正弦型函数的图像变换

正弦型函数的图像变换
正弦型函数的图像变换

课堂练习:

1. 将函数y=sin2x 的图象向左平移6

π

个单位,则平移后的图象的解析式为( ) A .y=sin(2x+6π) B .y=sin(2x+3π) C .y=sin(2x -6π) D .y=sin(2x -3

π

)

2. 要得到函数2sin(2)4

y x p

=+(x ?R )的图象,只需将函数2sin 2y x =(x ?R )

的图象上所有的点( )

A .向左平行移动4p 个单位长度 B. 向右平行移动4p

个单位长度 C. 向左平行移动8p 个单位长度 D. 向右平行移动8

p

个单位长度

3.

4.把函数sin(2)4

y x π

=+的图象向右平移

8

π

个单位,再把所得图象上各点的横坐标缩短到原来的1

2

,则所得图象的解析式为 ( )

A .3sin(4)8y x π=+

B .sin(4)8

y x π

=+ C .sin 4y x = D .sin y x = 5. 将函数sin()3

y x π

=-

的图象上所有点的横坐标伸长到原来的2倍(纵坐标不变),再

将所得的图象向左平移

3

π

个单位,得到的图象对应的解析式是 ( ) A 1sin 2y x = B 1sin()22y x π=- C 1sin()26y x π=- D sin(2)6

y x π

=-

6.要得到函数)3

2sin(2π

+=x y 的图象,只须将函数x y sin 2=的图象 ( )

A .向左移3π

个单位,再把所有点的横坐标伸长到原来的2倍,纵坐标不变

B .向右移3π

个单位,再把所有点的横坐标伸长到原来的2倍,纵坐标不变

C .向左移3

π个单位,再把所有点的横坐标缩短到原来的21

倍,纵坐标不变

D .向右移3

π个单位,再把所有点的横坐标缩短到原来的21

倍,纵坐标不变

7.要得到函数y=cos(42π-x )的图象,只需将y=sin 2

x

的图象( )

A .向左平移

2π个单位 B.同右平移2π

个单位 C .向左平移4π个单位 D.向右平移4

π

个单位

8.将函数sin(2)3y x π=-的图象先向左平移3

π

,然后将所得图象上所有的点的横坐标变

为原来的2倍(纵坐标不变),则所得到的图象对应的函数解析式为___________. 9.已知函数)(x f y =的图象上的每一点的纵坐标扩大到原来的4倍,横坐标扩大到原来的2倍,然后把所得的图象沿x 轴向左平移

2

π

,这样得到的曲线和x y sin 2=的图象相同,则已知函数)(x f y =的解析式为_______________________________. 10. ①利用“五点法”画出函数)6

21sin(

π

+=x y 在长度为一个周期的闭区间的简图并说明该函数图象可由y=sinx (x ∈R )的图象经过怎样变换得到的。 ②求函数)6

21sin(π

+=x y 的所有对称点与对称轴

11.已知函数f(x)=sin(ωx+

3

π

)(ω>0)的最小正周期为π,则该函数的图象 ( ) A .关于点(

,0)对称 B .关于直线x=

4

π

对称

C .关于点(

4

π

,0)对称 D .关于直线x=

3

π

对称 12.函数y =4sin ?

???2x -π

6的图象的一个对称中心是( ) A.????π12,0

B.????π3,0

C.???

?-π

6,0 D.????

π6,0

13. 设函数f (x )=A sin(ωx +φ)(

A ≠0,ω>0,

??|φ|<π2的图象关于直线x =2π

3

对称,它的周期是π,则( )

A .f (x )的图象过点????0,12

B .f (x )在????5π12,2π

3上是减函数 C .f (x )的一个对称中心是????

5π12,0 D .f (x )的最大值是A

14.关于函数f(x)=4sin(2x+π

3

) (x ∈R),有下列命题:

(1)y=f(x )的表达式可改写为y=4cos(2x-π

6 );(2)y=f(x )是以2π为最小正周期的周期函

数;(3)y=f(x ) 的图象关于点(---π6 ,0)对称;(4)y=f(x ) 的图象关于直线x=---π

6 对称;

其中正确的命题序号是___________.

〖解〗C

将函数y=sin(2x - π3)的图象先向左平移π

6,然后将所得图象上所有点的横坐标变为原

来的2倍(纵坐标不变),则所得到的图象对应的函数解析式为 ( )

A .y= - cosx

B .y=sin4x

C . y=sin(x-π

6

)

D .y=sinx

〖例〗将函数x y 4sin =的图象向左平移12

π

个单位,得到)4sin(?+=x y 的图象,则?等于( ) A .12

π-

B .3

π

-

C .

3π D .

12

π 〖解〗C

例〗要得到函数y=3sin(2x -4

π

)的图象,可以将函数y=3sin2x 的图象沿x 轴 A .向左平移4π个单位 B .向右平移4π

个单位

C .向左平移8π个单位

D . 向右平移8

π

个单位

〖解〗D

已知函数2sin 23y x π??

=+

??

?

? (1)用五点法画出此函数在区间5,66ππ??

-???

?内的简图;

(2)求此函数的单调地增区间?

〖解〗解: (1)列表如下;

描点连线可以得到下图:

(2)由222,2

3

2

k x k k Z π

π

π

ππ-+≤+

+∈,

得5,1212

k x k k Z ππ

ππ-

+≤≤+∈ ∴该函数的单调递增区间是5,,1212k k k Z ππππ??

-

++∈????

为了得到函数)3

2sin(π

+=x y 的图像,可以将x y 2sin =的图像 ( )

A.向右平移

6π个单位 B.向左平移6π

个单位 C.向右平移3π个单位 D.向左平移3

π

个单位

〖解〗B 〖例〗 〖解〗A

〖例〗将函数sin(2)3

y x π

=+

的图象经怎样平移后所得的图象关于点(,0)12

π

-

中心对称

( ) A .向左平移

12π B .向左平移6π C .向右平移12π D .向右平移6

π 〖解〗C

〖例〗将函数y=sin2x 的图象向左平移6

π

个单位,则平移后的图象的解析式为( ) A .y=sin(2x+6π) B .y=sin(2x+3π) C .y=sin(2x -6π) D .y=sin(2x -3

π

)

〖解〗B

〖例〗(1)利用“五点法”画出函数)6

21sin(

π

+=x y 在长度为一个周期的闭区间的简图 列表: 作图:

(2)并说明该函数图象可由y=sinx (x ∈R )的图象经过怎样变换得到的。 〖解〗解、先列表,后描点并画图

(2)把y=sinx 的图象上所有的点向左平移

6

π个单位长度,得到)6sin(π

+=x y 的图象,

再把所得图象的横坐标伸长到原来的2倍(纵坐标不变),得到)6

21sin(π

+=x y 的图象。

或把y=sinx 的图象横坐标伸长到原来的2倍(纵坐标不变),得到x y 2

1

sin =的图象。

再把所得图象上所有的点向左平移3

π个单位长度,得到)3(21sin π

+=x y ,即

)6

21sin(π

+=x y 的图象。

〖例〗 〖解〗C

要得到函数∈-=x x y ),3

2sin(π

R 的图象,只需将函数∈=x x y ,2sin R 图象上所有的

点( ) (A )向左平行移动6

π

个单位长度 (B )向右平行移动6

π

个单位长度

(C )向左平行移动

3

π

个单位长度

(D )向右平行移动

3

π

个单位长度

〖解〗B 〖例〗〖解〗

sin 3y x π?

