光伏电站设计介绍

光伏电站设计介绍
光伏电站设计介绍

太阳能光伏电站设计简介

2013.04 武汉

太阳能光伏电站设计简介

一、规程规范

二、报告编制

三、太阳能资源分析

四、光伏系统设计

五、电气设计

六、土建设计

七、投资分析

八、其它

太阳能光伏电站设计简介

一、规程规范

二、报告编制

三、太阳能资源分析

四、光伏系统设计

五、电气设计

六、土建设计

七、投资分析

八、其它

规程规范

光伏发电工程规划报告编制办法(GD001-2011)

光伏发电工程预可行性研究报告编制办法(GD002-2011)

光伏发电工程可行性研究报告编制办法(GD003-2011)

太阳能资源评估方法(QX/T 89-2008)

地面用光伏(PV)系统发电概述与导则(GB/T 18479-2001) 民用建筑太阳能光伏系统应用技术规范(JGJ 203-2010)

规程规范

光伏(PV)发电系统过电压保护-导则(SJ/T 11127-1997) 光伏系统并网技术要求(GB/T 19939-2005)

光伏(PV)系统电网接口特性(GB/T 20046-2006)

光伏发电站接入电力系统技术规定(GB/Z 19964-2005)

光伏电站接入电网技术规定(Q/GDW 617-2011)

光伏电站接入电网测试规程(Q/GDW 618-2011)

太阳能光伏电站设计简介

一、规程规范

二、报告编制

三、太阳能资源分析

四、光伏系统设计

五、电气设计

六、土建设计

七、投资分析

八、其它

报告编制

设计流程

1、预可研报告。

2、项目开发申请报告。

3、可研报告。

4、项目(核准)申请报告。

5、初步设计。

6、施工图设计。

7、竣工图设计。

报告编制

预可研报告

1、概述(项目概况)

2、项目任务和规模(包含建设的必要性)

3、太阳能资源

4、工程地质

5、太阳能光伏发电系统设计

6、电气

7、电站总平面布置及土建工程设计

8、施工组织设计

9、环境影响评价

10、投资估算

11、财务效益初步评价

12、结论及建议

报告编制

可研报告

1、综合说明

2、太阳能资源

3、工程地质

4、工程任务和规模

5、系统总体方案设计及发电量计算

6、电气

7、土建工程

8、工程消防设计

9、施工组织设计

10、环境保护与水土保持设计

11、劳动安全与工业卫生

12、节能降耗

13、工程设计概算

14、财务评价与社会效果分析

太阳能光伏电站设计简介

一、规程规范

二、报告编制

三、太阳能资源分析

四、光伏系统设计

五、电气设计

六、土建设计

七、投资分析

八、其它

太阳能资源分析

1、我国太阳能资源分布图

太阳能资源分析

太阳能资源分析

一类地区:

全年日照时数为3200~3300 小时,

年辐射量在7550~9250MJ/m2 (2097 ~2569kWh/m2)

相当于258~316kg 标准煤(7千卡)燃烧所发出的热量。主要包括青藏高原、甘肃北部、宁夏北部和新疆南部等地。二类地区:

全年日照时数为3000 ~3200 小时,

年辐射量在5850~7550MJ/m2(1625 ~2097kWh/m2)

相当于200~258kg 标准煤燃烧所发出的热量。主要包括河北西北部、山西北部、内蒙古南部、宁夏南部、甘肃中部、青海东部、西藏东南部和新疆南部等地。此区为我国太阳

能资源较丰富区。

太阳能资源分析

三类地区:

全年日照时数为2200~3000 小时,

辐射量在5000~5850MJ/m2(1389~1625kWh/m2)

相当于170~200kg 标准煤燃烧所发出的热量。

主要包括山东、河南、河北东南部、山西南部、新疆北部、吉林、辽宁、云南、陕西北部、甘肃东南部、广东南部、福建南部、江苏中北部和安徽北部等地。

四类地区:

全年日照时数为1400~2200 小时

辐射量在4150~5000MJ/m2(1153~1389 kWh/m2)

相当于140~170kg 标准煤燃烧所发出的热量。

主要是长江中下游、福建、浙江和广东的一部分地区,春夏多阴雨,秋冬季太阳能资源还可以。

太阳能资源分析

五类地区:

全年日照时数约1000 ~1400 小时,

辐射量在3350 ~4150MJ/m2 (930~1153kWh/m2)

相当于115~140kg 标准煤燃烧所发出的热量。

主要包括四川、贵州两省。此区是我国太阳能资源最少的地区。

一、二、三类地区,年日照时数不小于2200h,是我国太阳能资源丰富或较丰富的地区,面积较大,约占全国总面积的2/3 以上,具有利用太阳能的良好条件。四、五类地区虽然太阳能资源条件较差,但仍有一定的利用价值。

太阳能资源分析

太阳能资源丰富程度评估

太阳能资源分析

2、我国主要地区太阳辐照数据

太阳能资源分析

3、太阳辐射分析

1)当地有辐照观测数据的气象站 多年逐月太阳能辐射资料直接辐射、散射辐射和总辐射

多年逐月日照资料

日照时数或日照百分率

太阳能资源分析

2)当地没有辐照观测数据的气象站 多年逐月日照资料日照时数或日照百分率

选择参考站,采用气候学推演公式Q=Q 0(a+bS 1)Q 0:月天文辐射量。

S1:当月的日照时数百分率。

太阳能资源分析

4、太阳辐射量年际、月际变化表

3000400050006000M J

1000

20002000年

2001年

2002年

2003年

2004年

2005年

2006年

2007年

2008年

2009年

2010年

0.00

100.00200.00300.00400.00500.00600.00700.00800.00

一月

二月

三月

四月

五月

六月

七月

八月

九月

十月十一月十二月

M J

太阳辐射量年际变化表

太阳辐射量月际变化表

3KW屋顶分布式光伏电站设计方案解析

Xxx市XX镇xx村3.12KWp分布式电站 设 计 方 案 设计单位: xxxx有限公司 编制时间: 2016年月

目录 1、项目概况................................................ - 2 - 2、设计原则................................................ - 3 - 3、系统设计................................................ - 4 - (一)光伏发电系统简介.................................... - 4 - (二)项目所处地理位置..................................... - 5 - (三)项目地气象数据....................................... - 6 - (四)光伏系统设计......................................... - 8 - 4.1、光伏组件选型....................................... - 8 - 4.2、光伏并网逆变器选型................................. - 9 - 4.3、站址的选择......................................... - 9 - 4.4、光伏最佳方阵倾斜角与方位.......................... - 11 - 4.5、光伏方阵前后最佳间距设计.......................... - 12 - 4.6、光伏方阵串并联设计................................ - 13 - 4.7、电气系统设计...................................... - 13 - 4.8、防雷接地设计...................................... - 14 - 4、财务分析............................................... - 18 - 5、节能减排............................................... - 19 - 6、结论................................................... - 20 -

