一种快速分析酸压井净压力曲线的方法

一种快速分析酸压井净压力曲线的方法
一种快速分析酸压井净压力曲线的方法

汽车零部件压装曲线局部趋势判断算法研究

电子设计工程 ElectronicDesign Engineering 第24卷Vol.24第5期No.52016年3月Mar.2016 收稿日期:2015-05-05 稿件编号:201505027 作者简介:班飞(1992—),男,河南驻马店人,硕士研究生。研究方向:汽车零部件与总成检测。 压装在汽车零部件的生产和装配过程中有着广泛的应用,包括轮毂压装[1]、后桥衬套压装、发动机缸盖压装[2]等。作为汽车生产和装配过程中的关键工序,压装质量的好坏直接关系着整车的质量和安全,因此对压装过程进行严格的监控和考核是十分必要的。压装质量的监控主要是记录压装过程中的压装力-位移(F-S )曲线,然后考核F-S 曲线的局部趋势是否符合要求。目前对局部趋势的考核主要使用的是监控框判别法,构建矩形监控框,然后判断压装曲线是如何通过该区间的。然而,监控框判别法按照现有的基本算法和最小二乘直线拟合算法在实际使用过程中经常出现误判的情况,影响了对汽车零部件压装质量的考核。 文中简要介绍了监控框判别法的内容,然后分析了现有实现算法的的原理及缺陷。随后,详细介绍了阈值限定算法的具体实现过程。最后,通过实验和工厂中的实际应用验证了该算法的可靠性和实用性。 1监控框判别法 目前,对压装过程质量的监控和考核主要是根据其压装 力-位移(F-S )曲线[3]。考核方法包括监控框判别法、关键点判别法、包络线法等。其中,尤以监控框判别法应用最多。图1所示是上汽集团某型号汽车后桥衬套压装过程的压装力-位移曲线。横坐标表示压头的位移,纵坐标是与该位移对应的压装力。按照采样时间的先后将采样点依次连接起来,就得到了压装过程的F-S 曲线。 不同零部件的压装曲线走势[4]不尽相同,即便是同种零部件不同型号的产品其压装曲线可能也有差别。但是,对压装曲线考核的基本方法都是通用的。监控框判别法,如图1所示,主要是为了实现对压装曲线局部趋势的自动判断。 本例中,设置了两个矩形监控框,编号分别为4和5。为 汽车零部件压装曲线局部趋势判断算法研究 班飞,丁国清 (上海交通大学仪器科学与工程系,上海200240) 摘要:汽车零部件压装曲线局部趋势判断的现有实现算法存在诸多的缺陷,在实际运用过程中经常导致测控软件的误判。为了满足汽车零部件压装过程中日益严格的监控和考核要求,本文提出了一种新的阈值限定算法。在实验室的 100多次试验和工厂中逾10万次的压装应用中,该算法的正确率均达到了100%,表明该算法具有极高的可靠性。 关键词:压装曲线;局部趋势;阈值限定;算法中图分类号:TN06 文献标识码:A 文章编号:1674-6236(2016)05-0093-04 Research on press mounting curve ′s local trends judgement of auto parts BANFei ,DING Guo-qing (Department of Instrument Science and Engineering ,Shanghai Jiaotong University ,Shanghai 200240,China ) Abstract:There are many defects in existing algorithms on press mounting curve's local trends judgement of autoparts.Whichoften lead tomisjudgement in practical applications.In order tomeet increasingly strict monitoring and evaluation requirements in autoparts'press mounting ,this paper proposes a new threshold -constrained algorithm.In more than 100experiments in laboratory and more than 100,000applications in factories ,the accuracy rate of this algorithmreaches 100%.Whichdemonstrates that this algorithmhas pretty highreliability. Key words:press mounting curve ;local trends ;threshold -constrained ;algorithm 图1压装力- 位移曲线 Fig.1Press force -displacement curve -93-

司钻法压井机理

司钻法压井 当发生溢流关井后,关井立压和套压的显示有以下几种情况。 A、关井立压和套压均为零。这种情况说明井内泥浆静液压力能平衡地层压力。泥浆受油、气侵不严重,采用开着封井器循环除气的方法处理即可。 B、关井立压为零,套压不为零。这说明泥浆静液压力仍能平衡地层压力,只是环空泥浆受侵污严重。这时必须关闭封井器,通过节流阀循环,排除环空受侵污的泥浆。循环时要通过调节节流阀的开启大小,控制立压不变。关井立压不为零。表明井内泥浆静液压力不能平衡地层压力。必须提高泥浆密度进行压井。 压井时一般采用小排量压井。主要原因是用小排量循环压井,泵压较低,可以减小循环设备和管汇的负荷。有利于提高这些设备在压井作业中的可靠性,保证压井作业顺利进行。否则,采用大排量压井,会使泵压增高,设备负荷增大甚至超过工作能力造成事故。同时也易压漏地层,影响压井作业顺利进行。因此在一般情况下,压井排量采用正常钻进时的排量的1/2-1/3。 常用的压井方法有司钻法和工程师法两种。下面介绍司钻法压井。 司钻法又称两步法,司钻法压井分两步完成。第一步(第一循环周),循环排除井内受侵污的泥浆。第二步(第二循环周),用重泥浆循环压井。压井的具体步骤是: 1、计算压井所需的基本数据

在压井施工前,必须迅速、准确的计算出压井所需的基本数据。 2、填写压井施工单 3、压井 第一步(第一循环周) 基本做法是通过节流阀用原浆循环调节节流阀的开启程度,控制立压不变,以保持在井底压力不变的条件下,将环空内受侵污的泥浆排至地面。具体步骤及操作方法: (1)缓慢启动泵并打开节流阀,使套压保持关井套压。 (2)当排量达到选定的压井排量时,保持排量不变循环。调节节流阀使立压等于初始循环立管总压力Pt1,并在整个循环周内保持不变。如立压超过Pt1时,应适当开大节流阀,反之,则应关小节流阀。 应该注意:在调节节流阀的开大或关小和立压呈现上升或下降之间,由于压力传递需要一定的时间,因此存在着迟滞现象。其滞后时间取决于液柱传递压力的速度和井深,液柱传递压力的速度大约为300米/秒。如在井深3000米的井中,在调节节流阀后的压力要经过约20秒才能呈现在立压表上。实际的滞后时间还受泥浆柱中天然气的含量和泥浆密度的影响。在实际施工中,如果不注意滞后时间,就会造成调节节流阀过头,导致井底压力的控制不准确。 (3)环空受侵污的泥浆排完后,应停泵、关节流阀。此时关井套压应等于关井立压。 第一步操作进行中,应同时配制压井重泥浆,准备压井。