?=+ ??

?

〖例〗要得到函数)3

2sin(2π

+

=x y 的图象,只须将函数x y sin 2=的图象 ( )

A .向左移

个单位,再把所有点的横坐标伸长到原来的2倍,纵坐标不变 B .向右移3π

个单位,再把所有点的横坐标伸长到原来的2倍,纵坐标不变

C .向左移3

π个单位,再把所有点的横坐标缩短到原来的21

倍,纵坐标不变

D .向右移3

π个单位,再把所有点的横坐标缩短到原来的21

倍,纵坐标不变

〖解〗C

〖例〗要得到函数y =sin(2x -)6

π

的图像,只需将函数y =cos 2x 的图像 ( ) A .向右平移6π个单位 B .向左平移6π

个单位

C .向右平移3π个单位

D .向左平移3

π

个单位

〖解〗C

〖例〗要得到函数)3

2sin(π

-

=x y 的图象,只需将函数x y 2sin =的图象( )

A .向左平移π3

B .向右平移π3

C .向右平移π6

D .向左平移π

6

〖解〗C

〖例〗已知函数3sin(2)6

y x π=+.

⑴ 用“五点法”作出函数在一个周期上的简图;

⑵ 由sin y x =的图像作怎样的变换就得到函数3sin(2)6

y x π=+的图像.

〖解〗①列表如下:3sin(2)

y x π=+

②sin y x =的图像作怎样的变换就得到函数3sin(2)6

y x π=+的图像. 第一(相位变换):将y=sinx 左平移

6π个单位,得到y=sin(x+6

π

);

第二(周期变换):将y=sin(x+6

π)横坐标缩短为原来的12,得到sin(2)6y x π=+;

第三(振幅变换):将sin(2)6y x π=+纵坐标扩大为原来的3倍,得到3sin(2)6

y x π

=+

〖例〗为了得到x y 3sin =的图像只需把)6

3sin(π

+=x y 的图像( )

A 向左平移 6π个单位

B 向左平移18π个单位

C 向右平移6

π个单位 D 向右平移

18π

个单位

〖解〗D

教案正弦型函数的图像和性质

教案 正弦型函数的图像和性质 1.,,A ω?的物理意义 当sin()y A x ω?=+,[0,)x ∈+∞(其中0A >,0ω>)表示一个振动量时,A 表示这个量振动时离开平衡位置的最大距离,通常称为这个振动的振幅,往复振动一次需要的时间2T π ω = 称为这个振动的周期,单位时间内往复振动的次数12f T ω π = = ,称为振动的频率。x ω?+称为相位,0x =时的相位?称为初相。 2.图象的变换 例 : 画出函数3sin(2)3 y x π =+的简图。 解:函数的周期为22 T π π= =,先画出它在长度为一个周期内的闭区间上的简图,再 函数3sin(2)3 y x π =+ 的图象可看作由下面的方法得到的: ①sin y x =图象上所有点向左平移 3 π 个单位,得到sin()3y x π=+的图象上;②再把 图象上所点的横坐标缩短到原来的12,得到sin(2)3 y x π =+的图象;③再把图象上所有点 的纵坐标伸长到原来的3倍,得到3sin(2)3 y x π =+的图象。 x y O π 3 π- 6 π- 53 π 2π sin(3 y x π =+ sin(2)3 y x π =+ sin y x = 3sin(23 y x π =+

一般地,函数sin()y A x ω?=+,x R ∈的图象(其中0A >,0ω>)的图象,可看作由下面的方法得到: ①把正弦曲线上所有点向左(当0?>时)或向右(当0?<时)平行移动||?个单位长度; ②再把所得各点横坐标缩短(当1ω>时)或伸长(当01ω<<时)到原来的 1 ω 倍(纵坐标不变); ③再把所得各点的纵坐标伸长(当1A >时)或缩短(当01A <<时)到原来的A 倍(横坐标不变)。 即先作相位变换,再作周期变换,再作振幅变换。 问题:以上步骤能否变换次序? ∵3sin(2)3sin 2()36y x x π π=+ =+,所以,函数3sin(2)3 y x π =+的图象还可看作 由下面的方法得到的: ①sin y x =图象上所点的横坐标缩短到原来的 1 2 ,得到函数sin 2y x =的图象; ②再把函数sin 2y x =图象上所有点向左平移6 π 个单位,得到函数sin 2()6y x π=+的 图象; ③再把函数sin2()6y x π =+的图象上所有点的纵坐标伸长到原来的3倍,得到3sin 2() 6 y x π=+的图象。 3.实际应用 例1:已知函数sin()y A x ω?=+(0A >,0ω>)一个周期内的函数图象,如下图 所示,求函数的一个解析式。 又∵0A > ,∴A = 由图知 52632 T πππ=-= ∴2T π πω ==,∴2ω=, 又∵157()23612 πππ+=, ∴图象上最高点为7( 12 π , ∴7)12π?=?+,即7sin()16π?+=,可取23 π?=-, 所以,函数的一个解析式为2)3 y x π =-. 2.由已知条件求解析式 例2: 已知函数cos()y A x ω?=+(0A >,0ω>,0?π<<) 的最小值是5-, 图x 3 3 π 56 π 3 O

三角函数图像变换小结(修订版)