创建分布式光伏电站项目简介(1)

关于萧山区创建 国家分布式光伏发电示范区 项 目 简 介 实施单位:浙江舒奇蒙能源科技股份有限公司 二〇一三年九月

一、分布式光伏电站的优势 1、合理利用屋顶面积,不占用土地资源。分布式光伏电站要求建设在空闲的厂房屋顶上,利用厂房屋顶的特点进行设计、建设光伏电站,使厂房屋顶发挥更大的价值。 2、采用“自发自用、余量上网”的原则。分布式光伏电站要求用户侧并网,使光伏发电量随时被企业在生产、生活过程使用,不用产生电网的损耗与不增加电网建设成本。 3、电力稳定,国电补充。分布式光伏电站采用光伏逆变器进行电压平衡,虽然光伏发电的电流输出是随光照强弱是有较大的变化,但光伏电压是平衡输出,在国家电网的补充下,不会对企业使出产生任何波动。 4、独立发电,有效输出。分布式光伏电站属于独立发电系统,国家电网只外网检修时才能停电,正常情况下,可能独运作,不会停电,对企业电力负荷及保证生产用电有一定的独立性。 5、高峰发电,晚上断网。分布式光伏发电都是在白天发电,也就是在用电量最大的时段发电,对电网的负荷平衡有较好的补充作用,而且由于白天用电基本都属于高峰电价,对光伏电站的投资回报有较好的保证。 6、清洁能源,算节能指标。根据国务院文件,分布式光伏发电部份可计入节能部份,属于企业节能,在节能减排政策中,可申报节能减排补贴,循环经济项目申报等,同时在对企业节能减排考核时,免证节能相关的附加费。 7、使厂房更加美观大方,增加企业形象。多晶硅太阳能光伏组件为淡蓝色产品,与厂房屋顶整体结合后,更显美观。同时由于光伏产品是绿色能源,更能体现企业的环保意识与人文环境,提高企业的社会形象。 8、坚固屋顶,增加隔热效果。分布式光伏电站组件安装在厂房屋顶上,对本身屋面具有保护作用,如酸雨、灰尘等物质不会直接与厂房屋面接触。由于光伏组件表面采用玻璃制成,只需偶尔清洗或雨水的冲刷,就很洁净;而光伏组件安装与厂房屋面有一定距离,可增加一层隔热效果,具有较好的降温作用。

屋顶分布式光伏电站设计及施工方案范本

屋顶分布式光伏电站设计及施工方案

设 计 方 案 恒阳 6 月

1、项目概况 一、项目选址 本项目处于山东省聊城市,位于北纬35°47’~37°02’和东经115°16’~116°32 ‘之间。地处黄河冲击平原,地势西南高、东北低。平均坡降约1/7500,海拔高度27.5-49.0米。属于温带季风气候区,具有显著的季节变化和季风气候特征,属半干旱大陆性气候。年干燥度为1.7-1.9。春季干旱多风,回暖迅速,光照充分,太阳辐射强;夏季高温多雨,雨热同季;秋季天高气爽,气温下降快,太阳辐射减弱。年平均气温为13.1℃。全年≥0℃积温4884—5001℃,全年≥10℃积温4404—4524℃,热量差异较小,无霜期平均为193—201天。年平均降水量578.4毫米,最多年降水量为1004.7毫米,最少年降水量为187.2毫米。全年降水近70%集中在夏季,秋季雨量多于春季,春季干旱发生频繁,冬季降水最少,只占全年的3%左右。光资源比较充分,年平均日照时数为2567小时,年太阳总辐射为120.1—127.1千卡/cm^2,有效辐射为58.9—62.3千卡/cm^2。属于太阳能资源三类可利用地区。

结合当地自然条件,根据公司要求的勘察单选定站址,并充分考虑了以下关键要素: 1、有无遮光的障碍物(包括远期与近期的遮挡) 2、大风、冬季的积雪、结冰、雷击等灾害 本方案屋顶有效面积60m2,采用260Wp光伏组件24块组成,共计建设6.44KWp屋顶分布式光伏发电系统。系统采用1台6KW光伏逆变器将直流电变为220V交流电,接入220V线路送入户业主原有室内进户配电箱,再经由220V线路与业主室内低压配电网进行连接,送入电网。房屋周围无高大建筑物,在设计时未对此进行阴影分析。 2、配重结构设计 根据最新的建筑结构荷载规范GB5009- 中,对于屋顶活荷载的要求,方阵基础采用C30混凝土现浇,预埋安装地角螺栓,前后排水泥基础中心

200KW分布式光伏电站技术方案

200KW 分布式光伏电站技术方案 2015 年3 月19 日

目录 目录 (1) 一、项目概况 (2) 项目地点及建设规 模................................................................ (2) 项目地理位 置................................................................ (2) 并网接入................................................................... ....................................... 2 二、项目场址太阳能资源................................................................... ......................... 2 三、光伏电站系统设计................................................................... .. (3) 并网光伏系统原 理................................................................ (3) 电站总体规 划................................................................ (3) 光伏发电系统设 计................................................................ (4) 设计原 则............................................................. (4) 发电系统 图............................................................. (4) 光伏系统主要配 件................................................................ (5) 光伏组 件............................................................. (5) 并网逆变 器............................................................. (6) 组件安装支 架................................................................ (7)

