单片机系统硬件电路抗干扰常用方法

单片机系统硬件电路抗干扰常用方法
单片机系统硬件电路抗干扰常用方法

单片机系统硬件电路抗干扰常用方法实践

影响单片机系统可靠安全运行的主要因素主要来自系统内部和外部的各种电气干扰,并受系统结构设计、元器件选择、安装、制造工艺影响。这些都构成单片机系统的干扰因素,常会导致单片机系统运行失常,轻则影响产品质量和产量,重则会导致事故,造成重大经济损失。

形成干扰的基本要素有三个:

(1)干扰源。指产生干扰的元件、设备或信号,用数学语言描述如下:du/dt, di/dt 大的地方就是干扰源。如:雷电、继电器、可控硅、电机、高频时钟等都可能成为干扰源。

(2)传播路径。指干扰从干扰源传播到敏感器件的通路或媒介。典型的干扰传播路径是通过导线的传导和空间的辐射。

(3)敏感器件。指容易被干扰的对象。如:A/D、D/A变换器,单片机,数字IC,弱信号放大器等。

干扰的分类

1 干扰的分类

干扰的分类有好多种,通常可以按照噪声产生的原因、传导方式、波形特性等等进行不同的分类。按产生的原因分:

可分为放电噪声音、高频振荡噪声、浪涌噪声。

按传导方式分:可分为共模噪声和串模噪声。

按波形分:可分为持续正弦波、脉冲电压、脉冲序列等等。

2 干扰的耦合方式

干扰源产生的干扰信号是通过一定的耦合通道才对测控系统产生作用的。因此,我有必要看看干扰源和被干扰对象之间的传递方式。干扰的耦合方式,无非是通过导线、空间、公共线等等,细分下来,主要有以下几种:

(1)直接耦合:

这是最直接的方式,也是系统中存在最普遍的一种方式。比如干扰信号通过电源线侵入系统。对于这种形式,最有效的方法就是加入去耦电路。从而很好的抑制。

(2)公共阻抗耦合:

这也是常见的耦合方式,这种形式常常发生在两个电路电流有共同通路的情况。为了防止这种耦合,通常在电路设计上就要考虑。使干扰源和被干扰对象间没有公共阻抗。

(3)电容耦合:

又称电场耦合或静电耦合。是由于分布电容的存在而产生的耦合。

(4)电磁感应耦合:

又称磁场耦合。是由于分布电磁感应而产生的耦合。

(5)漏电耦合:

这种耦合是纯电阻性的,在绝缘不好时就会发生。常用硬件抗干扰技术

针对形成干扰的三要素,采取的抗干扰主要有以下手段。

1 抑制干扰源

抑制干扰源就是尽可能的减小干扰源的du/dt,di/dt。这是抗干扰设计中最优先考虑和最重要的原则,常常会起到事半功倍的效果。减小干扰源的du/dt主要是通过在干扰源两端并联电容来实现。减小干扰源的di/dt则是在干扰源回路串联电感或电阻以及增加续流二极管来实现。

抑制干扰源的常用措施如下:

(1)继电器线圈增加续流二极管,消除断开线圈时产生的反电动势干扰。仅加续流二极管会使继电器的断开时间滞后,增加稳压二极管后继电器在单位时间内可动作更多的次数。(2)在继电器接点两端并接火花抑制电路(一般是RC串联电路,电阻一般选几K 到几十K,电容选0.01uF),减小电火花影响。

(3)给电机加滤波电路,注意电容、电感引线要尽量短。

(4)电路板上每个IC要并接一个0.01μF~0.1μF高频电容,以减小IC对电源的影响。注意高频电容的布线,连线应靠近电源端并尽量粗短,否则,等于增大了电容的等效串联电阻,会影响滤波效果。

(5)布线时避免90度折线,减少高频噪声发射。

(6)可控硅两端并接RC抑制电路,减小可控硅产生的噪声(这个噪声严重时可能会把可控硅击穿的)。

2 切断干扰传播路径

按干扰的传播路径可分为传导干扰和辐射干扰两类。

所谓传导干扰是指通过导线传播到敏感器件的干扰。高频干扰噪声和有用信号的频带不同,可以通过在导线上增加滤波器的方法切断高频干扰噪声的传播,有时也可加隔离光耦来解决。电源噪声的危害最大,要特别注意处理。

所谓辐射干扰是指通过空间辐射传播到敏感器件的干扰。一般的解决方法是增加干扰源与敏感器件的距,用地线把它们隔离和在敏感器件上加蔽罩。

切断干扰传播路径的常用措施如下:

(1)充分考虑电源对单片机的影响。电源做得好,整个电路的抗干扰就解决了一大半。

许多单片机对电源噪声很敏感,要给单片机电源加滤波电路或稳压器,以减小电源噪声对单片机的干扰。比如,可以利用磁珠和电容组成π形滤波电路,当然条件要求不高时也可用100Ω电阻代替磁珠。

(2)如果单片机的I/O口用来控制电机等噪声器件,在I/O口与噪声源之间应加隔离(增加π形滤波电路)。

(3)注意晶振布线。晶振与单片机引脚尽量靠近,用地线把时钟区隔离起来,晶振外壳接地并固定。

(4)电路板合理分区,如强、弱信号,数字、模拟信号。尽可能把干扰源(如电机、继电器)与敏感元件(如单片机)远离。

(5)用地线把数字区与模拟区隔离。数字地与模拟地要分离,最后在一点接于电源地。A /D、D/A芯片布线也以此为原则。

(6)单片机和大功率器件的地线要单独接地,以减小相互干扰。大功率器件尽可能放在电路板边缘。

(7)在单片机I/O口、电源线、电路板连接线等关键地方使用抗干扰元件如磁珠、磁环、电源滤波器、屏蔽罩,可显著提高电路的抗干扰性能。 3 提高敏感器件的抗干扰性能提高敏感器件的抗干扰性能是指从敏感器件这边考虑尽量减少对干扰噪声的拾取,以及从不正常状态尽快恢复的方法。

提高敏感器件抗干扰性能的常用措施如下:

(1)布线时尽量减少回路环的面积,以降低感应噪声。

(2)布线时,电源线和地线要尽量粗。除减小压降外,更重要的是降低耦合噪声。

(3)对于单片机闲置的I/O口,不要悬空,要接地或接电源。其它IC的闲置端在

不改变系统逻辑的情况下接地或接电源。

(4)对单片机使用电源监控及看门狗电路,如:IMP809,IMP706,IMP813, X5043,X5045等,可大幅度提高整个电路的抗干扰性能。

(5)在速度能满足要求的前提下,尽量降低单片机的晶振和选用低速数字电路。

(6)IC器件尽量直接焊在电路板上,少用IC座。

4 其它常用抗干扰措施

交流端用电感电容滤波:去掉高频低频干扰脉冲。

变压器双隔离措施:变压器初级输入端串接电容,初、次级线圈间屏蔽层与初级间电容中心接点接大地,次级外屏蔽层接印制板地,这是硬件抗干扰的关键手段。次级加低通滤波器:吸收变压器产生的浪涌电压。

