达到最小,并求出最小值; (2)求该最小值所对应的平面图形绕 x 轴旋转一周所得旋转体的体积。 、设 平面上有正方形 D ( x, y) 0 x 1,0 y 1 及直线 L : x y t (t 0) 3 xoy x 若 S(t)表示正方形 D 位于直线 l 左下部分的面积 ,试求 S(t )dt (x 0) 4、 求由曲线 x sin ( 0) 与 轴所围图形绕 轴旋转所得旋转体的体积 y e x x x x V x 5、求由曲线 x a cos 3 t 与直线 y=x 及 y 轴所围成的图形 y asin 3 t ( a 0, 4 t 2 ) 绕 x 轴旋转所得立体的全表面积。 ( S=( 11 2 ) a 2 ) 5 40 6. 曲线 y e x e x 与直线 x 0, x t(t 0)及 y 0围成一曲边梯形,该曲边梯 2 形绕 x 轴旋转一周得一旋转体,其体积为 V (t), 侧面积为 S(t),在 x t 处的底面积为 F (t ) 求 S(t) 的值; 计算极限 S(t ) (1) (2) lim V (t) t F (t ) S(t ) 2, lim S(t ) 1 V (t ) F (t) t 7、求由摆线 x= a(t sin t) ,y= 的一拱 (0 t 2 ) 与横轴所围成的平面图形的面积, a(1 cost) 及该平面图形分别绕 x 轴、 y 轴旋转而成的旋转体的体积。 (1)A 3 a 2 , (2)V x 5 2 a 3 , (3)V y 6 3 a 3 8、设平面图形 由 x 2 y 2 2 x 及 y 所确定,求图形 绕直线 x 2 旋转一周所得 A x A 旋转体的体积。 2 V 2 2 3

定积分的简单应用(6)

§1.7 定积分的简单应用(一) 一:教学目标 1、 进一步让学生深刻体会“分割、以直代曲、求和、逼近”求曲边梯形的思想方法; 2、 让学生深刻理解定积分的几何意义以及微积分的基本定理; 3、 初步掌握利用定积分求曲边梯形的几种常见题型及方法; 4、 体会定积分在物理中应用(变速直线运动的路程、变力沿直线做功)。 二:教学重难点 重点 曲边梯形面积的求法 难点 定积分求体积以及在物理中应用 三:教学过程: 定积分的应用 (一)利用定积分求平面图形的面积 例1.计算由两条抛物线2 y x =和2 y x =所围成的图形的面积. 解:201y x x x y x ?=??==?=??及,所以两曲线的交点为(0,0)、(1,1),面积 S=1 1 20 xdx x dx = -? ?,所以 ?1 20S =(x -x )dx 32 1 3023 3x x ??=-????=13 例2.计算由直线4y x =-,曲线2y x =以及x 轴所围图形的面积S. 解:作出直线4y x =-,曲线2y x =的草图,所求面积为图阴影部分的面积. 解方程组2, 4 y x y x ?=?? =-?? 得直线4y x =-与曲线2y x = 的交点的坐标为(8,4) . 直线4y x =-与x 轴的交点为(4,0). 因此,所求图形的面积为S=S 1+S 2 4 8 8 4 4 2[2(4)]xdx xdx x dx =+--? ? ? 33482822044 2222140||(4)|3323 x x x =+-=. 例3.求曲线],[sin 3 20π ∈=x x y 与直线,,3 20π ==x x x 轴所围成的图形面积。 答案: 2 33 2320 = -=? ππo x xdx S |cos sin = 练习 1、求直线32+=x y 与抛物线2x y =所围成的图形面积。 答案:3 32 33323132 23 1= -+=--? |))x x x dx x x S (-+(= 2、求由抛物线342-+-=x x y 及其在点M (0,-3) 2 x y =y x = A B C D O