光伏电站项目合作协议书

光伏电站项目合作协议书 甲方: 乙方: 经甲乙双方多次洽谈、考察,甲方认可乙方具备光伏电站前期开发的优势资源;乙方认可甲方具备项目投资、建设、运营的实力。为明确双方权利义务,双方本着平等互利、合作共赢的原则,依据?中华人民共和国合同法?及相关法律法规,就项目开发达成以下合作协议, 以供双方遵照执行,具体内容如下: 一、合作内容 甲方委托乙方开发光伏发电项目(以下称“目标项目”), 由乙方提供目标项目前期的开发咨询及协调全程服务工作,确保目标项目顺利备案并投产实施, 项目装机规模拟定目标不低于(以发改委备案批复容量为准) ,项目一期备案容量不低于 1.本协议签订之后 2 日之内,双方均有权对对方公司进行尽职调查,尽职调查应在 3 日之内完成。双方应当对调查工作给予全面配合。 2.乙方负责获取目标项目备案指标, 为明确起见, 本协议项下目标项目备案等前期工作之完成是指目标项目取得包括但不限于附件1和附件 2 所列的所有文件,本项目之前期开发和后续投建所涉协调服务工作类事项均由乙方主导完成且协调备方资源,甲方予以辅助配合相关事项。 3.在目标项目完成备案等前期所有合规性手续后且经甲方认可通过后,甲方按照已获得的发电项目的实际批复容量支付乙方咨询服务费用。价格为元/瓦(本价格已涵盖并包含项目开发及全部手续费用等,为固定大包干费用,包括但不限于本协议附件1、附件2 所列全部工作事项) ,本协议项下目标项目在开发过程中若由于开发方变更, 甲方有权就前述的咨询服务费进行相应调整。 4.本项目电站建成如届时获批省地方电价补贴文件(如有),则本协议上述委托开发咨询服务咨询服务费用变更调整至元/瓦进行支付,前述溢价部分之开发咨询服务费用之支付以实际有效获批地方主管部门(省物价局)电价补贴等占批复文件为准(度电补贴额不低于0.2元/kwh)。 二、服务期限

光伏电站设计方案实例

光伏电站设计方案实例公司内部档案编码:[OPPTR-OPPT28-OPPTL98-OPPNN08]

甘肃某建筑屋顶光伏发电系统初步 设计方案 一、项目背景 1、项目意义 (略) 2、项目建设地基本信息: 、建设地:甘肃某地 、当地地理纬度: 36°左右, 、年平均太阳能辐射资源:㎡·day 、当地气温:最高气温:38°C,最低气温:-20°C 、光伏电站建设布局及占地面积 屋顶面积:58x35=2030平方米, 朝向:正南 设计阵列朝向:正南 三、项目规模 预计最大装机容量:2030m2x130W/m2=264kW 四、方案设计 1、逆变器初选:根据初步预算容量选 用5台50千瓦串接式逆变器。 MPPT范围:350-800V

最大输入电压:1000V 2、组件选择:选用300Wp光伏组件。 3、支架倾角设计:鉴于该建筑朝向东南45度,为了综合考虑朝向非正南对发电的影响,设计光伏支架倾角为30°。 支架结构设计(略) 支架基础设计(略) 4、平面设计及阵列排布 (1)采用光伏组件横向排布,上下2层支架设计,18块一串,阵列总长18米。每个阵列有18x2=36块组件封2串组成,合计10800Wp。

(2)计算阵列占地投影宽度米,遮阴间距米,取值米。错误:上面说,横向排布,上下2层支架设计,18块一串,阵列总长18米。L阵列斜长应为4米。投影宽度米,遮阴间距米.

(3)设计布局8排,共计24个阵列,总设计安装容量 (如果设计布局7排,共计21个阵列,总设计安装容量,前后空间比较大) 5、总平面布置图: 6、电路设计(略) 五、投资预算: 1、静态投资: 序号项目单价(元)合计(万元)1电站单晶硅光伏组件Wp 25台50kVA逆变器等并网配件Wp25 3C型钢支架Wp13屋面混凝土基础Wp 4电缆Wp 接入系统Wp 5其他配件Wp 6安装劳务费等W 7其他Wp 8盈利、税、25%

水面光伏电站的设计方案与成本

一、某地区大型水库项目概况(参考) 本项目选址,水域开阔,面积约为3000亩,项目现场照片情况如下: 水库的深度约3~4米,采用漂浮式光伏水面电站形式。组件和汇流箱漂浮在水面上,逆变器及后端设备设置在岸基上。 二、水面漂浮式光伏电站解决方案 第一方案:传统浮筒 + 光伏支架方案 1)结构方案 传统浮筒尺寸为500*500*400mm,方阵主要采用单排浮筒,即可提供足够支撑。 另外一方面,考虑到系统维护通道的情况,需要每个浮筒阵列间隔使用双排浮筒。 组件子阵为2*11,采用255W组件,大方阵为6*16个子阵。大方阵单排浮筒和双排浮筒间隔使用。目的是综合考虑成本及电站维护通道的要求。 阵列面积—6327.75㎡ 光伏组件----2112块,538.56KW 浮筒----4191个 锚----预估60组 支架-----96组

2)方阵抛锚固定方案 锚固系统采用水下抛锚方式。先将组装好的浮码头拖移到合适的位置,与岸边通道对齐后,进行初步定位,待整个码头位置基本就位后开始进行锚固作业。 3)系统容量 本方案组件阵列面积6327.75㎡,功率容量为538.56KW。本项目3000亩水域,水域利用率通常60%-80%。保守情况下按照60%水域利用率计算,可以放置190个模块化组件阵列,约合102.3MW。 4)电气方案 电气系统与结构方案配套,22块组件全部串联形成子阵。每16个子阵并联入一个汇流箱。阵列为6*16个子阵组成,即每个阵列有6个汇流箱。 每2个阵列,即4224块组件(1077.12KW)接入到一台1MW的集中逆变站升压到35KV,送往站区再升压并网。汇流箱放置在光伏支架背面,漂浮于水面上,逆变器及后端设备安置于岸基上。 本项目共401280块255W多晶硅组件, 95组1MW的集中光伏逆变站,1140个16路入口的汇流箱,合计容量102.3MW。 5)方案概算表 水面电站电气设备及并网部分成本与地面电站基本无异,在此不再阐述。

