压装力的计算

压装力的计算
压装力的计算

摘要介绍了与传统设计不同的轮轴冷压装计算方法,设计员可节省查阅资料时间,应用新型的计算公式,能快速获得准确工艺参数,并量化轮轴设计尺寸。本文的车辆轮轴注油冷压装工艺属国内首例。此方法对机械制造工业价值巨大。

关键词轮轴冷压装轮轴注油冷压装计算公式工艺工装修复技术

一、前言

本文论述的内容,适用于铁路机车车辆、工程机械和机床制造。该技术的特点是:在轮轴冷压装设计中,既节省了查阅设计手册和行业标准所用的大量时间,又能快速获得准确工艺参数和设计量化值。工艺简单、加工方便、能有效避免轮轴配合面被擦伤,与传统的轮轴冷压装工艺设计相比,这是专业技术领域中的新思路。

二、工艺参数计算

在设计轮轴冷压装产品时,如何根据配合直径来求得合理的过盈量及冷压装吨位,这是专业工艺人员极为关注的技术难题。作者通过长期试验论证,运用数学原理推导出了下列理论计算公式,技术难题迎刃而解,现简介如下。

δ1=7×10-4D+0.06 (1)δ2=7.6×10-4D+0.09 (2)

δ3=0.5(δ1+δ2)(3)δ4=δ3-0.02 (4)

δ5=δ3+0.01 (5)δ=δ4~δ5(6)

P1=(3.11D+66)+6 (7) P2=4.88D+101 (8)

P=P1~P2(9)

δ1—粗算轮轴配合过盈量下限值mm;δ2—粗算轮轴配合过盈量上限值mm;δ3—粗算轮轴配合过盈量平均值mm;δ4—精算轮轴配合过盈量下限值mm;δ5—精算轮轴配合过盈量上限值mm;δ—轮轴配合过盈量精确值mm;D—轮轴配合直径mm;P1—轮轴冷压装吨位下限值kN;P2—轮轴冷压装吨位上限值kN;P—轮轴冷压装吨位精确值kN。

三、计算应用实例

计算图1所示的车辆轮轴采用冷压装工艺时,所需配合过盈量及压装吨位。

解:(1)计算过盈量

δ1=7×10-4D+0.06=7×10-4×182+0.06=0.19(mm)

δ2=7.6×10-4D+0.09 =7.6×10-4×182+0.09=0.23(mm)

δ3=0.5(δ1+δ2)=0.5(0.19+0.23)=0.21(mm)

δ4=δ3-0.02=0.21-0.02=0.19(mm)

δ5=δ3+0.01=0.21+0.01=0.22(mm)

δ=δ4~δ5 =0.19~0.22(mm)

(2)计算冷压装吨位

P1=(3.11D+66+6=(3.11×182+66)+6=683(kN)

P2=4.88D+101=4.88×182+101=989(kN)

P=P1~P2=683~989(kN)

以上计算出来的δ值和P值,即为所求车辆轮轴冷压装时,所需的配合过盈量和冷压装吨位。根据δ值,即可量化出车轴配合座部位的精确尺寸和车轮配合孔部位的精确尺寸。

四、轮轴机械加工

轮孔的配合表面是通过镗削加工来实现的,其表面粗糙度可按Ra3.2控制;轴座的配合表面是通过磨削加工来实现的,其表面粗糙度可按Ra1.6控制。为了保证轮轴配合面不被擦伤,轮孔两端应有R3~5mm的过渡圆弧,轴座的压装始端,应有10~13mm圆锥引入段。

五、工艺与操作

1.清洁度、过盈量、轴长中心

轮轴冷压装之前,轮孔和轴座必须用汽油刷洗干净,用量缸表和千分尺分别测量轮孔和轴座的配合直径,并以此确定二者的配合过盈量。

若轮轴配合组件是由一轴两轮组成的轮对,则确定轴长中心是轮轴冷压装配前的重要因素。具体方法是:用划规分别以有一定加工精度的轴两端或适当的对称轴肩作基准,以相同半径分别向轴长中心方向划线,若两线重合,该点即是轴长中心,若两线不重合,则折中线即是轴长中心。图2中的A、B部位即是对称轴肩,时,纵向中心线即是轴长中心。

2.冷压装

轮轴冷压装之前,应把导向套分别安装在轴两端,在导向套外表面和轴座配合表面均匀涂抹纯净的植物油(禁用桐油)之后,把轮分别套装在轴两端的导套上。用起重设备把轮轴组件水平吊起,在油压机的移动小车支架上稳放,用框式水平仪测量轴水平。准备工作就绪后,把轴端保护套安装在轴的受力一端,待压装,见图3所示。

导向套在轮轴配合冷压装中的作用是:引导轮、轴对中,避免配合面被擦伤。制造导向套时,应使其与轮、轴均为间隙配合,Q235A钢和工业尼龙为常用材料。轴端保护套的作用是:避免轴端面直接受力造成塑性变形,这种作用在轴端有螺纹时,尤为重要。

轮轴冷压装时,应使压入力作用在轴端,使用轴长中心样板尺进行同步测量,这样可保证轮内侧端面与轴长中心之间的距离不超限。一端压装完工后,把轮轴组件在油压机的移动小车支架上旋转180°,在受力轴端装好保护套,施行另一端轮轴冷压装,此时可用专用测尺按设计要求检测两轮内侧面之间的距离。压装过程不允许中途停机。

3.压力曲线

轮轴冷压装的压力曲线,是通过油压机上的自动记录仪绘制的,它是衡量轮轴冷压装质量的重要指标,轮轴过盈配合冷压装的压力参数也由此得出。冷压装时,压力曲线应均匀平稳上升,曲线中部不允许存在陡吨(压力曲线不平滑)、降吨(压力曲线朝数值减小的方向变化)等缺陷,合格的压力曲线见图4所示。压力曲线理论长度可按如下公式计算。

S=(L+A-K-r)i

S—压力曲线理论长度;L—轮毂长度;A—伸出轮毂孔外端之轴座长度;K—轮座前端锥形长度;r—压力指示器传达系数,即指示器圆筒行程比鞲鞴冲程缩短系数,可根据压力指示器构造决定。

4.修复技术

对不符合冷压装技术标准的轮轴过盈配合组件,应及时退轮检查配合面是否被擦伤,并进行修复。未能及时退轮的轮轴过盈配合组件,其放置时间不允许超过12小时。对达到压装力要求的轮轴过盈配合组件,允许原轮在原轴上重新压装一次;对压装力不足的轮轴过盈配合组件,不允许原轮在原轴上重新压装,原因是:退轮后,轮轴配合表面看起来粗糙度无变化,实际已经朝粗糙度上升的方向变化了,在这种情况下,若进行重新压装,容易出现假吨(记录仪上显示的压装力数值,比实际压装力数值大)。对压装力超限的轮轴过盈配合组件,必须重新修磨轮轴配合表面,并进行严格测量及过盈量选配后,才能重新进行压装。