★三角函数图像变换小结★ 相位变换: ①()sin sin()0y x y x ??=→=+> 将sin y x =图像沿x 轴向左平移?个单位 ②()sin sin()0y x y x ??=→=+< 将sin y x =图像沿x 轴向右平移?个单位 周期变换: ①sin sin (01)y x y wx w =→=<< 将sin y x =图像上所有点的纵坐标不变,横坐标伸长为原来的 w 1倍 ②sin sin (1)y x y wx w =→=>将sin y x =图像上所有点的纵坐标不变,横坐标缩短为原来的 w 1倍 振幅变换: ①()sin sin 01y x y A x A =→=<<将sin y x =图像上所有点的横坐标不变, 纵坐标缩短为原来的A 倍 ②()sin sin 1y x y A x A =→=>将sin y x =图像上所有点的横坐标不变,纵坐标伸长为原来的 A 倍 【特别提醒】 由y =sin x 的图象变换出y =Asin(x ω+?)的图象一般有两个途径,只有区别开这两个途径,才能灵活进行图象变换。 利用图象的变换作图象时,提倡先平移后伸缩,但先伸缩后平移也经常出现 途径一:先平移变换再周期变换(伸缩变换) 先将y =sin x 的图象向左(?>0)或向右(0?<)平移|?|个单位,再将图象上各点的横坐标变为原来的 ω 1 倍(ω>0),便得y =sin(ωx +?)的图象 途径二:先周期变换(伸缩变换)再平移变换 先将y =sin x 的图象上各点的横坐标变为原来的ω 1 倍(ω>0),再沿x 轴向左(?>0)或向()0?<右平 移ω ?| |个单位,便得y =sin(x ω+?)的图象 【特别提醒】若由sin y x ω=得到()sin y x ω?=+的图象,则向左或向右平移应平移| |?ω 个单位

正弦型函数的图像变换

课堂练习: 1. 将函数y=sin2x 的图象向左平移6 π 个单位,则平移后的图象的解析式为( ) A .y=sin(2x+6π) B .y=sin(2x+3π) C .y=sin(2x -6π) D .y=sin(2x -3 π ) 2. 要得到函数2sin(2)4 y x p =+(x ?R )的图象,只需将函数2sin 2y x =(x ?R ) 的图象上所有的点( ) A .向左平行移动4p 个单位长度 B. 向右平行移动4p 个单位长度 C. 向左平行移动8p 个单位长度 D. 向右平行移动8 p 个单位长度 3. 4.把函数sin(2)4 y x π =+的图象向右平移 8 π 个单位,再把所得图象上各点的横坐标缩短到原来的1 2 ,则所得图象的解析式为 ( ) A .3sin(4)8y x π=+ B .sin(4)8 y x π =+ C .sin 4y x = D .sin y x = 5. 将函数sin()3 y x π =- 的图象上所有点的横坐标伸长到原来的2倍(纵坐标不变),再 将所得的图象向左平移 3 π 个单位,得到的图象对应的解析式是 ( ) A 1sin 2y x = B 1sin()22y x π=- C 1sin()26y x π=- D sin(2)6 y x π =- 6.要得到函数)3 2sin(2π +=x y 的图象,只须将函数x y sin 2=的图象 ( ) A .向左移3π 个单位,再把所有点的横坐标伸长到原来的2倍,纵坐标不变 B .向右移3π 个单位,再把所有点的横坐标伸长到原来的2倍,纵坐标不变 C .向左移3 π个单位,再把所有点的横坐标缩短到原来的21 倍,纵坐标不变 D .向右移3 π个单位,再把所有点的横坐标缩短到原来的21 倍,纵坐标不变 7.要得到函数y=cos(42π-x )的图象,只需将y=sin 2 x 的图象( )

正弦型函数的图像

函数sin()y A x ω?=+的图像 一、教学目标 1. 会用TI 图形计算器作出函数sin()y A x ω?=+(其中0,0A ω>>)的图像。通过观察图像,猜想,,A ω?对函数图像的影响; 2. 会借助计算器的图像功能, 领会控制变量法,体会定量地分析问题的过程; 3. 通过实践, 感受数学解决问题的方式, 获取定量地处理问题的经验. 二、教学难点与重点 重点: ,,A ω?对函数sin()y A x ω?=+图像的影响; 难点:定量分析,,A ω?对图像的影响. 三、教学过程 1. 引例. 动点P 绕原点O 作逆时针匀速圆周运动,初始位置如图所示,已知圆半径为3,角速度为2/rad s ,试建立点P 纵坐标y 与运动时间x 之间的函数关系,并作出该函数的图像。 [学生建立函数关系式:3sin(2)6y x π=+,并利用TI 图形计算器画出该函数的图像。] 观察这个函数的图像走势,与我们学过的哪个函数图像很接近? [学生:正弦函数] 这两个函数图像虽然很接近,但仍有差异。是什么因素造成这种差异? [学生: 3,2,6π ] 那么这三个参数对函数图像分别带来什么影响呢? 如果从正弦函数sin y x =的图像入手,可以通过怎样的变换得到3sin(2)6y x π =+的图像呢? {目的:引出控制变量法} [学生:操作TI 图形计算器观察函数图像的变化。] 教师引导学生想到利用控制按钮建立对应的参量,并想到控制变量法。 2. 提出课题 sin()y A x ω?=+ 形如sin()y A x ω?=+(其中,,A ω? 为常数)的函数,我们称为正弦型函数。 根据我们已有的知识,知道这个函数是周期函数,那么我们研究这类型函数时可以根据需要,锁定它的一个周期进行研究。对于一个函数,我们可以探究这个函数的哪些方面? [学生:研究函数的性质和函数的图像。]

三角函数图像及其变换

高一数学第十四讲 三角函数图像及其变换 一、知识要点: ππ ππ ?ω2,2 3, ,2 , 0=+x 列表求出对应的x 的值与y 的值,用平滑曲线连结各点,即可得到其在一个周期内的图象。 3.研究函数R x x A y ∈+=),sin(?ω(其中0,0>>ωA )的单调性、对称轴、对称中心仍然是将?ω+x 看着整 体并与基本正弦函数加以对照而得出。它的最小正周期||2ωπ =T 4.图象变换 (1)振幅变换 R x x y ∈=,s i n ??????????????→ ?<<>倍 到原来的或缩短所有点的纵坐标伸长A 1)A (01)(A R x x y ∈=,s i n A