光伏电站设计方案

前言 太阳能光伏发电是新能源和可再生能源的重要组成部分,由于它集开发利用绿色可再生能源、改善生态环境、改善人民生活条件于一体,被认为是当今世界上最有发展前景的新能源技术,因而越来越受到人们的青睐。随着世界光伏市场需求持续高速增长、我国《可再生能源法》的颁布实施以及我国光伏企业在国际光伏市场上举足轻重的良好表现,我国光伏技术应用呈现了前所未有的快速增长 的态势并表现出强大的生命力。它的广泛应用是保护生态环境、走经济社会可持续发展的必由之路。 太阳能发电的利用通常有两种方式,一种是将太阳能发电系统所发出的电力输送到电网中供给其他负载使用,而在需要用电的时候则从电网中获取电能,称谓并网发电方式。另一种是依靠蓄电池来进行能量存储的所谓独立发电方式,它主要用于因架设线路困难市电无法到达的场合,应用十分广泛。

1.项目概况 1.1项目背景及意义 本项目拟先设计一个独立系统,安装在客户工厂的屋顶上,用于演示光伏阵列采取跟踪模式和固定模式时发电的情况,待客户参考后再设计一套发电量更大的系统,向工厂提供生产生活用电。本系统建成后将为客户产品做出很好的宣传,系统会直观的显示采用跟踪系统后发电总量的提升情况。 1.2光伏发电系统的要求 因本系统仅是一个参考项目,所以这里就只设计一个 2.88kWp的小型系统,平均每天发电 5.5kWh,可供一个1kW的负载工作 5.5小时。 2.系统方案 2.1现场资源和环境条件 江阴市位于北纬31°40’34”至31°57’36”,东经119°至120°34’30”。气候为亚热带北纬湿润季风区,冬季干冷多晴,夏季湿热雷雨。年降水量1041.6毫米,年平均气温15.2℃。具有气候温和、雨量充沛、四季分明等特点。其中4月-10月平均温度在10℃以上,最冷为1月份,平均温度 2.5℃;最热月7月份,平均温度27.6℃。

光伏发电站设计规范(GB 50797-2012)

光伏发电站设计规范(GB 50797-2012) 1总则 1.0.1为了进一步贯彻落实国家有关法律、法规和政策,充分利用太阳能资源,优化国家能源结构,建立安全的能源供应体系,推广光伏发电技术的应用,规范光伏发电站设计行为,促进光伏发电站建设健康、有序发展,制定本规范。 1.0.2本规范适用于新建、扩建或改建的并网光伏发电站和l00kWp及以上的独立光伏发电站。 1.0.3并网光伏发电站建设应进行接入电网技术方案的可行性研究。 1.0.4光伏发电站设计除符合本规范外,尚应符合国家现行有关标准的规定。 2术语和符号 2.1术语 2.1.1光伏组件 PV module 具有封装及内部联结的、能单独提供直流电输出的、最小不可分割的太阳电池组合装置。又称太阳电池组件(solar cell module) 2.1.2光伏组件串 photovoltaic modules string 在光伏发电系统中,将若干个光伏组件串联后,形成具有一定直流电输出的电路单元。 2.1.3光伏发电单元 photovoltaic(PV)power unit 光伏发电站中,以一定数量的光伏组件串,通过直流汇流箱汇集,经逆变器逆变与隔离升压变压器升压成符合电网频率和电压要求的电源。又称单元发电模块。 2.1.4光伏方阵 PV array 将若干个光伏组件在机械和电气上按一定方式组装在一起并且有固定的支撑结构而构成的直流发电单元。又称光伏阵列。 2.1.5 光伏发电系统 photovoltaic(PV)power generation system 利用太阳电池的光生伏特效应,将太阳辐射能直接转换成电能的发电系统。 2.1.6 光伏发电站 photovoltaic(PV)power station 以光伏发电系统为主,包含各类建(构)筑物及检修、维护、生活等辅助设施在内的发电站。 2.1.7辐射式连接 radial connection 各个光伏发电单元分别用断路器与发电站母线连接。 2.1.8 “T”接式连接 tapped connection 若干个光伏发电单元并联后通过一台断路器与光伏发电站母线连接。 2.1.9跟踪系统 tracking system

光伏电站设计技术

光伏电站设计技术 前言 设计技术是一门工程实践性极强的学问。只有深入到具体的工程中才能发现其中存在的问题,只有深入到具体的工程中才能理解研究的迫切性,也只有深入到具体的工程中才能应用所取得的研究成果。 在我国,各设计单位从2009年起陆续开展了光伏电站的设计工作。本书的三位作者有幸参与完成了多项光伏电站科技项目以及70余项光伏电站工程设计和咨询工作,对光伏电站设计这项融合传统电力设计技术与光伏设计新技术的综合性技术有了些许自己的理解,期望能将在设计实践中遇到的问题以及解决的方法写出来,与行业同仁们讨论、分享。 鉴于光伏电站设计技术包括传统电力设计和光伏设计新技术两部分,前者已经非常成熟,本书着重阐述光伏设计新技术部分。 在全书的章节安排上,主要的思路是:首先介绍光伏电站的能量来源——太阳能,然后介绍主要光伏设备的性能和特点,在此基础上介绍光伏设备的选型和布置,并介绍发电量的计算。之后两章分别从电气专业、结构专业的角度对光伏电站的电气设计和结构设计进行介绍。 除了以上主要内容外,本书的第一章对光伏发电的现状进行了梳理,对光伏电站的设计过程和现行设计标准的情况作了概述。在本书的最后一章介绍了Pvsyst软件的使用方法,供读者参考。 少数人认为光伏电站的设计技术没有什么可以研究的。有这样认识的人大概分为两类:第一类同志,没有深入到光伏电站工程中,自然不能发现可以研究的内容;第二类同志,直接将传统电力设计技术应用到光伏电站设计中,结果发现电站建成后也可以运行,因此得出没有什么可研究的结论。实际上,光伏电站的设计很多时候已经不再是纯粹的技术问题,而需要更多地考虑经济问题。本书的大部分内容是围绕“如何获取更高的经济收益”这一宗旨进行的。本书中还有部分内容在回答“为什么”,即很多设计师都这么做,这么做也确实没有问题,就