四种常规压井方法

四种常规压井方法 四种常规压井方法 1、边加重钻井液边循环压井法。这种处置方法可以在最短的时间防喷制住溢流,使井控装置承受的压力最小、承压时间最短,可以减少钻具粘卡等井下事故,因此是最安全的,但这种处置方法计算较复杂,需要进行许多的计算。 2、继续关井,先加重钻井液,再循环压井(等待加重法或工程师法)法。该处置可以在一个循环周完成,所需时间最短,井口压力较小,也较安全,压井多采用这种方法,但是关井时间长,对循环不利,因此该方法效果的好坏关键取决于是

否能迅速加重钻井液。以不变的泵速循环注入加重钻井液;在加重钻井液到达钻头的过程中,调节节流阀使立压由初始循环值下降到终了循环值(加重钻井液低泵冲泵压),使套压值保持不变;当加重钻井液到达钻头后向环空上返过程中,立压值保持不变,套压值逐渐下降,当加重钻井液到达井口时,套压降为零,重建起地层——井眼压力平衡,压井结束。 3、先循环排出受侵污的钻井液,关井、加重钻井液,再循环压井(两步控制法或司钻法)法。这种处置相对来说是安全的,技术上也比较容易掌握,但需要最长的时间和最大程度的应用井口装置。钻井液在第一个循环周内未加重,因此立

压不变(或初始与终了循环压力相等),同时第一循环周结束,关闭节流阀时,套压应该等于立压。 4、先循环排出受侵污的 4、先循环排出受侵污的钻井液,然后边加重钻井液边循环压井法。这种处置方法既复杂又需要时间更长。

附件1-13 井压井施工单年月日 井号井队 填表 人井 深 H0 M 垂深 H1M 原浆密 度γMg/m3 钻进 排量Q L/S 低泵冲泵 压P Ci MPa 漏失压 力 梯度Gf MPa/M 压井 排量Q k L/S 套管鞋 深度h M 钻柱内 容 积系数 V A L/M 钻头位 置 斜深H M 压井附加 密度γ e g/cm3 环空容 积 系数V B L/M 钻头位 置 垂深H2

高锰酸钾法测定过氧化氢

过氧化氢含量的测定 一、教学要求: 1、了解KMnO4溶液的配制方法及保存条件; 2、掌握用Na2C2O4标定KMnO4溶液的原理和条件; 3、学习高锰酸钾法测定过氧化氢的原理和方法。 二、预习内容 1、KMnO4溶液的配制方法及标定原理; 2、高锰酸钾法测定过氧化氢的原理和方法。 三、基本操作 四、实验原理 1、KMnO4溶液的配制及标定 由于高锰酸钾试剂中常含有MnO2等杂质,蒸馏水中常含有微量还原性物质,能与KMnO4作用析出MnO2,因此不能用直接法配制其准确浓度的溶液。 配制时:称取稍多于理论量的KMnO4固体,溶解在规定体积的蒸馏水中,并加热煮沸约1h,放置7~10d后,用微孔玻璃砂芯漏斗过滤,除去析出的沉淀。将过滤的KMnO4溶液贮藏于棕色瓶中,放置暗处,以待标定。标定KMnO4的基准物质很多,有H2C2O4·2H2O,Na2C2O4,(NH4)2Fe(SO4)2·6H2O,As2O3,纯铁丝等。其中最常用的是Na2C2O4,因为它易提纯稳定,不含结晶水,在105~110℃烘干2h,放入干燥器中冷却后,即可使用。在H2SO4介质中,MnO4-与C2O42-的反应: 2 MnO4-+5 C2O42-+16H+=2Mn2++10CO2+8H2O 为了使上述反应能快速定量地进行,应注意以下条件: (1) 温度在室温下,上述反应的速度缓慢,因此常需将溶液加热至75~85℃时进行滴定。滴定完毕时溶液的温度也不应低于60℃。而且滴定时溶液的温度也不宜太高,超过90℃,部分H2C2O4会发生分解: H2C2O4→ CO2+ CO+ H2O (2) 酸度溶液应保持足够的酸度。酸度过低,KMnO4易分解为MnO2; 酸度过高,会促使H2C2O4的分解。 (3) 滴定速度由于上述反应是一个自动催化反应,随着Mn2+的产生,反应速率逐渐加快。特别是滴定开始时,加入第一滴KMnO4时,溶液褪色很慢(溶液中仅存在极少量的Mn2+),所以开始滴定时,应逐滴缓慢加入,在KMnO4红色没有褪去之前,不急于加入第二滴。待几滴KMnO4溶液加入,反应迅速之后,滴定速度就可以稍快些。如果开始滴定就快,加入的KMnO4溶液来不及与C2O42-反应,就会在热的酸性溶液中发生分解,导致标定结果偏低。若滴定前加入少量的MnSO4作催化剂,则滴定一开始,反应就能迅速进行,在接近终点时,滴定速度要缓慢逐滴加入。 (4) 滴定终点用KMnO4溶液滴定至终点后,溶液中出现的粉红色不能持久。因为空气中的还原性物质和灰尘等能与缓慢作用,使还原,故溶液的粉红色逐渐褪去。所以,滴定至溶液出现粉红色且半分钟内不褪色,即可认为达到了滴定终点。 2、H2O2含量的测定