采用集成式直流稳压电源:因为有过流、过压、过热等保护。

I/O口采用光电、磁电、继电器隔离,同时去掉公共地。

通讯线用双绞线:排除平行互感。

防雷电用光纤隔离最为有效。

————完

A/D转换用隔离放大器或采用现场转换:减少误差。

外壳接大地:解决人身安全及防外界电磁场干扰。

加复位电压检测电路。防止复位不充份,CPU就工作,尤其有EEPROM的器件,复位不充份会改变EEPROM的内容。

印制板工艺抗干扰:

①电源线加粗,合理走线、接地,三总线分开以减少互感振荡。

②CPU、RAM、ROM等主芯片,VCC和GND之间接电解电容及瓷片电容,去掉高、低频干扰信号。

③独立系统结构,减少接插件与连线,提高可靠性,减少故障率。

④集成块与插座接触可靠,用双簧插座,最好集成块直接焊在印制板上,防止器件接触不良故障。

⑤有条件采用四层以上印制板,中间两层为电源及地

单片机常用模块电路大全

单片机常用模块电路大全 1. 双路232通信电路:3线连接方式,对应的是母头,工作电压5V,可以使用MAX202或MAX232。 2. 三极管串口通信:本电路是用三极管搭的,电路简单,成本低,但是问题,一般在低波特率下是非常好的。 3. 单路232通信电路:三线方式,与上面的三级管搭的完全等效。 4. USB转232电路:采用的是PL2303HX,价格便宜,稳定性还不错。 5. SP706S复位电路:带看门狗和手动复位,价格便宜(美信的贵很多),R4为调试用,调试完后焊接好R4。 卡模块电路(带锁):本电路与SD卡的封装有关,注意与封装对应。此电路可以通过端口控制SD卡的电源,比较完善,可以用于5V和。但是要注意,有些器件的使用,5V和是不一样的。 液晶模块(ST7920):本电路是常见的12864电路,价格便宜,带中文字库。可以通过PSB端口的电平来设置其工作在串口模式还是并行模式,带背光控制功能。

字符液晶模块(KS0066):最常用的字符液晶模块,只能显示数字和字符,可4位或8位控制,带背光功能。 9.全双工RS485电路(带保护功能):带有保护功能,全双工4线通信模式,适合远距离通信用。 半双工通信模块:可以通过选择端口选择数据的传输方向,带保护功率。此模块只能工作在5V. 11. ARM JTAG仿真接口电路:比较完善,可以应用在常规的ARM芯片下,具有有自动下载功能,可以用JLINK或ULINK. 电源模块:这个电路比较简单,如果用直插可以达到,如果用贴片的可以到达1A。 电源模块:可以到达800mA,价格非常便宜,也有相应的的芯片,可以直接替换。 常用开关电源电路 buck电源电路。 14.最常用的开关电源:

单片机自身的抗干扰措施

单片机自身的抗干扰措施 为提高单片机本身的可靠性。近年来单片机的制造商在单片机设计上 采取了一系列措施以期提高可靠性。这些技术主要体现在以下几方面。 1.降低外时钟频率 外时钟是高频的噪声源,除能引起对本应用系统的干扰之外,还可能产 生对外界的干扰,使电磁兼容检测不能达标。在对系统可靠性要求很高的应用 系统中,选用频率低的单片机是降低系统噪声的原则之一。以8051 单片机为例,最短指令周期1μs时,外时钟是12MHz。而同样速度的Motorola 单片机系统时钟只需4MHz,更适合用于工控系统。近年来,一些生产8051 兼容单片机的厂商也采用了一些新技术,在不牺牲运算速度的前提下将对外时钟的需求 降至原来的1/3。而Motorola 单片机在新推出的68HC08 系列以及其16/32 位单片机中普遍采用了内部琐相环技术,将外部时钟频率降至32KHz,而内部总线速度却提高到8MHz 乃至更高。 2.低噪声系列单片机 传统的集成电路设计中,在电源、地的引出上通常将其安排在对称的两边。如左下角是地,右下角是电源。这使得电源噪声穿过整个硅片。改进的技 术将电源、地安排在两个相邻的引脚上,这样一方面降低了穿过整个硅片的电流,一方面使外部去耦电容在PCB 设计上更容易安排,以降低系统噪声。另一个在集成电路设计上降低噪声的例子是驱动电路的设计。一些单片机提供若干 个大电流的输出引脚,从几十毫安到数百毫安。这些大功率的驱动电路集成到 单片机内部无疑增加了噪声源。而跳变沿的软化技术可消除这方面的影响,办 法是将一个大功率管做成若干个小管子的并联,再为每个管子输出端串上不同 等效阻值的电阻。以降低di/dt。

硬件抗干扰的一些方法

一、下面的一些系统要特别注意抗电磁干扰: 1、微控制器时钟频率特别高,总线周期特别快的系统。 2、系统含有大功率,大电流驱动电路,如产生火花的继电器,大电流开关等。 3、含微弱模拟信号电路以及高精度A/D变换电路的系统。 二、为增加系统的抗电磁干扰能力采取如下措施: 1、选用频率低的微控制器: 选用外时钟频率低的微控制器可以有效降低噪声和提高系统的抗干扰能力。同样频率的方波和正弦波,方波中的高频成份比正弦波多得多。虽然方波的高频成份的波的幅度,比基波小,但频率越高越容易发射出成为噪声源,微控制器产生的最有影响的高频噪声大约是时钟频率的3倍。 2、减小信号传输中的畸变 微控制器主要采用高速CMOS技术制造。信号输入端静态输入电流在1mA左右,输入电容10PF左右,输入阻抗相当高,高速CMOS电路的输出端都有相当的带载能力,即相当大的输出值,将一个门的输出端通过一段很长线引到输入阻抗相当高的输入端,反射问题就很严重,它会引起信号畸变,增加系统噪声。当Tpd>Tr时,就成了一个传输线问题,必须考虑信号反射,阻抗匹配等问题。 信号在印制板上的延迟时间与引线的特性阻抗有关,即与印制线路板材料的介电常数有关。可以粗略地认为,信号在印制板引线的传输速度,约为光速的1/3到1/2之间。微控制器构成的系统中常用逻辑电话元件的Tr(标准延迟时间)为3到×××s之间。 在印制线路板上,信号通过一个7W的电阻和一段25cm长的引线,线上延迟时间大致在4~20ns之间。也就是说,信号在印刷线路上的引线越短越好,最长不宜超过25cm。而且过孔数目也应尽量少,最好不多于2个。 当信号的上升时间快于信号延迟时间,就要按照快电子学处理。此时要考虑传输线的阻抗匹配,对于一块印刷线路板上的集成块之间的信号传输,要避免出现Td>Trd的情况,印刷线路板越大系统的速度就越不能太快。 用以下结论归纳印刷线路板设计的一个规则: 信号在印刷板上传输,其延迟时间不应大于所用器件的标称延迟时间。 3、减小信号线间的交叉干扰: A点一个上升时间为Tr的阶跃信号通过引线AB传向B端。信号在AB线上的延迟时间是