屋顶光伏电站简介及案例

用户侧并网屋顶光伏电站介绍用户侧并网光伏发电系统 ①太阳电池②开关/保护/防雷③电缆④并网逆变器⑤电度表(光伏电量) 经济和社会效益分析 经济效益 一个10MWp的光伏电站,按系统效率80%,年利用小时数1100小时(江苏地区平均值)计算,一年可发电10000000*1100/1000=1100万度电,按1度电可比原购电价格便宜0.15元,可节省购电用户运营成本近165万元。 10MWp电站总投资约1.2亿左右,根据新能源产业政策,项目建成后税收是三免三减半(每个地区的政策要了解清楚),第四年后建成后每年可缴税约300~400万。

社会效益 每年可节省标准煤约2800t,减排烟尘约700t,减排灰渣约1000t,减排二氧化碳约5960t,减排二氧化硫约56.84t。 屋顶光伏电站案例 盐城阜宁3MWp屋顶光伏发电项目 (中国2009年度最大已并网屋顶光伏电站) 1)项目地址:盐城阜宁3MWp屋顶光伏电站位于阜宁经济开发区荣威塑胶厂。 2)项目规模:3MW(规划9.18MWp)。 3)占地面积:5万平米。 4)组件类型:晶硅电池。 5)组件品牌:常州天合,江苏林洋。 6)逆变器规格:500KW。 7)逆变器品牌:Satcon(美国赛康)。 8)支架类型:固定倾角(30度)支架。 9)支架品牌:中环光伏。 10)接入系统:电站所发电量升压至10kV 直接并入地区电力网。 11)进场施工时间:2009年10月10日。 12)并网时间:2009年12月31日正式并网发电。 13)系统组成:盐城阜宁3MWp屋顶并网光伏电站采用分块发

电,集中并网方案,采用晶硅电池组件。该工程由光伏发电系统、电气系统、接入系统组成,分9个厂房,6个子系统,。每个子系统分别由太阳电池组件、支架、直流防雷汇流箱、并网逆变器、升压变压器等组成。 本项目建设规模为3MW,全部采用固定倾角安装,共安装220W 晶硅太阳能电池13664块。 盐城阜宁3MWp屋顶光伏发电项目运行寿命25年,总体效率为80%,预计电站在25 年运营期内年平均上网电量为337万kW·h,总上网电量为8425 万kW·h,与火电厂相比每年可为电网节约标煤约1028吨,在25年使用期内共节省标煤2.57万吨。项目同时发挥重要的环境效益,每年减轻排放温室效应气体CO2约2743吨;每年减少排放大气污染气体SOx约21吨,NOx约7吨。 项目建设过程图片

分布式光伏电站设计方案参考

北京市XX厂房 分布式并网光伏发电设计方案 设计单位:北京钇恒创新科技有限公司设计人:屈玉秀日10年4月2017设计日期:

1 / 14 一、项目基本情况 北京延庆县XX工厂厂房,占地15000平方米,其中水泥屋顶可利用面积约7000平方米。年用电约25万度,其中,白天用电约15万度(白天综合电价1元/度);夜间用电10万度(夜间综合电价0.4元/度);全年缴纳电费约19万元。 1、项目建设的可行性 1.1 北京市具备建设分布式并网光伏发电系统的条件 北京地区太阳辐射量全年平均4600~5700MJ/m2。多年平均的年总辐射量为1371kwh/m2 北京地区年平均日照时数在2000~2800h之间,多年平均日照时数为2778.7h(从北京气象局获悉)。通过测算,北京市如果按照最佳倾角36°敷设光伏电池板,峰值小时数为1628h(通过专业软件计算获得),首年满发小时数=1628h*80%(系统效率)=1302.4h 首年发电量=450KW*1302.4h=586080kWh≈58.6万kwh 1.2 北京市分布式光伏发电奖励资金管理办法 为进一步加快本市分布式光伏发电产业发展,优化能源结构,根据《中华人民共和国可再生能源法》、《中华人民共和国预算法》、《国务院关于促进光伏产业健康发展的若干意见》和《北京市分布式光伏发电项目管理暂行办法》等有关规定,适用范围。本办法适用于在北京市行政区域范围内建设的分布式光伏发电项目,具体是指在用户所在场地或附近建设运行,以用户侧自发自用为主,多余电量上网,且在配电网系统平衡调节为特征的光伏发电设施。 奖励对象和标准。对于2015年1月1日至2019年12月31日期间并网发电的分

彩钢瓦屋顶光伏电站设计方案及投资资料

湘潭彩钢瓦屋顶光伏并网发电项目初步设计方案 湖南科比特新能源科技股份有限公司 2015年7月

一、设计说明 1、项目概况 本项目初步设计装机容量为642.6K Wp,属并网型分布式光伏发电系统(自发自用,余电上网)。光伏组件安装在楼顶屋面彩钢瓦上。光伏组件采用与彩钢瓦平行的安装方式。本项目共安装2520块255Wp太阳能电池组件,8台15路光伏直流防雷汇流箱,1台8进1出光伏直流配电柜,1台630K Wp逆变器(无隔离变压器),1台630KV A带隔离升压变压器及1台并网计量柜。 项目于合同签订后15个工作日内即可开始建设,预计6周后可并网发电并投入运行。 光伏组件阵列发出的直流电分120串先经8台15路光伏直流防雷汇流箱汇流,再经1台8进1出光伏直流配电柜进行二次汇流,再连接到630K Wp逆变器,再经逆变器转换为315V交流,再经升压变将电压升至400V,最后经并网计量柜后接至低压电网,所发电量优先供工厂自身负载(机器、照明、动力和空调等)使用,余电送入电网。 太阳电池方阵通过电缆接入逆变器,逆变器输入端含有防雷保护装置,经过防雷装置可有效地避免雷击导致设备的损坏。 按《电力设备接地设计规程》,围绕建筑物敷设闭合回路的接地装置。电站内接地电阻小于4欧。 光伏系统直流侧的正负电源均悬空不接地。太阳电池方阵支架和机箱外壳通过楼顶避雷网接地,与主接地网通过钢绞线可靠连接。 屋顶设备,含电池板,支架,汇流箱等设备总质量约为50吨,单位面积载荷约为50吨÷(160m×60m)=10.2kg/m2 。 2、设计依据 本工程在设计及施工中执行国家或部门及工程所在地颁发的环保、劳保、卫生、安全、消防等有关规定。以下未包含的以国家和有关部门制订、颁发的有关规定、标准为准。如国家有关部门颁发了更新的规范、标准,则以新的规范、标准为准。 参考标准: GB 2297-89太阳能光伏能源系统术语