六、车辆轮轴注油冷压装工艺

1.简介

车辆轮轴过盈配合注油冷压装与普通轮轴过盈配合冷压装在结构上的不同点是:前者的轮孔中部有一个环形油槽与轮毂件上的注油孔相通,见图5所示。图中各件号代表的含义为:1.车轴;2.车轮;3.高压注油管;4.注油扩压设备。压装过程中,在轮轴配合面之间注入高压油,以使轮孔产生微量扩大,所需轴向压力可随之减小。此方法既能保护轮轴配合面不被擦伤,又能方便的微调轮对内侧距。

2.工艺

轮轴过盈配合注油冷压装与普通轮轴过盈配合冷压装在工艺上的不同点,分别体现在轮轴配合部位加工、轮轴配合过盈量、向轮轴配合面之间注入高压油。其余方面二者相同。

(1)轮轴配合部位加工

车轮的配合孔在加工时,应制成有0.02~0.03mm正锥的配合孔。加工车轮配合孔的注油孔时,应使其轴向中心线与轮孔轴向中心线夹45°角。车轴的轮座在加工时,不允许有任何锥度,应确保轮座的圆柱配合面光滑及轴向平行。

(2)注油冷压装

进行轮轴注油冷压装时,注入高压油之前的压入力应逐渐上升;从过油槽起,向轮轴配合面之间注入高压油,此时的压入力开始下降。注油压装过程中,允许注油压力在100~165MPa

范围内波动,此阶段的压入力应小于未注油时的数值。压装终止时的压入力须在200kN以下。调整超限轮对内侧距的方法是:向轮轴配合面之间注入高压油,用铜棒按所需的轴向力方向振动轮,直至符合设计标准。

3.实例资料

图6所示的车辆轮轴注油冷压装曲线,是为台湾客户制造的DQJ2型桥检车轮对资料,进行轮轴注油冷压装时,所用设备为国产压装机和从日本进口的高压油泵。应用此项新工艺,为台湾客户制造出了优质产品。据国内有关专家通报,此项成功的车辆轮轴注油冷压装工艺,在我国大陆尚属首例。DQJ2型轮对尺寸与国产铁路货车8G转向架上使用的轮对尺寸相似。

七、结语

本文论述的轮轴冷压装计算与工艺,经历了长期的生产实践和验证,节省设计时间、工艺过程简化、数据准、成本低、可靠性强,均是此项新技术的突出优点。大陆和台湾岛的车辆运行可靠性,充分证明了此项技术是轮轴冷压装领域的新途径。

压边力

压边力、拉深力和拉深功的计算 录入: 151zqh 来源: 日期: 2007-4-13,11:47 一、压边力 1.压边条件 为了防止在拉深过程中,工件的边壁或凸圆起皱,应使毛坯(或半成品)被拉入凹模圆角以前,保持稳定状态,起稳定程度主要取决于毛坯的相 对厚 度,或以后各次拉深半成品的相对厚 度,拉深时是 采用压边圈的条件,列表于1。 表1 采用或不采用压边圈的条件 为了作出准确的估计,还应考虑拉深系数的大小,在实际生产中可以用下述公式计算。 锥形凹模拉深时,材料不起皱的条件是: 首次拉深 以后各次拉深

普通平端面凹模拉深时,毛坯不起皱的条件是: 首次拉深 以后各次拉深 如果不能满足上述公式要求,则可在拉深模设计时应考虑实用压边圈。 2.压边力的计算 压边圈的压力必须适当,如果过大,就需要增加拉深力,因而会使工件拉裂,而压边圈的压力过低,就会使工件的边壁或凸缘起皱。 在生产中单位压边力p可以按下表选取,压边力为压边面积乘单位压边力,即: FQ=Ap 公式中,FQ-压边力(N) A-在压边圈下毛坯的投影面积(mm2) p-单位压边力(Mpa) 压边力的计算列于表2。 表 2 压边公式的计算公式 注:—压边圈的面积; —单位压边力; —平毛坯直径;、、……—拉深件直 径;—凹模圆角半径。 P的经验公式:

式中——各工序拉深系数的倒数; ——毛坯的抗拉强度(MPa); ——材料厚度(mm); ——毛坯直径(mm)。 值亦可有表4-52或表4-53查得。 二、拉深力及拉深功 1.拉深力的计算 在确定拉深条件所需的压力机吨位时,必须先求得拉深力。如果给定了毛坯的材质,直径和板料厚度,拉深模的直径及凹模的圆角半径等,则、在拉深圆筒形件时,其最大拉深力可按下式计算: 式中——拉深力; ——材料的抗拉强度(MPa); ——材料的屈服极限(MPa); ——拉深凹模直径(mm); 对于长方形盒件,可按下面经验公式: 式中——拉深力(N);

过盈量与装配力计算公式

过盈联接 1.确定压力p; 1)传递轴向力F 2)传递转矩T 3)承受轴向力F和转矩T的联合作用 2.确定最小有效过盈量,选定配合种类; 3.计算过盈联接的强度; 4.计算所需压入力;(采用压入法装配时) 5.计算包容件加热及被包容件冷却温度;(采用胀缩法装配时) 6.包容见外径胀大量及被包容件内径缩小量。 1. 配合面间所需的径向压力p 过盈联接的配合面间应具有的径向压力是随着所传递的载荷不同而异的。 1)传递轴向力F当联接传递轴向力F时(图7-20),应保证联接在此载荷作用下,不产生轴向滑动。亦即当径向压力为P时,在外载荷F的作用下,配合面上所能产生的轴向摩擦阻力F,应大于或等于外载荷F。 图: 变轴向力的过盈联接图: 受转矩的过盈联接 设配合的公称直径为人配合面间的摩擦系数为人配合长度为l,则

F f=πdlpf

因需保证F f ≥F,故 [7-8] 2)传递转矩T当联接传递转矩T时,则应保证在此转矩作用下不产生 周向滑移。亦即当径向压力为P时,在转矩T的作用下,配合面间所能产生的摩 擦阻力矩M f 应大于或等于转矩T。 设配合面上的摩擦系数为f①,配合尺寸同前,则 M f=πdlpf·d/2 因需保证M f ≥T.故得 [7-9] ① 实际上,周向摩擦系数系与轴向摩擦系数有差异,现为简化.取两者近似相等.均以f表示。 配合面间摩擦系数的大小与配合面的状态、材料及润滑情况等因素有关,应由实验测定。表7-5给出了几种情况下摩擦系数值,以供计算时参考。 表: 摩擦系数f值 压入法胀缩法 联接零件材料无润滑时f 有润滑时f 联接零件 材料 结合方式,润滑 f 钢—铸钢0.11 0.08 钢—钢油压扩孔,压力 油为矿物油 0.125 钢—结构钢0.10 0.07 油压扩孔,压力 油为甘油,结合 面排油干净 0.18 钢—优质结构钢0.11 0.08 在电炉中加热包 容件至300℃ 0.14 钢—青铜0.150.20 0.030.06 在电炉中加热包 容件至300℃以 后,结合面脱脂 0.2 钢—铸铁0.120.15 0.050.10 钢—铸铁油压扩孔,压力 油为矿物油 0.1 铸铁—铸钢0.150..25 0.150.10 钢—铝镁无润滑0.100.15