51单片机复位电路有关问题

想问一下单片机复位电路问题 复位过程我明白,RST接高电平复位,接低电平单片机正常工作 但电路连接不太理解什么意思, 想知道图中电解电容的作用,既然是按键高电平复位为什么要加电解电容呢不加可以吗?如果一定要加原因是什么? 另外想知道电容作用是隔直流通交流,是绝对的直流不通过还是什么充电过程无电流放电过程有电流,求指教 我认为绛红的蓝同学说的不太好。 电容确实可以起到按键去除抖动的作用,但是这里的电容还有一个更重要的作用就是上电复位,因为考虑到芯片刚刚上电时由于供电不稳定而做出错误的计算,所以增加一个上电复位以达到延时启动CPU的目的,使芯片能够正常工作。虽然现在很多芯片自带了上电延时功能,但是我们一般还是会增加额外的上电复位电路,提高可靠性。 上电复位是如此工作的,此时不用考虑按键和你图中1K电阻的作用。上电瞬间,电压VCC短时间内从0V上升到5V(比方说5V),这一瞬间相当于交流电,电容相当于导线,5V的电压全部加在10K电阻上,也就是说,这时RST的电平状态为高电平。但是从上电开始,电容自己就慢慢充电,其两端电压呈曲线上升,最终达到5V,也就是说其正端电位为5V,负端电位为0V,其负端也就正好是RST,此时RST为低电平,单片机开始正常工作。 添加按键是为了手动复位,一般那个1K电阻可以不加。当按键按下时,电容两端构成回路并放电,使RST端重新变为高电平,按键抬起时电容又充电使RST 变回低电平。 复位电路的作用 在上电或复位过程中,控制CPU的复位状态:这段时间内让CPU保持复位状态,而不是一上电或刚复位完毕就工作,防止CPU发出错误的指令、执行错误操作,也可以提高电磁兼容性能。 无论用户使用哪种类型的单片机,总要涉及到单片机复位电路的设计。而单片机复位电路设计的好坏,直接影响到整个系统工作的可靠性。许多用户在设计完单片机系统,并在实验室调试成功后,在现场却出现了“死机”、“程序走飞”等现象,这主要是单片机的复位电路设计不可靠引起的。 基本的复位方式 单片机在启动时都需要复位,以使CPU及系统各部件处于确定的初始状态,并从初态开始工作。89系列单片机的复位信号是从RST引脚输入到芯片内的施密特触发器中的。当系统处于正常工作状态时,且振荡器稳定后,如果RST引脚上有一个高电平并维持2个机器周期(24个振荡周期)以上,则CPU就可以响应并将系统复位。单片机系统的复位方式有:手动按钮复位和上电复位 1、手动按钮复位 手动按钮复位需要人为在复位输入端RST上加入高电平(图1)。一般采用的办法是在RST端和正电源Vcc之间接一个按钮。当人为按下按钮时,则Vcc的+5V电平就会直接加到RST端。手动按钮复位的电路如所示。由于人的动作再快也会使按钮保持接通达数十毫秒,所以,完全能够满足复位的时间要求。

哈尔滨理工大学--单片机课程设计-程序+电路

《单片机原理及接口技术》课程设计报告 设计题目 班级 姓名 学号 指导教师 单片机课程设计任务书

题目:基于单片机的温度数据采集系统设计 一.设计要求 1.被测量温度范围:0~500℃,温度分辨率为0.5℃。 2.被测温度点:4个,每2秒测量一次。 3.显示器要求:通道号1位,温度4位(精度到小数点后一位)。 显示方式为定点显示和轮流显示。 4.键盘要求: (1)定点显示设定;(2)轮流显示设定;(3)其他功能键。 二.设计内容 1.单片机及电源管理模块设计。 单片机可选用AT89S51及其兼容系列,电源管理模块要实现高精密稳压输出,为单片机及A/D转换器供电。 2.传感器及放大器设计。 传感器可以选用镍铬—镍硅热电偶(分度号K),放大器要实现热电偶输出的mV级信号到A/D输入V级信号放大。 3.多路转换开关及A/D转换器设计。 多路开关可以选用CD4052,A/D可选用MC14433等。 4.显示器设计。 可以选用LED显示或LCD显示。 5.键盘电路设计。 实现定点显示按键;轮流显示按键;其他功能键。 6.系统软件设计。 系统初始化模块,键盘扫描模块,显示模块,数据采集模块,标度变换模块等。三.设计报告要求 设计报告应按以下格式书写: (1)封面; (2)设计任务书; (3)目录; (4)正文; (5)参考文献。 其中正文应包含以下内容: (1)系统总体功能及技术指标描述; (2)各模块电路原理描述; (3)系统各部分电路图及总体电路图(用PROTEL绘制); (4)软件流程图及软件清单; (5)设计总结及体会。 四、参考资料 1、李全利,单片机原理及接口技术,高等教育出版社,2004 2、于永,51单片机常用模块与综合系统设计实例精讲,电子工业出版社,2007 引言