压装力的计算

摘要介绍了与传统设计不同的轮轴冷压装计算方法,设计员可节省查阅资料时间,应用新型的计算公式,能快速获得准确工艺参数,并量化轮轴设计尺寸。本文的车辆轮轴注油冷压装工艺属国内首例。此方法对机械制造工业价值巨大。 关键词轮轴冷压装轮轴注油冷压装计算公式工艺工装修复技术 一、前言 本文论述的内容,适用于铁路机车车辆、工程机械和机床制造。该技术的特点是:在轮轴冷压装设计中,既节省了查阅设计手册和行业标准所用的大量时间,又能快速获得准确工艺参数和设计量化值。工艺简单、加工方便、能有效避免轮轴配合面被擦伤,与传统的轮轴冷压装工艺设计相比,这是专业技术领域中的新思路。 二、工艺参数计算 在设计轮轴冷压装产品时,如何根据配合直径来求得合理的过盈量及冷压装吨位,这是专业工艺人员极为关注的技术难题。作者通过长期试验论证,运用数学原理推导出了下列理论计算公式,技术难题迎刃而解,现简介如下。 δ1=7×10-4D+0.06 (1)δ2=7.6×10-4D+0.09 (2) δ3=0.5(δ1+δ2)(3)δ4=δ3-0.02 (4) δ5=δ3+0.01 (5)δ=δ4~δ5(6) P1=(3.11D+66)+6 (7) P2=4.88D+101 (8) P=P1~P2(9) δ1—粗算轮轴配合过盈量下限值mm;δ2—粗算轮轴配合过盈量上限值mm;δ3—粗算轮轴配合过盈量平均值mm;δ4—精算轮轴配合过盈量下限值mm;δ5—精算轮轴配合过盈量上限值mm;δ—轮轴配合过盈量精确值mm;D—轮轴配合直径mm;P1—轮轴冷压装吨位下限值kN;P2—轮轴冷压装吨位上限值kN;P—轮轴冷压装吨位精确值kN。 三、计算应用实例 计算图1所示的车辆轮轴采用冷压装工艺时,所需配合过盈量及压装吨位。 解:(1)计算过盈量 δ1=7×10-4D+0.06=7×10-4×182+0.06=0.19(mm) δ2=7.6×10-4D+0.09 =7.6×10-4×182+0.09=0.23(mm) δ3=0.5(δ1+δ2)=0.5(0.19+0.23)=0.21(mm) δ4=δ3-0.02=0.21-0.02=0.19(mm)

过氧化氢的分析

过氧化氢的分析 1、范围 本标准规定了工业过氧化氢的要求、试验方法、检验规则以及标志、标签、包装、运输和贮存。 本标准适用于工业过氧化氢(俗名双氧水)。该产品可用作氧化剂、漂白剂和清洗剂等。它广泛用于纺织、化工、造纸、电子、环保、采矿、医药、航天及军工行业。 分子式:H2O2相对分子质量:34.02 2、引用标准 GB 191-2002 包装储运图示标志 (eqv ISO 780: 1997) GB/T 601-2002 化学试剂标准滴定溶液的制备 GB/T 602-2002 化学试剂杂质测定用标准溶液的 制备 GB/T 603-2002 化学试剂试验方法中所用制剂及 制品的制备 GB/T 1250-1989 极限数值的表示方法和判定方法 GB/T 6678-1986 化工产品采样总则 GB/T 6680-1986 液体化工产品采样通则 GB/T 6682-1992 分析实验室用水规格和试验方法 (neq ISO 3696: 1987) GB 13690-1992 常用危险化学品的分类及标志 GB 15603-1995 常用化学危险品贮存通则 3、要求 3.1、外观:无色透明液体 3.2、工业过氧化氢应符合表 1要求:

4、试验方法 本标准所用试剂和水在没有注明其他要求时,均指分析纯试剂和符合GB/T 6682-1992中规定的三级水。 试验中所需标准溶液、杂质标准溶液、制剂及制品,在没有注明其他要求时,均按GB/T 601-2002 、GB/T 602-2002、GB/T 603-2002 的规定制备。 安全提示:标准所用盐酸、硝酸、硫酸及过氧化氢等化学品具有腐蚀性,使用者应小心操作避免溅到皮肤上,一旦溅到皮肤上应用大量水进行冲洗,严重者治疗。 4.1、过氧化氢含量的测定

常规压井方法

常规压井方法 常规方法包括关井立管压力为零的压井和关井立管压力不为零的压井。关井立管压力为零的压井,是钻井液的静液压力可以平衡地层压力,发生溢流是因为抽汲、井壁扩散气、钻屑气等进人井内的气体膨胀所致,其处理方法如下:关井立管压力为零 ①当关井套压也为零时,保持钻进时的排量和泵压,敞开井口循环就可恢复井的压力控制。 ②当关井套压不为零时,通过节流阀节流循环,在循环过程中,控制循环立压不变,当观察到套压为零时,停止循环。 上述两种情况经循环排除溢流后,应再用短程起下钻检验,判断是否需要调整钻井液密度,然后恢复正常作业。 关井立管压力和套管压力都不为零时 常规压井方法主要有以下几种: 1 .司钻法压井(二次循环法) 司钻法是发生溢流关井求压后,第一循环周用原密度钻井液循环,排除环空中已被地层流体污染的钻井液,第二循环周再将压井液泵人井内,用两个循环周完成压井,压井过程中保持井底压力不变。 1 )司钻法压井步骤 ①录取关井资料,计算压井所需数据,填写压井施工单,绘出压力控制进度表,作为压井施工的依据。 ②第一步用原钻井液循环排除溢流。 a .缓慢开泵,逐渐打开节流阀,调节节流阀使套压等于关井套压并维持不变,直到排量达到选定的压井排量。 b .保持压井排量不变,调节节流阀使立管压力等于初始循环压力几,,在整个循环周保持不变。调节节流阀时,注意压力传递的迟滞现象。液柱压力传递速度大约为 300 m/s , 3000m 深的井,需 20s 左右才能把节流变化的压力传递到立管压力表上。 c .排除溢流,停泵关井,则关井立压等于关井套压。在排除溢流的过程中,应配制加重钻井液,准备压井。 ③第二步泵人压井液压井,重建井内压力平衡。 a .缓慢开泵,迅速开节流阀平板阀,调节节流阀、保持关井套压不变。