(2)周期变换 R x x y ∈=,s i n ??????????????→ ?<<>倍 到原来的或伸长所有点的横坐标缩短ω ωω1 1)(01)(R x x y ∈=,s i n ω (3)相位变换 R x x y ∈=,s i n ????????????→?<>个单位长度平移或向右所有点向左||0)(0)(???R x x y ∈+=,)(s i n ? (4)复合变换 R x x y ∈=,s i n ????????????→ ?<>个单位长度平移或向右所有点向左||0)(0)(???R x x y ∈+=,)(s i n ? ?? ????????????→?<<>倍 到原来的 或伸长所有点的横坐标缩短ω ωω11)(01)(R x x y ∈+=),sin(?ω ??????????????→ ?<<>倍到原来的或缩短所有点的纵坐标伸长A 1)A (01)(A R x x A y ∈+=),sin(?ω 5.主要题型:求三角函数的定义域、值域、周期,判断奇偶性,求单调区间,利用单调性比较大小,图 象的平移和伸缩,图象的对称轴和对称中心,利用图象解题,根据图象求解析式,已知三角函数值求角。 二.基础练习 1. 函数1π2sin()23 y x =+的最小正周期T = . 2.函数sin 2x y =的最小正周期是 若函数tan(2)3y ax π=-的最小正周期是2π,则a=____. 3.函数]),0[)(26 sin( 2ππ ∈-=x x y 为增函数的区间是 4.函数2 2cos()()363 y x x ππ π=- ≤≤的最小值是 5.将函数cos y x =的图像作怎样的变换可以得到函数2cos(2)4 y x π =-的图像? 6.已知简谐运动ππ()2sin 32f x x ????? ?=+< ??????? 的图象经过点(01), ,则该简谐运动的最小正周期T 和初相?分别为 7.已知a=tan1,b=tan2,c=tan3,则a,b,c 的大小关系为______. 8.给出下列命题: ①存在实数x ,使sin cos 1x x =成立; ②函数5sin 22y x π?? =- ???是偶函数; ③直线8x π=是函数5sin 24y x π? ?=+ ??? 的图象的一条对称轴; ④若α和β都是第一象限角,且αβ>,则tan tan αβ>. ⑤R x x x f ∈+ =),32sin(3)(π 的图象关于点)0,6 (π - 对称; 其中结论是正确的序号是 (把你认为是真命题的序号都填上). 三、例题分析: 题型1:三角函数图像变换 例1、 变为了得到函数)62sin(π-=x y 的图象,可以将函数1 cos 2 y x =的图象怎样变换?

正弦型函数教案

正弦型函数y=Asin(ψx+φ)的图象变换教学设计 一、教学目标: 1、知识与技能目标: 能借助计算机课件,通过探索、观察参数A、ω、φ对函数图象的影响,并能概括出三角函数图象各种变换的实质和内在规律;会用图象变换画出函数y=Asin(ωx+φ)的图象。 2、过程与方法目标: 通过对探索过程的体验,培养学生的观察能力和探索问题的能力,数形结合的思想;领会从特殊到一般,从具体到抽象的思维方法,从而达到从感性认识到理性认识的飞跃。 3、情感、态度价值观目标: 通过学习过程培养学生探索与协作的精神,提高合作学习的意识。 二、教学重点:考察参数ω、φ、A对函数图象的影响,理解由y=sinx的图象到y=Asin(ωx+φ)的图象变化过程。这个内容是三角函数的基本知识进行综合和应用问题接轨的一个重要模型。学生学习了函数y=Asin(ωx+φ)的图象,为后面高中物理研究《单摆运动》、《简谐运动》、《机械波》等知识提供了数学模型。所以,该内容在教材中具有非常重要的意义,是连接理论知识和实际问题的一个桥梁。 三、教学难点:对y=Asin(ωx+φ)的图象的影响规律的发现与概括是本节课的难点。因为相对来说,、A对图象的影响较直观,ω的变化引起图象伸缩变化,学生第一次接触这 种图象变化,不会观察,造成认知的难点,在教学中,抓住“对图象的影响”的教学,使学生学会观察图象,经历研究方法,理解图象变化的实质,是克服这一难点的关键。 学情分析: 本节课在高一第二学段,对于高中常用的数学思想方法和研究问题的方法已经有初步的了解,并且逐步适应高中的学习方式和教师的教学方式,喜欢小组探究学习,喜欢独立思考,探究未知内容,学习欲望迫切。关于函数图象的变换,学生在学习第一模块时,接触过函数图象的平移,有“左加右减”,“上加下减”这样一些粗略的关于图象平移的认识,但对于本节内容学生要理解并掌握三个参数对函数图象的影响,还要研究三个参数对函数图象的综合影响,且方法不唯一,知识密度较大,理解掌握起来难度较大。 教学内容分析:

根据正弦型函数的图象求解析式

根据正弦型函数的图象求其解析式(一)课前系统部分 1、设计思想 建构主义强调,学生并不是空着脑袋走进教室的。在日常生活中,在以往的学习中,他们已经形成了丰富的经验,小到身边的衣食住行,大到宇宙、星体的运行,从自然现象到社会生活,他们几乎都有一些自己的看法。而且,有些问题即使他们还没有接触过,没有现成的经验,但当问题一旦呈现在面前时,他们往往也可以基于相关的经验,依靠他们的认知能力,形成对问题的某种解释。而且,这种解释并不都是胡乱猜测,而是从他们的经验背景出发而推出的合乎逻辑的假设。所以,教学不能无视学生的这些经验,另起炉灶,从外部装进新知识,而是要把学生现有的知识经验作为新知识的生长点,引导学生从原有的知识经验中“生长”出新的知识经验。 为此我们根据“用已知知识去探讨新知识”的教学方式,沿着“复习已知知识--提出由简单到复杂的问题--解决问题--反思解决过程”这条主线,把从情境中探索和提出数学问题作为教学的出发点,以“问题”为红线组织教学,形成以提出问题与解决问题相互引发携手并进的“情境--问题”学习链,使学生真正成为提出问题和解决问题的主体,成为知识的“发现者”和“创造者”,使教学过程成为学生主动获取知识、发展能力、体验数学的过程。根据上述精神,做出了如下设计: 创设一个现实问题情境作为提出问题的背景,并且用示波器演示电压的图形,让学生对数学的学习产生形象直观的感觉,逐步将现实问题转化、抽象成过渡性数学问题,并使学生产生进一步探索解决问题的动机。然后引导学生抓住问题的数学实质。 2、课标及教材分析 “根据正弦型函数的图象求其解析式”是职高教科书数学第一册第七章第三节的延展内容,它是在学习好正弦函数,正弦型函数后的一个升华内容,是三角函数图象知识的高层次运用,也是解决生活实际问题的一个重要思想方法,因此具有一定的应用价值。布鲁纳指出,学生不是被动的、消极的知识的接受者,而是主动的、积极的知识的探究者。教师的作用是创设学生能够独立探究的情境,引导学生去思考,参与知识获得的过程。因此,做好“根据正弦型函数的图象求解析式”的教学,不仅能复习巩固旧知识,使学生掌握新的有用的知识,体会联系、发展等辩证观点,而且能培养学生的应用意识和实践操作能力,以及提出问题、解决问题等研究性学习的能力。