过盈连接的设计计算书

提高扩展内容 第15章连接设计 1. 过盈连接的设计计算 教材节简单介绍过盈连接的原理、特点及应用。鉴于此连接在机械工程中广泛应用,特作如下扩展,供读者参考。 1.1过盈连接的特点及应用 过盈连接是利用连接零件间的过盈配合来实现连接的。这种连接也叫干涉配合 .. ....连接 或紧配合 ..。 ...连接 过盈连接的优点是结构简单、对中性好、承载能力大、在冲击载荷下能可靠地工作、对轴削弱少。其主要缺点为配合面的尺寸精度高、装拆困难。过盈连接主要用于轴与毂的连接、轮圈与轮芯的连接以及滚动轴承与轴或座孔的连接等。本节仅介绍圆柱面的过盈连接。 圆柱面过盈连接的设计计算 (1)过盈连接的工作原理及装配方法 1)过盈连接的工作原理 过盈连接是将外径为 d的被包容件压入内径为A d的包容件中(图)。由于配合直径 B 间有B ?的过盈量,在装配后的配合面上,便产生了一定的径向压力。当连接承受A? + 轴向力F(图)或转矩T(图)时,配合面上便产生摩擦阻力或摩擦阻力矩以抵抗和传递外载荷。 a) 圆柱面过盈连接b) 受轴向力的过盈连接

c) 受转矩的过盈连接 图圆柱面过盈连接的工作原理 2)过盈连接的装配方法 过盈连接的装配方法有压入法 ...。 ...和温差法 压入法是利用压力机将被包容件直接压入包容件中。由于过盈量的存在,在压入过程中,配合表面微观不平度的峰尖不可避免地要受到擦伤或压平,因而降低了连接的紧固性。在被包容件和包容件上分别制出如图所示的导锥,并对配合表面适当加润滑剂,可以减轻上述擦伤。 温差法是加热包容件或(和)冷却被包容件,使之既便于装配,又可减少或避免损伤配合表面,而在常温下即达到牢固的连接。加热是利用电加热,冷却采用液态空气(沸点为-副1940C)或固态二氧化碳(又名干冰,沸点为-790C)。 温差法可以得到较大的固持力,常用于配合直径较大的连接;冷却法则常用于配合直径较小时。 过盈连接的应用实例见图及。 由于过盈连接拆装会使配合面受到严重损伤,当装配过盈量很大时,装好后再拆开就更加困难。因此,为了保证多次装拆后的配合仍能具有良好的紧固性,可采用液压拆卸,即在配合面间注入高压油,以涨大包容件的内径,缩小被包容件的外径,从而使连接便于拆开,并减小配合面的擦伤。但采用这种方法时,需在包容件和(或)被包容件上制出油孔和油沟,如图所示。 图过盈装配的导向结构图曲轴过盈连接组装件

过盈配合压入力计算

轴与轴套过盈配合压入力计算公式: P=2i p lf r 2π 应为“—” 2 2 112122221 22 2223122 23 2 )()(1 2E E r r E r r r r E r r r p i μμδ - +-++-+= δ=0.075mm, r1=70mm, r2=100mm, r3=135mm, E1=E2=2.1?510Mpa, u1=u2=0.3, l=150mm , f=0.15 带入公式得: Pi= 12.3954Mpa P=1.75245 10?N =17874.48kgf (17.524t) δ=0.075mm, r1=70mm, r2=100mm, r3=135mm, E1=E2=2.1?510Mpa, u1=u2=0.3, l=190mm , f=0.15 带入公式得: Pi= 12.3954Mpa P= 2.21965 10?N =22639.92kgf (22.196t) B87C 机头衬套压入力: δ=0.078,r1=14.415,r2=25.38,r3=44.5,L=115,f=0.15 代入公式得:22.6T/26.7T ——大值是按u1起作用算得 FT160A 架体横臂压入力: δ=0.05,r1=0,r2=17,r3=25,L=37,f=0.15 代入公式得:4.9T/5.8T ——大值是按u1起作用算得

过盈联接 1.确定压力p; 1)传递轴向力F 2)传递转矩T 3)承受轴向力F和转矩T的联合作用 2.确定最小有效过盈量,选定配合种类; 3.计算过盈联接的强度; 4.计算所需压入力;(采用压入法装配时) 5.计算包容件加热及被包容件冷却温度;(采用胀缩法装配时) 6.包容见外径胀大量及被包容件内径缩小量。 1. 配合面间所需的径向压力p 过盈联接的配合面间应具有的径向压力是随着所传递的载荷不同而异的。 1)传递轴向力F当联接传递轴向力F时(图7-20),应保证联接在此载荷作用下,不产生轴向滑动。亦即当径向压力为P时,在外载荷F的作用下,配合面上所能产生的轴向摩擦阻力F,应大于或等于外载荷F。

过盈量与装配力计算公式

过盈量与装配力计算公式 过盈联接 1.确定压力p; 1)传递轴向力F 2)传递转矩T 3)承受轴向力F和转矩T的联合作用 2.确定最小有效过盈量,选定配合种类; 3.计算过盈联接的强度; 4.计算所需压入力;(采用压入法装配时) 5.计算包容件加热及被包容件冷却温度;(采用胀缩法装配时)6.包容见外径胀大量及被包容件内径缩小量。

1. 配合面间所需的径向压力p 过盈联接的配合面间应具有的径向压力是随着所传递的载荷不同而异的。1)传递轴向力F 当联接传递轴向力F时(图7-20),应保证联接在此载荷作用下,不产生轴向滑动。亦即当径向压力为P时,在外载荷F的作用下,配合面上所能产生的轴向摩擦阻力Ff,应大于或等于外载荷F。 图: 变轴向力的过盈联接图: 受转矩的过盈联接. 设配合的公称直径为人配合面间的摩擦系数为人配合长度为l,则 F =πdlpf f因需保证F≥F,故f [7-8] 2)传递转矩T 当联接传递转矩T时,则应保证在此转矩作用下不产生周向滑移。亦即当径向压力为P时,在转矩T的作用下,配合面间所能产生的摩擦阻力矩M应大于或等于转矩T。f①,配合尺寸同前,则设配合面上的摩擦系 数为f M =πdlpf·d/2f因需保证M ≥T.故得f [7-9] ①实际上,周向摩擦系数系与轴向摩擦系数有差异,现为简化.取两者近似相等.均以f表示。 配合面间摩擦系数的大小与配合面的状态、材料及润滑情况等因素有关,应由实验测定。表7-5给出了几种情况下摩擦系数值,以供计算时参考。 表: 摩擦系数f值 压入法胀缩法 联接零件材有润滑时联接零件材无润滑时f 结合方式,润滑 f 料 f 料 油压扩孔,压力油钢—铸钢 0.11 0.08 0.125 为矿物油 油压扩孔,压力油钢—结构钢 0.10 0.07 为甘油,结合面排0.18 油干净钢—钢钢—优质结在电炉中加热包0.11 0.08 0.14 构钢 容件至300℃ 在电炉中加热包钢—青铜 0.15?0.20 0.03?0.06 容件至300℃以0.2 后,结合面脱脂 油压扩孔,压力油钢—铸铁 0.12?0.15 0.05?0.10 钢—铸铁 0.1 为矿物油 钢—铝镁合铸铁—铸钢 0.15?0..25 0.15?0.10 无润滑 0.10?0.15 金 3)承受轴向力F和转矩T的联合作用 此时所需的径向压力为