最新单片机硬件系统设计原则

单片机硬件系统设计 原则

●单片机硬件系统设计原则 ●一个单片机应用系统的硬件电路设计包含两部分内容:一是系统扩展,即单片机内部的功能单 元,如ROM、RAM、I/O、定时器/计数器、中断系统等不能满足应用系统的要求时,必须在片外进行扩展,选择适当的芯片,设计相应的电路。二是系统的配置,即按照系统功能要求配置外围设备,如键盘、显示器、打印机、A/D、D/A转换器等,要设计合适的接口电路。 ●系统的扩展和配置应遵循以下原则: ● 1、尽可能选择典型电路,并符合单片机常规用法。为硬件系统的标准化、模块化打下良好的基 础。 ● 2、系统扩展与外围设备的配置水平应充分满足应用系统的功能要求,并留有适当余地,以便进行 二次开发。 ● 3、硬件结构应结合应用软件方案一并考虑。硬件结构与软件方案会产生相互影响,考虑的原则 是:软件能实现的功能尽可能由软件实现,以简化硬件结构。但必须注意,由软件实现的硬件功能,一般响应时间比硬件实现长,且占用CPU时间。 ● 4、系统中的相关器件要尽可能做到性能匹配。如选用CMOS芯片单片机构成低功耗系统时,系统 中所有芯片都应尽可能选择低功耗产品。 ● 5、可靠性及抗干扰设计是硬件设计必不可少的一部分,它包括芯片、器件选择、去耦滤波、印刷 电路板布线、通道隔离等。 ● 6、单片机外围电路较多时,必须考虑其驱动能力。驱动能力不足时,系统工作不可靠,可通过增 设线驱动器增强驱动能力或减少芯片功耗来降低总线负载。 ● 7、尽量朝“单片”方向设计硬件系统。系统器件越多,器件之间相互干扰也越强,功耗也增大, 也不可避免地降低了系统的稳定性。随着单片机片内集成的功能越来越强,真正的片上系统SoC已经可以实现,如ST公司新近推出的μPSD32××系列产品在一块芯片上集成了80C32核、大容量FLASH 存储器、SRAM、A/D、I/O、两个串口、看门狗、上电复位电路等等。 ●单片机系统硬件抗干扰常用方法实践 ●影响单片机系统可靠安全运行的主要因素主要来自系统内部和外部的各种电气干扰,并受系统结 构设计、元器件选择、安装、制造工艺影响。这些都构成单片机系统的干扰因素,常会导致单片机系统运行失常,轻则影响产品质量和产量,重则会导致事故,造成重大经济损失。 ●形成干扰的基本要素有三个: ●(1)干扰源。指产生干扰的元件、设备或信号,用数学语言描述如下:du/dt, di/dt大的地 方就是干扰源。如:雷电、继电器、可控硅、电机、高频时钟等都可能成为干扰源。 ●(2)传播路径。指干扰从干扰源传播到敏感器件的通路或媒介。典型的干扰传播路径是通过导线 的传导和空间的辐射。 ●(3)敏感器件。指容易被干扰的对象。如:A/D、 D/A变换器,单片机,数字IC,弱信号放大器 等。 ● 1 干扰的分类 ● 1.1 干扰的分类 ●干扰的分类有好多种,通常可以按照噪声产生的原因、传导方式、波形特性等等进行不同的分 类。按产生的原因分: ●可分为放电噪声音、高频振荡噪声、浪涌噪声。 ●按传导方式分:可分为共模噪声和串模噪声。 ●按波形分:可分为持续正弦波、脉冲电压、脉冲序列等等。 ● 1.2 干扰的耦合方式

单片机软硬件抗干扰技术

单片机软硬件抗干扰技术 在工业控制、智能仪表中都普遍采用了单片机,单片机抗干扰措施提到重要议事日程上来。单片机抗干扰措施不解决,其它工作也是白费劲。要解决单片机干扰问题,必须先找出干扰源,然后采用单片机软硬件技术来解决。 干扰源:主要来自外部电源、内部电源,印制板排版走线互相干扰,周围电磁场干扰,外部干扰一般通过IO口输入等 按干扰的传播路径可分为传导干扰和辐射干扰两类。 所谓传导干扰是指通过导线传播到敏感器件的干扰。高频干扰噪声和有用信号的频带不同,可以通过在导线上增加滤波器的方法切断高频干扰噪声的传播,有时也可加隔离光耦来解决。电源噪声的危害最大,要特别注意处理。所谓辐射干扰是指通过空间辐射传播到敏感器件的干 扰。一般的解决方法是增加干扰源与敏感器件的距离,用地线把它们隔离和在敏感器件上加蔽罩。 影响单片机系统可靠安全运行的主要因素主要来自系统内部和外部的各种电气干扰,并受系统结构设计、元器件选择、安装、制造工艺影响。这些都构成单片机系统的干扰因素,常会导致单片机系统运行失常,轻则影响产品质量和产量,重则会导致事故,造成重大经济损失。 形成干扰的基本要素有三个: (1)干扰源。指产生干扰的元件、设备或信号,用数学语言描述如下:du/dt,di/dt大的地方就是干扰源。如:雷电、继电器、可控硅、电机、高频时钟等都可能成为干扰源。 (2)传播路径。指干扰从干扰源传播到敏感器件的通路或媒介。典型的干扰传播路径是通过导线的传导和空间的辐射。 (3)敏感器件。指容易被干扰的对象。如:A/D、D/A变换器,单片机,数字IC,弱信号放大器等。 1 干扰的分类 1.1 干扰的分类 干扰的分类有好多种,通常可以按照噪声产生的原因、传导方式、波形特性等等进行不同的分类。按产生的原因分: 可分为放电噪声音、高频振荡噪声、浪涌噪声。 按传导方式分:可分为共模噪声和串模噪声。 按波形分:可分为持续正弦波、脉冲电压、脉冲序列等等。 1.2 干扰的耦合方式 干扰源产生的干扰信号是通过一定的耦合通道才对测控系统产生作用的。因此,我们有必要看看干扰源和被干扰对象之间的传递方式。干扰的耦合方式,无非是通过导线、空间、公共线等等,细分下来,主要有以下几种: (1)直接耦合: 这是最直接的方式,也是系统中存在最普遍的一种方式。比如干扰信号通过电源线侵入系统。对于这种形式,最有效的方法就是加入去耦电路。 (2)公共阻抗耦合:

单片机系统硬件电路抗干扰常用方法

单片机系统硬件电路抗干扰常用方法实践 影响单片机系统可靠安全运行的主要因素主要来自系统内部和外部的各种电气干扰,并受系统结构设计、元器件选择、安装、制造工艺影响。这些都构成单片机系统的干扰因素,常会导致单片机系统运行失常,轻则影响产品质量和产量,重则会导致事故,造成重大经济损失。 形成干扰的基本要素有三个: (1)干扰源。指产生干扰的元件、设备或信号,用数学语言描述如下:du/dt, di/dt 大的地方就是干扰源。如:雷电、继电器、可控硅、电机、高频时钟等都可能成为干扰源。 (2)传播路径。指干扰从干扰源传播到敏感器件的通路或媒介。典型的干扰传播路径是通过导线的传导和空间的辐射。 (3)敏感器件。指容易被干扰的对象。如:A/D、D/A变换器,单片机,数字IC,弱信号放大器等。 干扰的分类 1 干扰的分类 干扰的分类有好多种,通常可以按照噪声产生的原因、传导方式、波形特性等等进行不同的分类。按产生的原因分: 可分为放电噪声音、高频振荡噪声、浪涌噪声。 按传导方式分:可分为共模噪声和串模噪声。 按波形分:可分为持续正弦波、脉冲电压、脉冲序列等等。 2 干扰的耦合方式 干扰源产生的干扰信号是通过一定的耦合通道才对测控系统产生作用的。因此,我有必要看看干扰源和被干扰对象之间的传递方式。干扰的耦合方式,无非是通过导线、空间、公共线等等,细分下来,主要有以下几种: (1)直接耦合: 这是最直接的方式,也是系统中存在最普遍的一种方式。比如干扰信号通过电源线侵入系统。对于这种形式,最有效的方法就是加入去耦电路。从而很好的抑制。 (2)公共阻抗耦合: 这也是常见的耦合方式,这种形式常常发生在两个电路电流有共同通路的情况。为了防止这种耦合,通常在电路设计上就要考虑。使干扰源和被干扰对象间没有公共阻抗。 (3)电容耦合: 又称电场耦合或静电耦合。是由于分布电容的存在而产生的耦合。 (4)电磁感应耦合: 又称磁场耦合。是由于分布电磁感应而产生的耦合。 (5)漏电耦合: 这种耦合是纯电阻性的,在绝缘不好时就会发生。常用硬件抗干扰技术 针对形成干扰的三要素,采取的抗干扰主要有以下手段。 1 抑制干扰源 抑制干扰源就是尽可能的减小干扰源的du/dt,di/dt。这是抗干扰设计中最优先考虑和最重要的原则,常常会起到事半功倍的效果。减小干扰源的du/dt主要是通过在干扰源两端并联电容来实现。减小干扰源的di/dt则是在干扰源回路串联电感或电阻以及增加续流二极管来实现。