光伏电站设计 完整

光伏电站设计 前言 太阳能光伏发电是新能源和可再生能源的重要组成部分,由于它集开发利用绿色可再生能源、改善生态环境、改善人民生活条件于一体,被认为是当今世界上最有发展前景的新能源技术,因而越来越受到人们的青睐。随着世界光伏市场需求持续高速增长、我国《可再生能源法》的颁布实施以及我国光伏企业在国际光伏市场上举足轻重的良好表现,我国光伏技术应用呈现了前所未有的快速增长的态势并表现出强大的生命力。它的广泛应用是保护生态环境、走经济社会可持续发展的必由之路。 太阳能发电的利用通常有两种方式,一种是将太阳能发电系统所发出的电力输送到电网中供给其他负载使用,而在需要用电的时候则从电网中获取电能,称谓并网发电方式。另一种是依靠蓄电池来进行能量存储的所谓独立发电方式,它主要用于因架设线路困难市电无法到达的场合,应用十分广泛。

1.项目概况 1.1项目背景及意义 本项目拟先设计一个独立系统,安装在客户工厂的屋顶上,用于演示光伏阵列采取跟踪模式和固定模式时发电的情况,待客户参考后再设计一套发电量更大的系统,向工厂提供生产生活用电。本系统建成后将为客户产品做出很好的宣传,系统会直观的显示采用跟踪系统后发电总量的提升情况。 1.2光伏发电系统的要求 因本系统仅是一个参考项目,所以这里就只设计一个2.88kWp的小型系统,平均每天发电5.5kWh,可供一个1kW的负载工作5.5小时。 2.系统方案 2.1现场资源和环境条件 江阴市位于北纬31°40’34”至31°57’36”,东经119°至120°34’30”。气候为亚热带北纬湿润季风区,冬季干冷多晴,夏季湿热雷雨。年降水量1041.6毫米,年平均气温15.2℃。具有气候温和、雨量充沛、四季分明等特点。其中4月-10月平均温度在10℃以上,最冷为1月份,平均温度2.5℃;最热月7月份,平均温度27.6℃。

XX光伏电站项目方案(自投)资料

XX有限公司 1.0MWp分布式光伏发电项目 XX投资建设设计方案编写单位:

目录 一、概述 (02) 1.1 项目设计依据 (02) 1.2 项目概况 (02) 1.3 项目场地安装选择 (02) 1.4 建设规模 (03) 1.5光伏电站项目使用方直接效益 (03) 二、太阳能资源及能效分析 (05) 2.1项目所在地太阳能资源分析 (05) 2.2 项目能效分析 (05) 2.2.1项目发电量评估 (05) 2.2.2光伏项目环境效益分析 (09) 三、光伏系统方案 (10) 3.1 电站运行原理图 (10) 3.2 光伏组件参数 (10) 3.3 光伏组串选择 (11) 3.4光伏组件安装方式 (12) 3.5. 光伏配电设备 (13) 3.5.1 光伏交流汇流箱 (13) 3.5.2光伏直流电缆 (14) 3.6并网逆变器方案 (14) 3.7并网方案 (16) 四、光伏发电对拟接入电力系统的影响 (17) 4.1 光伏电站接入系统谐波分量控制 (17) 4.2 光伏电站接入系统无功平衡控制 (17) 4.3 发电系统短路电流 (17) 五、项目报价 (18) 5.1 报价一览表 (18) 5.2 报价明细表附后 另附:光伏电站项目平面布置图附后

一、概述 1.1 项目设计依据 1)依据XX公司新厂区建筑总图资料及现场勘察情况; 2)《光伏系统并网技术要求》(GB/T 19939-2005); 3)太阳能光伏发电及各专业相关的设计规程规定; 4)《光伏发电站设计规范》(GB50797-2012); 5)《电能质量公用电网谐波》(GB 14549-1993); 6)《分布式光伏发电系统接入电网技术规定》(FSGF 6-2014); 7)《分布式并网光伏发电系统设计规范》(FSGF 1-2014); 8)《分布式并网光伏发电系统施工与验收规范》(FSGF 2-2014)。 1.2 项目概况 项目名称:XX股份有限公司新厂区1.0MWp分布式光伏发电项目。 项目所在地: 该项目位于东莞市市辖区,地理坐标为东经113.45度,北纬23.02度,水平面上年峰值日照时数约为1349.44小时,太阳辐射总量为4857.99MJ/㎡。 1.3 项目场地安装选择 此1.0MWp分布式光伏发电项目安装 在工业园,所有电池板阵列分别 安装在3栋厂房屋面,各栋厂房间隔楼距 较大,相互无遮挡,厂区四周较空旷,无 高建筑遮挡,当地太阳能资源较为丰富, 日照时间长,适合安装太阳能光伏电站项 目。 项目安装场地见图1-1所示。

2MW光伏电站设计方案

宁夏塞尚乳业2MW光伏电站 设计方案 宁夏银新能源光伏发电设备制造有限公司 2012-5-15

一、综合说明 (4) 1、概述 (4) 2、发电单元设计及发电量预测 (6) 2.1楼顶安装 (6) 2.2车间彩钢板安装 (6) 2.3系统损耗计算 (8) 2.4光伏发电量预测 (9) 二、光伏电站设计: (10) 1、光伏组件的选型及参数 (10) 2、逆变器设计: (12) 3、逆变器的选型 (13) 4.防逆流设计 (15) 三、太阳能电池阵列设计 (16) 1并网光伏发电系统分层结构 (16) 2.系统方案概述 (17) 3.太阳能电池阵列子方阵设计 (17) 4.电池组件串联数量计算 (18) 5.太阳能电池组串单元的排列方式 (20) 6.太阳能电池阵列行间距的计算 (20) 7.逆变器室布置 (21) 8.太阳能电池阵列汇流箱设计 (21) 9.太阳能电池阵列设计 (22) 10.光伏阵列支架设计 (22) 四.电气 (22) 1电气一次 (22) 2电气二次 (22)