过盈连接设计计算

过盈连接计算 如图所示为一过盈连接的缸套,其材料为45钢,结构尺寸如图所示,试计算内缸套压出力。 解: 1)确定最大径向压力P max 首先按所选的标准过盈配合种类查算出最大过盈量,由图知,缸套的配合为 H7/p6,查机械设计手册,其孔公差为520265+φ,轴公差为8856265+ +φ,此标准配合产 生的最大过盈量m μδ880-88max ==。 因采用压入法装配,考虑配合表面微观峰尖被檫去)R 0.8(R 2u z2z1+=,故装配后可能产生的最大径向力P max 按以下公式计算。 3 2211Z2Z1max max 10)E C E C d() R (R 8.0-?++=δP (1) 式(1)中,max δ为最大过盈量; z1R 、z2R 分别为被包容件及包容件配合表面微观不平度的十点高度,由于缸套表面粗糙度为12.5,查机械设计手册,可知z1R =z2R =50m μ; d 为配合的公称直径,mm ;

C 1为被包容件的刚性系数,121 22 121--μd d d d C +=; C 2为被包容件的刚性系数,22222 222-μ++=d d d d C ; 1E 、2E 分别为被包容件与包容件材料的弹性模量,MPa ; 1d 、2d 分别为被包容件的内径和包容件的外径,mm ; 1μ、2μ分别为被包容件与包容件材料的泊松比。对于45钢,3.0=μ。 结合图尺寸,可计算刚性系数: 9.8250.3-240-265240265--222 21212 121≈+=+=μd d d d C 8.4020.3265-300265300-222 222222222≈++=++=μd d d d C 则,最大径向压力为: a 0.3481010 2.18.402102.19.82426550500.8-8810)E C E C d() R (R 8.0-3553 2211Z2Z1max max MP P ≈??+??+?=?++=)()(δ 再有手册查取包容件缸套材料为45钢的屈服极限a 28021MP S S ==σσ。根据不出现塑性变形的检验公式: 对被包容内表层:12 212max 2d -S d d p σ≤ (2) 对包容内表层:244 22 22max 3d -S d d d p σ+≤ (3) 因此,对于被包容件内表层: a 25.1692802652240-2652d -2 2 212212MP d d S ≈??=σ 对于包容件内表层: 32.385MPa 2802563003265-3003d -4422244 22 22≈?+?=+S d d d σ 因25.169MPa a 0.348max <<=MP p ,即内缸套强度足够;同理, 32.385MPa a 0.348max <<=MP p ,即外缸套强度足够。

过盈配合抱紧力计算与校核

抱紧力计算与校核 一、过盈配合的基本参数 过盈连接是利用零件间的配合过盈来实现连接。这种连接结构简单,定心精度好,可承受转矩、轴向力或两者的复合载荷,承载能力高;缺点是结合面加工精度要求较高,装配不便,配合面边缘处应力集中较大。其主要装配方法有三种:压入法、温差法、液压法。该产品推力轴承与轴之间的过盈配合采用压入法,为纵向过盈联接。 计算基本参数及其含义如表1-1所示。 表1-1计算基本参数及其含义表 二、传递载荷所需要的最小结合压力 过盈联接的结合面间的结合压力,即径向压力,与该结合面所传递的载荷大小有关。如图2-1所示。

图2-1受轴向力及转矩示意图 2.1承受传递转矩T 当轴与轴套传递启动转矩时,则应保证在此转矩作用下不产生周向滑移。亦即当结合压力为时,在启动转矩的作用下,配合面间所能产生的摩擦阻力矩应大于或等于启动转矩。 结合面的摩擦阻力距为, 为了保证,则有, 即有,结合面最小结合压力满足 2.2承受轴向力F 当轴与轴套传递轴向力时,应保证联接在此载荷作用下,不产生轴向滑动。亦即当径向压力为时,在轴向力的作用下,配合面上所能产生的轴向摩擦阻力应大于或等于轴向力。

结合面的摩擦阻力为, 为了保证,则有, 即有,结合面最小结合压力满足 2.3承受轴向力与转矩的联合作用 记联合作用所产生的合力为,则有 推理同上,最终得到 三、传递载荷所需要的最小过盈量 3.1包容件直径比与传递载荷所需的最小直径变化量 1)包容件直径比,即结合直径除以包容件外径, 2)包容件传递载荷所需的最小直径变化量,即包容件内径的扩大量,

其中系数满足, 3.2被包容件直径比与传递载荷所需的最小直径变化量 1)被包容件直径比,即被包容件内径除以结合直径, 2)被包容件传递载荷所需的最小直径变化量,即被包容件外径的缩小量, 其中系数满足, 3.3传递载荷所需的最小有效过盈量 传递载荷所需的最小有效过盈量记为δ,则 3.4考虑压平量的最小过盈量 考虑压平量的最小过盈量满足, 对于纵向过盈连接,取

压装力的计算

摘要介绍了与传统设计不同的轮轴冷压装计算方法,设计员可节省查阅资料时间,应用新型的计算公式,能快速获得准确工艺参数,并量化轮轴设计尺寸。本文的车辆轮轴注油冷压装工艺属国内首例。此方法对机械制造工业价值巨大。 关键词轮轴冷压装轮轴注油冷压装计算公式工艺工装修复技术 一、前言 本文论述的内容,适用于铁路机车车辆、工程机械和机床制造。该技术的特点是:在轮轴冷压装设计中,既节省了查阅设计手册和行业标准所用的大量时间,又能快速获得准确工艺参数和设计量化值。工艺简单、加工方便、能有效避免轮轴配合面被擦伤,与传统的轮轴冷压装工艺设计相比,这是专业技术领域中的新思路。 二、工艺参数计算 在设计轮轴冷压装产品时,如何根据配合直径来求得合理的过盈量及冷压装吨位,这是专业工艺人员极为关注的技术难题。作者通过长期试验论证,运用数学原理推导出了下列理论计算公式,技术难题迎刃而解,现简介如下。 δ1=7×10-4D+0.06 (1)δ2=7.6×10-4D+0.09 (2) δ3=0.5(δ1+δ2)(3)δ4=δ3-0.02 (4) δ5=δ3+0.01 (5)δ=δ4~δ5(6) P1=(3.11D+66)+6 (7) P2=4.88D+101 (8) P=P1~P2(9) δ1—粗算轮轴配合过盈量下限值mm;δ2—粗算轮轴配合过盈量上限值mm;δ3—粗算轮轴配合过盈量平均值mm;δ4—精算轮轴配合过盈量下限值mm;δ5—精算轮轴配合过盈量上限值mm;δ—轮轴配合过盈量精确值mm;D—轮轴配合直径mm;P1—轮轴冷压装吨位下限值kN;P2—轮轴冷压装吨位上限值kN;P—轮轴冷压装吨位精确值kN。 三、计算应用实例 计算图1所示的车辆轮轴采用冷压装工艺时,所需配合过盈量及压装吨位。 解:(1)计算过盈量 δ1=7×10-4D+0.06=7×10-4×182+0.06=0.19(mm) δ2=7.6×10-4D+0.09 =7.6×10-4×182+0.09=0.23(mm) δ3=0.5(δ1+δ2)=0.5(0.19+0.23)=0.21(mm) δ4=δ3-0.02=0.21-0.02=0.19(mm)