单片机各种复位电路原理

单片机各种复位电路原理 复位电路的作用 在上电或复位过程中,控制CPU的复位状态:这段时间内让CPU保持复位状态,而不是一上电或刚复位完毕就工作,防止CPU发出错误的指令、执行错误操作,也可以提高电磁兼容性能。 无论用户使用哪种类型的单片机,总要涉及到单片机复位电路的设计。而单片机复位电路设计的好坏,直接影响到整个系统工作的可靠性。许多用户在设计完单片机系统,并在实验室调试成功后,在现场却出现了“死机”、“程序走飞”等现象,这主要是单片机的复位电路设计不可靠引起的。 基本的复位方式 单片机在启动时都需要复位,以使CPU及系统各部件处于确定的初始状态,并从初态开始工作。89系列单片机的复位信号是从RST引脚输入到芯片内的施密特触发器中的。当系统处于正常工作状态时,且振荡器稳定后,如果RST引脚上有一个高电平并维持2个机器周期(24个振荡周期)以上,则CPU就可以响应并将系统复位。单片机系统的复位方式有:手动按钮复位和上电复位 1、手动按钮复位 手动按钮复位需要人为在复位输入端RST上加入高电平(图1)。一般采用的办法是在RST 端和正电源Vcc之间接一个按钮。当人为按下按钮时,则Vcc的+5V电平就会直接加到RST端。手动按钮复位的电路如所示。由于人的动作再快也会使按钮保持接通达数十毫秒,所以,完全能够满足复位的时间要求。

图1 图2 2、上电复位 AT89C51的上电复位电路如图2所示,只要在RST复位输入引脚上接一电容至Vcc端,下接一个电阻到地即可。对于CMOS型单片机,由于在RST端内部有一个下拉电阻,故可将外部电阻去掉,而将外接电容减至1μF。上电复位的工作过程是在加电时,复位电路通过电容加给RST端一个短暂的高电平信号,此高电平信号随着Vcc对电容的充电过程而逐渐回落,即RST端的高电平持续时间取决于电容的充电时间。为了保证系统能够可靠地复位,RST端的高电平信号必须维持足够长的时间。上电时,Vcc的上升时间约为10ms,而振荡器的起振时间取决于振荡频率,如晶振频率为10MHz,起振时间为1ms;晶振频率为1MHz,起振时间则为10ms。在图2的复位电路中,当Vcc掉电时,必然会使RST端电压迅速下降到0V以下,但是,由于内部电路的限制作用,这个负电压将不会对器件产生损害。另外,在复位期间,端口引脚处于随机状态,复位后,系统将端口置为全“l”态。如果系统在上电时得不到有效的复位,则程序计数器PC将得不到一个合适的初值,因此,CPU 可能会从一个未被定义的位置开始执行程序。 2、积分型上电复位 常用的上电或开关复位电路如图3所示。上电后,由于电容C3的充电和反相门的作用,使RST持续一段时间的高电平。当单片机已在运行当中时,按下复位键K后松开,也能使RST 为一段时间的高电平,从而实现上电或开关复位的操作。 根据实际操作的经验,下面给出这种复位电路的电容、电阻参考值。 图3中:C:=1uF,Rl=lk,R2=10k

从六方面提高单片机系统的抗干扰能力

从六方面提高单片机系统的抗干扰能力 干扰问题,一直是电力设备仪器的一个难点。对于单片机也不例外。单片机又称单片微控制器,它不是完成某一个逻辑功能的芯片,而是把一个计算机系统集成到一个芯片上。单片机测控系统必须长期稳定、可靠运行,否则将导致控制误差加大,严重时会使系统失灵,甚至造成巨大损失。因此单片机的抗干扰问题已经成为不容忽视的问题。单片机的干扰问题,一般可以从六个方面来解决。 模拟信号采样干扰 单片机应用系统中通常要对一个或多个模拟信号进行采样,并将其通过A/D转换成数字信号进行处理。为了提高测量精度和稳定性,不仅要保证传感器本身的转换精度、传感器供电电源的稳定、测量放大器的稳定、A/D转换基准电压的稳定,而且要防止外部电磁感应噪声的影响,如果处理不当,微弱的有用信号可能完全被无用的噪音信号淹没。在实际工作中,可以采用具有差动输入的测量放大器,采用屏蔽双胶线传输测量信号,或将电压信号改变为电流信号,以及采用阻容滤波等技术。 数字信号传输通道的干扰 数字输出信号可作为系统被控设备的驱动信号(如继电器等),数字输入信号可作为设备的响应回答和指令信号(如行程开关、启动按钮等)。数字信号接口部分是外界干扰进入单片机系统的主要通道之一。在工程设计中,对数字信号的输入/输出过程采取的抗干扰措施有:传输线的屏蔽技术,如采用屏蔽线、双胶线等;采用信号隔离措施;合理接地,由于数字信号在电平转换过程中形成公共阻抗干扰,选择合适的接地点可以有效抑制地线噪声。 硬件监控电路的干扰 在单片机系统中,为了保证系统可靠、稳定地运行,增强抗干扰能力,需要配置硬件监控电路,硬件监控电路从功能上包括以下几个方面: (1)上电复位:保证系统加电时能正确地启动; (2)掉电复位:当电源失效或电压降到某一电压值以下时,产生复位信号对系统进行复位; (3)电源监测:供电电压出现异常时,给出报警指示信号或中断请求信号; (4)硬件看门狗:当处理器遇到干扰或程序运行混乱产生“死锁”时,对系统进行复位。 解决来自电源端的干扰 单片机系统中的各个单元都需要使用直流电源,而直流电源一般是市电电网的交流电经过变压、整流、滤波、稳压后产生的,因此电网上的各种干扰便会引入系统。除此之外,由于交流电源共用,各电子设备之间通过电源也会产生相互干扰,因此抑制电源干扰尤其重要。电源干扰主要有以下几类: 1.电源线中的高频干扰(传导骚扰) 供电电力线相当于一个接受天线,能把雷电、电弧、广播电台等辐射的高频干扰信号通过电源变压器初级耦合到次级,形成对单片机系统的干扰;解决这种干扰,一般通过接口防护;在接口增加滤波器、或者使用隔离电源模块解决。 2.感性负载产生的瞬变噪音(EFT) 切断大容量感性负载时,能产生很大的电流和电压变化率,从而形成瞬变噪音干扰,成为电磁干扰的主要形式;解决这种干扰,一般通过屏蔽线与双胶线,或在电源接口、信号接口进行滤波处理。这二种方法都需要在系统接地良好的情况下进行,滤波器、接口滤波电路都必须良好的接地,这样才能有效的将干扰泄放。 软件抗干扰原理及方法 尽管我们采取了硬件抗干扰措施,但由于干扰信号产生的原因错综复杂,且具有很大的