§ 6 定积分的应用习题与答案

第六章 定积分的应用 (A ) 1、求由下列各曲线所围成的图形的面积 1)2 2 1x y =与822=+y x (两部分都要计算) 2)x y 1 =与直线x y =及2=x 3)x e y =,x e y -=与直线1=x 4)θρcos 2a = 5)t a x 3 cos =,t a y 3sin = 1、求由摆线()t t a x sin -=,()t a y cos 1-=的一拱()π20≤≤t 与横轴所围成的图形的 面积

2、求对数螺线θρae =()πθπ≤≤-及射线πθ=所围成的图形的面积 3、求由曲线x y sin =和它在2 π = x 处的切线以及直线π=x 所围成的图形的面积和它绕 x 轴旋转而成的旋转体的体积 4、由3x y =,2=x ,0=y 所围成的图形,分别绕x 轴及y 轴旋转,计算所得两旋转体 的体积 5、计算底面是半径为R 的圆,而垂直于底面上一条固定直径的所有截面都是等边三角形 的立体体积 6、计算曲线()x y -=33 3 上对应于31≤≤x 的一段弧的长度 7、计算星形线t a x 3 cos =,t a y 3 sin =的全长

8、由实验知道,弹簧在拉伸过程中,需要的力→ F (单位:N )与伸长量S (单位:cm ) 成正比,即:kS =→ F (k 是比例常数),如果把弹簧内原长拉伸6cm , 计算所作的功 9、一物体按规律3 ct x =作直线运动,介质的阻力与速度的平方成正比,计算物体由0 =x 移到a x =时,克服介质阻力所作的功 10、 设一锥形储水池,深15m ,口径20m ,盛满水,将水吸尽,问要作多少功? 11、 有一等腰梯形闸门,它的两条底边各长10cm 和6cm ,高为20cm ,较长的底边与 水面相齐,计算闸门的一侧所受的水压力 12、 设有一长度为 ,线密度为u 的均匀的直棒,在与棒的一端垂直距离为a 单位处 有一质量为m 的质点M ,试求这细棒对质点M 的引力 (B) 1、设由抛物线()022 >=p px y 与直线p y x 2 3 = + 所围成的平面图形为D 1) 求D 的面积S ;2)将D 绕y 轴旋转一周所得旋转体的体积

经济数学(不定积分习题及答案)

第五章 不定积分 习题 5-1 1. 1. 验证在(-∞,+∞) 内, 221 sin , cos 2, cos 2x x x -- 都是同一函 数的原函数. 解 221 (sin )'(cos 2)'(cos )'sin 22x x x x =-=-=因为 221 sin ,cos 2,cos sin 22x x x x --所以都是的原函数. 2. 2. 验证在(-∞,+∞) 内, 2222(),() 2()x x x x x x e e e e e e ---+-+都是 的原函数. 解 2222[()]'[()]'=2()x x x x x x e e e e e e ---+=-+因为 2222 ()() 2().x x x x x x e e e e e e ---+=-+所以都是的原函数 3.已知一个函数的导数是2 11 x -,并且当x = 1时, 该函数值是32π ,求这个函数. 解 设所求函数为f (x ), 则由题意知 2 '()1f x x = - '2(arcsin )1x x = -因为 '2()()d arcsin 1f x f x x x C x ===+-?所以 又当x = 1时, 3 (1)2f π =,代入上式, 得C = π 故满足条件的函数为 ()f x =arcsin x π+. 3. 3. 设曲线通过点(1, 2) , 且其上任一点处的切线的斜率等于这点横坐 标的两倍,求此曲线的方程. 解 设曲线方程为 ()y f x =, 则由题意知''()2y f x x == 因为 2 ()'2x x = 所以 2'()d 2d y f x x x x x C = ==+? ? 又因为曲线过点(1, 2), 代入上式, 得C = 1 故所求曲线方程为 2 1y x =+. 5. 求函数y = cos x 的分别通过点( 0, 1) 与点(π, -1)的积分曲线的方程. 解 设y = cos x 积分曲线方程为 ()y f x = 因为 ' (sin )cos x x = 所以 ()cos d sin f x x x x C ==+? 又因为积分曲线分别通过点( 0, 1) 与点(π, -1),代入上式, 得C 1 = 1 与 C 2 = -1. 故满足条件的积分曲线分别为