压入力计算

8 计算与校核 [21] 8.1过盈配合装配压入力的计算 在立式轴承压装机邀标文件的技术要求中明确指出锥轴承外圈与轴承孔配合为过渡配合,故采用过盈配合装配压入力的计算方法。方法如下: 过盈配合装配压入力的计算方法 μπf f f L d p P max = 其中:P —压入力,N max f p —结合表面承受的最大单位压力,2/mm N f d —结合直径,mm f L —结合长度,mm μ—摩擦系数 结合表面最大单位压力计算公式: ) (max max i i a a f f E C E C d p += δ 其中: max δ —最大过盈量,mm a C 、i C —系数; a E 、i E —包容件和被包容件的材料弹性模量,2/mm N 系数a C 、i C 计算方法如下: ν+-+= 2222f a f a a d d d d C ν--+= 2222i f i f i d d d d C a d 、i d 分别为包容件外径和被包容件内径(实心轴i d =0),mm

ν—泊松系数 压装机所需的压力一般为压入力的3~3.5倍 表8.1常用材料的摩擦系数表 摩擦系数μ 材料 无润滑有润滑 钢-钢0.07~0.16 0.05~0.13 钢-铸钢0.11 0.07 钢-结构钢0.10 0.08 钢-优质结构钢0.11 0.07 钢-青铜0.15~0.20 0.03~0.06 钢-铸铁0.12~0.15 0.05~0.10 铸铁-铸铁0.15~0.25 0.05~0.10 表8.2常用材料弹性模量、泊松系数 材料弹性模量E 泊松系数ν碳钢196~216 0.24~0.28 低合金钢、合金结构钢186~206 0.25~0.30 灰铸铁78.5~157 0.23~0.27 铜及其合金72.6~128 0.31~0.42 铝合金70 0.33 轴承为标准件,采用轴承钢GCr15;压头的材料选用高级优质碳素工具钢T10A,其密度是7.85g/cm3,特点是容易锻造、加工性能良好、价格便宜,能够承受冲击、硬度高,应用于不受剧烈冲击的高硬度耐磨工具,如车刀、刨刀、冲头、丝锥、钻头、手锯条。 依据公式分别计算八、九档箱中壳的中间轴、二轴轴承外圈的压入力。

纸箱边压耐破的计算

1.耐破强度:BST(Bursting Strength Test) 耐破强度是静态破裂强度,单位千帕(Kpa)。耐破强度可由耐破强度测试仪 测定。瓦 楞原纸和箱纸板等原料的耐破强度符合相关标准,瓦楞纸板的耐破强度可以由 所用的 原料推测得出,它等于各层箱纸板的耐破强度之和再乘以系数0.95,与瓦楞层 无关。 例如,单瓦楞纸板和双瓦楞纸板的耐破强度分别计算如下: 单瓦楞纸板(耐破强度)BST=(面纸BST+里纸BST)×0.95 双瓦楞纸板(耐破强度)BST=(面纸BST+夹芯BST里纸BST)*0.95 因为瓦楞纸板各层箱纸板之间有空隙,缓冲能力增加了,但是更容易被各个 击破,所 以上述公式中,各层箱纸板的耐破强度之和再乘以系数0.95得到的结果,才与 实际情况相符。耐破强度与瓦楞层无关,是因为:一方面,瓦楞层的耐破强度 比箱纸板低得 多,另一方面,由于耐破强度是静态耐破裂强度,瓦楞层的缓冲更大,从而大 大降低其耐破强度,以至于可忽略不计。 推荐仪器:HK-201耐破强度测试仪 2.边压强度ECT(Edge Crush Test of Corrugated Fiberboard)和环压强 度RCT(Ring Crush Test) 边压强度即瓦楞纸板的边缘压缩强度,单位牛/米(N/m)。环压强度RCT主要是指箱板 纸和瓦楞纸的横向压缩强度,单位牛/米(N/m)。瓦楞纸板的边压强度与箱板 纸和瓦 楞纸的环压强度RCT有关,计算公式如下: 单瓦楞纸板边压强度ECT=面纸RCT+里纸RCT+瓦楞纸RCT×楞率 双瓦楞纸板边压强度ECT=面纸RCT+里纸RCT+夹芯纸RCT+*层瓦楞纸 RCT×相应楞率+第二层瓦楞纸RCT×相应楞率% 国外有一些包装科研机构通过大量研究工作,归纳出一系列的计算公式,芬 兰一家包装科研机构做出了大量测试,得出的成果具有代表性,非常符合实际 情况。它认为瓦 楞纸板的边压强度可表示如下: A型单瓦楞纸板边压强度ECT=1.0(面纸RCT+里纸RCT+瓦楞纸RCT×楞率)B型单瓦楞纸板边压强度ECT=1.1(面纸RCT+里纸RCT+瓦楞纸RCT×楞率)C型单瓦楞纸板边压强度ECT=1.1(面纸RCT+里纸RCT+瓦楞纸RCT×楞率)AB型双瓦楞纸板边压强度ECT=面纸RCT+1.1×里纸RCT+1.05×夹芯纸RCT +A瓦楞纸RCT×相应楞率+B瓦楞纸RCT×相应楞率×1.1 BC型双瓦楞纸板边压强度ECT=1.1×(面纸RCT+里纸RCT+夹芯纸RCT+A 瓦楞纸RCT×相应楞率+B瓦楞纸RCT×相应楞率) 看看有用么,我其实也在找这个方面的资料,我通过这个公式计算,但是于实际还是有一定的偏差 国标中的环压指数的标准数值,是衡量原纸的抗压性能的重要指标,它是指原纸的环压强度与定量的比值,单位为Nm/g。该指标的计算公式为:Rd=1000R/W。式