高锰酸钾法测定过氧化氢含量

高锰酸钾法测定过氧化氢含量 一、目的要求 1.掌握高锰酸钾的配制和标定方法; 2.学习高锰酸钾法测定过氧化氢含量的原理和操作。 二、实验原理 1.高锰酸钾的性质 KMnO4是强氧化剂,它的氧化作用和溶液的酸度有关,在强酸性溶液中获得5个电子还原为Mn2+,在中性或碱性溶液中,获的3个电子还原为MnO2. MnO4-+8H++5e=== Mn2++4H2O MnO4 -+2H2O+3e=== MnO2↓+4OH- 由于MnO2↓为褐色,影响滴定终点观察,所以用KMnO4标准进行滴定一般在强酸性溶液中进行,所用的强酸通常是H2SO4,避免使用HCl或HNO3(因为HCl具还原性也能与MnO4-作用,而HNO3具有氧化性,它可能氧化被测定的物质)。 利用KMnO4作氧化剂,可直按滴定许多还原性物质,如Fe2+ 、H2O2、草酸盐、As3+ 、Sb3+ 、W5+ 及V4+ 等。有些氧化性物质,如不能用KMnO4溶液直接滴定,则可用间接法测定之。 MnO4-是深紫色,用它滴定无色或浅色试液时一般不需另加指示剂,因为MnO4-被还原后的Mn2+在浓度低时,几乎无色因此利用等当点后微过量的MnO4 -本身的颜色(粉红色)来指示终点。 2.高锰酸钾标准滴定溶液配制和标定 纯的KMnO4溶液是相当稳定的,一般的KMnO4试剂中常含有少量MnO2和杂质,而且蒸馏水中常含微量还原性物质,它们都促进KMnO4溶液的分解,见光时分解的更快,所以KMnO4不能直接配制标准溶液,而只能用间接配制法进行配制。 为了配制较稳定的KMnO4溶液,可称取稍多于理论量的KMnO4溶于蒸馏水中,加热煮沸,冷却后贮于棕色瓶中,于暗处放置数天,使溶液中可能存在的还原性物质完全氧化,然后过滤除去析出的MnO2沉淀。 正确配制的KMnO4溶液,必须呈中性,不含MnO2↓,保存在玻塞棕色瓶中,放置暗处,久放后的KMnO4溶液使用时应重新标定其浓度。 KMnO4溶液可用还原剂作基准来标定。如:H2C2O4·2H2O、Na2C2O4、(NH4)2C2O4、As2O3、FeSO4·7H2O、 (NH4)2SO4·FeSO4·6H2O和纯铁丝等。其中以Na2C2O4使用较多。Na2C2O4容易提纯,性质稳定,不含结晶水,在105~110℃烘干约2h后,冷却,就可使用。 在H2SO4溶液中,MnO4-与C2O42-的反应为: 2MnO 4 -+5 C2O42-+16H+===2Mn2++10CO2↑+8H2O 为了使此反应能定量地较迅速地进行,应注意下述滴定条件: (1)温度:在室温下此反应的速度缓慢,因此应将溶液加热至75~85℃,但温度不宜过高,否则在酸性溶液中会使部分H2C2O4发生分解:H2C2O4=== CO2↑+CO+ H2O (2)酸性:溶液保持足够的酸度,一般在开始滴定时,溶液的酸度约为0.5~1mol/L,酸度不够时,往往容易生成MnO2 ↓,酸度过高又会促使H2C2O4分解。 (3)滴定速度:由于MnO4-与C2O42-的反应是自动催化反应,滴定开始时,加入的第一滴KMnO4溶液褪色很慢(因为这

压井方法优选与存在的问题

压井方法优选与存在的问题 压井是利用井控设备和压井方法向井内注入一定比重和性能的压井液,重新建立井下压力平衡的过程。选取合适、有效的压井方法关系到压井是否成功的关键,一旦发生井喷失控,将会造成重大损失,甚至巨大社会影响,因此,发生溢流或井涌后编制压井方案,选择最优的压井方法是压井成功的前提。 一、压井方法及优缺点 压井方法包括常规压井法和非常规压井法,常规压井法含司钻法、工程师法、边循环边加重法;非常规压井法含平推压井法、置换压井法、低节流压井法、体积控制压井法。 1.常规压井法 ⑴司钻法压井。司钻法又称二次循环法,是指当溢流发生时并且完成关井工作后,考虑先利用钻井液循环将溢流排除,然后再结合钻井液压井的方法。这种方法的优点在于比较容易掌握,并且最关键的是操作时间短。缺点是设备承压高,风险相对较大。 ⑵工程师法压井。工程师法又称一次循环法,是指当发生溢流时,要实现迅速的关井行为并记录重要的溢流数据,通过计算填写压井施工单,然后利用加重钻井液,保证全部工作的实现在一个循环内完成。工程师法压井的最大优势是装置所承受的压力小,相对风险小,经济效益高。缺点是:①精确控制井底压力难,影响因素多,一旦控制不好,容易引起油气侵,造成反复压井。比如:井眼轨迹、井身质量、泥浆密度与循环压降的精确计算困难,高密度泥浆差距大,另外,地面装置在压井过程中,地

层砂子反出堵塞通道,需要反复开大、关小节流阀。因此,立管压力的控制难度大。②在压井过程中井底漏失量不好掌握,若漏失严重,压井泥浆不够用,也会造成压井失败。 ⑶边循环边加重法压井。边循环边加重法又称同步法或循环加重法。是指当溢流关井求得地层压力之后,采用边循环边加重的办法压井。它的优点是在重浆储备不足,边远地区能够很快的开展压井作业。但是,这种方法的最大缺点是压力的计算比较复杂,因此在实践中很少采用。 2.非常规法压井 ⑴平推法压井。平推法又称压回地层法、挤压法或顶回法,是指从地面管汇向井内注入钻井液将进入井内的地层流体压回地层的压井方法。其优点是适用于地层流体中含硫化氢等有害物质、钻杆堵塞或断裂、压井液不能到达井底等情况下的溢流处理;缺点是:①高压的小溶洞、裂缝性油气层(定容体)不宜采用平推法压井,由于地层储藏空间有限,平推法压井容易越推压力越高,反而不能建立井内压力平衡。②井口段钻具内外压差大,容易刺坏钻具,造成钻具断裂不能压井。③操作不得当可能进一步损坏井眼,挤入的流体将进入最薄弱的地层段,出现“又喷又漏”复杂情况,特别高含H2S的井,将造成重大井控风险。 ⑵置换法压井。井喷关井后,若天然气已上升至井口或者整个井眼被喷空充满天然气,在不能用平推法压井时就需要用置换法压井。其原理是,在关井情况下和确定的套管上限与下限压力范围内,分次注入一定数量的压井液、分次放出井内气体,直至井内充满压井液,完成压井作业。该方法的关键是,注入和放出气体时应始终保持井底压力略大于地层压力。