一、综合说明 1、概述 宁夏是我国太阳能资源最丰富的地区之一,也是我国太阳能辐射的高能区之一(太阳辐射量年均在4950MJ/m2~6100MJ/m2之间,年均日照小时数在2250h-3100h之间),在开发利用太阳能方面有着得天独厚的优越条件一地势海拔高、阴雨天气少、日照时间长、辐射强度高、大气透明度好。区域内太阳辐射分布年际变化较稳定,因地域不同具有一定的差异,其特点是北部多于南部,尤以灵武、同心地区最高,可达6100MJ/m2,辐射量南北相差约1000MJ/m2。灵武、同心附近是宁夏太阳辐射最丰富的地区。

10MW光伏电站设计方案

10MW光伏电站设计方案 10兆瓦的太阳能并网发电系统,推荐采用分块发电、集中并网方案,将系统分成10个 1 兆瓦的光伏并网发电单元,分别经过35KV变压配电装置并入电网,最终实现将整个光伏并 网系统接入35KV中压交流电网进行并网发电的方案。 本系统按照10个1兆瓦的光伏并网发电单元进行设计,并且每个1兆瓦发电单元采用4台250KW并网逆变器的方案。每个光伏并网发电单元的电池组件采用串并联的方式组成多个 太阳能电池阵列,太阳能电池阵列输入光伏方阵防雷汇流箱后接入直流配电柜, 然后经光伏并网逆变器和交流防雷配电柜并入35KV变压配电装置。 (一)太阳能电池阵列设计 1、太阳能光伏组件选型 (1)单晶硅光伏组件与多晶硅光伏组件的比较 单晶硅太阳能光伏组件具有电池转换效率高,商业化电池的转换效率在15%左右,其稳定性好,同等容量太阳能电池组件所占面积小,但是成本较高,每瓦售价约36-40 元。 多晶硅太阳能光伏组件生产效率高,转换效率略低于单晶硅,商业化电池的转换效率在 13%-15%,在寿命期内有一定的效率衰减,但成本较低,每瓦售价约34-36 元。 两种组件使用寿命均能达到25年,其功率衰减均小于15%。 ⑵根据性价比本方案推荐采用165WP太阳能光伏组件。 2、并网光伏系统效率计算 并网光伏发电系统的总效率由光伏阵列的效率、逆变器效率、交流并网等三部分组成。 (1)光伏阵列效率n 1:光伏阵列在1000W/ rf太阳辐射强度下,实际的直流输出功率与 标称功率之比。光伏阵列在能量转换过程中的损失包括:组件的匹配损失、表面尘埃遮挡损

失、不可利用的太阳辐射损失、温度影响、最大功率点跟踪精度、及直流线路损失等,取效率85%计算。 (2)逆变器转换效率n 2 :逆变器输出的交流电功率与直流输入功率之比, 取逆变器效率95%计算。 (3)交流并网效率n 3:从逆变器输出至高压电网的传输效率,其中主要是升压变压器的效率,取变压器效率95%计算。 ⑷系统总效率为:n 总=n 1 Xn 2 Xq 3=85% x 95% x 95%=77% 3、倾斜面光伏阵列表面的太阳能辐射量计算 从气象站得到的资料,均为水平面上的太阳能辐射量,需要换算成光伏阵列倾斜面的辐 射量才能进行发电量的计算。 对于某一倾角固定安装的光伏阵列,所接受的太阳辐射能与倾角有关,较简便的辐射量 计算经验公式为: R 3 =S X [sin( a + 3 )/sin a ]+D 式中: R 3 --倾斜光伏阵列面上的太阳能总辐射量 S--水平面上太阳直接辐射量 D--散射辐射量 a --中午时分的太阳高度角 3 --光伏阵列倾角 根据当地气象局提供的太阳能辐射数据,按上述公式计算不同倾斜面的太阳辐射量,具体数据见下表: 不同倾斜面各月的太阳辐射量(KWH/m2)

光伏发电站设计规范GB 50797-2012

光伏发电站设计规范(GB 50797-2012)1总则 1.0.1为了进一步贯彻落实国家有关法律、法规和政策,充分利用太阳能资源,优化国家能源结构,建立安全的能源供应体系,推广光伏发电技术的应用,规范光伏发电站设计行为,促进光伏发电站建设健康、有序发展,制定本规范。 1.0.2本规范适用于新建、扩建或改建的并网光伏发电站和l00kWp及以上的独立光伏发电站。 1.0.3并网光伏发电站建设应进行接入电网技术方案的可行性研究。 1.0.4光伏发电站设计除符合本规范外,尚应符合国家现行有关标准的规定。 2术语和符号 2.1术语 2.1.1光伏组件 PV module 具有封装及内部联结的、能单独提供直流电输出的、最小不可分割的太阳电池组合装置。又称太阳电池组件(solar cell module) 2.1.2光伏组件串 photovoltaic modules string 在光伏发电系统中,将若干个光伏组件串联后,形成具有一定直流电输出的电路单元。 2.1.3光伏发电单元 photovoltaic(PV)power unit 光伏发电站中,以一定数量的光伏组件串,通过直流汇流箱汇集,经逆变器逆变与隔离升压变压器升压成符合电网频率和电压要求的电源。又称单元发电模块。 2.1.4光伏方阵 PV array 将若干个光伏组件在机械和电气上按一定方式组装在一起并且有固定的支