过盈连接的设计计算

过盈连接的设计计算 提高扩展内容 第15章连接设计 1.过盈连接的设计计算 教材15. 4节简单介绍过盈连接的原理、特点及应用。鉴于此连接在机械工程中广泛应用,特作如下扩展,供读者参考。 1. 1过盈连接的特点及应用 过盈连接是利用连接零件间的过盈配合来实现连接的。这种连接也叫干涉配合连接((((((紧配合连接或。((((( 过盈连接的优点是结构简单、对中性好、承载能力大、在冲击载荷下能可黑地工作、对轴削弱少。其主要缺点为配合面的尺寸精度高、装拆困难。过盈连接主要用于轴与毂的连接、轮圈与轮芯的连接以及滚动轴承与轴或座孔的连接等。本节仅介绍圆柱面的过盈连接。 1.2圆柱面过盈连接的设讣讣算 (1)过盈连接的工作原理及装配方法 1)过盈连接的丄作原理 过盈连接是将外径为dd的被包容件压入内径为的包容件中(图1. la)。由于配 合BA 直径间有的过盈量,在装配后的配合面上,便产生了一定的径向压力。当连 接,A, ,B 承受轴向力F(图1. lb)或转矩T(图1. lc)时,配合面上便产生摩擦阻力或摩擦阻力矩以抵抗和传递外载荷。

d- a)圆柱面过盈连接b)受轴向力的过盈连接 c)受转矩的过盈连接 图1.1圆柱面过盈连接的工作原理 2)过盈连接的装配方法 过盈连接的装配方法有压入法和温差法。(((((( 压入法是利用压力机将被包容件直接压入包容件中。由于过盈量的存在,在压

d- 入过程中,配合表面微观不平度的峰尖不可避免地要受到擦伤或压平,因而降低了

连接的紧固性。在被包容件和包容件上分别制出如图1.2所示的导锥,并对配合表面适当加润滑剂,可以减轻上述擦伤。 温差法是加热包容件或(和)冷却被包容件,使之既便于装配,乂可减少或避免损伤配合表面,而在常温下即达到牢固的连接。加热是利用电加热,冷却采用液态空气(沸 00点为-副194C)或固态二氧化碳(乂名干冰,沸点为-79C)。 温差法可以得到较大的固持力,常用于配合直径较大的连接;冷却法则常用于配合直径较小时。 过盈连接的应用实例见图1. 3及1. 4o 山于过盈连接拆装会使配合面受到严重损伤,半装配过盈量很大时,装好后再拆开就更加困难。因此,为了保证多次装拆后的配合仍能具有良好的紧固性,可采用液压拆卸,即在配合面间注入高压油,以涨大包容件的内径,缩小被包容件的外径,从而使连接便于拆开,并减小配合面的擦伤。但采用这种方法时,需在包容件 和(或)被包容件上制出油孔和油沟,如图1.4所示。 丿―M d 图1.2过盈装配的导向结构图1.3曲轴过盈连接组装件

过盈连接的设计计算书

a )圆柱面过盈连接 b )受轴向力的过盈连接 提高扩展内容 第15章连接设计 1.过盈连接的设计计算 教材节简单介绍过盈连接的原理、特点及应用。鉴于此连接在机械工程中广泛应用, 特作如下扩展,供读者参考。 1.1过盈连接的特点及应用 过盈连接是利用连接零件间的过盈配合来实现连接的。 这种连接也叫干涉配.合.连接 或紧配合连接。 过盈连接的优点是结构简单、对中性好、承载能力大、在冲击载荷下能可靠地工作、 对轴削弱少。其主要缺点为配合面的尺寸精度高、装拆困难。过盈连接主要用于轴与毂 的连接、轮圈与轮芯的连接以及滚动轴承与轴或座孔的连接等。 本节仅介绍圆柱面的过 盈连接。 圆柱面过盈连接的设计计算 (1)过盈连接的工作原理及装配方法 1)过盈连接的工作原理 过盈连接是将外径为d B 的被包容件压入内径为d A 的包容件中(图)。由于配合直径 间有A B 的过盈量,在装配后的配合面上,便产生了一定的径向压力。当连接承受 轴向力F (图)或转矩T (图)时,配合面上便产生摩擦阻力或摩擦阻力矩以抵抗和传 递外载荷。

图圆柱面过盈连接的工作原理 2 )过盈连接的装配方法 过盈连接的装配方法有压入法.和温差法。 压入法是利用压力机将被包容件直接压入包容件中。由于过盈量的存在,在压入过 程中,配合表面微观不平度的峰尖不可避免地要受到擦伤或压平,因而降低了连接的紧 固性。在被包容件和包容件上分别制出如图所示的导锥,并对配合表面适当加润滑剂,可以减轻上述擦伤。 温差法是加热包容件或(和)冷却被包容件,使之既便于装配,又可减少或避免损伤配合表面,而在常温下即达到牢固的连接。加热是利用电加热,冷却采用液态空气(沸点为-副194°C)或固态二氧化碳(又名干冰,沸点为-79°C)。 温差法可以得到较大的固持力,常用于配合直径较大的连接;冷却法则常用于配合直径较小时。 过盈连接的应用实例见图及。 由于过盈连接拆装会使配合面受到严重损伤,当装配过盈量很大时,装好后再拆开就更加困难。因此,为了保证多次装拆后的配合仍能具有良好的紧固性,可采用液压拆卸,即在配合面间注入高压油,以涨大包容件的内径,缩小被包容件的外径,从而使连接便于拆开,并减小配合面的擦伤。但采用这种方法时,需在包容件和(或)被包容件上制出油孔和油沟,如图所示。 图过盈装配的导向结构图曲轴过盈连接组装件 c)受转矩的过盈连接

过盈量与装配力计算公式图文稿

过盈量与装配力计算公 式 文件管理序列号:[K8UY-K9IO69-O6M243-OL889-F88688]

过盈联接 1. 配合面间所需的径向压力p 过盈联接的配合面间应具有的径向压力是随着所传递的载荷不同而异的。 1)传递轴向力F当联接传递轴向力F时(图7-20),应保证联接在此载荷作用下,不产生轴向滑动。亦即当径向压力为P时,在外载荷F的作用下,配合面上所能产生的轴向摩擦阻力Ff,应大于或等于外载荷F。 图: 变轴向力的过盈联接图: 受转矩的过盈联接 设配合的公称直径为人配合面间的摩擦系数为人配合长度为l,则 =πdlpf F f 因需保证F ≥F,故 f [7-8] 2)传递转矩T当联接传递转矩T时,则应保证在此转矩作用下不产生周向滑移。亦即当径向压力为P时,在转矩T的作用下,配合面间所能产生的摩擦阻力应大于或等于转矩T。 矩M f