单片机常用模块电路大全

单片机常用模块电路大全 转载:https://www.360docs.net/doc/146626398.html,/作者: zhaojun_xf *********************************** 在我们设计单片机电子电路时,常用应用到一下比较常用的电路,每次都需要从新画,即费力又费神,还容易出错,所以本人将自己常用的电路设计成模块,每次使用直接负责即可。由于个人的力量有限,希望大家把自己常用的电路发上来分享。电路难免有错,希望大家指出。。。 电路的范围可以很广,但是希望都是通过实际使用过的电路,下面先上上我自己用的电路。。。 1. 双路232通信电路:3线连接方式,对应的是母头,工作电压5V,可以使用MAX202或MAX232。 2. 三极管串口通信:本电路是用三极管搭的,电路简单,成本低,但是问题,一般在低波特率下是非常好的。

3. 单路232通信电路:三线方式,与上面的三级管搭的完全等效。 4. USB转232电路:采用的是PL2303HX,价格便宜,稳定性还不错。

5. SP706S复位电路:带看门狗和手动复位,价格便宜(美信的贵很多),R4为调试用,调试完后焊接好R4。 6.SD卡模块电路(带锁):本电路与SD卡的封装有关,注意与封装对应。此电路可以通过端口控制SD卡的电源,比较完善,可以用于5V和3.3V。但是要注意,有些器件的使用,5V和3.3是不一样的。

7.LCM12864液晶模块(ST7920):本电路是常见的12864电路,价格便宜,带中文字库。可以通过PSB端口的电平来设置其工作在串口模式还是并行模式,带背光控制功能。 8.LCD1602字符液晶模块(KS0066):最常用的字符液晶模块,只能显示数字和字符,可4位或8位控制,带背光功能。

单片机系统抗干扰

单片机系统的抗干扰 抗干扰问题是单片机控制系统工程实现中须解决的关键问题之一。对干扰产生的机理及其抑制技术的研究,受到国内外普遍重视。大约在50年代,就开始了对电磁干扰的系统研究,逐步形成了以研究干扰的产生、传播、抑制和使装臵在其所处电磁环境中既不被干扰又不干扰周围设备,从而都能长期稳定运行等为主要内容的技术学科—电磁兼容技术、EMC技术。 按国家军用标准GJB 72—85《电磁场干扰和电磁兼容性名词术语》其定义为:“设备(分系统、系统)在共同的电磁环境中能一齐执行各自功能的共存状态。即:该设备不会由于受到处于同一电磁环境中其它设备的电磁发射导致或遭受不允许的降级;它也不会使同一电磁环境中其它设备(分系统、系统),因受其电磁发射而导致或遭受不允许的降级。” 一、干扰的作用机制及后果 干扰对单片机系统的作用可分为三个部分,第一个部位是输入系统,它使模拟信号失真,数字信号出错,系统如根据该信号做出的反应必然是错误的。第二个部位是输出系统,使各输出信号混乱,不能正常反映系统的真实输出量,从而导致一系列严重后果。第三个部位是单片机的内核,干扰使三总线上的数字信号错乱,使CPU工作出错。 对单片机系统而言,抗干扰有硬件和软件措施,硬件如设臵得当,可将绝大多数的干扰拒之门外,但仍然有部分的干扰窜入系统,引起不良后果,因此,软件抗干扰也是必不可少的。但软件抗干扰是以CPU的开销为代价的,如果没有硬件措施消除大部分的干扰,CPU将忙于应付,会影响到系统的实时性和工作效率。成功的抗干扰系统是由硬件和软件相结合而构成的。硬件抗干扰具有效率高的优点,但要增加系统的成本和体积,软件抗干扰具有投资低的优点,但要降低系统的工作效率。 由于应用系统的工作现场,往往有许多强电设备,它们的启动和工作过程将对单片机产生强烈的干扰;也由于被控制对象和被测信号往往分布在不同的地方,即整个控制系统的各部分之间有较远的距离,信号线和控制线均可能是长线,这样电磁干扰就很容易以不同的途径和方式混入应用系统之中。如果上述来源于生产现场的干扰称为系统内部的干扰源的话,那么还有来源于现场以外的所谓外部干扰源,如外电源(如雷电)对电网的冲击,外来的电磁辐射等。 不管哪种干扰源,对单片机的干扰总是以辐射、电源和直接传导等三种方式进入的,其途径主要是空间、电源和过程通道。按干扰的作用形式分类,干扰一般有串模干扰和共模干扰两种。抗干扰的方法则针对干扰传导的源特征和传导方式,采取抑制源噪声,切断干扰路径,和强化系统抵抗干扰等三种方式。 控制干扰源的发射,除了从源的机理着手降低其产生电磁噪声的电平之外,广泛的应用着屏蔽(包括隔离)、滤波与接地技术。屏蔽主要用于切断通过空间的静电耦合、感应耦合或交变电磁场耦合形成的电磁噪声传播途径。此三种耦合分别对应于采取的静电屏

上拉电阻&单片机硬件抗干扰

上拉电阻的作用 上下拉电阻: 1、当TTL电路驱动COMS电路时,如果TTL电路输出的高电平低于COMS电路的最低高电平(一般为3.5V),这时就需要在TTL的输出端接上拉电阻,以提高输出高电平的值。 2、OC门电路必须加上拉电阻,以提高输出的高电平值。 3、为加大输出引脚的驱动能力,有的单片机管脚上也常使用上拉电阻。 4、在CMOS芯片上,为了防止静电造成损坏,不用的管脚不能悬空,一般接上拉电阻产生降低输入阻抗,提供泄荷通路。 5、芯片的管脚加上拉电阻来提高输出电平,从而提高芯片输入信号的噪声容限增强抗干扰能力。 6、提高总线的抗电磁干扰能力。管脚悬空就比较容易接受外界的电磁干扰。 7、长线传输中电阻不匹配容易引起反射波干扰,加上下拉电阻是电阻匹配,有效的抑制反射波干扰。 上拉电阻阻值的选择原则包括: 1、从节约功耗及芯片的灌电流能力考虑应当足够大;电阻大,电流小。 2、从确保足够的驱动电流考虑应当足够小;电阻小,电流大。 3、对于高速电路,过大的上拉电阻可能边沿变平缓。综合考虑以上三点,通常在1k到10k之间选取。对下拉电阻也有类似道理. 如果有10V的电源 串联了两个两欧的的电阻那么这两个电阻中间的电位就是10除以4再乘以2 ,那么就是5V了,如过我要提高中间的电位,我在在中间电位点和另一个2欧电阻串联一个1欧的电阻  那么这个中间电位点就是 10除以5在乘以3,那么就是6v了所以相对与5v就提高了1v,只是电流降了0.5A 关于单片机硬件抗干扰 在研制带处理器的电子产品时,如何提高抗干扰能力和电磁兼容性? 一、下面的一些系统要特别注意抗电磁干扰: 1、微控制器时钟频率特别高,总线周期特别快的系统。 2、系统含有大功率,大电流驱动电路,如产生火花的继电器,大电流开关等。 3、含微弱模拟信号电路以及高精度A/D变换电路的系统。 二、为增加系统的抗电磁干扰能力采取如下措施: 1、选用频率低的微控制器: 选用外时钟频率低的微控制器可以有效降低噪声和提高系统的抗干扰能力。同样频率的方波和正弦波,方波中的高频成份比正弦波多得多。虽然方波的高频成份的波的幅度,比基波小,但频率越高越容易发射出成为噪声源,微控制器产生的最有影响的高频噪声大约是时钟频率的3倍。 2、减小信号传输中的畸变 微控制器主要采用高速CMOS技术制造。信号输入端静态输入电流在1mA左右,输入电容10PF左右,输入阻抗相当高,高速CMOS电路的输出端都有相当的带载能力,即相当大的输出值,将一个门的输出端通过一段很长线引到输入阻抗相当高的输入端,反射问题就很严重,它会引起信号畸变,增加系统噪声。当Tpd>Tr时,就成了一个传输线问题,必须考虑信号反射,阻抗匹配等问题。