(完整word版)过氧化氢的测定

Fenton体系下过氧化氢的测定 一、反应体系中双氧水测定方法的建立 体系中双氧水的测定主要采用高锰酸钾法和碘量法,碘量法检出限较高、操作繁琐,高锰酸钾法是较常规的分析方法,操作简单且准确性高,但在Fenton氧化体系中,由于可被高锰酸钾氧化的亚铁离子和有机物的存在,测定结果往往偏高。因此,本实验采用了已有报道的钛盐光度法测定Fenton体系氧化过程中的过氧化氢含量。 钛盐光度法测定过氧化氢的原理是过氧化氢与钛离子在酸性溶液中形成稳定橙色络合物—过钛酸(pertitanic acid),此络合物颜色的深浅与样品中过氧化氢的含量成正比。姜成春等在蒸馏水体系、含有机物体系及Fenton高级氧化体系中,对高锰酸钾法、碘量法和钛盐光度法测定过氧化氢的结果进行对比分析,得出可见钛盐光度法测定过氧化氢具有较高的灵敏度,而且检测限较低,有利于低浓度过氧化氢的测定,避免了氧化还原法测定低浓度过氧化氢通过终点颜色判断所带来的误差。 二、钛盐光度法测定过氧化氢方法的建立: 仪器及实验药品: 1、DR2800;哈希管; 2、药品:100mg/l过氧化氢;3mol/l硫酸溶液;0.05mol/l 草酸钛钾溶液; 三、测定波长为400nm 四、标准曲线的测定:

分别取已配置好的双氧水标准溶液(100mg/L)已用高锰酸钾法标定,取0.2,0.4,0.6,0.8,1.0,1.2ml于哈希管中,分别加入0.5ml 的3.0mol/l硫酸溶液和0.05mol/l草酸钛钾溶液,再加入适量纯水至5ml。放置10min,在400nm波长下,以试剂空白作参比,测定其吸光度。 Fenton氧化体系中双氧水的测定:将反应结束后的一定量的待测溶液加入哈希管中,分别加入0.5ml的3.0mol/L硫酸溶液和0.05mol /L草酸钛钾溶液,定量至5ml并摇匀后放置10min,在400nm波长下,以试剂空白作参比,测定其吸光度。根据所测吸光度于标准曲线上查的双氧水的含量。 五、条件的确定 在做标线之前分别考虑了硫酸和草酸钛钾用量的影响,通过做的结果发现,在过氧化氢量一定的条件下,3mol/l硫酸和0.05mol/l草酸钛钾用量都在0.5ml时测定吸光度最大,用量低于0.5ml和高于0.5ml,其吸光度都相对降低,在0.5ml时,其吸光度是最大的。所以对于本实验硫酸和草酸钛钾用量都是0.5ml。 六、过氧化氢100mg/l的标线如下: 过氧化氢浓度(mg/l) 4 8 12 16 20 24 吸光度0.154 0.31 0.456 0.61 0.776 0.927

CAT过氧化氢酶活性测定方法

1.2.2 CAT提取方法 方法①:按文献[3]i己述的方法。取花瓣1.00 g,加入少量石英砂、质量分数10%的PVP(聚乙烯吡咯烷酮),及i00 mg的CaCO3、2.O0 mL水,冰浴研磨;用50 mol/L pH 7.0 的磷酸缓冲液定容至10 mL;过滤;取滤液1.O0 mL,稀释lO、i00、200、500、1 000、2 000倍。此为CAT粗酶提取液。 方法②:按文献[4]记述的方法。取花瓣0.500 g,加入10ⅡlL质量分数10%的PVP,及少量石英砂、2 mmol/L的EDTA、2.5 mmol/L的DTT、体积分数0.5%的一巯基乙醇,冰浴研磨;6 000 r/min、4cC离心20 min;取上清液,稀释10、100、200、500、1 000、2 000倍。此为CAT粗酶提取 液。 1.2.3 CAT 活性测定方法 方法①:文献[1]记述的碘量滴定法。碘量法利用H20z能将KI中的I一氧化,生成Iz,以淀粉作为滴定终点指示剂,用硫代硫酸钠滴定,计算出生成Iz的量,再换算成所消耗Hz0z 的量。 方法②:文献[3]记述的紫外分光光度碘量法。该方法利用I 在波长350 nm处有一个吸收高峰,吸光度与I 的含量成正比来计算生成Iz的量。用UV一120光度计测定样品对波长为350 nm光线的吸光度(OD值,用“0D350”表示)。 方法③:直接紫外分光光度法。该方法利用H2oz在波长294 nm处有一个吸收高峰[4],吸光度与lH20 含量成正比来计算。取CAT粗酶提取液1.00 mL,加入30~mol/L的H202 2.00ⅡlL,迅速混匀,用UV一120光度计测定反应开始后4 min内对波长294 nm光线的吸光度(用“OD ’表示)的数值变化AOD2g4。以1.00 mL CAT粗酶提取液与2.00mL H20的混合液为空白对照。CAT与H202反应只在前5 min内呈线性关系,因此要在酶加底物后的30 S内读出原始读数。 1.2.4 数据分析方法 试验数据采用国际通用统计分析软件SAS 6.12进行分析。 利用外标法测定CAT活性。即配制浓度为0、1、5、10、15、20 p~nol·L 的H202标准溶液;取2.o0ⅡlL各种浓度的H20 溶液,各加入1.00ⅡlL用方法①提取的CAT酶的100倍稀释液,反应4 min后测定CAT活性;用3.00ⅡIL水调0。结果如表3。 ----测定切花中过氧化氢酶活性的3种常用方法的比较、① 陈晓敏②(华南热带农业大学园艺学院海南儋州 571737) 方法二过氧化氢酶的活力测定——紫外吸收法 H 2O 2 在240nm波长下有强烈吸收,过氧化氢酶能分解过氧化氢,使反应溶液 吸光度(A 240 )随反应时间而降低。根据测量吸光率的变化速度即可测出过氧化氢酶的活力。 三、材料、仪器与试剂 (一)、材料:小麦叶片 (二)、仪器(仪器的选择在实验开始前由学生在预习报告中提出方案后教师审定)