设配合面上的摩擦系数为f ① ,配合尺寸同前,则 M f =πdlpf·d/2 因需保证M f ≥T.故得 [7-9] ① 实际上,周向摩擦系数系与轴向摩擦系数有差异,现为简化.取两者近似相等.均以f 表示。 配合面间摩擦系数的大小与配合面的状态、材料及润滑情况等因素有关,应由实验测定。表7-5给出了几种情况下摩擦系数值,以供计算时参考。 表: 摩擦系数f 值 压 入 法 胀 缩 法 联接零件材料 无润滑时f 有润滑时f 联接零件材 料 结合方式,润滑 f 钢—铸钢 0.11 0.08 钢—钢 油压扩孔,压力油 为矿物油 0.125 钢—结构钢 0.10 0.07 油压扩孔,压力油 为甘油,结合面排油干净 0.18 钢—优质结构钢 0.11 0.08 在电炉中加热包容 件至300℃ 0.14 钢—青铜 0.150.20 0.030.06 在电炉中加热包容 件至300℃以后,结合面脱脂 0.2 钢—铸铁 0.120.15 0.050.10 钢—铸铁 油压扩孔,压力油 为矿物油 0.1 铸铁—铸钢 0.150..25 0.150.10 钢—铝镁合 金 无润滑 0.100.15 3) 承受轴向力F 和转矩T 的联合作用 此时所需的径向压力为

过盈量与装配力计算公式

过盈量与装配力计算公式The final revision was on November 23, 2020

过盈联接 1. 配合面间所需的径向压力p 过盈联接的配合面间应具有的径向压力是随着所传递的载荷不同而异的。 1)传递轴向力F当联接传递轴向力F时(图7-20),应保证联接在此载荷作用下,不产生轴向滑动。亦即当径向压力为P时,在外载荷F的作用下,配合面上所能产生的轴向摩擦阻力Ff,应大于或等于外载荷F。 图: 变轴向力的过盈联接图: 受转矩的过盈联接 设配合的公称直径为人配合面间的摩擦系数为人配合长度为l,则 F f=πdlpf 因需保证F f≥F,故 [7-8] 2)传递转矩T当联接传递转矩T时,则应保证在此转矩作用下不产生周向滑移。亦即当径向压力为P时,在转矩T的作用下,配合面间所能产生的摩擦阻力矩M f应大于或等于转矩T。

设配合面上的摩擦系数为f①,配合尺寸同前,则 M f=πdlpf·d/2 因需保证M f≥T.故得 [7-9] ① 实际上,周向摩擦系数系与轴向摩擦系数有差异,现为简化.取两者近似相等.均以f表示。 配合面间摩擦系数的大小与配合面的状态、材料及润滑情况等因素有关,应由实验测定。表7-5给出了几种情况下摩擦系数值,以供计算时参考。 表: 摩擦系数f值 压入法胀缩法 联接零件材料无润滑时 f 有润滑时 f 联接零件材 料 结合方式,润滑 f 钢—铸钢 钢—钢油压扩孔,压力油为矿物油 钢—结构钢油压扩孔,压力油为甘油,结合面排油干净 钢—优质结构钢在电炉中加热包容件至300℃ 钢—青铜在电炉中加热包容件至300℃以后,结合面脱脂 钢—铸铁钢—铸铁油压扩孔,压力油 为矿物油 铸铁—铸钢0..25 钢—铝镁合 金 无润滑 3)承受轴向力F和转矩T的联合作用此时所需的径向压力为

压边力设定

开始第一次计算时压边力可以设置成P=3Mpa,但是调整完成后应该根据计算的压边力设置成吨位,并尽可能使压边力小于实际80%的压机最大外滑块力的(双动)或最大下气垫力(单动),这样才能保证计算结果的真实可靠!! 如果计算出的压边力大于实际80%的压机最大外滑块力的(双动)或最大下气垫力(单动),则需要调整其他参数,如料片大小/拉延筋的强度/拉延模型以减小压边力,不然就算模拟结果最好,而在实际的压机上实现不了。 1.autoform中设置常压边压力,如默认值为3,它的单位是MPa吗? 2. 模拟结束后,查看压边压力的时间历程,单位显示为N/mm^2,按照单位换算:1MPa = 1N/mm^2,那么3MPa就意味着3N/mm^2,然而在后处理中,显示的最大压边压力为411N/mm^2,为什么相差这么大呢? 3. 板料单元实际承受的最大压力是否可以超过设置的压力? 一个是压强,一个是压力。你的分清,压力的单位是N。压强是N/MM2 文中提到的“压力”指压强,这一点很明确。AF中对压边圈载荷的描述也是通过压强来表示的。 我研究了一下,我提出的问题可以解释为:AF通过给定的压边圈压强p(N/mm^2)和压边圈下的板料面积A(mm^2),得出总的压边力F_holder = p * A;然后根据压边圈下单元与压边圈的接触状态和单元当前厚度,将总的压边力F_holder分配到当前承载压边力的单元或节点上。因此,当前时刻,压边圈下单元所受压边圈的压强会超过process中设置的压强值 压边力该用什么公式算啊?? 压边力跟最大拉深力有关的,,,压边力的计算也可以从各经验公式得出,,如福开,吉田经验公 式得出最小单位压边力P, 然后由F=A*P得到压边力,,,A为压边圈面积。 其实成型过程中,压边力大小是应该随着成型阶段不同而不同的,即合理的压边力是应该变化的(随压边力需求而变化的),所以通过上述等公式计算得到的值,都不是最佳值。所以,现在很多人在搞变压边力技术。 普通情况下,人们一般就是用压边圈投影到坯料的面积乘以单位面积的压力所得的,也有人告诉我说差不多分模线1m/20t 来初定压边力.不过好像差得蛮大的 不管用什么方法得出的压边力值,都只是估算,实际调模会有很多现实条件的,也就是说不在理想状况下的。 我用的是: 压边力F=P*S 其中,P是最小单位压力(由经验公式得出) S是压边圈在坯料垂直方向的投影。 这个方法是对的,但是具体的压边力仍然需要根据零件的材料性能、模具拉延筋的情况和润滑、零件的拉延深度等等在试模时试验确定。对低碳钢,有资料说:p取2.5—3MPa。我都是这样大致算了,在Dynaform里面成型模拟,然后看变形情况后调整,一般差得不是太大,在实际中,我遇到有好多间压边力多个5T左右好像没什么大的影响!说是一般朝大的方向去压边力,尽量使零件充分变形,有拉破的地方也是很容易调整的! 我搞的就是变压边力,其实金属在拉深过程中都存在一个安全窗口,而压边力的目的是为了;不让其起皱,但是压边力又会引起板料的拉裂,所以我们可以加载最小压便力就行,最简单的

轴承压装力计算式

轴承压装力计算式

————————————————————————————————作者:————————————————————————————————日期:

压装时的主要要求为: 1)压装时不得损伤零件 2)压入时应平稳,被压入件应准确到位。 3)压装的轴或套引入端应有适当导锥,但怠锥长度不得大于配合长度的15%,导向斜角一10°。 4)将实心轴压入盲孔,应在适当部位有排气孔或槽。 5)压装零件的配合表面除有特殊要求外,在压装时应涂以清洁的润滑剂。 6)用压力机压入时,压入前应根据零件的材料和配合尺寸,计算所需的压入力。压力机的为所需压入力的3~3.5倍,压入力的计算方法如下: 58-22 材料摩擦系数 村料摩擦因数μ(无润滑)摩擦因数μ(有润滑) 钢一钢0.07~0.16 0.05~0.13 钢—铸钢0.11 0.07 钢一结构钢0.10 0.08 钢一优质结构0.11 0.07 钢—青铜0.15~0.20 0.03~0.06 钢—铸铁0.12~0.15 0.05~0.10 铸铁—铸铁0.15~0.25 0.05~0.10