三角函数图像变换

三角函数图像及其变换 一、 知识梳理 1、sin y x =与cos y x =的图像与性质 2、sin y x =与sin()y A x ωφ=+ (1) 形如sin()y A x ωφ=+的函数图像的画法 (2) sin y x =与sin()y A x ωφ=+图像的关系 二、 典型例题 1、把函数sin y x =(x R ∈)的图象上所有点向左平行移动3 π 个单位长度,再把所得图象上所有点的横坐标缩短到原来的1 2 倍(纵坐标不变),得到的图象所表示的函数是 (A )sin(2)3y x π=-,x R ∈ (B )sin()26x y π =+,x R ∈ (C )sin(2)3y x π=+,x R ∈ (D )sin(2)3 2y x π =+,x R ∈ 2、为得到函数πcos 23y x ? ?=+ ???的图像,只需将函数sin 2y x =的图像( ) A .向左平移 5π 12个长度单位 B .向右平移 5π 12个长度单位 C .向左平移5π 6 个长度单位 D .向右平移5π 6 个长度单位

3、函数πsin 23y x ??=- ?? ?在区间ππ2??-???? ,的简图是( ) 4、下面有五个命题: ①函数y =sin 4x -cos 4x 的最小正周期是π. ②终边在y 轴上的角的集合是{a |a = Z k k ∈π ,2 |. ③在同一坐标系中,函数y =sin x 的图象和函数y =x 的图象有三个公共点. ④把函数.2sin 36 )32sin(3的图象得到的图象向右平移x y x y =π π+= ⑤函数.0)2 sin(〕上是减函数,在〔ππ - =x y 其中真命题的序号是 (写出所言 ) 5、将函数3sin()y x θ=-的图象向右平移3 π 个单位得到图象F ',若F '的一条对称轴是直线4 x π =,则θ的一个可能取值是 A. π125 B. π125- C. π12 11 D. 1112π- 三、高考再现 1、已知函数2 π()sin sin 2 f x x x x ωωω?? =++ ?? ? (0ω>)的最小正周期为π. (Ⅰ)求ω的值;(Ⅱ)求函数()f x 在区间2π03?????? ,上的取值范围.

高中数学正弦函数y=sinx的图像及图像变换讲义

高中数学 正弦函数y=sinx 的图像及图像变换讲义 新人教A 版必修4 重难点易错点解析 在恰当的坐标系中画正弦函数的图 题一 题面:在同一个坐标系内画,sin y x y x ==的图 题二 题面:在同一个坐标系内画sin ,lg y x y x ==的图 真正理解图像变换 题三 题面:把曲线y cos x +2y -1=0先沿x 轴向右平移2π个单位,再沿y 轴向下平移1个单位,得到的曲线方程是( ) A.(1-y )sin x +2y -3=0 B.(y -1)sin x +2y -3=0 C.(y +1)sin x +2y +1=0 D.-(y +1)sin x +2y +1=0 金题精讲 题一 题面:在同一个坐标系内画sin , 100x y x y ==的图 题二 x y

题面:函数)4(x f y =过点(3,1),则函数)22(+=x f y 的图像必过的点是 . 题三 题面:如何由函数x y sin =的图象变换得到)42sin(π+ =x y 的图象. 下面三条路,你选哪条?为什么? sin sin 2sin(2)4 y x y x y x π=→=→=+ sin sin()sin(2)84 y x y x y x ππ=→=+→=+ sin sin()sin(2)44 y x y x y x ππ=→=+→=+ 题四 题面:如何由函数x y sin =的图象变换得到2sin(2)14 y x π=++的图象. 思维拓展 题一 题面:已知函数()()() 22sin 122x f x x x x π=+-+. (1)那么方程()0f x =在区间[100,100]-上的根的个数是__________. (2)对于下列命题: ①函数()f x 是周期函数; ②函数()f x 既有最大值又有最小值; ③函数()f x 的定义域是R ,且其图象有对称轴; ④函数()f x 在(1,0)-上是减函数. 其中真命题的序号是 .(填写出所有真命题的序号) 讲义参考答案 重难点易错点解析 题一

正弦型函数图像变换

1.5正弦型函数y=Asin(ψx+φ)的图象变换教学设计 贺力光 2008212004 教学目标: 知识与技能目标: 能借助计算机课件,通过探索、观察参数A、ω、φ对函数图象的影响,并能概括出三角函数图象各种变换的实质和内在规律;会用图象变换画出函数y=Asin(ωx+φ)的图象。 过程与方法目标: 通过对探索过程的体验,培养学生的观察能力和探索问题的能力,数形结合的思想;领会从特殊到一般,从具体到抽象的思维方法,从而达到从感性认识到理性认识的飞跃。 情感、态度价值观目标: 通过学习过程培养学生探索与协作的精神,提高合作学习的意识。 教学重点:考察参数ω、φ、A对函数图象的影响,理解由y=sinx的图象到y=Asin(ωx+φ)的图象变化过程。这个内容是三角函数的基本知识进行综合和应用问题接轨的一个重要模型。学生学习了函数y=Asin(ωx+φ)的图象,为后面高中物理研究《单摆运动》、《简谐运动》、《机械波》等知识提供了数学模型。所以,该内容在教材中具有非常重要的意义,是连接理论知识和实际问题的一个桥梁。 教学难点:对y=Asin(ωx+φ)的图象的影响规律的发现与概括是本节课的难点。因为相对来说,、A对图象的影响较直观,ω的变化引起图象伸缩变化,学生第一次接触这种 图象变化,不会观察,造成认知的难点,在教学中,抓住“对图象的影响”的教学,使 学生学会观察图象,经历研究方法,理解图象变化的实质,是克服这一难点的关键。 教学环境: 普通多媒体教室,电脑上需要装有几何画板软件,以及Flash播放器。 学情分析: 本节课在高一第二学期,学生进入高中学习已经有一学期了,对于高中常用的数学思想方法和研究问题的方法已经有初步的了解,并且逐步适应高中的学习方式和教师的教学方式,喜欢小组探究学习,喜欢独立思考,探究未知内容,学习欲望迫切。关于函数图象的变换,学生在学习第一模块时,接触过函数图象的平移,有“左加右减”,“上加下减”这样一些粗略的关于图象平移的认识,但对于本节内容学生要理解并掌握三个参数对函数图象的影

正弦型函数的图像

正弦型函数的图像 案场各岗位服务流程 销售大厅服务岗: 1、销售大厅服务岗岗位职责: 1)为来访客户提供全程的休息区域及饮品; 2)保持销售区域台面整洁; 3)及时补足销售大厅物资,如糖果或杂志等; 4)收集客户意见、建议及现场问题点; 2、销售大厅服务岗工作及服务流程 阶段工作及服务流程 班前阶段1)自检仪容仪表以饱满的精神面貌进入工作区域 2)检查使用工具及销售大厅物资情况,异常情况及时登记并报告上级。 班中工作程序服务 流程 行为 规范 迎接 指引 递阅 资料 上饮品 (糕点) 添加茶水 工作 要求 1)眼神关注客人,当客人距3米距离 时,应主动跨出自己的位置迎宾,然后 侯客迎询问客户送客户