MSP430系列单片机复位电路系统设计分析及JTAG烧录不进程序的解决方法

去掉,或者减小RST引脚上的电容。因为电容太大了编程器无法复位430。因此检测失败。如果仍未解决,可能还是你的引脚连接有问题。 没找到芯片。如果电脑---仿真器----MSP430芯片的电气连接是正确可靠,没接触不良的话, 可能的情况有: 外部复位芯片复位引脚直接连至单片机引脚; 并口仿真器中BIOS参数设置不正确; 3.3V负载大,电路板没上电烧写; 芯片引脚或电路板有短路、断路问题; USB-JTAG未能成功启动、运行; 单片机熔丝烧过了或坏了; MSP430系列单片机复位电路系统设计分 析 2010年11月04日 10:59 本站整理作者:佚名用户评论(0) 关键字:MSP430(105)复位电(1) 0 引言 TI公司的混合信号处理器MSP430系列单片机以其处理能力强大、外围器件集成度高、功率消耗低、产品系列全面、全系列工业级等特点,作为目前MCU主流市场的产品之一,在电子应用领域中得到广泛应用,被越来越多的电子设计师所青睐。由于复位电路设计问题而导致的系统出现上电后不工作或状态不正确是很多MSP430单片机电路设计者们在设计、调试和应用中曾遇到过的问题,尽管这种情况发生的几率很低,但对于可靠性要求较高的应用场合,这个现象仍需引起电子设计人员的足够重视。 为此,本文对MSP430全系列单片机的复位系统和复位机制进行了详细深入的分析,并针对性地提出了具体的外围复位电路设计方案和有关电子元器件的详细介绍,以供同行参考和交流。 1 MSP430复位机制 1.1 MSP430复位电路 MSP430的复位电路包括一个上电复位(POR)和上电清除信号(PUC)。POR是设备复位信号,它通常在以下三种事件发生时被触发:a.上电;b.复位模式下RST/NMI脚出现低电平;c.电压监控设备(Brownout)触发。 POR时序见图1(a)所示。

51单片机复位电路

51单片机复位电路 单片机在可靠的复位之后,才会从0000H地址开始有序的执行应用程序。同时,复位电路也是容易受到外部噪声干扰的敏感部分之一。因此,复位电路应该具有两个主要的功能: 1.必须保证系统可靠的进行复位; 2.必须具有一定的抗干扰的能力; 一、复位电路的RC选择 复位电路应该具有上电复位和手动复位的功能。以MCS-51单片机为例,复位脉冲的高电平宽度必须大于2个机器周期,若系统选用6MHz晶振,则一个机器周期为2us,那么复位脉冲宽度最小应为4us。在实际应用系统中,考虑到电源的稳定时间,参数漂移,晶振稳定时间以及复位的可靠性等因素,必须有足够的余量。图1是利用RC充电原理实现上电复位的电路设计。实践证明,上电瞬间RC电路充电,RESET引脚出现正脉冲。只要RESET端保持10ms以上的高电平,就能使单片机有效的复位。

二.供电电源稳定过程对复位的影响 单片机系统复位必须在CPU得到稳定的电源后进行,一次上电复位电路RC参数设计应考虑稳定的过渡时间。 为了克服直流电源稳定过程对上电自动复位的影响,可采用如下措施: (1)将电源开关安装在直流侧,合上交流电源,待直流电压稳定后再合供电开关K,如图3所示。 (2)采用带电源检测的复位电路,如图4所示。合理配置电阻R3、R4的阻值和选择稳压管DW的击穿电压,使VCC未达到额定值之前,三极管BG截止,VA点电平为低,电容器C不充电;当VCC稳定之后,DW击穿,三极管BG饱和导通,致使VA点位高电平,对电容C充电,RESET为高电平,单片机开始复位过程。当电容C上充电电压达到2V 时,RESET为低电平,复位结束。

电子系统中的抗干扰技术_介绍

电子系统中的抗干扰技术 摘要:应用硬件抗干扰措施是必不可少的一种有效方法。本文中介绍了几种形式的干扰以及解决方法,如信号如何走线、接地的安全可靠、印制电路板避免干扰的设计、电源使用注意事项等几方面进行了阐述。通过合理的硬件电路设计,可以削弱或 抑制绝大部分干扰。实践应用取得了良好的效果。 关键词:抗干扰、屏蔽、电磁辐射。 0 引言 干扰是无处不在的,干扰可导致系统工作不正常,输出信息失真,严重可导致系统瘫痪。抗干扰设计是设备长期稳定运行的保证;随着电子技术的发展、电子设备的普及应用,抗干扰技术的研究显得越来越重要,应用也越来越普及。电子工程师从设备的研制阶段就应使用抗干扰技术,抗干扰技术始终贯穿于设备的设计、制造、安装、使用等各个阶段。 1 抗干扰技术应用 1.1 电源使用方面 有些电源在通断的一瞬间会对小功率电子设备造成损害,对附近的电子设备形成干扰。例如,显示器附近有电源设备时,有时开关电源设备的一瞬问会导致显示器闪一下,如果电源功率较大或靠的太近,而显示器屏蔽效果又达不到要求,显示器就会出现波纹,影响使用。 解决方法是:电源设备加装屏蔽层,采取有效的接地措施,电源线也应带屏蔽层,显示器等易受干扰的设备应尽量远离电源。 1.2 信号传输方面 信号在传输过程中由于线缆过长、过细,绝缘性能不好,没有采取有效的屏蔽、接地措施,信号传输就会受到干扰,特别是正电平信号受干扰影响较大。解决方法有: (1)信号采用负电平传输。 (2)容易相互干扰的信号分开传输。 (3)高频信号单独采用同轴电缆传输。 (4)模拟信号、数字信号分开传输。 (5) (内部可采用一根信号线附近一根地线的接线形式)。 (6)尽量采用带有屏蔽层的电缆,屏蔽层接地。线缆的绝缘性能要好。 (7)正确使用双绞线可起到消除电磁干扰的作用,通常网络线缆都是采用双绞的形式。