定积分的简单应用

定积分的简单应用 海口实验中学陈晓玲 一、教材分析 “定积分的简单应用”是人教A版《普通高中课程标准实验教科书数学》选修2-2第一章1.7的内容。从题目中可以看出,这一节教学的要求就是让学生在充分认识导数与积分的概念,计算,几何意义的基础上,掌握用积分手段解决实际问题的基本思想和方法,在学习过程中了解导数与积分的工具性作用,从而进一步认识到数学知识的实用价值以及数学在实际应用中的强大生命力。在整个高中数学体系中,这部分内容也是学生在高等学校进一步学习数学的基础。 二、教学目标(以教材为背景,根据课标要求,设计了本节课的教学目标) 1、知识与技能目标: (1)应用定积分解决平面图形的面积、变速直线运动的路程问题; (2)学会将实际问题化归为定积分的问题。 2、过程与方法目标: 通过体验解决问题的过程,体现定积分的使用价值,加强观察能力和归纳能力,强化数形结合和化归思想的思维意识,达到将数学和其他学科进行转化融合的目的。 3、情感态度与价值观目标: 通过教学过程中的观察、思考、总结,养成自主学习的良好学习习惯,培养数学知识运用于生活的意识。 三、教学重点与难点 1、重点:应用定积分解决平面图形的面积和变速直线运动的路程问题,在解决问题的过程中体验定积分的价值。 2、难点:将实际问题化归为定积分的问题。 四、教学用具:多媒体 五、教学设计

教学环节教学设计师生 互动 设计意图 一、 创设情境 引出新课1、生活实例: 实例1:国家大剧院的主题构造 类似半球的构造,如何计算建造时中间玻璃段的使用面积? 边缘的玻璃形状属于曲边梯形,要计算使用面积可以通过计算 曲边梯形的面积实现。 实例2:一辆做变速直线运动的汽车,我们如何计算它行驶的 路程? 2、复习回顾: 如何计算曲边梯形的面积? 3、引入课题: 定积分的简单应用 学生:观 察。 教师:启 发,引导 学生:思 考,回 忆。 学生:疑 惑,思 考,感 受。 教师:启 发,引 导。 学生:复 习,回忆 老师:引 入课题 数学源于生活,又服 务于生活。 通过对国家大剧院的 观察,创设问题情境,体 验数学在现实生活中的 无处不在,激发学生的学 习热情,引导他们积极主 动的参与到学习中来。 启发学生把物理问题 与数学知识联系起来,训 练学生对学科间的思维 转换和综合思维能力。 学生感受定积分的工 具性作用与应用价值。 在生活实例的启发 下,引导学生把所学知识 与实际问题联系起来,回 忆如何计算曲边梯形面 积。 这是这节课的知识基 础。 引入本节课的课题。 哎呀,里程表坏了,你 能帮我算算我走了多 少路程吗? x y o y f(x) = a b A ?=b a dx x f A) (