注意事项 15度鞠躬微笑问候:“您好!欢迎光临!”2)在客人前方1-2米距离领位,指引请客人向休息区,在客人入座后问客人对座位是否满意:“您好!请问坐这儿可以吗?”得到同意后为客人拉椅入座“好的,请入座!” 3)若客人无置业顾问陪同,可询问:请问您有专属的置业顾问吗?,为客人取阅项目资料,并礼貌的告知请客人稍等,置业顾问会很快过来介绍,同时请置业顾问关注该客人; 4)问候的起始语应为“先生-小姐-女士早上好,这里是XX销售中心,这边请”5)问候时间段为8:30-11:30 早上好11:30-14:30 中午好 14:30-18:00下午好 6)关注客人物品,如物品较多,则主动询问是否需要帮助(如拾到物品须两名人员在场方能打开,提示客人注意贵重物品); 7)在满座位的情况下,须先向客人致歉,在请其到沙盘区进行观摩稍作等

待; 阶段工作及服务流程 班中工作程序工作 要求 注意 事项 饮料(糕点服务) 1)在所有饮料(糕点)服务中必须使用 托盘; 2)所有饮料服务均已“对不起,打扰一 下,请问您需要什么饮品”为起始; 3)服务方向:从客人的右面服务; 4)当客人的饮料杯中只剩三分之一时, 必须询问客人是否需要再添一杯,在二 次服务中特别注意瓶口绝对不可以与 客人使用的杯子接触; 5)在客人再次需要饮料时必须更换杯 子; 下班程 序1)检查使用的工具及销售案场物资情况,异常情况及时记录并报告上级领导; 2)填写物资领用申请表并整理客户意见;3)参加班后总结会; 4)积极配合销售人员的接待工作,如果下班时间已经到,必须待客人离开后下班;

正弦函数图像的变化

正弦函数图像的变化 刘毅 财经管理系 【课题】正弦函数图像的变化 【课时】1课时 【教材分析】 本节内容是。众所周知,函数的概念抽象,性质多样,学习难度大,学生不易掌握,而函数的图像却能直观形象地展现出函数诸多性质和特征,比如单调性、奇偶性、周期性等,因此函数图像总是各类型函数学习的重点。在“三角函数”此章新课内容中涉及到了正弦函数的图像,正弦型函数的图像,余弦函数的图像、正切函数的图像,这些内容有些相互联系,有些难度较大。 根据成人高考大纲及历年成考出现的三角函数试题,本节课在正弦函数图像复习完成的基础上将正弦函数的简单变形和正弦型函数的图像放到了一起(弱化了较难的“ω、φ”共同作用的效果);以往在讲授这部分内容时学生亲自参与的程度不高,到了最后函数没学好,函数图像也没学好,因此本节课设计时偏向于学生参与为主。 【学情分析】13会计4班,班级中大部分学生没有良好的学习习惯,学习比较被动、懒惰,课堂上肯花功夫,课后不舍得花精力所以知识遗忘速度很快。在日常教学过程中学生在教师的引导下大部分学生能展现出一定的学习兴趣和能力。 【教学目标】知识目标:重点掌握参数A 和ω的作用 能力目标:能参照正弦函数的“五点法”分析各参数的作用效果 情感目标:通过对各类参数作用的讨论,体验到了特殊到一般,数形结合及简 单的数学思辨思想 【教学重难点】 sin()y K A x ω?=+±中参数A,ω的作用 【教学思路】 ① 复习:正弦函数图像和基本性质 ② 单独解决参数K,A,ω(包含学生自己动手绘制图形) ③ 通过观察教师操作,弱化 ω?和的共同使用效果 ④ 适当练习,加强记忆 【教学过程】 一、复习 1、正弦函数的性质 定义域: 值域: 周期: 周期产生的原因: 奇偶性: 单调性:单调递增区间_______________________、单调递减区间_______________________ 2、“五点”法作简图 五个关键点坐标:

正弦函数图像变换性质(新)

函数的图象与性质(一) 1、教学目标:1.能借助计算机课件,通过探索、观察参数A、ω对函数图象的影响,并能概括出三角函数图象各种 变换的实质和内在规律;会用图象变换画出函数y=Asin(ωx+φ)的图象。 2.通过对探索过程的体验,培养学生的观察能力和探索问题的能力,数形结合的思想;领会从特殊到 一般,从具体到抽象的思维方法,从而达到从感性认识到理性认识的飞跃。 2、教学重点:用参数思想分层次、逐步讨论字母A、ω变化时对函数图象的形状和位置的影响,掌握函数y=Asin(ω x+φ)图象的简图的作法。 3、教学难点:对y=Asin(ωx+φ)的图象的影响规律的发现与概括是本节课的难点。因为相对来说A对图象的 影响较直观,ω的变化引起图象伸缩变化,学生第一次接触这种图象变化,不会观察,造成认知难点。 3、教学方法:归纳,猜想,论证;使用geogebra软件。 4、教学过程: 一、实例引入: 1、创设情境: 我们之前学过正弦,余弦函数的图像及性质,生活中处处都有它的应用,比如大家的声音就是不同的正弦波叠加形成的,物理中的振动图像,波动图像也都与之相关。今天我们就要研究这个函数的图像及部分性质。 2、问题提出: 那么我们如何来画出这种函数的图象呢?这些函数又有那些性质呢?下面我们从特殊的几个函数开始研究。 2、解决问题: 例1、画出函数与的简图; 解:“五点法作图”的步骤为:列表,描点,连线。 010-10 020-20 000

描点画图:

然后我们利用其周期性,把它们在[0,]上的简图向左,右分别扩展,便可得到它们的简图。 问题1:大家观察一下,把它们与比较,有什么联系?其哪些性质发生了变化? 归纳:1、的图象可以看作把上所有的点的纵坐标伸长到原来的2倍(横坐标不变)而得到;函数的值域变为了[-2,2] 2、的图象可以看作把上所有的点的纵坐标缩短到原来的倍 (横坐标不变)而得到;函数的值域变为了[] 问题2:请大家思考:若换成一般情况,你能归纳出它与的联系吗? 猜想:一般地,函数, (其A>0,且A1)的图象,可以看作是把正弦曲线上所有点的纵 坐标伸长(当A>1时)或缩短(当01,缩短时00,解释振幅的定义:物体离开平衡位置的距离。 例2.画出函数与的简图。 解:令(换元法) 列表2:

《正弦函数、余弦函数的图像》教案设计

正弦函数、余弦函数的图像 一、内容和内容解析: 本节课是高中新教材《数学》必修4§1.4《正弦函数、余弦函数的图象和性质》的第一节,是学生在已掌握了一些基本函数的图象及其画法的基础上,进一步研究三角函数图象的画法。.为今后学习正弦型函数y=Asin (ωx+φ)的图象及运用数形结合思想研究正、余弦函数的性质打下坚实的知识基础.因此,本节课的内容是至关重要的,它对知识的掌握起到了承上启下的作用。 二、教学目标 (1)了解如何利用正弦线画出正弦函数的图像,并在此基础上由诱导公式画出余弦函数的图像。 (2)掌握“五点法”画正弦函数、余弦函数的简图。 (3)探究利用“五点法”画与正弦函数、余弦函数有关的某些简单函数在长度为一个周期的闭区间上的简图。 (4)体验利用图象变换作图的方法,体会数形结合的思想。 三、教学支持条件分析: 1.资料的收集 “简谐运动”的实验装置. 2.课件的制作 采用flash软件辅助设计“简谐运动”动画,用flash软件或“几何画板”制作正弦函数图像的几何画法过程. 3.活动的准备: 利用多媒体、实物教具等手段可帮助学生更直观地认识正、余弦函数曲线,以及它们之间的图像变换,并且通过教师的讲解法、谈话法、发现法、启发式教学法,使学生通过一定的观察、思考、分析以及动手操作,更有利学生的自主探索,使学生在学习活动中获得成功感,整堂课在师生的合作学习氛围中进行数学思维,使学生更好的发现数学规律。 四、教学过程 课题导入: 以前,我们已经学习过一次函数、二次函数、反比例函数、指数函数、对数函数等,对于各种函数,我们都可以通过它的图像研究它的一些相关性质,那么,我们今天学习的正、余弦函数的图像是什么样子的呢? 探索新知: 1、情景设置:

高中正弦型函数图像变换 优秀教学设计

【课题】 1.5 函数)sin(?ω+=x A y 的图像 【教材】 高中数学人教版必修4第49页至55页. 【课时安排】 1个课时. 【教学对象】 高一(上)学生.【授课教师】 【教学目标】 ? 知识与技能 (1)理解A 、ω、?的变化对函数图像的形状及位置的影响; (2)掌握由x y sin =的图像到)sin(?ω+=x A y 的图像的变换规律. ? 过程与方法 (1)使学生经历图像变换的过程,培养学生的实践能力和分析问题、解决问题的能力; (2)锻炼学生归纳总结和逻辑思维的能力. ? 情感态度价值观 经历图像变换的实际操作过程,培养学生“由简单到复杂、由特殊到一般”的化归思想和辩证思想. 【教学重点】 1.考查参数A 、ω、?对函数图像变换的综合影响; 2.理解如何由x y sin =图像变换到)sin(?ω+=x A y 图像的过程. 【教学难点】 ω对)sin(?ω+=x A y 的图像的影响规律的概括. 【教学方法】 讲练结合、讨论交流、合作探究。【教学手段】计算机、flash 。 【教学过程设计】 教学流程设计 问题情境 探究一 参数?对 )sin(?+=x y 探究二 x y 2sin =如何平移得到 ) (3 2sin π + =x y 探究三 参数()0>ωω对 ()?ω+=x y sin 图像探究四 参数()0>A A 对()?ω+=x A y sin 图像完成例题 解答 提出问 题的解决方法 学生思考讨论 并归纳规律 学生思考讨论 并归纳规律 学生思考讨论 并归纳规律 学生思考讨论 并归纳规律 寻找解题方法总结规律 函数)sin(?ω+=x A y 的图像

正弦型函数的图像及应用教案

龙文教育数学学科导学案(第15 次课) 教师:郑俊朝学生: 年级:高一日期: 12月16日星期: 时段: 课题正弦函数的图像及应用 学情分析学生已经学习了三角函数的图像和性质,三角函数图象的平移变换是一个难点,学生刚刚学习,需要及时加强巩固。 教学目标与考点分析1.掌握正弦型函数y=A sin(ωx+φ)的图象变换; 2.结合平移变换理解y=A sin(ωx+φ)的性质及简单应用;3.掌握y=sin x到y=A sin(ωx+φ)的图象的两种变换途径. 教学重点图象的三种变换方法是本节课的重点 教学方法导入法、讲授法、归纳总结法 学习内容与过程 基础梳理 1.用五点法画y=A sin(ωx+φ)一个周期内的简图时,要找五个特征点如下表所示 x 0-φ ω π 2-φ ω π-φ ω 3π 2-φ ω 2π-φ ω ωx+φ0π 2 π 3π 2 2π y=A sin(ωx+φ)0 A 0-A 0 2.函数y=sin x的图象变换得到y=A sin(ωx+φ)的图象的步骤 3.当函数y=A sin(ωx+φ)(A>0,ω>0,x∈[0,+∞))表示一个振动时,A叫做振幅,T=2πω叫

A .T =6π,φ=π 6 B .T =6π,φ=π 3 C .T =6,φ=π 6 D .T =6,φ=π 3 3.函数y =cos x (R x ∈)的图象向左平移π 2个单位后,得到函数y =g (x )的图象,则g (x )的解析式应为( ). A .-sin x B .sin x C .-cos x D .cos x 4.设ω>0,函数y =sin )3(π ω+x +2的图象向右平移4π3个单位后与原图象重合,则ω的最小值 是( ). A .23 B .43 C .3 2 D .3 5.已知函数f (x )=sin(ωx +φ)(ω>0)的图象如图所示,则ω=________. 考向一 作函数)sin(φω+=x A y 的图象 【例1】?设函数f (x )=cos(ωx +φ))02 ,0(<<->?π ω的最小正周期为π,且23 )4(= πf . (1)求ω和φ的值; (2)在给定坐标系中作出函数f (x )在[0,π]上的图象. 【训练1】 已知函数f (x )=3sin )421(π -x ,x ∈R . (1)画出函数f (x )在长度为一个周期的闭区间上的简图; (2)将函数y =sin x 的图象作怎样的变换可得到f (x )的图象?