单片机复位电路设计

单片机复位电路设计 :blog.sina.. /s/blog_4b7b591401000ai0.html 一、概述 影响单片机系统运行稳定性的因素可大体分为外因和内因两部分: 1、外因 射频干扰,它是以空间电磁场的形式传递在机器内部的导体(引线或零件引脚)感生出相应的干扰,可通过电磁屏蔽和合理的布线/器件布局衰减该类干扰; 电源线或电源内部产生的干扰,它是通过电源线或电源内的部件耦合或直接传导,可通过电源滤波、隔离等措施来衰减该类干扰。 2、内因 振荡源的稳定性,主要由起振时间频率稳定度和占空比稳定度决定起振时间可由电路参数整定稳定度受振荡器类型温度和电压等参数影响复位电路的可靠性。 二、复位电路的可靠性设计 1、基本复位电路 复位电路的基本功能是:系统上电时提供复位信号,直至系统电源稳定后,撤销复位信号。为可靠起见,电源稳定后还要经一定的延时才撤销复位信号,以防电源开关或电源插头分-合过程中引起的抖动而影响复位。图1所示的RC复位电路可以实现上述基本功能,图3为其输入-输出特性。但解决不了电源毛刺(A 点)和电源缓慢下降(电池电压不足)等问题而且调整RC 常数改变延时会令驱动

能力变差。左边的电路为高电平复位有效右边为低电平Sm为手动复位开关Ch 可避免高频谐波对电路的干扰调频FM发射话筒制作套件 图1RC复位电路 图2所示的复位电路增加了二极管,在电源电压瞬间下降时使电容迅速放电,一定宽度的电源毛刺也可令系统可靠复位。图3所示复位电路输入输出特性图的下半部分是其特性,可与上半部比较增加放电回路的效果电子元件邮购 图2增加放电回路的RC复位电路 使用比较电路,不但可以解决电源毛刺造成系统不稳定,而且电源缓慢下降也能可靠复位。图4 是一个实例当VCC x (R1/(R1+R2) ) = 0.7V时,Q1截止使系统复

单片机参考书大全

1、51单片机及其C语言程序开发实例 2、51单片机C语言应用程序设计实例精讲 3、51单片机常用模块设计查询手册 4、51单片机典型系统开发实例精讲 5、51单片机开发应用从入门到精通 6、51单片机应用开发范例大全 7、51单片机应用系统典型模块开发大全 8、51单片机原理及应用--基于Keil C与proteus 9、AVR单片机嵌入式系统原理与应用实践 10、《LED驱动电路设计》温德尔(Steve Winder) 11、LCD驱动电路、驱动程序设计及典型应用 12、LED照明驱动电源优化设计 13、点阵LCD驱动显控原理与实践 14、基于51系列单片机的LED显示屏开发技术 15、最新LED及其驱动电路速查手册 16、MCS-51单片机应用开发实用子程序 17、8051单片机USB接口程序设计上册 18、USB应用开发技术大全 19、8051单片机USB接口VB程序设计 20、8051单片机USB接口程序设计下册 21、PDIUSBD12 USB固件编程与驱动开发 22、USB外围设备设计与应用 23、USB应用开发宝典 24、USB应用开发实例详解 25、单片机数据通信典型应用大全 26、电子信息类专业毕业设计指导与实例 27、电子信息类专业实践教程 28、单片机C语言程序设计实训100例:基于AVR+PROTEUS仿真 29、单片机技术课程设计与项目实例 30、单片机应用系统设计精讲 31、单片机与PC机网络通信技术 32、Visual Basic 串口通信工程开发实例导航 33、51单片机C语言常用模块与综合系统设计实例精讲 34、51单片机C语言应用与开发 35、51单片机应用开发范例大全 36、51单片机应用实例详解 37、51单片机应用系统开发实例精解C语言 38、51单片机自学笔记(完整北航版) 39、51系列单片机高级实例开发指南 40、51系列单片机设计实例(第2版) 41、8051系列单片机C程序设计完全手册 42、ATmega128单片机入门与提高 43、C51单片机C程序模板与应用工程实践 44、MP3MP4播放器维修技能实训精编教学版

单片机常用复位电路

单片机复位电路设计 一、概述 影响单片机系统运行稳定性的因素可大体分为外因和内因两部分: 1、外因 射频干扰,它是以空间电磁场的形式传递在机器内部的导体(引线或零件引脚)感生出相应的干扰,可通过电磁屏蔽和合理的布线/器件布局衰减该类干扰; 电源线或电源内部产生的干扰,它是通过电源线或电源内的部件耦合或直接传导,可通过电源滤波、隔离等措施来衰减该类干扰。 2、内因 振荡源的稳定性,主要由起振时间频率稳定度和占空比稳定度决定。起振时间可由电路参数整定稳定度受振荡器类型温度和电压等参数影响复位电路的可靠性。 二、复位电路的可靠性设计 1、基本复位电路 复位电路的基本功能是:系统上电时提供复位信号,直至系统电源稳定后,撤销复位信号。为可靠起见,电源稳定后还要经一定的延时才撤销复位信号,以防电源开关或电源插头分-合过程中引起的抖动而影响复位。图1所示的RC复位电路可以实现上述基本功能,图3为其输入-输出特性。但解决不了电源毛刺(A 点)和电源缓慢下降(电池电压不足)等问题而且调整 RC 常数改变延时会令驱动能力变差。左边的电路为高电平复位有效右边为低电平 Sm为手动复位开关Ch 可避免高频谐波对电路的干扰。

图1 RC复位电路 图2所示的复位电路增加了二极管,在电源电压瞬间下降时使电容迅速放电,一定宽度的电源毛刺也可令系统可靠复位。图3所示复位电路输入输出特性图的下半部分是其特性,可与上半部比较增加放电回路的效果 图2 增加放电回路的RC复位电路 使用比较电路,不但可以解决电源毛刺造成系统不稳定,而且电源缓慢下降也能可靠复位。图4 是一个实例当 VCC x (R1/(R1+R2) ) = 0.7V时,Q1截止使系统复位。Q1的放大作用也能改善电路的负载特性,但跳变门槛电压 Vt 受 VCC 影响是该电路的突出缺点,使用稳压二极管可使 Vt 基本不受VCC影响。见图5,当VCC低于Vt(Vz+0.7V)时电路令系统复位。 图3 RC复位电路输入-输出特性

相关文档
最新文档