定积分习题及答案

第五章 定积分 (A 层次) 1.?20 3 cos sin π xdx x ; 2.?-a dx x a x 2 2 2 ; 3.?+3 1 2 2 1x x dx ; 4.?--11 45x xdx ; 5.? +4 1 1 x dx ; 6.?--1 4 3 1 1x dx ; 7.? +2 1 ln 1e x x dx ; 8.? -++0 222 2x x dx ; 9.dx x ?+π02cos 1; 10.dx x x ?-π πsin 4 ; 11.dx x ?- 22 4 cos 4π π; 12.?-++5 5242 312sin dx x x x x ; 13.?3 4 2sin π πdx x x ; 14.?41ln dx x x ; 15.?10xarctgxdx ; 16.?20 2cos π xdx e x ; 17.()dx x x ? π 2 sin ; 18.()dx x e ?1 ln sin ; 19.?- -24 3 cos cos π πdx x x ; 20.?+4 sin 1sin πdx x x ; 21.dx x x x ?+π02cos 1sin ; 22.?-+21 11ln dx x x x ; 23.?∞+∞-++dx x x 42 11; 24.?20sin ln π xdx ; 25.( )() ?∞+++0 211dx x x dx α ()0≥α。 (B 层次) 1.求由0cos 0 =+??x y t tdt dt e 所决定的隐函数y 对x 的导数 dx dy 。 2.当x 为何值时,函数()?-=x t dt te x I 0 2 有极值? 3. () ?x x dt t dx d cos sin 2 cos π。 4.设()??? ??>≤+=1,2 11,12x x x x x f ,求()?20dx x f 。

知识讲解_定积分的简单应用(基础)

定积分的简单应用 【学习目标】 1.会用定积分求平面图形的面积。 2.会用定积分求变速直线运动的路程 3.会用定积分求变力作功问题。 【要点梳理】 要点一、应用定积分求曲边梯形的面积 1. 如图,由三条直线x a =,x b =()a b <,x 轴(即直线()0y g x ==)及一条曲线()y f x =(()0f x ≥)围成的曲边梯形的面积: ()[()()]b b a a S f x dx f x g x dx ==-?? 2.如图,由三条直线x a =,x b =()a b <,x 轴(即直线()0y g x ==)及一条曲线 ()y f x =(0)(≤x f )围成的曲边梯形的面积: ()()[()()]b b b a a a S f x dx f x dx g x f x dx = =-=-? ?? 3.由三条直线,(),x a x b a c b x ==<<轴及一条曲线()y f x =(不妨设在区间[,]a c 上 ()0f x ≤,在区间[,]c b 上()0f x ≥)围成的图形的面积: ()c a S f x dx = + ? ()b c f x dx ? =()c a f x dx -?+()b c f x dx ?. 4. 如图,由曲线11()y f x =22()y f x =12()()f x f x ≥及直线x a =,x b =()a b <围

成图形的面积: 1212[()()]()()b b b a a a S f x f x dx f x dx f x dx =-=-??? 要点诠释: 研究定积分在平面几何中的应用,其实质就是全面理解定积分的几何意义: ① 当平面图形的曲边在x 轴上方时,容易转化为定积分求其面积; ② 当平面图形的一部分在x 轴下方时,其在x 轴下的部分对应的定积分为负值,应取其相反数(或绝对值); 要点二、求由两条曲线围成的平面图形的面积的解题步骤 (1)画出图形; (2)确定图形范围,通过解方程组求出交点的横坐标,定出积分上、下限; (3)确定被积函数,特别要注意分清被积函数的上、下位置; (4)写出平面图形面积的定积分表达式; (5)运用微积分基本定理计算定积分,求出平面图形的面积。 要点三、定积分在物理中的应用 ① 速直线运动的路程 作变速直线运动的物体所经过的路程S ,等于其速度函数()(()0)v v t v t =≥在时间区间 [,]a b 上的定积分,即()b a S v t dt =?. ②变力作功 物体在变力()F x 的作用下做直线运动,并且物体沿着与()F x 相同的方向从x a =移动到x b =()a b <,那么变力()F x 所作的功W = ()b a F x dx ? . 要点诠释: 1. 利用定积分解决运动路程问题,分清运动过程中的变化情 况是解决问题的关键。应注意的是加速度的定积分是速度,速度的定积分是路程。 2. 求变力作功问题,要注意找准积分变量与积分区间。 【典型例题】 类型一、求平面图形的面积 【高清课堂:定积分的简单应用 385155 例1】 例1.计算由两条抛物线2 y x =和2 y x =所围成的图形的面积. 【思路点拨】两条抛物线所围成的图形的面积,可以由以两条曲线所对应的曲边梯形的面积的差得到。