表58-23,常用材料的弹性模量,线胀系数 材料弹性模量E/(KN/mm2)泊松比v 线胀系数a/(10-6/℃加热冷却 碳钢、低合金钢、合金结 构钢 200~235 0.30~0.31 11 —8.5 灰铸铁(HT150、HT200)70~80 0.24~0.25 11 —9 灰铸铁(HT250、HT300)105~130 0.24~0.26 10 —8 可锻铸铁90~100 0.25 10 —8 非合金球墨铸铁160~180 0.28~0.29 10 —8 青铜85 0.35 17 —15 黄铜80 0.36~0.37 18 —16 铝合金69 0.32~0.36 21 —20 镁铝合金40 0.25~0.30 25.5 —25

瓦楞纸板的边压强度和耐破强度计算公式

创作编号: GB8878185555334563BT9125XW 创作者:凤呜大王* 瓦楞纸板的边压强度和耐破强度计算公式: 1.耐破强度:BST(Bursting Strength Test) 耐破强度是静态破裂强度,单位千帕(Kpa)。耐破强度可由耐破强度测试仪测定。瓦 楞原纸和箱纸板等原料的耐破强度符合相关标准,瓦楞纸板的耐破强度可以由所用的原料推测得出,它等于各层箱纸板的耐破强度之和再乘以系数0.95,与瓦楞层无关。例如,单瓦楞纸板和双瓦楞纸板的耐破强度分别计算如下: 单瓦楞纸板(耐破强度)BST=(面纸BST+里纸BST)×0.95 双瓦楞纸板(耐破强度)BST=(面纸BST+夹芯BST 里纸BST)*0.95 因为瓦楞纸板各层箱纸板之间有空隙,缓冲能力增加了,但是更容易被各个击破,所 以上述公式中,各层箱纸板的耐破强度之和再乘以系数0.95得到的结果,才与实际情况相符。耐破强度与瓦楞层无关,是因为:一方面,瓦楞层的耐破强度比箱纸板低得多,另一方面,由于耐破强度是静态耐破裂强度,瓦楞层的缓冲更大,从而大大降低其耐破强度,以至于可忽略不计。 2.戳穿强度PET(Puncture Energy Test) 戳穿强度是动态破裂强度,单位焦耳(J)。它真实的反应了瓦楞纸板和纸箱受冲击的情况。戳穿强度的确定比耐破强度复杂的多,因为它不仅与箱板纸有关,还与瓦楞层有关。戳穿强度与耐破强度两者线性相关,实际推测中,可以根据耐破强度得到大致的戳穿强度,计算公式如下:PET=0.0054BST+2.16358 3.边压强度ECT(Edge Crush Test of Corrugated Fiberboard)和环压强度RCT(Ring Crush Test)

过盈联接压入力计算

过盈联接压入力计算 1.确定压力p; 1)传递轴向力F 2)传递转矩T 3)承受轴向力F和转矩T的联合作用 2.确定最小有效过盈量,选定配合种类; 3.计算过盈联接的强度; 4.计算所需压入力;(采用压入法装配时) 5.计算包容件加热及被包容件冷却温度;(采用胀缩法装配时) 6.包容见外径胀大量及被包容件内径缩小量。 1. 配合面间所需的径向压力p 过盈联接的配合面间应具有的径向压力是随着所传递的载荷不同而异的。 1)传递轴向力F当联接传递轴向力F时(图7-20),应保证联接在此载荷作用下,不产生轴向滑动。亦即当径向压力为P时,在外载荷F的作用下,配合面上所能产生的轴向摩擦阻力F,应大于或等于外载荷F。 图: 变轴向力的过盈联接图: 受 转矩的过盈联接 设配合的公称直径为人配合面间的摩擦系数为人配合长度为l,则 F f=πdlpf

因需保证F ≥F,故 f [7-8] 2)传递转矩T当联接传递转矩T时,则应保证在此转矩作用下不产生周向滑移。亦即当径向压力为P时,在转矩T的作用下,配合面间所能产生的摩擦阻力矩M 应大于或等于转矩T。 f 设配合面上的摩擦系数为f①,配合尺寸同前,则 M f=πdlpf·d/2 ≥T.故得 因需保证M f [7-9] ① 实际上,周向摩擦系数系与轴向摩擦系数有差异,现为简化.取两者近似相等.均以f表示。 配合面间摩擦系数的大小与配合面的状态、材料及润滑情况等因素有关,应由实验测定。表7-5给出了几种情况下摩擦系数值,以供计算时参考。 表: 摩擦系数f值 0.150.20 0.030.06 0.120.15 0.050.10 0.150..25 0.150.10 0.100.15

过盈联接压入力计算

过盈联接压入力计算 1. 配合面间所需的径向压力p 过盈联接的配合面间应具有的径向压力是随着所传递的载荷不同而异的。 1)传递轴向力F当联接传递轴向力F时(图7-20),应保证联接在此载荷作用下,不产生轴向滑动。亦即当径向压力为P时,在外载荷F的作用下,配合面上所能产生的轴向摩擦阻力F,应大于或等于外载荷F。 图: 变轴向力的过盈联接图: 受 转矩的过盈联接 设配合的公称直径为人配合面间的摩擦系数为人配合长度为l,则 F f=πdlpf

因需保证F ≥F,故 f [7-8] 2)传递转矩T当联接传递转矩T时,则应保证在此转矩作用下不产生周向滑移。亦即当径向压力为P时,在转矩T的作用下,配合面间所能产生的摩擦阻力矩M 应大于或等于转矩T。 f 设配合面上的摩擦系数为f①,配合尺寸同前,则 M f=πdlpf·d/2 因需保证M ≥T.故得 f [7-9] ① 实际上,周向摩擦系数系与轴向摩擦系数有差异,现为简化.取两者近似相等.均以f表示。 配合面间摩擦系数的大小与配合面的状态、材料及润滑情况等因素有关,应由实验测定。表7-5给出了几种情况下摩擦系数值,以供计算时参考。 表: 摩擦系数f值

3)承受轴向力F和转矩T的联合作用 此时所需的径向压力为 [7-10] 2. 过盈联接的最小有效过盈量δmin 根据材料力学有关厚壁圆筒的计算理论,在径向压力为 P时的过盈量为 Δ=pd(C 1/E 1 +C 2 /E 2 ) ×103,则由上式可知,过盈联接传递载荷所需的最小过盈量 应为 [7-11]式中: p——配合W问的任向活力,由式(7~8)~(7~10)计算;MPa; d——配合的公称直径,mm; E 1、E 2 ——分别为被包容件与包容件材料的弹性模量,MPa; C 1 ——被包容件的刚性系数 C 2 ——包容件的刚性系数 d 1、d 2 ——分别为被包容件的内径和包容件的外径,mm;

相关文档
最新文档