过氧化氢的检测方法(适用范围、分析步骤)

化妆品中过氧化氢的检测方法 1、适用范围 本方法规定了采用高效液相色谱法测定化妆品中过氧化氢(CAS:7722-84-1)含量的方法。 本方法适用于染发剂、膏状面膜中过氧化氢含量的测定。 2、方法提要 试样采用水浸提,部分上清液与三苯基膦衍生反应,衍生溶液经滤膜过滤,用液相色谱分离,紫外检测器检测,峰面积定量,以标准曲线法计算含量,得到样品中过氧化氢的含量。本方法对过氧化氢的检出限为0.0012μg,定量下限为0.004μg。若取0.2g样品,过氧化氢的最低检出浓度为60μg/g,最低定量浓度为200μg/g。 3、试剂和溶液 除非另有说明,所用试剂均为分析纯,水为一级实验用水。 3.1乙腈,色谱纯。 3.2三苯基膦溶液,称取三苯基膦1.3g,用乙腈(3.1)溶解,定容至25mL,浓度为0.2mol/L,现用现配。 3.3氧化三苯基膦溶液,称取氧化三苯基膦0.0003g,用乙腈(3.1)溶解,定容至100mL,浓度为0.00001mol/L。 3.4过氧化氢,浓度为3%,使用前需要进行标定,标定方法见附录。 3.5过氧化氢标准储备液:称取标定过的过氧化氢对照品(3.4)1.5g,精确到0.0001g,置于25mL棕色容量瓶中,用水定容,摇匀,配制成质量浓度为1.8mg/mL的标准储备溶液。 3.6过氧化氢标准工作液:配制浓度分别为3.6mg/L、9.0mg/L、18mg/L、36mg/L、54mg/L、90mg/L、180mg/L的标准工作液。 4、仪器和设备 4.1高效液相色谱仪:具有二极管阵列检测器。 4.2涡旋振荡器。 4.3分析天平:感量0.0001g。 4.4分析天平:感量0.001g。 5、分析步骤 5.1样液的制备 5.1.1样品前处理 称取样品约0.05g~0.2g(精确至0.001g),含过氧化氢3%以下称取0.2g,含过氧化氢3%~6%称取0.1g,含过氧化氢6%~12%称取0.05g,置于100mL容量瓶中,加入约50mL 水,振摇至样品完全溶解,用水定容,摇匀备用。面膜等半固体样品可以称取样品于50mL 烧杯,加入约20mL,用玻璃棒将样品搅碎,用水转移至100mL容量瓶中,定容,摇匀备用。 5.1.2衍生化反应 分别移取过氧化氢标准工作液(3.6)和样液(5.1.1)各1mL于10mL棕色容量瓶中,加入1mL三苯基膦乙腈溶液(3.2),振摇,继续加入5mL乙腈(3.1),振摇,用水定容,摇匀。置于暗处室温反应30min。 5.2测定

压力—位移曲线在压装工艺中的应用研究

压力—位移曲线在压装工艺中的应用研究 基于圆柱面过盈联接的计算公式,对双金属卷制衬套压装过程的压力变化规律进行了研究,提出了一种通过监控压力-位移曲线来实现压装防错的方法。 标签:压入力;位移;压力-位移曲线 1 概述 过盈连接是利用零件间的配合过盈来实现连接,这种连接结构简单,定心精度高,可承受转矩、轴向力或两者复合的载荷[1],因此广泛应用于汽车零部件的装配设计中。 在自动变速器油泵中,大量使用了双金属卷制衬套作为滑动轴承,卷制衬套通过与底孔之间的过盈配合实现连接,卷制衬套与底孔结合面的连接能力直接影响到油泵的正常工作。本文对卷制衬套的压装过程进行研究,提出一种通过压力-位移曲线监控卷制衬套压装过程的方法,实现压装过程的防错。 2 压入力理论计算 卷制衬套压装是典型的圆柱面过盈联接方式,其压入力F可按式(1)进行计算[2]。 F=πdlμp (1) 其中:d-配合直徑(mm);l-压入后配合长度(mm);μ-配合面的摩擦因数,与配合面的材质和表面粗糙度有关;p-配合面之间的压强(MPa),根据式(2)计算得出: 其中:δ-配合面的实际过盈量(mm);Ra1-底孔内表面的轮廓算数平均偏差(μm);Ra2-卷制衬套外表面的轮廓算数平均偏差(μm);d1-底孔内径(mm);d2-卷制衬套外径(mm);ν1-底孔材料的泊松比;ν2-卷制衬套外表面材料的泊松比;E1-底孔材料的弹性模量(MPa);E2-卷制衬套外表面材料的弹性模量(MPa)。 从式(1)和式(2)可以得出结论,卷制衬套压装到底孔的过程中,理论上其压入力F与压入后配合长度l成线性关系,随着配合长度l的增加,压入力F 逐渐增大,如图1所示。 3 压力-位移曲线的生成 图1是卷制衬套压装到底孔的压装过程示意图:压力传感器、位移传感器和压头均固连在固定板上,在压装过程中,压力传感器将采集的实时压力信号通过通讯线路传输到工控机上,同时位移传感器将采集的实时位移信号通过通讯线路