定积分及微积分基本定理练习题及答案

定积分与微积分基本定理练习题及答案 1.(2011·宁夏银川一中月考)求曲线y =x2与y =x 所围成图形的面积,其中正确的是( ) A .S =??01(x2-x)dx B .S =??01(x -x2)dx C .S =??01(y2-y)dy D .S =??01(y -y)dy [答案] B [分析] 根据定积分的几何意义,确定积分上、下限和被积函数. [解读] 两函数图象的交点坐标是(0,0),(1,1),故积分上限是1,下限是0,由于在[0,1]上,x≥x2,故函数y =x2与y =x 所围成图形的面积S =??0 1(x -x2)dx. 2.(2010·山东日照模考)a =??02xdx ,b =??02exdx ,c =??02sinxdx ,则a 、b 、c 的大小关系 是( ) A .a2,c =??0 2sinxdx =-cosx|02 =1-cos2∈(1,2), ∴c

定积分的应用习题答案

1.填空题 ⑴函数的单调减少区间__ [解答] ,令,可得 当时,,单调递减. 所以的单调递减区间是或. ⑵曲线与其在处的切线所围成的部分被轴分成两部分,这两部分面积之比是__ [解答] 直线方程为,即, 两直线的交点可求得,即求解 方法一:已知其一根为,设方程为 通过比较可得,可解得另外一根为 方法二:分解方程有 即 所以 则 ⑶设在上连续,当_时,取最小值. [解答]

令,则 即 所以 ⑷绕旋转所成旋转体体积__ [解答] 令,则 当时, 当时, 所以 ⑸求心脏线和直线及围成的图形绕极轴旋转所成旋转体体积__ [解答] 将极坐标化为直角坐标形式为, 则 所以

2.计算题 ⑴在直线与抛物线的交点上引抛物线的法线,求由两法线 及连接两交点的弦所围成的三角形的面积. [解答] 由题意可计算两法线的方程为 ,即 ,即 两直线的交点为,则 ⑵过抛物线上的一点作切线,问为何值时所作的切线与抛物线 所围成的面积最小. [解答] 直线的斜率,则直线方程为,与抛物线相交,即,设方程的两根为且,则 ,从而

又,所以 ⑶求通过点的直线中使得为最小的直线方程. [解答] 设,则 则 由可得即可得 又则当时为最小,此时方程为 ⑷求函数的最大值与最小值. [解答] 令,可得 当时,,即在取最小值,此时 当时,,即在取最大值 此时. ⑸求曲线与所围阴影部分面积,并将此面积绕轴旋转所构成的旋转体体积,如图所示. [解答]

⑹已知圆,其中,求此圆绕轴旋转所构成的旋转体体积和表面积. [解答] 令,如图所示,则 ⑺设有一薄板其边缘为一抛物线,如图所示,铅直沉入水中, ①若顶点恰好在水平面上,试求薄板所受的静压力,将薄板下沉多深,压力加倍?[解答] 抛物线方程为,则在水下到这一小块所受的静压力为 所以整块薄板所受的静压力为 若下沉,此时受到的静压力为