正弦型函数的图像-教学设计

§1.5 《函数()sin y A x ω?=+的图像(第1课时)》教学设计 一、基本说明 1. 课题:函数()sin y A x ω?=+的图像 2. 课时:1课时 3. 年级:高一年级 4. 模块:高中数学必修4 5. 所用教材版本:人民教育出版社A 版 6. 所属章节:第一章第五节 7. 课型:新授课 二、教材分析 本节课是新课标高中数学A 版必修4中第一章第5节第一课时内容。此内容是三角函数的基本知识进行综合和应用问题接轨的一个重要模型。学生已初步了解函数()sin y A x ω?=+的图象,并会运用五点法作图,本节内容是对该部分知识的深化,为后续参数的物理意义教学做准备,为后面高中物理研究《单摆运动》、《简谐运动》、《机械波》等知识提供了数学模型。所以,该内容在教材中具有非常重要的意义,是连接理论知识和实际问题的一个桥梁。 三、学情分析 本节课在高一第二学段,学生进入高中学习已经三个月,对于高中常用的数学思想方法和研究问题的方法已经有初步的了解,并且逐步适应高中的学习方式和教师的教学方式,喜欢小组探究学习,喜欢独立思考。关于函数图象的变换,学生在学习第一模块时,接触过函数图象的平移,有“左加右减”,“上加下减”这样一些粗略的关于图象平移的认识,但学生第一次接触图象伸缩变化,容易造成认知的难点,此外,对于本节内容学生要理解并掌握三个参数对函数图象的影响,还要研究三个参数对函数图象的综合影响,且方法不唯一,知识密度较大,理解掌握起来难度较大。在教学中,抓住“对图象的影响”的教学,使学生学会观察图象,经历研究方法,理解图象变化的实质,是克服这一难点的关键。 四、教学目标 1、理解?对()sin y x ?=+图象的影响,ω对sin y x ω=图象的影响,A 对sin y A x =图象的影响. 2、通过探究图象变换,会用图象变换法由sin y x =画出()sin y A x ω?=+图象的简图. 五、教学重难点 教学重点:讨论字母?、ω、A 变化时对函数图像的形状和位置的影响,理解由sin y x =的图象到 ()sin y A x ω?=+的图象变化过程.掌握函数()sin y A x ω?=+图像的简图做法; 教学难点:由正弦函数sin y x =得到()sin y A x ω?=+的图像变化过程.

三角函数图像平移变换

三角函数图像平移变换 由y =sin x 的图象变换出y =sin(ωx +?)的图象一般有两个途径,只有区别开这两个途径,才能灵活进行图象变换。 利用图象的变换作图象时,提倡先平移后伸缩,但先伸缩后平移也经常出现无论哪种 变形,请切记每一个变换总是对字母x 而言,即图象变换要看“变量”起多大变化,而不是“角变化”多少。 途径一:先平移变换再周期变换(伸缩变换) 先将y =sin x 的图象向左(?>0)或向右(?<0=平移|?|个单位,再将图象上各点的横坐标变为原来的 ω 1 倍(ω>0),便得y =sin(ωx +?)的图象。 途径二:先周期变换(伸缩变换)再平移变换。 先将y =sin x 的图象上各点的横坐标变为原来的ω 1 倍(ω>0),再沿x 轴向左(?>0) 或向右(?<0=平移 ω ?| |个单位,便得y =sin(ωx +?)的图象。 1.为得到函数πcos 23y x ?? =+ ?? ? 的图像,只需将函数sin 2y x =的图像( A ) A .向左平移5π12个长度单位 B .向右平移 5π12个长度单位 C .向左平移 5π6 个长度单位 D .向右平移 5π6 个长度单位 2.要得到函数sin y x =的图象,只需将函数cos y x π?? =- ?3? ? 的图象( D ) A .向右平移π6个单位 B .向右平移π3个单位 C .向左平移 π3 个单位 D .向左平移 π6 个单位 3.为了得到函数)6 2sin(π -=x y 的图象,可以将函数x y 2cos =的图象( B ) (A)向右平移6 π 个单位长度 (B)向右平移3 π 个单位长度 (C)向左平移 6 π 个单位长度 (D)向左平移 3 π 个单位长度 4.把函数sin y x =(x R ∈)的图象上所有点向左平行移动3 π 个单位长度,再把所得图象 上所有点的横坐标缩短到原来的 12 倍(纵坐标不变),得到的图象所表示的函数是C A sin(2)3 y x π =-,x R ∈ B sin( )26 x y π =+ ,x R ∈ C sin(2)3 y x π =+ ,x R ∈ D sin(2)3 2y x π=+ ,x R ∈

正弦型函数的图像和性质(教学设计)

正弦型函数的图像和性质教学设计 教学目标:使学生掌握正弦型函数的图像及其性质,掌握图像 的变化规律。 重点:掌握正弦型函数的图像及其性质,掌握图像的变化规律。 难点:正弦型函数图像的变化规律。 1.,,A ω?的物理意义 当sin()y A x ω?=+,[0,)x ∈+∞(其中0A >,0ω>)表示一个振动量时, A 表示这个量振动时离开平衡位置的最大距离,通常称为这个振动的振幅,往复振 动一次需要的时间2T π ω =称为这个振动的周期,单位时间内往复振动的次数 12f T ω π == ,称为振动的频率。x ω?+称为相位,0x =时的相位?称为初相。 2.图象的变换 例 : 画出函数3sin(2)3 y x π =+的简图。 解:函数的周期为22 T π π= =, 先画出它在长度为一个周期内的闭区间上的简x 6 π- 12π 3π 712π 56 π 23 x π + 0 2 π π 32 π 2π 3sin(2)3 x π + 3 0 3- 0 x y O π 3 π- 6 π- 53 π 2π sin()3 y x π =+ sin(2)3 y x π =+ sin y x = 3sin(2)3 y x π =+

函数3sin(2)3 y x π =+ 的图象可看作由下面的方法得到的: ①sin y x =图象上所有点向左平移 3 π 个单位,得到sin()3y x π=+的图象上; ②再把图象上所点的横坐标缩短到原来的1 2 ,得到sin(2)3y x π=+的图象;③再把 图象上所有点的纵坐标伸长到原来的3倍,得到3sin(2)3 y x π =+的图象。 一般地,函数sin()y A x ω?=+,x R ∈的图象(其中0A >,0ω>)的图 象,可看作由下面的方法得到: ①把正弦曲线上所有点向左(当0?>时)或向右(当0?<时)平行移动||?个单位长度; ②再把所得各点横坐标缩短(当1ω>时)或伸长(当01ω<<时)到原来的 1 ω 倍(纵坐标不变); ③再把所得各点的纵坐标伸长(当1A >时)或缩短(当01A <<时)到原来的A 倍(横坐标不变)。 即先作相位变换,再作周期变换,再作振幅变换。 问题:以上步骤能否变换次序? ∵3sin(2)3sin 2()36y x x π π=+ =+,所以,函数3sin(2)3 y x π =+的图象还 可看作由下面的方法得到的: ①sin y x =图象上所点的横坐标缩短到原来的 1 2 ,得到函数sin 2y x =的图象; ②再把函数sin 2y x =图象上所有点向左平移 6 π 个单位,得到函数sin 2()6 y x π =+的图象; ③再把函数sin 2()6 y x π=+的图象上所有点的纵坐标伸长到原来的3倍,得到 3sin 2()6 y x π =+的图象。 3.实际应用 例1:已知函数sin()y A x ω?=+(0A >,0ω>)一个周期内的函数图象,

相关文档
最新文档