压井计算公式

井控公式 1.静液压力:P=0.00981ρ H MPa ρ-密度g/cm3;H-井深 m。 例:井深3000米,钻井液密度1.3 g/cm3,求:井底静液压力。 解:P=0.00981*1.3*3000=38.26 MPa 2,压力梯度: G=P/H=9.81ρ kPa/m =0.0098ρMPa; 例:井深3600米处,密度1.5 g/cm3,计算井静液压力梯度。 解:G=0.0098*1.5=0.0147MPa=14.7kPa/m 3.最大允许关井套压 Pamax =(ρ破密度-ρm)0.0098H MPa H—地层破裂压力试验层(套管鞋)垂深,m。 Ρm—井密度 g/cm3 例;已知密度1.27 g/cm3,套管鞋深度1067米,压力当量密度1.71 g/cm3,求:最大允许关井套压 解; Pamax =(1.71-1.27)0.0098*1067=4.6 MPa 4.压井时(极限)关井套压 Pamax =(ρ破密度-ρ压)0.0098H MPa Ρ压—压井密度 g/cm3 (例题略) 5.溢流在环空中占据的高度 hw=ΔV/Va m ΔV—钻井液增量(溢流),m3; Va—溢流所在位置井眼环空容积,m3/m。 6.计算溢流物种类的密度ρw=ρm- (Pa-Pd)/0.0098 hw g/cm3; ρm—当前井泥浆密度,g/cm3; Pa —关井套压,MPa; Pd —关井立压,MPa。

如果ρw在0.12~0.36g/cm3之间,则为天然气溢流。 如果ρw在0.36~1.07g/cm3之间,则为油溢流或混合流体溢流。 如果ρw在1.07~1.20g/cm3之间,则为盐水溢流。 7.地层压力 Pp =Pd+ρm gH Pd —关井立压,MPa。 ρm—钻具钻井液密度,g/cm3 8.压井密度ρ压=ρm+Pd/gH 9、(1)初始循环压力 =低泵速泵压+关井立压 注:在知道关井套压,不清楚低泵速泵压和关井立压情况下,求初始循环压力方法:(1)缓慢开节流阀开泵,控制套压=关井套压(2)排量达到压井排量时,保持套压=关井套压,此时立管压力=初始循环压力。 (2)求低泵速泵压:(Q/Q L)2=P/P L 例:已知正常排量=60冲/分,正常泵压=16.548MPa,求:30冲/分时小泵压为多少? 解:低泵速泵压P L=16.548/(60/30)2=4.137 MPa 10.终了循环压力= (压井密度/原密度)X低泵速泵压 (一)注:不知低泵速泵压,求终了循环压力方法:(1)用压井排量计算出重浆到达钻头的时间,此时立管压力=终了循环压力。边循环边加重压井法

关于动车组轮对压装曲线分析判定及建议_景彪

文章编号:1002-7602(2011)04-0040-03 关于动车组轮对压装曲线分析判定及建议 景彪 (铁道部驻太原机车车辆验收室,山西太原030009) 摘要:针对动车组轮对压装出现的不合格F-S曲线,分析了EN标准动车组轮对压装F-S曲线的正确判定方法,并提出了建议。 关键词:动车组;轮对压装;F-S曲线;判定方法;建议 中图分类号:U279.3+3文献标识码:B 目前,国内动车组轮对的生产制造依据的是欧洲技术标准(EN13260:20095铁路应用轮对和转向架轮对产品要求6、EN13261:20095铁路应用轮对和转向架车轴产品要求6、EN13262:2004+A1:20085铁路应用轮对和转向架车轮产品要求6),通过引进、消化、创新,动车组轮对已完全实现了国产化。在动车组轮对的验收过程中,发现一些典型的不合格压装F-S 曲线被误判为合格曲线。压装曲线是鉴定轮对组装质量的唯一标准,压装曲线及终点压力需要符合标准要求才能确认轮轴联结程度的可靠性,而压装质量关系到动车组的行车安全。 1动车组轮对压装F-S曲线典型实例分析 图1是2010年8月25日压装的一条CRH3) 380型动车轮对左侧车轮压装曲线。 图2是2010年3月19日压装的一条CRH3型拖车轮对左侧制动盘压装曲线。 上述2条曲线被误判为合格曲线进行交验。目前动车组轮对压装曲线的判定依据是EN标准及该型轮对的压装力要求,并通过对曲线进行目测观察做出判定,而肉眼的分辨力有限,因此给出了错误的结论。 收稿日期:2010-06-18;修订日期:2011-01-29 作者简介:景彪(1965-),男, 高级工程师。 图1CRH3)380型动车轮对 左侧车轮压装曲线 图2C RH3型拖车轮对左侧制动盘压装曲线 通过检查压装机电脑中存贮的Log界面(压装过程记录日志),发现图1中压装曲线的AB段降吨4516kN,降吨位移为28mm;图2中压装曲线过油槽部的B点压装力与A点压装力相同,但A B段位移为28mm,这说明过油槽25mm处没有恢复到油槽前的最大压装力。 保铆接质量,防止铆钉头与铆接件之间间隙过大造成门搭座断裂或门搭座脱出。 (3)在检修时对变形的下侧门折页或门搭扣要及时调修或更换,以防止门搭扣限位作用失效。建议在制做门搭扣时,将门搭扣内侧做成平面,中部外侧加厚,钻1个16mm的孔并攻丝,可用M16螺栓上紧,使螺杆顶紧小门折页(图2),并使小门折页上略低于门搭扣位置以下部分的厚度比上部厚度减少5mm左右,做成二层台。这样,当门搭扣与小门折页不密帖时,只要上紧螺栓就可防止小门与侧墙间隙过大导致散装货物漏泄,又可防止在运行中因车辆振动而使门搭扣自动弹开。如需打开小门,只要将螺栓旋出,使螺杆缩入门搭扣中即可。 (编辑:郭晖) # 40 # 运用检修铁道车辆第49卷第4期2011年4月