1.7定积分的简单应用

§1.7定积分的简单应用(二课时) 一:教学目标 知识与技能:初步掌握利用定积分求曲边梯形的几种常见题型及方法;让学生深刻理解定积 分的几何意义以及微积分的基本定理。 过程与方法:进一步让学生深刻体会“分割、以直代曲、求和、逼近”求曲边梯形的思想方 法 情感态度与价值观:体会定积分在物理中应用(变速直线运动的路程、变力沿直线做功), 培养学生唯物主义思想。 二:教学重难点 重点 曲边梯形面积的求法 难点 定积分求体积以及在物理中应用 三:教学过程:(第一课时) 1、复习 1、求曲边梯形的思想方法是什么? 2、定积分的几何意义是什么? 3、微积分基本定理是什么? 2、定积分的应用 (一)利用定积分求平面图形的面积 例1.计算由两条抛物线2 y x =和2 y x =所围成的图形的面积. 【分析】两条抛物线所围成的图形的面积,可以由以两条曲线所对应的曲边梯形的面积的差得到。 解:2 01y x x y x ?=?==?=??及,所以两曲线的交点为(0,0)、(1,1),面积 S=1 20 0x dx = -? ? ,所以 ?1 20S =x )dx 32 1 3023 3x x ??=-????=13 【点评】在直角坐标系下平面图形的面积的四个步骤: 1.作图象;2.求交点;3.用定积分表示所求的面积;4.微积分基本定理求定积分。 巩固练习 计算由曲线3 6y x x =-和2 y x =所围成的图形的面积. 例2.计算由直线4y x =- ,曲线y = x 轴所围图形的面积S. 分析:首先画出草图(图1.7 一2 ) ,并设法把所求图形的面积问题转化为求曲边梯形 2 x y =y x A B C D O

《定积分在几何中的应用》教学教案

1.7.1定积分在几何中的应用 学习目标: 1.体会“分割、以直代曲、求和、逼近”求曲边梯形面积的思想方法; 2.初步掌握利用定积分求曲边梯形的几种常见题型及方法; 3.理解定积分的几何意义以及微积分的基本定理。 学习方法: 情境一:展示精美的赵州桥图片,讲述古代数学家的故事及伟大发现:拱形的面积 问题1:桥拱与水面之间的切面的面积如何求解呢? 问题2:需要用到哪些知识?(定积分) 问题3:求曲边梯形的思想方法是什么? 问题4:定积分的几何意义是什么? 问题5:微积分基本定理是什么? 情境二:利用定积分求平面图形的面积 例1. 计算由两条抛物线2 y x =和2 y x =所围成的图形的面积. 问题1:你能在平面直角坐标系内画出两条抛物线吗? 问题2:能在图中找出所要求的图形吗?(用阴影部分表示出来) (如右图) 问题3:这个图形以前见过吗?有没有直接的公式求它的面积吗? 问题4:既然没有直接的公式求其面积,那能不能转化成我们学过的曲边梯形的面积来间接求解呢?(可看做两个曲边梯形的面积之差,进而可以用定积分来解决) 解:解方程组?????==2 2x y x y 得到交点横坐标为0=x 或1=x x y O A B C D 2 x y =x y =2 1 1 -1 -1 4 x y O 8 4 2 2

∴ OABD OABC S S S 曲边梯形曲边梯形-=dx x ? = 1 dx x ?-1 2 1031 0233132x x -=313132=-= 情境三 学生探究: 例2.计算由直线4y x =-,曲线y =x 轴所围图形的面积S. 分析:模仿例1,先画出草图(左图),并设法把所求图形的面积问题转化为求曲边梯形的面积问题. 问题1:阴影部分图形是曲边梯形吗? 问题2:不是曲边梯形怎么办?能否构造出曲边梯形来呢? 问题3:如果转化成两部分的面积和,应该怎样作辅助线?(过点(4,0)作x 轴的垂线将阴影部分分为两部分) 问题4:两部分面积用定积分分别应该怎样表示?(注意积分上下限的确定) 问题5:做辅助线时应该注意什么?(尽量将曲边图形转化成我们熟悉的平面图形,如三角形、矩形、梯形和曲边梯形组合成的图形.) 规范的解题过程此处略去 思考:1.本题还有没有其它的解决方案?(可以将此阴影部分看做一个曲边梯形和一个三角形的面积之差) 2.上面的解法是将x 看作积分变量,能不能将y 看作积分变量?尝试解决之。 情境四:结合以上两个例题,总结利用定积分求平面图形面积的基本步骤。 解由曲线所围的平面图形面积的解题步骤: 1.画草图,求出曲线的交点坐标 2.将曲边形面积转化为曲边梯形面积 3.根据图形特点选择适当的积分变量 4.确定被积函数和积分区间 5.计算定积分,求出面积.