撑结构而构成的直流发电单元。又称光伏阵列。 2.1.5 光伏发电系统 photovoltaic(PV)power generation system 利用太阳电池的光生伏特效应,将太阳辐射能直接转换成电能的发电系统。 2.1.6 光伏发电站 photovoltaic(PV)power station 以光伏发电系统为主,包含各类建(构)筑物及检修、维护、生活等辅助设施在内的发电站。 2.1.7辐射式连接 radial connection 各个光伏发电单元分别用断路器与发电站母线连接。 2.1.8 “T”接式连接 tapped connection 若干个光伏发电单元并联后通过一台断路器与光伏发电站母线连接。 2.1.9跟踪系统 tracking system 通过支架系统的旋转对太阳入射方向进行实时跟踪,从而使光伏方阵受光面接收尽量多的太阳辐照量,以增加发电量的系统。 2.1.10单轴跟踪系统 single-axis tracking system 绕一维轴旋转,使得光伏组件受光面在一维方向尽可能垂直于太阳光的入射角的跟踪系统。 2.1.11双轴跟踪系统 double-axis tracking system 绕二维轴旋转,使得光伏组件受光面始终垂直于太阳光的入射角的跟踪系统。 2.1.12集电线路 collector line 在分散逆变、集中并网的光伏发电系统中,将各个光伏组件串输出的电能,经汇流箱汇流至逆变器,并通过逆变器输出端汇集到发电母线的直流和交流输电线路。

屋顶分布式光伏电站设计及施工方案

1、项目概况 一、项目选址 本项目处于山东省聊城市,位于北纬35°47’~37°02’和东经115°16’~116°32‘之间。地处黄河冲击平原,地势西南高、东北低。平均坡降约1/7500,海拔高度27.5-49.0米。属于温带季风气候区,具有显著的季节变化和季风气候特征,属半干旱大陆性气候。年干燥度为1.7-1.9。春季干旱多风,回暖迅速,光照充足,太阳辐射强;夏季高温多雨,雨热同季;秋季天高气爽,气温下降快,太阳辐射减弱。年平均气温为13.1℃。全年≥0℃积温4884—5001℃,全年≥10℃积温4404—4524℃,热量差异较小,无霜期平均为193—201天。年平均降水量578.4毫米,最多年降水量为1004.7毫米,最少年降水量为187.2毫米。全年降水近70%集中在夏季,秋季雨量多于春季,春季干旱发生频繁,冬季降水最少,只占全年的3%左右。光资源比较充足,年平均日照时数为2567小时,年太阳总辐射为120.1—127.1千卡/cm^2,有效辐射为58.9—62.3千卡 /cm^2。属于太阳能资源三类可利用地区。 结合当地自然条件,根据公司要求的勘察单选定站址,并充分考虑了以下关键要素: 1、有无遮光的障碍物(包括远期与近期的遮挡) 2、大风、冬季的积雪、结冰、雷击等灾害

本方案屋顶有效面积60m2,采用260Wp光伏组件24块组成,共计建设 6.44KWp屋顶分布式光伏发电系统。系统采用1台6KW光伏逆变器将直流电变为220V交流电,接入220V线路送入户业主原有室内进户配电箱,再经由220V线路与业主室内低压配电网进行连接,送入电网。房屋周围无高大建筑物,在设计时未对此进行阴影分析。 2、配重结构设计 根据最新的建筑结构荷载规范GB5009-2012中,对于屋顶活荷载的要求,方阵基础采用C30混凝土现浇,预埋安装地角螺栓,前后排水泥基础中心间距0.5m 。每横排之间间距为0.5m,便于组件后期的安装和维护。方便根据实际需要设计安装角度。

光伏电站施工图设计说明

工程检索号:QHKJ-NA00341S-J0101 滑县凤凰光伏金太阳示范项目 2.5MWp工程 施工图设计 光伏部分第1卷第1册 施工图设计说明 QHKJ-NA00341S-J0101

北京乾华科技发展有限公司 2012-3-25

批准:日期: 审核:日期: 校核:日期: 编写:日期:

1.设计依据 (1) 2.工程概况 (2) 3.主要设计原则 (2) 4.施工安装要求及注意事项 (3) 5.施工图卷册目录 (6)

1.设计依据 1.1 滑县凤凰光伏金太阳示范项目 2.5MWp工程相关输入资料: 1)《滑县凤凰光伏金太阳示范项目 2.5MWp技术服务合同》; 2)《滑县凤凰光伏金太阳示范项目 2.5MWp工程设计协调会会议纪要》; 3)国家有关法令、法规、政策及有关设计规程、规范、规定等; 4)业主提供的本项目相关建筑结构、基础工程资料。 1.2 国家颁布的有关技术标准及行业技术标准、法规及规范太阳能并网光伏电站相关的国家 颁布的有关技术标准及行业技术标准、法规及规范:GB/T 2296-2001 《太阳电池型号命名方法》 GB/T 2297-1989 《太阳光伏能源系统术语》 GB/T 4797.4-1989 《电工电子产品自然环境条件太阳辐射与温度》 ICE 60904-1-2006 《光伏器件第1 部分:光伏电流- 电压特性的测量》 GB/T 6495.2-1996 《光伏器件第2部分:标准太阳能电池的要求》 GB/T 6497-1986《地面用太阳电池标定的一般规定》 GB/T 1 82 1 0-2000 《晶体硅光伏(PV)方阵I-V 特性的现场测量》 GB/T 18479-2001《地面用光伏(PV发电系统概述和导则》 GB/T 6495.3-1996 《光伏器件第3部分:地面用光伏器件的测量原理及标准光谱辐照度数据》GB/T 6495.4-1996 《晶体硅光伏器件的I-V 实测特性的温度和辐照度修正方法》 GB/T 9535-1998 《地面用晶体硅光伏组件设计鉴定和定型》 GB_T20047.1-2006《光伏(PV)组件安全鉴定第1部分:结构要求》 SJ/T 10460-1993 《太阳光伏能源系统图用图形符号》 SJ/T 9550.29-1993 《地面用晶体硅太阳电池单体质量分等标准》 SJ/T 9550.30-1993 《地面用晶体硅光伏组件质量分等标准》 SJ/T 10459-1993 《太阳电池温度系数测试方法》 CECS 84-1996《太阳光伏电源系统安装工程设计规范》 CECS 85-1996《太阳光伏电源系统安装工程施工及验收规范》 钢结构设计规范《GB50017-2003》;以上规范与标准如有最新版,均以最新版为准。2.工程概况 滑县凤凰光伏金太阳示范项目2.5MW|工程所在地地理坐标为:东经114.35。,北纬 36.1 °。位于河南省滑县凤凰光伏厂区内,光伏组件安装区域占地面积约为 1 9000平方米。

相关文档
最新文档