轮对压装知识分享

轮对压装

影响车辆轮对组装质量的因素 压装曲线 轮对是窄轨车辆的重要部件,其质量的好坏,直接影响到行车安全。作为轮对生产的重要环节——轮对的组装应引起我们的高度重视。 轮对组装采用车轴和轮毂孔的过盈配合来实现,中国地方铁路《窄轨车辆检修规则》规定:轮与轴的配合过盈量为0.14—0.25mm。利用压力组装法通过油压机的压力,将车轴的轮座压装于车轮毂中,靠金属的弹性变形的特点,采用较合理的配合过盈量,使轮对的轮毂孔做紧密的夹固接合。其配合不产生塑性变形,不松动。 鉴于车辆轮对受力复杂,使用年限长,加之轮对在制动时闸瓦和车轮磨擦产生的高热传导的轮毂会引起轮毂孔的膨胀,轴颈运转热传导到轮座会引起轮座膨胀等情况《窄轨车辆检修规则》规定压装的最终压力按轮毂孔直径计算,每100mm最小不得低于30吨,最大不得超过50吨;压力机应同时具备压力表及自动记录仪器,保持作用良好,曲线与压力表吨数差不超过5吨;正常合格的压装曲线,在压装全过程中其压力应当是均匀增长。 由于压装力的大小及压力曲线的开头直接关系到轮对的压装质量,而影响压装力和压力曲线形状的因素又较多,现仅就实际工作中易产生的几个因素加以分析。 一、轮座与轮毂孔压旋削加工时的几个形位公差对压装力的影响。 (一)配合表面粗糙度对压装力的影响

机床转速的快慢,进刀量的多少对工件表面粗糙度都有一定的影响,而在测量轮座、轮毂孔尺寸时,测点均系表面波峰值,在压装过程中,波峰值被擦平,对过盈量会产生一定的影响,使得配合的结合力减小,影响压装质量,因此在组装工艺中规定:轮毂孔加工后粗糙度为Ra1.6um,轮座的粗糙度为 Ra1.6um,Ra值的过大或过小,都会导致压装过程中出现跳“吨”现象。 (二)圆锥度对压装力的影响 为保证压装曲线逐渐上升,组装过程中沿轴线接触面的过盈值应相对稳定或趋于上升,过盈值的选取应以测量压装接触长度的中点的数值为宜,因此,如果轮座与轮毂孔圆锥度较大且方向一致时,在开始压装时,会出现压力小或没压力,而压装一定量的长度时随过盈量的增加压力迅速增大,造成曲线的长度不够;如果前端过盈量大,在压装开始时,压力上升迅速,末端过盈量小,不能继续“长吨”甚至出现“降吨”,同样造成压力曲线不合格。必须按工艺要求加工轮毂孔或轮座,组装工艺要求,轮毂孔圆锥度不超过0.05mm,但大直径必须在内侧,孔内端旋成5mm半径圆弧,外端旋成3mm半径圆弧.轮座锥度不超过 0.05mm,大直径靠轴中央部.靠防尘板座端5mm处旋成锥度,过渡部分应平滑无台阶。 (三)轮座与轮毂孔圆度对压装力的影响 如果加工好的轮座与轮毂孔的圆度值较大,在测量时可能量取椭圆的长轴或短轴,而压装时又不考虑椭圆的长轴、短轴,会引起实际过量的值与测量的值不同,造成压装吨位或曲线不合格,所以规定轮毂孔的圆度不超过0.05mm,轮座的圆度不超过0.06mm。 (四)轮毂孔与轮座的直线度对压装力的影响

双氧水中过氧化氢的测定

实验十四过氧化氢含量的测定—高锰酸钾法 【目的要求】 1.掌握高锰酸钾标准溶液的配制和标定方法。 2.学习高锰酸钾法测定过氧化氢含量的方法。 【实验原理】 H2O2是医药、卫生行业上广泛使用的消毒剂,它在酸性溶液中能被KMnO4定量氧化而生成氧气和水,其反应如下: 5H2O2+2MnO4-+6H+=2Mn2++8H2O+5O2 滴定在酸性溶液中进行,反应时锰的氧化数由+7变到+2。开始时反应速度慢,滴入的KMnO4溶液褪色缓慢,待Mn2+生成后,由于Mn2+的催化作用加快了反应速度。 生物化学中,也常利用此法间接测定过氧化氢酶的活性。在血液中加入一定量的H2O2,由于过氧化氢酶能使过氧化氢分解,作用完后,在酸性条件下用标准KMnO4溶液滴定剩余的H2O2,就可以了解酶的活性。 【仪器试剂】 台秤(0.1g)、天平(0.1mg),试剂瓶(棕色),酸式滴定管(棕色,50cm3),锥形瓶(250cm3),移液管(10cm3、25cm3);H2SO4(3 mol·dm-3),KMnO4(s),Na2C2O4(s,AR.),双氧水样品(工业)。 【实验步骤】 1. KMnO4溶液(0.02 mol·dm-3)的配制 称取1.7g 左右的KMnO4放入烧杯中,加水500cm3,使其溶解后,转入棕色试剂瓶中。放置7-10天后,用玻璃砂芯漏斗过滤。残渣和沉淀则倒掉。把试剂瓶洗净,将滤液倒回瓶内,待标定。 2. KMnO4溶液的标定 精确称取0.15~0.20g预先干燥过的Na2C2O4三份,分别置于250cm3锥形瓶中,各加入40cm3蒸馏水和10cm33 mol·dm-3H2SO4,水浴上加热直约75-85℃。趁热用待标定的KMnO4溶液进行滴定,开始时,滴定速度宜慢,在第一滴KMnO4溶液滴入后,不断摇动溶液,当紫红色退去后再滴入第二滴。溶液中有Mn2+产生后,滴定速度可适当加快,近终点时,紫红色褪去很慢,应减慢滴定速度,同时充分摇动溶液。当溶液呈现微红色并在半分钟不褪色,即为终点。计算KMnO4溶液的浓度。滴定过程要保持温度不低于60℃。 3. H2O2含量的测定: 用移液管吸取5.00cm3双氧水样品(H2O2含量约5%),置于250cm3容量瓶中,加水稀释至标线,混合均匀。

相关文档
最新文档