最新定积分的简单应用导学案

定积分的简单应用导 学案

定积分的简单应用导学案 学科:高二数学课型:新授课课时:2课时编写时间:2013-3-15 编写人:邓朝华审核人:陈平班级:姓名: 【导案】 【学习目标】 1.熟练掌握应用定积分求解平面图形的面积问题。 2.掌握应用定积分解决变速直线运动的路程和变力做功等问题。 3.培养学生的建模水平和解决实际问题的能力。 【学习重难点】 重点:应用定积分解决平面图形的面积、变速直线运动的路程和变力做功等问题使学生在解决问题的过程中体验定积分的价值。 难点:将实际问题化归为定积分的问题。 【学案】 1.计算平面图形面积的一般步骤 在利用定积分求平面图形的面积时,一般要先____________,再借助 ________________直观确定出____________________以及积分的____________。 2.变速直线运动的路程 作变速直线运动的物体所经过的路程s,等于其速度函数v=v(t)(v(t)≥0)在时间区间[a, b]上的定积分,即s=____________________________. 仅供学习与交流,如有侵权请联系网站删除谢谢10

3.变力作功 (1)恒力F的作功公式 一物体在恒力F(单位:N)的作用下做直线运动,如果物体沿着与F相同的方向移动了s(单位:m),则力F所作的功为____________。 (2)变力F(x)的作功公式 如果物体在变力F(x)的作用下做直线运动,并且物体沿着与F(x)相同的方向从x=a移动到x=b(a<b),那么变力F(x)所作的功为W=________________。 4.例题分析 【例1】计算由曲线y2=x, y=x2所围图形的面积S。 【例2】计算由直线y=x-4,曲线 以及x轴所围图形的面积S. 【例3】一辆汽车的速度-时间曲线如图所示。求汽车在这1min行驶的路程。 仅供学习与交流,如有侵权请联系网站删除谢谢10

定积分的几何应用例题与习题

定积分的几何应用例题与习题 11cos ,(0),2 4 L π π ρθθθΓ=+≤≤ = Γ、曲线的极坐标方程求该曲线在所对应的点处的切线的 直角坐标方程,并求曲线、切线L 与x 轴所围图形的面积。212122,1,1 (1)2y ax y x S x S a a S S x ===<+、设直线与抛物线所围成的面积为它们与直线所围成的 面积为并且试确定的值,使达到最小,并求出最小值; ()求该最小值所对应的平面图形绕轴旋转一周所得旋转体的体积。 {}0 3(,)01,01:(0) (),()(0) x xoy D x y x y L x y t t S t D l S t dt x =≤≤≤≤+=≥≥?、设平面上有正方形及直线若表示正方形位于直线左下部分的面积试求 4 、0)x y e x x -=≥求由曲线与轴所围图形绕x 轴旋转所得旋转体的体积V 3 3 2cos (0,)42sin 11)5x a t a t y a t a πππ?=?>≤≤?=??5、求由曲线与直线y=x 及y 轴所围成的图形绕x 轴旋转所得立体的全表面积。(S=( 6.0,(0)02 (),()() ()()(1)(2)lim () ()()() 2,lim 1 () ()x x t t e e y x x t t y x V t S t x t F t S t S t V t F t S t S t V t F t -→+∞→+∞+===>=====曲线与直线及围成一曲边梯形,该曲边梯 形绕轴旋转一周得一旋转体,其体积为侧面积为,在处的底面积为求的值;计算极限22333 (sin )(1cos )3, (2)5, (3)6x y a t t a t a V a V a ππππ--≤≤===7、求由摆线x=,y=的一拱(0t 2)与横轴所围成的平面图形的面积,及该平面图形分别绕x 轴、y 轴旋转而成的旋转体的体积。(1)A 222 222 23 A x y x y x A x V ππ+≤≥== -8、设平面图形由及所确定,求图形绕直线旋转一周所得旋转体的体积。

相关文档
最新文档